diff --git a/lab-2/result.ipynb b/lab-2/result.ipynb index c68c16e5971b49a31a2e73090b4472201111259b..bee3490cc425efc4138dc3778e3309f1b918f925 100644 --- a/lab-2/result.ipynb +++ b/lab-2/result.ipynb @@ -2,23 +2,610 @@ "cells": [ { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: opencv-python in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (4.10.0.84)\n", - "Requirement already satisfied: numpy>=1.21.2 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from opencv-python) (2.1.1)\n", - "\u001b[31mERROR: Could not find a version that satisfies the requirement PIL (from versions: none)\u001b[0m\u001b[31m\n", - "\u001b[0m\u001b[31mERROR: No matching distribution found for PIL\u001b[0m\u001b[31m\n", - "\u001b[0m" + "Collecting opencv-python\n", + " Using cached opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl.metadata (20 kB)\n", + "Collecting numpy>=1.21.2 (from opencv-python)\n", + " Using cached numpy-2.1.2-cp310-cp310-win_amd64.whl.metadata (59 kB)\n", + "Using cached opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl (38.8 MB)\n", + "Using cached numpy-2.1.2-cp310-cp310-win_amd64.whl (12.9 MB)\n", + "Installing collected packages: numpy, opencv-python\n", + "Successfully installed numpy-2.1.2 opencv-python-4.10.0.84\n", + "Looking in indexes: https://download.pytorch.org/whl/cu124\n", + "Collecting torch\n", + " Downloading https://download.pytorch.org/whl/cu124/torch-2.5.0%2Bcu124-cp310-cp310-win_amd64.whl (2510.8 MB)\n", + " ---------------------------------------- 0.0/2.5 GB ? eta -:--:--\n", + " ---------------------------------------- 0.0/2.5 GB 16.8 MB/s eta 0:02:30\n", + " ---------------------------------------- 0.0/2.5 GB 19.9 MB/s eta 0:02:06\n", + " ---------------------------------------- 0.0/2.5 GB 19.7 MB/s eta 0:02:07\n", + " ---------------------------------------- 0.0/2.5 GB 19.9 MB/s eta 0:02:06\n", + " ---------------------------------------- 0.0/2.5 GB 20.4 MB/s eta 0:02:03\n", + " ---------------------------------------- 0.0/2.5 GB 20.4 MB/s eta 0:02:02\n", + " ---------------------------------------- 0.0/2.5 GB 20.0 MB/s eta 0:02:05\n", + " --------------------------------------- 0.0/2.5 GB 19.7 MB/s eta 0:02:06\n", + " --------------------------------------- 0.0/2.5 GB 19.7 MB/s eta 0:02:06\n", + " --------------------------------------- 0.0/2.5 GB 19.5 MB/s eta 0:02:07\n", + " --------------------------------------- 0.0/2.5 GB 19.5 MB/s eta 0:02:07\n", + " --------------------------------------- 0.0/2.5 GB 19.4 MB/s eta 0:02:08\n", + " --------------------------------------- 0.1/2.5 GB 19.4 MB/s eta 0:02:07\n", + " --------------------------------------- 0.1/2.5 GB 19.3 MB/s eta 0:02:08\n", + " --------------------------------------- 0.1/2.5 GB 19.2 MB/s eta 0:02:08\n", + " --------------------------------------- 0.1/2.5 GB 19.1 MB/s eta 0:02:09\n", + " - -------------------------------------- 0.1/2.5 GB 19.3 MB/s eta 0:02:07\n", + " - -------------------------------------- 0.1/2.5 GB 19.4 MB/s eta 0:02:06\n", + " - -------------------------------------- 0.1/2.5 GB 19.6 MB/s eta 0:02:05\n", + " - -------------------------------------- 0.1/2.5 GB 19.8 MB/s eta 0:02:03\n", + " - -------------------------------------- 0.1/2.5 GB 20.0 MB/s eta 0:02:02\n", + " - -------------------------------------- 0.1/2.5 GB 20.1 MB/s eta 0:02:01\n", + " - -------------------------------------- 0.1/2.5 GB 20.3 MB/s eta 0:02:00\n", + " - -------------------------------------- 0.1/2.5 GB 20.3 MB/s eta 0:01:59\n", + " - -------------------------------------- 0.1/2.5 GB 20.4 MB/s eta 0:01:58\n", + " - -------------------------------------- 0.1/2.5 GB 20.5 MB/s eta 0:01:58\n", + " - -------------------------------------- 0.1/2.5 GB 20.6 MB/s eta 0:01:57\n", + " - -------------------------------------- 0.1/2.5 GB 20.7 MB/s eta 0:01:56\n", + " - -------------------------------------- 0.1/2.5 GB 20.7 MB/s eta 0:01:56\n", + " -- ------------------------------------- 0.1/2.5 GB 20.7 MB/s eta 0:01:55\n", + " -- ------------------------------------- 0.1/2.5 GB 20.7 MB/s eta 0:01:55\n", + " -- ------------------------------------- 0.1/2.5 GB 20.5 MB/s eta 0:01:57\n", + " -- ------------------------------------- 0.1/2.5 GB 20.5 MB/s eta 0:01:56\n", + " -- ------------------------------------- 0.1/2.5 GB 20.5 MB/s eta 0:01:56\n", + " -- ------------------------------------- 0.1/2.5 GB 20.7 MB/s eta 0:01:55\n", + " -- ------------------------------------- 0.2/2.5 GB 20.7 MB/s eta 0:01:54\n", + " -- ------------------------------------- 0.2/2.5 GB 20.9 MB/s eta 0:01:53\n", + " -- ------------------------------------- 0.2/2.5 GB 21.0 MB/s eta 0:01:52\n", + " -- ------------------------------------- 0.2/2.5 GB 21.0 MB/s eta 0:01:52\n", + " -- ------------------------------------- 0.2/2.5 GB 21.0 MB/s eta 0:01:52\n", + " -- ------------------------------------- 0.2/2.5 GB 21.1 MB/s eta 0:01:51\n", + " -- ------------------------------------- 0.2/2.5 GB 21.1 MB/s eta 0:01:51\n", + " -- ------------------------------------- 0.2/2.5 GB 21.2 MB/s eta 0:01:50\n", + " --- ------------------------------------ 0.2/2.5 GB 21.3 MB/s eta 0:01:49\n", + " --- ------------------------------------ 0.2/2.5 GB 21.4 MB/s eta 0:01:49\n", + " --- ------------------------------------ 0.2/2.5 GB 21.3 MB/s eta 0:01:49\n", + " --- ------------------------------------ 0.2/2.5 GB 21.5 MB/s eta 0:01:48\n", + " --- ------------------------------------ 0.2/2.5 GB 21.6 MB/s eta 0:01:47\n", + " --- ------------------------------------ 0.2/2.5 GB 21.8 MB/s eta 0:01:46\n", + " --- ------------------------------------ 0.2/2.5 GB 21.8 MB/s eta 0:01:46\n", + " --- ------------------------------------ 0.2/2.5 GB 21.3 MB/s eta 0:01:48\n", + " --- ------------------------------------ 0.2/2.5 GB 21.2 MB/s eta 0:01:48\n", + " --- ------------------------------------ 0.2/2.5 GB 21.3 MB/s eta 0:01:47\n", + " --- ------------------------------------ 0.2/2.5 GB 21.4 MB/s eta 0:01:47\n", + " --- ------------------------------------ 0.2/2.5 GB 21.4 MB/s eta 0:01:46\n", + " --- ------------------------------------ 0.2/2.5 GB 21.6 MB/s eta 0:01:45\n", + " ---- ----------------------------------- 0.3/2.5 GB 21.7 MB/s eta 0:01:45\n", + " ---- ----------------------------------- 0.3/2.5 GB 21.7 MB/s eta 0:01:44\n", + " ---- ----------------------------------- 0.3/2.5 GB 21.9 MB/s eta 0:01:43\n", + " ---- ----------------------------------- 0.3/2.5 GB 21.9 MB/s eta 0:01:43\n", + " ---- ----------------------------------- 0.3/2.5 GB 22.1 MB/s eta 0:01:42\n", + " ---- ----------------------------------- 0.3/2.5 GB 22.2 MB/s eta 0:01:41\n", + " ---- ----------------------------------- 0.3/2.5 GB 22.3 MB/s eta 0:01:40\n", + " ---- ----------------------------------- 0.3/2.5 GB 22.4 MB/s eta 0:01:39\n", + " ---- ----------------------------------- 0.3/2.5 GB 22.7 MB/s eta 0:01:38\n", + " ---- ----------------------------------- 0.3/2.5 GB 22.8 MB/s eta 0:01:37\n", + " ---- ----------------------------------- 0.3/2.5 GB 23.0 MB/s eta 0:01:36\n", + " ---- ----------------------------------- 0.3/2.5 GB 23.0 MB/s eta 0:01:36\n", + " ----- ---------------------------------- 0.3/2.5 GB 23.1 MB/s eta 0:01:36\n", + " ----- ---------------------------------- 0.3/2.5 GB 23.3 MB/s eta 0:01:35\n", + " ----- ---------------------------------- 0.3/2.5 GB 23.3 MB/s eta 0:01:34\n", + " ----- ---------------------------------- 0.3/2.5 GB 23.4 MB/s eta 0:01:34\n", + " ----- ---------------------------------- 0.3/2.5 GB 23.4 MB/s eta 0:01:33\n", + " ----- ---------------------------------- 0.3/2.5 GB 23.4 MB/s eta 0:01:33\n", + " ----- ---------------------------------- 0.3/2.5 GB 23.5 MB/s eta 0:01:33\n", + " ----- ---------------------------------- 0.3/2.5 GB 23.5 MB/s eta 0:01:32\n", + " ----- ---------------------------------- 0.4/2.5 GB 23.5 MB/s eta 0:01:32\n", + " ----- ---------------------------------- 0.4/2.5 GB 23.5 MB/s eta 0:01:32\n", + " ----- ---------------------------------- 0.4/2.5 GB 23.4 MB/s eta 0:01:32\n", + " ----- ---------------------------------- 0.4/2.5 GB 23.4 MB/s eta 0:01:32\n", + " ----- ---------------------------------- 0.4/2.5 GB 23.5 MB/s eta 0:01:32\n", + " ----- ---------------------------------- 0.4/2.5 GB 23.5 MB/s eta 0:01:31\n", + " ------ --------------------------------- 0.4/2.5 GB 23.5 MB/s eta 0:01:31\n", + " ------ --------------------------------- 0.4/2.5 GB 23.4 MB/s eta 0:01:31\n", + " ------ --------------------------------- 0.4/2.5 GB 23.6 MB/s eta 0:01:30\n", + " ------ --------------------------------- 0.4/2.5 GB 23.8 MB/s eta 0:01:29\n", + " ------ --------------------------------- 0.4/2.5 GB 23.8 MB/s eta 0:01:29\n", + " ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:29\n", + " ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:28\n", + " ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:28\n", + " ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:28\n", + " ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:28\n", + " ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:28\n", + " ------ --------------------------------- 0.4/2.5 GB 24.0 MB/s eta 0:01:27\n", + " ------- -------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:27\n", + " ------- -------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:27\n", + " ------- -------------------------------- 0.5/2.5 GB 23.9 MB/s eta 0:01:27\n", + " ------- -------------------------------- 0.5/2.5 GB 23.9 MB/s eta 0:01:26\n", + " ------- -------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:26\n", + " ------- -------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:26\n", + " ------- -------------------------------- 0.5/2.5 GB 23.5 MB/s eta 0:01:28\n", + " ------- -------------------------------- 0.5/2.5 GB 23.5 MB/s eta 0:01:27\n", + " ------- -------------------------------- 0.5/2.5 GB 23.5 MB/s eta 0:01:27\n", + " ------- -------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:25\n", + " ------- -------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:25\n", + " ------- -------------------------------- 0.5/2.5 GB 24.1 MB/s eta 0:01:24\n", + " ------- -------------------------------- 0.5/2.5 GB 24.2 MB/s eta 0:01:24\n", + " -------- ------------------------------- 0.5/2.5 GB 24.2 MB/s eta 0:01:24\n", + " -------- ------------------------------- 0.5/2.5 GB 24.1 MB/s eta 0:01:24\n", + " -------- ------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:24\n", + " -------- ------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:24\n", + " -------- ------------------------------- 0.5/2.5 GB 23.9 MB/s eta 0:01:24\n", + " -------- ------------------------------- 0.5/2.5 GB 23.9 MB/s eta 0:01:23\n", + " -------- ------------------------------- 0.5/2.5 GB 23.9 MB/s eta 0:01:23\n", + " -------- ------------------------------- 0.5/2.5 GB 23.8 MB/s eta 0:01:24\n", + " -------- ------------------------------- 0.5/2.5 GB 23.7 MB/s eta 0:01:23\n", + " -------- ------------------------------- 0.5/2.5 GB 23.7 MB/s eta 0:01:23\n", + " -------- ------------------------------- 0.6/2.5 GB 23.6 MB/s eta 0:01:24\n", + " -------- ------------------------------- 0.6/2.5 GB 23.5 MB/s eta 0:01:24\n", + " -------- ------------------------------- 0.6/2.5 GB 23.5 MB/s eta 0:01:23\n", + " --------- ------------------------------ 0.6/2.5 GB 23.5 MB/s eta 0:01:23\n", + " --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:23\n", + " --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:22\n", + " --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:22\n", + " --------- ------------------------------ 0.6/2.5 GB 23.5 MB/s eta 0:01:22\n", + " --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:22\n", + " --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:22\n", + " --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:22\n", + " --------- ------------------------------ 0.6/2.5 GB 23.4 MB/s eta 0:01:22\n", + " --------- ------------------------------ 0.6/2.5 GB 23.3 MB/s eta 0:01:22\n", + " --------- ------------------------------ 0.6/2.5 GB 23.2 MB/s eta 0:01:22\n", + " --------- ------------------------------ 0.6/2.5 GB 23.2 MB/s eta 0:01:22\n", + " --------- ------------------------------ 0.6/2.5 GB 23.3 MB/s eta 0:01:22\n", + " --------- ------------------------------ 0.6/2.5 GB 23.4 MB/s eta 0:01:21\n", + " ---------- ----------------------------- 0.6/2.5 GB 23.4 MB/s eta 0:01:21\n", + " ---------- ----------------------------- 0.6/2.5 GB 23.4 MB/s eta 0:01:21\n", + " ---------- ----------------------------- 0.6/2.5 GB 23.3 MB/s eta 0:01:21\n", + " ---------- ----------------------------- 0.6/2.5 GB 23.2 MB/s eta 0:01:21\n", + " ---------- ----------------------------- 0.7/2.5 GB 23.3 MB/s eta 0:01:20\n", + " ---------- ----------------------------- 0.7/2.5 GB 23.3 MB/s eta 0:01:20\n", + " ---------- ----------------------------- 0.7/2.5 GB 23.3 MB/s eta 0:01:20\n", + " ---------- ----------------------------- 0.7/2.5 GB 23.3 MB/s eta 0:01:20\n", + " ---------- ----------------------------- 0.7/2.5 GB 23.2 MB/s eta 0:01:20\n", + " ---------- ----------------------------- 0.7/2.5 GB 23.2 MB/s eta 0:01:20\n", + " ---------- ----------------------------- 0.7/2.5 GB 23.2 MB/s eta 0:01:19\n", + " ---------- ----------------------------- 0.7/2.5 GB 23.3 MB/s eta 0:01:19\n", + " ---------- ----------------------------- 0.7/2.5 GB 23.2 MB/s eta 0:01:19\n", + " ----------- ---------------------------- 0.7/2.5 GB 23.2 MB/s eta 0:01:19\n", + " ----------- ---------------------------- 0.7/2.5 GB 23.1 MB/s eta 0:01:19\n", + " ----------- ---------------------------- 0.7/2.5 GB 23.1 MB/s eta 0:01:19\n", + " ----------- ---------------------------- 0.7/2.5 GB 22.6 MB/s eta 0:01:21\n", + " ----------- ---------------------------- 0.7/2.5 GB 22.7 MB/s eta 0:01:20\n", + " ----------- ---------------------------- 0.7/2.5 GB 22.6 MB/s eta 0:01:20\n", + " ----------- ---------------------------- 0.7/2.5 GB 22.4 MB/s eta 0:01:21\n", + " ----------- ---------------------------- 0.7/2.5 GB 22.4 MB/s eta 0:01:21\n", + " ----------- ---------------------------- 0.7/2.5 GB 22.3 MB/s eta 0:01:21\n", + " ----------- ---------------------------- 0.7/2.5 GB 22.8 MB/s eta 0:01:19\n", + " ----------- ---------------------------- 0.7/2.5 GB 22.8 MB/s eta 0:01:19\n", + " ----------- ---------------------------- 0.7/2.5 GB 22.8 MB/s eta 0:01:18\n", + " ----------- ---------------------------- 0.7/2.5 GB 22.7 MB/s eta 0:01:19\n", + " ----------- ---------------------------- 0.7/2.5 GB 22.6 MB/s eta 0:01:19\n", + " ----------- ---------------------------- 0.8/2.5 GB 22.6 MB/s eta 0:01:18\n", + " ------------ --------------------------- 0.8/2.5 GB 22.5 MB/s eta 0:01:19\n", + " ------------ --------------------------- 0.8/2.5 GB 22.4 MB/s eta 0:01:19\n", + " ------------ --------------------------- 0.8/2.5 GB 22.4 MB/s eta 0:01:19\n", + " ------------ --------------------------- 0.8/2.5 GB 22.4 MB/s eta 0:01:18\n", + " ------------ --------------------------- 0.8/2.5 GB 22.4 MB/s eta 0:01:18\n", + " ------------ --------------------------- 0.8/2.5 GB 22.3 MB/s eta 0:01:18\n", + " ------------ --------------------------- 0.8/2.5 GB 22.3 MB/s eta 0:01:18\n", + " ------------ --------------------------- 0.8/2.5 GB 22.3 MB/s eta 0:01:18\n", + " ------------ --------------------------- 0.8/2.5 GB 22.2 MB/s eta 0:01:18\n", + " ------------ --------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:18\n", + " ------------ --------------------------- 0.8/2.5 GB 22.2 MB/s eta 0:01:17\n", + " ------------ --------------------------- 0.8/2.5 GB 22.2 MB/s eta 0:01:17\n", + " ------------ --------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:17\n", + " ------------ --------------------------- 0.8/2.5 GB 22.2 MB/s eta 0:01:17\n", + " ------------- -------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:17\n", + " ------------- -------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:17\n", + " ------------- -------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:17\n", + " ------------- -------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:17\n", + " ------------- -------------------------- 0.8/2.5 GB 22.0 MB/s eta 0:01:17\n", + " ------------- -------------------------- 0.8/2.5 GB 22.0 MB/s eta 0:01:16\n", + " ------------- -------------------------- 0.8/2.5 GB 22.0 MB/s eta 0:01:16\n", + " ------------- -------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:16\n", + " ------------- -------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:16\n", + " ------------- -------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:16\n", + " ------------- -------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:15\n", + " ------------- -------------------------- 0.9/2.5 GB 22.1 MB/s eta 0:01:15\n", + " ------------- -------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:15\n", + " ------------- -------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:15\n", + " -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:15\n", + " -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:15\n", + " -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:15\n", + " -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:14\n", + " -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:14\n", + " -------------- ------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:13\n", + " -------------- ------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:13\n", + " -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:13\n", + " -------------- ------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:13\n", + " -------------- ------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:12\n", + " -------------- ------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:12\n", + " -------------- ------------------------- 0.9/2.5 GB 21.7 MB/s eta 0:01:14\n", + " -------------- ------------------------- 0.9/2.5 GB 21.7 MB/s eta 0:01:13\n", + " -------------- ------------------------- 0.9/2.5 GB 21.7 MB/s eta 0:01:13\n", + " --------------- ------------------------ 0.9/2.5 GB 21.7 MB/s eta 0:01:13\n", + " --------------- ------------------------ 1.0/2.5 GB 21.7 MB/s eta 0:01:12\n", + " --------------- ------------------------ 1.0/2.5 GB 21.7 MB/s eta 0:01:12\n", + " --------------- ------------------------ 1.0/2.5 GB 21.8 MB/s eta 0:01:12\n", + " --------------- ------------------------ 1.0/2.5 GB 22.2 MB/s eta 0:01:10\n", + " --------------- ------------------------ 1.0/2.5 GB 22.2 MB/s eta 0:01:10\n", + " --------------- ------------------------ 1.0/2.5 GB 22.3 MB/s eta 0:01:09\n", + " --------------- ------------------------ 1.0/2.5 GB 22.4 MB/s eta 0:01:09\n", + " --------------- ------------------------ 1.0/2.5 GB 22.4 MB/s eta 0:01:09\n", + " --------------- ------------------------ 1.0/2.5 GB 22.3 MB/s eta 0:01:09\n", + " --------------- ------------------------ 1.0/2.5 GB 22.3 MB/s eta 0:01:08\n", + " --------------- ------------------------ 1.0/2.5 GB 22.3 MB/s eta 0:01:08\n", + " --------------- ------------------------ 1.0/2.5 GB 22.4 MB/s eta 0:01:08\n", + " ---------------- ----------------------- 1.0/2.5 GB 22.5 MB/s eta 0:01:07\n", + " ---------------- ----------------------- 1.0/2.5 GB 22.4 MB/s eta 0:01:07\n", + " ---------------- ----------------------- 1.0/2.5 GB 22.4 MB/s eta 0:01:07\n", + " ---------------- ----------------------- 1.0/2.5 GB 22.4 MB/s eta 0:01:07\n", + " ---------------- ----------------------- 1.0/2.5 GB 22.5 MB/s eta 0:01:07\n", + " ---------------- ----------------------- 1.0/2.5 GB 22.5 MB/s eta 0:01:06\n", + " ---------------- ----------------------- 1.0/2.5 GB 22.6 MB/s eta 0:01:06\n", + " ---------------- ----------------------- 1.0/2.5 GB 22.6 MB/s eta 0:01:06\n", + " ---------------- ----------------------- 1.0/2.5 GB 22.7 MB/s eta 0:01:05\n", + " ---------------- ----------------------- 1.1/2.5 GB 22.6 MB/s eta 0:01:05\n", + " ---------------- ----------------------- 1.1/2.5 GB 22.6 MB/s eta 0:01:05\n", + " ---------------- ----------------------- 1.1/2.5 GB 22.6 MB/s eta 0:01:05\n", + " ---------------- ----------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:04\n", + " ----------------- ---------------------- 1.1/2.5 GB 22.6 MB/s eta 0:01:04\n", + " ----------------- ---------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:04\n", + " ----------------- ---------------------- 1.1/2.5 GB 22.6 MB/s eta 0:01:04\n", + " ----------------- ---------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:03\n", + " ----------------- ---------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:03\n", + " ----------------- ---------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:03\n", + " ----------------- ---------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:03\n", + " ----------------- ---------------------- 1.1/2.5 GB 22.8 MB/s eta 0:01:02\n", + " ----------------- ---------------------- 1.1/2.5 GB 22.9 MB/s eta 0:01:02\n", + " ----------------- ---------------------- 1.1/2.5 GB 23.0 MB/s eta 0:01:01\n", + " ----------------- ---------------------- 1.1/2.5 GB 23.0 MB/s eta 0:01:01\n", + " ----------------- ---------------------- 1.1/2.5 GB 22.9 MB/s eta 0:01:01\n", + " ----------------- ---------------------- 1.1/2.5 GB 22.9 MB/s eta 0:01:01\n", + " ------------------ --------------------- 1.1/2.5 GB 23.0 MB/s eta 0:01:01\n", + " ------------------ --------------------- 1.1/2.5 GB 23.0 MB/s eta 0:01:00\n", + " ------------------ --------------------- 1.1/2.5 GB 23.2 MB/s eta 0:01:00\n", + " ------------------ --------------------- 1.1/2.5 GB 23.2 MB/s eta 0:00:59\n", + " ------------------ --------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:59\n", + " ------------------ --------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:59\n", + " ------------------ --------------------- 1.2/2.5 GB 23.3 MB/s eta 0:00:58\n", + " ------------------ --------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:58\n", + " ------------------ --------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:58\n", + " ------------------ --------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:58\n", + " ------------------ --------------------- 1.2/2.5 GB 23.1 MB/s eta 0:00:58\n", + " ------------------ --------------------- 1.2/2.5 GB 23.1 MB/s eta 0:00:58\n", + " ------------------ --------------------- 1.2/2.5 GB 23.6 MB/s eta 0:00:57\n", + " ------------------- -------------------- 1.2/2.5 GB 23.5 MB/s eta 0:00:56\n", + " ------------------- -------------------- 1.2/2.5 GB 23.5 MB/s eta 0:00:56\n", + " ------------------- -------------------- 1.2/2.5 GB 23.4 MB/s eta 0:00:56\n", + " ------------------- -------------------- 1.2/2.5 GB 23.4 MB/s eta 0:00:56\n", + " ------------------- -------------------- 1.2/2.5 GB 23.3 MB/s eta 0:00:56\n", + " ------------------- -------------------- 1.2/2.5 GB 23.4 MB/s eta 0:00:56\n", + " ------------------- -------------------- 1.2/2.5 GB 23.3 MB/s eta 0:00:56\n", + " ------------------- -------------------- 1.2/2.5 GB 23.3 MB/s eta 0:00:56\n", + " ------------------- -------------------- 1.2/2.5 GB 23.3 MB/s eta 0:00:55\n", + " ------------------- -------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:55\n", + " ------------------- -------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:55\n", + " ------------------- -------------------- 1.2/2.5 GB 22.7 MB/s eta 0:00:56\n", + " ------------------- -------------------- 1.2/2.5 GB 22.7 MB/s eta 0:00:56\n", + " ------------------- -------------------- 1.2/2.5 GB 22.8 MB/s eta 0:00:56\n", + " ------------------- -------------------- 1.3/2.5 GB 22.8 MB/s eta 0:00:56\n", + " -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:56\n", + " -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:55\n", + " -------------------- ------------------- 1.3/2.5 GB 22.8 MB/s eta 0:00:55\n", + " -------------------- ------------------- 1.3/2.5 GB 22.9 MB/s eta 0:00:55\n", + " -------------------- ------------------- 1.3/2.5 GB 22.8 MB/s eta 0:00:55\n", + " -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:55\n", + " -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:54\n", + " -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:54\n", + " -------------------- ------------------- 1.3/2.5 GB 22.6 MB/s eta 0:00:54\n", + " -------------------- ------------------- 1.3/2.5 GB 22.6 MB/s eta 0:00:54\n", + " -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:54\n", + " -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:53\n", + " -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:53\n", + " --------------------- ------------------ 1.3/2.5 GB 22.8 MB/s eta 0:00:53\n", + " --------------------- ------------------ 1.3/2.5 GB 22.7 MB/s eta 0:00:53\n", + " --------------------- ------------------ 1.3/2.5 GB 22.7 MB/s eta 0:00:53\n", + " --------------------- ------------------ 1.3/2.5 GB 22.7 MB/s eta 0:00:52\n", + " --------------------- ------------------ 1.3/2.5 GB 22.8 MB/s eta 0:00:52\n", + " --------------------- ------------------ 1.3/2.5 GB 22.7 MB/s eta 0:00:52\n", + " --------------------- ------------------ 1.3/2.5 GB 22.7 MB/s eta 0:00:52\n", + " --------------------- ------------------ 1.4/2.5 GB 22.6 MB/s eta 0:00:52\n", + " --------------------- ------------------ 1.4/2.5 GB 22.6 MB/s eta 0:00:52\n", + " --------------------- ------------------ 1.4/2.5 GB 22.5 MB/s eta 0:00:52\n", + " --------------------- ------------------ 1.4/2.5 GB 22.5 MB/s eta 0:00:51\n", + " --------------------- ------------------ 1.4/2.5 GB 22.4 MB/s eta 0:00:51\n", + " --------------------- ------------------ 1.4/2.5 GB 22.3 MB/s eta 0:00:51\n", + " --------------------- ------------------ 1.4/2.5 GB 22.3 MB/s eta 0:00:51\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:51\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:51\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:51\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:50\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:50\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:50\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:50\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.2 MB/s eta 0:00:50\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.2 MB/s eta 0:00:50\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.2 MB/s eta 0:00:49\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:49\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:49\n", + " ---------------------- ----------------- 1.4/2.5 GB 22.4 MB/s eta 0:00:48\n", + " ----------------------- ---------------- 1.4/2.5 GB 22.4 MB/s eta 0:00:48\n", + " ----------------------- ---------------- 1.5/2.5 GB 22.4 MB/s eta 0:00:48\n", + " ----------------------- ---------------- 1.5/2.5 GB 22.5 MB/s eta 0:00:47\n", + " ----------------------- ---------------- 1.5/2.5 GB 22.5 MB/s eta 0:00:47\n", + " ----------------------- ---------------- 1.5/2.5 GB 22.6 MB/s eta 0:00:47\n", + " ----------------------- ---------------- 1.5/2.5 GB 22.6 MB/s eta 0:00:46\n", + " ----------------------- ---------------- 1.5/2.5 GB 22.6 MB/s eta 0:00:46\n", + " ----------------------- ---------------- 1.5/2.5 GB 22.6 MB/s eta 0:00:46\n", + " ----------------------- ---------------- 1.5/2.5 GB 22.7 MB/s eta 0:00:46\n", + " ----------------------- ---------------- 1.5/2.5 GB 22.6 MB/s eta 0:00:46\n", + " ----------------------- ---------------- 1.5/2.5 GB 22.7 MB/s eta 0:00:45\n", + " ----------------------- ---------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:44\n", + " ----------------------- ---------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:44\n", + " ------------------------ --------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:44\n", + " ------------------------ --------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:44\n", + " ------------------------ --------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:43\n", + " ------------------------ --------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:43\n", + " ------------------------ --------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:43\n", + " ------------------------ --------------- 1.5/2.5 GB 23.0 MB/s eta 0:00:43\n", + " ------------------------ --------------- 1.5/2.5 GB 23.0 MB/s eta 0:00:43\n", + " ------------------------ --------------- 1.5/2.5 GB 23.0 MB/s eta 0:00:43\n", + " ------------------------ --------------- 1.5/2.5 GB 23.0 MB/s eta 0:00:43\n", + " ------------------------ --------------- 1.6/2.5 GB 23.0 MB/s eta 0:00:42\n", + " ------------------------ --------------- 1.6/2.5 GB 22.9 MB/s eta 0:00:42\n", + " ------------------------ --------------- 1.6/2.5 GB 22.8 MB/s eta 0:00:42\n", + " ------------------------ --------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:42\n", + " ------------------------ --------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:42\n", + " ------------------------ --------------- 1.6/2.5 GB 22.6 MB/s eta 0:00:42\n", + " ------------------------- -------------- 1.6/2.5 GB 22.2 MB/s eta 0:00:43\n", + " ------------------------- -------------- 1.6/2.5 GB 22.2 MB/s eta 0:00:43\n", + " ------------------------- -------------- 1.6/2.5 GB 22.1 MB/s eta 0:00:43\n", + " ------------------------- -------------- 1.6/2.5 GB 22.2 MB/s eta 0:00:42\n", + " ------------------------- -------------- 1.6/2.5 GB 22.1 MB/s eta 0:00:42\n", + " ------------------------- -------------- 1.6/2.5 GB 22.1 MB/s eta 0:00:42\n", + " ------------------------- -------------- 1.6/2.5 GB 22.1 MB/s eta 0:00:42\n", + " ------------------------- -------------- 1.6/2.5 GB 22.2 MB/s eta 0:00:41\n", + " ------------------------- -------------- 1.6/2.5 GB 22.2 MB/s eta 0:00:41\n", + " ------------------------- -------------- 1.6/2.5 GB 22.3 MB/s eta 0:00:41\n", + " ------------------------- -------------- 1.6/2.5 GB 22.4 MB/s eta 0:00:40\n", + " ------------------------- -------------- 1.6/2.5 GB 22.6 MB/s eta 0:00:40\n", + " ------------------------- -------------- 1.6/2.5 GB 22.6 MB/s eta 0:00:40\n", + " -------------------------- ------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:39\n", + " -------------------------- ------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:39\n", + " -------------------------- ------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:39\n", + " -------------------------- ------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:39\n", + " -------------------------- ------------- 1.7/2.5 GB 22.7 MB/s eta 0:00:38\n", + " -------------------------- ------------- 1.7/2.5 GB 22.6 MB/s eta 0:00:38\n", + " -------------------------- ------------- 1.7/2.5 GB 22.6 MB/s eta 0:00:38\n", + " -------------------------- ------------- 1.7/2.5 GB 22.5 MB/s eta 0:00:38\n", + " -------------------------- ------------- 1.7/2.5 GB 22.5 MB/s eta 0:00:38\n", + " -------------------------- ------------- 1.7/2.5 GB 22.7 MB/s eta 0:00:37\n", + " -------------------------- ------------- 1.7/2.5 GB 22.7 MB/s eta 0:00:37\n", + " -------------------------- ------------- 1.7/2.5 GB 22.8 MB/s eta 0:00:37\n", + " -------------------------- ------------- 1.7/2.5 GB 22.8 MB/s eta 0:00:36\n", + " --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:36\n", + " --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:36\n", + " --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:36\n", + " --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:35\n", + " --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:35\n", + " --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:35\n", + " --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:35\n", + " --------------------------- ------------ 1.7/2.5 GB 23.0 MB/s eta 0:00:34\n", + " --------------------------- ------------ 1.7/2.5 GB 23.1 MB/s eta 0:00:34\n", + " --------------------------- ------------ 1.7/2.5 GB 23.1 MB/s eta 0:00:34\n", + " --------------------------- ------------ 1.8/2.5 GB 23.2 MB/s eta 0:00:33\n", + " --------------------------- ------------ 1.8/2.5 GB 23.1 MB/s eta 0:00:33\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:33\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.3 MB/s eta 0:00:32\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.3 MB/s eta 0:00:32\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.3 MB/s eta 0:00:32\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:32\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:32\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:32\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:31\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.3 MB/s eta 0:00:31\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.4 MB/s eta 0:00:31\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.5 MB/s eta 0:00:30\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.5 MB/s eta 0:00:30\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.1 MB/s eta 0:00:31\n", + " ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:30\n", + " ----------------------------- ---------- 1.8/2.5 GB 23.3 MB/s eta 0:00:30\n", + " ----------------------------- ---------- 1.8/2.5 GB 23.9 MB/s eta 0:00:29\n", + " ----------------------------- ---------- 1.8/2.5 GB 23.9 MB/s eta 0:00:29\n", + " ----------------------------- ---------- 1.8/2.5 GB 24.1 MB/s eta 0:00:28\n", + " ----------------------------- ---------- 1.8/2.5 GB 24.2 MB/s eta 0:00:28\n", + " ----------------------------- ---------- 1.9/2.5 GB 24.3 MB/s eta 0:00:28\n", + " ----------------------------- ---------- 1.9/2.5 GB 24.4 MB/s eta 0:00:27\n", + " ----------------------------- ---------- 1.9/2.5 GB 24.4 MB/s eta 0:00:27\n", + " ----------------------------- ---------- 1.9/2.5 GB 24.4 MB/s eta 0:00:27\n", + " ----------------------------- ---------- 1.9/2.5 GB 24.5 MB/s eta 0:00:27\n", + " ----------------------------- ---------- 1.9/2.5 GB 24.4 MB/s eta 0:00:26\n", + " ------------------------------ --------- 1.9/2.5 GB 24.5 MB/s eta 0:00:26\n", + " ------------------------------ --------- 1.9/2.5 GB 24.5 MB/s eta 0:00:26\n", + " ------------------------------ --------- 1.9/2.5 GB 24.5 MB/s eta 0:00:26\n", + " ------------------------------ --------- 1.9/2.5 GB 24.7 MB/s eta 0:00:25\n", + " ------------------------------ --------- 1.9/2.5 GB 24.8 MB/s eta 0:00:25\n", + " ------------------------------ --------- 1.9/2.5 GB 24.9 MB/s eta 0:00:25\n", + " ------------------------------ --------- 1.9/2.5 GB 25.0 MB/s eta 0:00:24\n", + " ------------------------------ --------- 1.9/2.5 GB 25.1 MB/s eta 0:00:24\n", + " ------------------------------ --------- 1.9/2.5 GB 25.1 MB/s eta 0:00:24\n", + " ------------------------------ --------- 1.9/2.5 GB 25.2 MB/s eta 0:00:23\n", + " ------------------------------ --------- 1.9/2.5 GB 25.2 MB/s eta 0:00:23\n", + " ------------------------------ --------- 1.9/2.5 GB 25.1 MB/s eta 0:00:23\n", + " ------------------------------- -------- 2.0/2.5 GB 25.2 MB/s eta 0:00:23\n", + " ------------------------------- -------- 2.0/2.5 GB 25.2 MB/s eta 0:00:23\n", + " ------------------------------- -------- 2.0/2.5 GB 25.1 MB/s eta 0:00:22\n", + " ------------------------------- -------- 2.0/2.5 GB 25.1 MB/s eta 0:00:22\n", + " ------------------------------- -------- 2.0/2.5 GB 25.2 MB/s eta 0:00:22\n", + " ------------------------------- -------- 2.0/2.5 GB 25.3 MB/s eta 0:00:22\n", + " ------------------------------- -------- 2.0/2.5 GB 25.3 MB/s eta 0:00:21\n", + " ------------------------------- -------- 2.0/2.5 GB 25.3 MB/s eta 0:00:21\n", + " ------------------------------- -------- 2.0/2.5 GB 25.3 MB/s eta 0:00:21\n", + " ------------------------------- -------- 2.0/2.5 GB 25.3 MB/s eta 0:00:21\n", + " ------------------------------- -------- 2.0/2.5 GB 25.4 MB/s eta 0:00:20\n", + " -------------------------------- ------- 2.0/2.5 GB 25.4 MB/s eta 0:00:20\n", + " -------------------------------- ------- 2.0/2.5 GB 25.4 MB/s eta 0:00:20\n", + " -------------------------------- ------- 2.0/2.5 GB 25.5 MB/s eta 0:00:20\n", + " -------------------------------- ------- 2.0/2.5 GB 25.5 MB/s eta 0:00:19\n", + " -------------------------------- ------- 2.0/2.5 GB 25.4 MB/s eta 0:00:19\n", + " -------------------------------- ------- 2.0/2.5 GB 25.4 MB/s eta 0:00:19\n", + " -------------------------------- ------- 2.0/2.5 GB 25.6 MB/s eta 0:00:19\n", + " -------------------------------- ------- 2.0/2.5 GB 25.6 MB/s eta 0:00:19\n", + " -------------------------------- ------- 2.1/2.5 GB 25.7 MB/s eta 0:00:18\n", + " -------------------------------- ------- 2.1/2.5 GB 25.8 MB/s eta 0:00:18\n", + " -------------------------------- ------- 2.1/2.5 GB 25.8 MB/s eta 0:00:18\n", + " -------------------------------- ------- 2.1/2.5 GB 25.9 MB/s eta 0:00:18\n", + " --------------------------------- ------ 2.1/2.5 GB 26.6 MB/s eta 0:00:17\n", + " --------------------------------- ------ 2.1/2.5 GB 26.6 MB/s eta 0:00:17\n", + " --------------------------------- ------ 2.1/2.5 GB 26.0 MB/s eta 0:00:17\n", + " --------------------------------- ------ 2.1/2.5 GB 26.0 MB/s eta 0:00:17\n", + " --------------------------------- ------ 2.1/2.5 GB 26.0 MB/s eta 0:00:17\n", + " --------------------------------- ------ 2.1/2.5 GB 26.0 MB/s eta 0:00:16\n", + " --------------------------------- ------ 2.1/2.5 GB 26.0 MB/s eta 0:00:16\n", + " --------------------------------- ------ 2.1/2.5 GB 25.9 MB/s eta 0:00:16\n", + " --------------------------------- ------ 2.1/2.5 GB 25.8 MB/s eta 0:00:16\n", + " --------------------------------- ------ 2.1/2.5 GB 25.7 MB/s eta 0:00:16\n", + " --------------------------------- ------ 2.1/2.5 GB 25.7 MB/s eta 0:00:16\n", + " --------------------------------- ------ 2.1/2.5 GB 25.7 MB/s eta 0:00:16\n", + " --------------------------------- ------ 2.1/2.5 GB 25.7 MB/s eta 0:00:15\n", + " ---------------------------------- ----- 2.1/2.5 GB 25.7 MB/s eta 0:00:15\n", + " ---------------------------------- ----- 2.1/2.5 GB 25.7 MB/s eta 0:00:15\n", + " ---------------------------------- ----- 2.1/2.5 GB 25.7 MB/s eta 0:00:15\n", + " ---------------------------------- ----- 2.2/2.5 GB 25.6 MB/s eta 0:00:14\n", + " ---------------------------------- ----- 2.2/2.5 GB 25.7 MB/s eta 0:00:14\n", + " ---------------------------------- ----- 2.2/2.5 GB 25.5 MB/s eta 0:00:14\n", + " ---------------------------------- ----- 2.2/2.5 GB 25.4 MB/s eta 0:00:14\n", + " ---------------------------------- ----- 2.2/2.5 GB 25.4 MB/s eta 0:00:14\n", + " ---------------------------------- ----- 2.2/2.5 GB 25.3 MB/s eta 0:00:14\n", + " ---------------------------------- ----- 2.2/2.5 GB 25.2 MB/s eta 0:00:14\n", + " ---------------------------------- ----- 2.2/2.5 GB 25.2 MB/s eta 0:00:13\n", + " ---------------------------------- ----- 2.2/2.5 GB 25.2 MB/s eta 0:00:13\n", + " ---------------------------------- ----- 2.2/2.5 GB 25.1 MB/s eta 0:00:13\n", + " ----------------------------------- ---- 2.2/2.5 GB 25.0 MB/s eta 0:00:13\n", + " ----------------------------------- ---- 2.2/2.5 GB 24.9 MB/s eta 0:00:13\n", + " ----------------------------------- ---- 2.2/2.5 GB 24.9 MB/s eta 0:00:13\n", + " ----------------------------------- ---- 2.2/2.5 GB 24.8 MB/s eta 0:00:12\n", + " ----------------------------------- ---- 2.2/2.5 GB 24.8 MB/s eta 0:00:12\n", + " ----------------------------------- ---- 2.2/2.5 GB 24.7 MB/s eta 0:00:12\n", + " ----------------------------------- ---- 2.2/2.5 GB 24.6 MB/s eta 0:00:12\n", + " ----------------------------------- ---- 2.2/2.5 GB 24.5 MB/s eta 0:00:12\n", + " ----------------------------------- ---- 2.2/2.5 GB 24.4 MB/s eta 0:00:12\n", + " ----------------------------------- ---- 2.2/2.5 GB 24.2 MB/s eta 0:00:12\n", + " ----------------------------------- ---- 2.2/2.5 GB 24.2 MB/s eta 0:00:12\n", + " ----------------------------------- ---- 2.3/2.5 GB 24.1 MB/s eta 0:00:11\n", + " ----------------------------------- ---- 2.3/2.5 GB 24.0 MB/s eta 0:00:11\n", + " ----------------------------------- ---- 2.3/2.5 GB 23.9 MB/s eta 0:00:11\n", + " ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:11\n", + " ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:11\n", + " ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:10\n", + " ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:10\n", + " ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:10\n", + " ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:10\n", + " ------------------------------------ --- 2.3/2.5 GB 23.9 MB/s eta 0:00:09\n", + " ------------------------------------ --- 2.3/2.5 GB 24.0 MB/s eta 0:00:09\n", + " ------------------------------------ --- 2.3/2.5 GB 23.9 MB/s eta 0:00:09\n", + " ------------------------------------ --- 2.3/2.5 GB 24.0 MB/s eta 0:00:09\n", + " ------------------------------------ --- 2.3/2.5 GB 24.0 MB/s eta 0:00:09\n", + " ------------------------------------- -- 2.3/2.5 GB 24.0 MB/s eta 0:00:08\n", + " ------------------------------------- -- 2.3/2.5 GB 24.0 MB/s eta 0:00:08\n", + " ------------------------------------- -- 2.3/2.5 GB 23.5 MB/s eta 0:00:08\n", + " ------------------------------------- -- 2.3/2.5 GB 23.5 MB/s eta 0:00:08\n", + " ------------------------------------- -- 2.3/2.5 GB 23.5 MB/s eta 0:00:08\n", + " ------------------------------------- -- 2.3/2.5 GB 24.0 MB/s eta 0:00:07\n", + " ------------------------------------- -- 2.3/2.5 GB 24.0 MB/s eta 0:00:07\n", + " ------------------------------------- -- 2.4/2.5 GB 24.0 MB/s eta 0:00:07\n", + " ------------------------------------- -- 2.4/2.5 GB 24.0 MB/s eta 0:00:07\n", + " ------------------------------------- -- 2.4/2.5 GB 23.9 MB/s eta 0:00:07\n", + " ------------------------------------- -- 2.4/2.5 GB 23.9 MB/s eta 0:00:06\n", + " ------------------------------------- -- 2.4/2.5 GB 24.0 MB/s eta 0:00:06\n", + " ------------------------------------- -- 2.4/2.5 GB 24.0 MB/s eta 0:00:06\n", + " -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:06\n", + " -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:06\n", + " -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:05\n", + " -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:05\n", + " -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:05\n", + " -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:05\n", + " -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:04\n", + " -------------------------------------- - 2.4/2.5 GB 24.2 MB/s eta 0:00:04\n", + " -------------------------------------- - 2.4/2.5 GB 24.1 MB/s eta 0:00:04\n", + " -------------------------------------- - 2.4/2.5 GB 24.3 MB/s eta 0:00:04\n", + " -------------------------------------- - 2.4/2.5 GB 24.3 MB/s eta 0:00:03\n", + " -------------------------------------- - 2.4/2.5 GB 24.3 MB/s eta 0:00:03\n", + " --------------------------------------- 2.4/2.5 GB 24.4 MB/s eta 0:00:03\n", + " --------------------------------------- 2.5/2.5 GB 24.4 MB/s eta 0:00:03\n", + " --------------------------------------- 2.5/2.5 GB 24.5 MB/s eta 0:00:03\n", + " --------------------------------------- 2.5/2.5 GB 24.5 MB/s eta 0:00:02\n", + " --------------------------------------- 2.5/2.5 GB 24.6 MB/s eta 0:00:02\n", + " --------------------------------------- 2.5/2.5 GB 24.6 MB/s eta 0:00:02\n", + " --------------------------------------- 2.5/2.5 GB 24.6 MB/s eta 0:00:02\n", + " --------------------------------------- 2.5/2.5 GB 24.6 MB/s eta 0:00:02\n", + " --------------------------------------- 2.5/2.5 GB 24.4 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.6 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.6 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.8 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.8 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " --------------------------------------- 2.5/2.5 GB 24.9 MB/s eta 0:00:01\n", + " ---------------------------------------- 2.5/2.5 GB 19.7 MB/s eta 0:00:00\n", + "Collecting torchvision\n", + " Downloading https://download.pytorch.org/whl/cu124/torchvision-0.20.0%2Bcu124-cp310-cp310-win_amd64.whl (6.1 MB)\n", + " ---------------------------------------- 0.0/6.1 MB ? eta -:--:--\n", + " ---------------------------- ----------- 4.5/6.1 MB 22.3 MB/s eta 0:00:01\n", + " ---------------------------------------- 6.1/6.1 MB 20.9 MB/s eta 0:00:00\n", + "Collecting torchaudio\n", + " Downloading https://download.pytorch.org/whl/cu124/torchaudio-2.5.0%2Bcu124-cp310-cp310-win_amd64.whl (4.1 MB)\n", + " ---------------------------------------- 0.0/4.1 MB ? eta -:--:--\n", + " ---------------------------------------- 4.1/4.1 MB 22.7 MB/s eta 0:00:00\n", + "Collecting filelock (from torch)\n", + " Downloading https://download.pytorch.org/whl/filelock-3.13.1-py3-none-any.whl (11 kB)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch) (4.12.2)\n", + "Collecting networkx (from torch)\n", + " Downloading https://download.pytorch.org/whl/networkx-3.2.1-py3-none-any.whl (1.6 MB)\n", + " ---------------------------------------- 0.0/1.6 MB ? eta -:--:--\n", + " ---------------------------------------- 1.6/1.6 MB 22.3 MB/s eta 0:00:00\n", + "Collecting jinja2 (from torch)\n", + " Downloading https://download.pytorch.org/whl/Jinja2-3.1.3-py3-none-any.whl (133 kB)\n", + "Collecting fsspec (from torch)\n", + " Downloading https://download.pytorch.org/whl/fsspec-2024.2.0-py3-none-any.whl (170 kB)\n", + "Collecting sympy==1.13.1 (from torch)\n", + " Downloading https://download.pytorch.org/whl/sympy-1.13.1-py3-none-any.whl (6.2 MB)\n", + " ---------------------------------------- 0.0/6.2 MB ? eta -:--:--\n", + " ------------------------------ --------- 4.7/6.2 MB 22.0 MB/s eta 0:00:01\n", + " ---------------------------------------- 6.2/6.2 MB 19.0 MB/s eta 0:00:00\n", + "Collecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch)\n", + " Downloading https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB)\n", + " ---------------------------------------- 0.0/536.2 kB ? eta -:--:--\n", + " ------------------------------------- 536.2/536.2 kB 18.3 MB/s eta 0:00:00\n", + "Requirement already satisfied: numpy in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torchvision) (2.1.2)\n", + "Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)\n", + " Downloading https://download.pytorch.org/whl/pillow-10.2.0-cp310-cp310-win_amd64.whl (2.6 MB)\n", + " ---------------------------------------- 0.0/2.6 MB ? eta -:--:--\n", + " ---------------------------------------- 2.6/2.6 MB 18.9 MB/s eta 0:00:00\n", + "Collecting MarkupSafe>=2.0 (from jinja2->torch)\n", + " Downloading https://download.pytorch.org/whl/MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl (17 kB)\n", + "Installing collected packages: mpmath, sympy, pillow, networkx, MarkupSafe, fsspec, filelock, jinja2, torch, torchvision, torchaudio\n", + "Successfully installed MarkupSafe-2.1.5 filelock-3.13.1 fsspec-2024.2.0 jinja2-3.1.3 mpmath-1.3.0 networkx-3.2.1 pillow-10.2.0 sympy-1.13.1 torch-2.5.0+cu124 torchaudio-2.5.0+cu124 torchvision-0.20.0+cu124\n" ] } ], "source": [ - "!python -m pip install opencv-python" + "!python -m pip install opencv-python\n", + "!python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124" ] }, { @@ -65,7 +652,16 @@ "metadata": { "id": "BAyQTQKZ9IIN" }, - "outputs": [], + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mНе удалось запустить ядро, так как среда Python \".venv (Python 3.10.11)\" больше не доступна. Рассмотрите возможность выбрать другое ядро или обновить список сред Python." + ] + } + ], "source": [ "import torch\n", "from sam2.sam2_image_predictor import SAM2ImagePredictor\n", @@ -167,7 +763,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -601,62 +1197,96 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 3, "metadata": {}, "outputs": [ { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", - "To disable this warning, you can either:\n", - "\t- Avoid using `tokenizers` before the fork if possible\n", - "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: ultralytics in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (8.3.19)\n", - "Requirement already satisfied: numpy>=1.23.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (2.1.1)\n", - "Requirement already satisfied: matplotlib>=3.3.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (3.9.2)\n", - "Requirement already satisfied: opencv-python>=4.6.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (4.10.0.84)\n", - "Requirement already satisfied: pillow>=7.1.2 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (10.4.0)\n", - "Requirement already satisfied: pyyaml>=5.3.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (6.0.2)\n", - "Requirement already satisfied: requests>=2.23.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (2.32.3)\n", - "Requirement already satisfied: scipy>=1.4.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (1.14.1)\n", - "Requirement already satisfied: torch>=1.8.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (2.5.0)\n", - "Requirement already satisfied: torchvision>=0.9.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (0.20.0)\n", - "Requirement already satisfied: tqdm>=4.64.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (4.66.5)\n", - "Requirement already satisfied: psutil in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (6.0.0)\n", - "Requirement already satisfied: py-cpuinfo in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (9.0.0)\n", - "Requirement already satisfied: pandas>=1.1.4 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (2.2.3)\n", - "Requirement already satisfied: seaborn>=0.11.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (0.13.2)\n", - "Requirement already satisfied: ultralytics-thop>=2.0.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (2.0.9)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (1.3.0)\n", - "Requirement already satisfied: cycler>=0.10 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (4.54.1)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (1.4.7)\n", - "Requirement already satisfied: packaging>=20.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (24.1)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (3.1.4)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0.post0)\n", - "Requirement already satisfied: pytz>=2020.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from pandas>=1.1.4->ultralytics) (2024.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from pandas>=1.1.4->ultralytics) (2024.2)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics) (3.3.2)\n", - "Requirement already satisfied: idna<4,>=2.5 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics) (3.10)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics) (2.2.3)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics) (2024.8.30)\n", - "Requirement already satisfied: filelock in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (3.16.1)\n", - "Requirement already satisfied: typing-extensions>=4.8.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (4.12.2)\n", - "Requirement already satisfied: networkx in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (3.4.2)\n", - "Requirement already satisfied: jinja2 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (3.1.4)\n", - "Requirement already satisfied: fsspec in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (2024.10.0)\n", - "Requirement already satisfied: setuptools in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (75.1.0)\n", - "Requirement already satisfied: sympy==1.13.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (1.13.1)\n", - "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from sympy==1.13.1->torch>=1.8.0->ultralytics) (1.3.0)\n", - "Requirement already satisfied: six>=1.5 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.16.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from jinja2->torch>=1.8.0->ultralytics) (2.1.5)\n" + "Collecting ultralytics\n", + " Using cached ultralytics-8.3.20-py3-none-any.whl.metadata (34 kB)\n", + "Requirement already satisfied: numpy>=1.23.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (2.1.2)\n", + "Collecting matplotlib>=3.3.0 (from ultralytics)\n", + " Using cached matplotlib-3.9.2-cp310-cp310-win_amd64.whl.metadata (11 kB)\n", + "Requirement already satisfied: opencv-python>=4.6.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (4.10.0.84)\n", + "Requirement already satisfied: pillow>=7.1.2 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (10.2.0)\n", + "Collecting pyyaml>=5.3.1 (from ultralytics)\n", + " Using cached PyYAML-6.0.2-cp310-cp310-win_amd64.whl.metadata (2.1 kB)\n", + "Collecting requests>=2.23.0 (from ultralytics)\n", + " Using cached requests-2.32.3-py3-none-any.whl.metadata (4.6 kB)\n", + "Collecting scipy>=1.4.1 (from ultralytics)\n", + " Using cached scipy-1.14.1-cp310-cp310-win_amd64.whl.metadata (60 kB)\n", + "Requirement already satisfied: torch>=1.8.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (2.5.0+cu124)\n", + "Requirement already satisfied: torchvision>=0.9.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (0.20.0+cu124)\n", + "Collecting tqdm>=4.64.0 (from ultralytics)\n", + " Using cached tqdm-4.66.5-py3-none-any.whl.metadata (57 kB)\n", + "Requirement already satisfied: psutil in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (6.1.0)\n", + "Collecting py-cpuinfo (from ultralytics)\n", + " Using cached py_cpuinfo-9.0.0-py3-none-any.whl.metadata (794 bytes)\n", + "Collecting pandas>=1.1.4 (from ultralytics)\n", + " Using cached pandas-2.2.3-cp310-cp310-win_amd64.whl.metadata (19 kB)\n", + "Collecting seaborn>=0.11.0 (from ultralytics)\n", + " Using cached seaborn-0.13.2-py3-none-any.whl.metadata (5.4 kB)\n", + "Collecting ultralytics-thop>=2.0.0 (from ultralytics)\n", + " Using cached ultralytics_thop-2.0.9-py3-none-any.whl.metadata (9.3 kB)\n", + "Collecting contourpy>=1.0.1 (from matplotlib>=3.3.0->ultralytics)\n", + " Using cached contourpy-1.3.0-cp310-cp310-win_amd64.whl.metadata (5.4 kB)\n", + "Collecting cycler>=0.10 (from matplotlib>=3.3.0->ultralytics)\n", + " Using cached cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)\n", + "Collecting fonttools>=4.22.0 (from matplotlib>=3.3.0->ultralytics)\n", + " Using cached fonttools-4.54.1-cp310-cp310-win_amd64.whl.metadata (167 kB)\n", + "Collecting kiwisolver>=1.3.1 (from matplotlib>=3.3.0->ultralytics)\n", + " Using cached kiwisolver-1.4.7-cp310-cp310-win_amd64.whl.metadata (6.4 kB)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (24.1)\n", + "Collecting pyparsing>=2.3.1 (from matplotlib>=3.3.0->ultralytics)\n", + " Using cached pyparsing-3.2.0-py3-none-any.whl.metadata (5.0 kB)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0.post0)\n", + "Collecting pytz>=2020.1 (from pandas>=1.1.4->ultralytics)\n", + " Using cached pytz-2024.2-py2.py3-none-any.whl.metadata (22 kB)\n", + "Collecting tzdata>=2022.7 (from pandas>=1.1.4->ultralytics)\n", + " Using cached tzdata-2024.2-py2.py3-none-any.whl.metadata (1.4 kB)\n", + "Collecting charset-normalizer<4,>=2 (from requests>=2.23.0->ultralytics)\n", + " Using cached charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl.metadata (34 kB)\n", + "Collecting idna<4,>=2.5 (from requests>=2.23.0->ultralytics)\n", + " Using cached idna-3.10-py3-none-any.whl.metadata (10 kB)\n", + "Collecting urllib3<3,>=1.21.1 (from requests>=2.23.0->ultralytics)\n", + " Using cached urllib3-2.2.3-py3-none-any.whl.metadata (6.5 kB)\n", + "Collecting certifi>=2017.4.17 (from requests>=2.23.0->ultralytics)\n", + " Using cached certifi-2024.8.30-py3-none-any.whl.metadata (2.2 kB)\n", + "Requirement already satisfied: filelock in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.13.1)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (4.12.2)\n", + "Requirement already satisfied: networkx in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.2.1)\n", + "Requirement already satisfied: jinja2 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.1.3)\n", + "Requirement already satisfied: fsspec in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (2024.2.0)\n", + "Requirement already satisfied: sympy==1.13.1 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (1.13.1)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from sympy==1.13.1->torch>=1.8.0->ultralytics) (1.3.0)\n", + "Requirement already satisfied: colorama in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from tqdm>=4.64.0->ultralytics) (0.4.6)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.16.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from jinja2->torch>=1.8.0->ultralytics) (2.1.5)\n", + "Using cached ultralytics-8.3.20-py3-none-any.whl (876 kB)\n", + "Using cached matplotlib-3.9.2-cp310-cp310-win_amd64.whl (7.8 MB)\n", + "Using cached pandas-2.2.3-cp310-cp310-win_amd64.whl (11.6 MB)\n", + "Using cached PyYAML-6.0.2-cp310-cp310-win_amd64.whl (161 kB)\n", + "Using cached requests-2.32.3-py3-none-any.whl (64 kB)\n", + "Using cached scipy-1.14.1-cp310-cp310-win_amd64.whl (44.8 MB)\n", + "Using cached seaborn-0.13.2-py3-none-any.whl (294 kB)\n", + "Using cached tqdm-4.66.5-py3-none-any.whl (78 kB)\n", + "Using cached ultralytics_thop-2.0.9-py3-none-any.whl (26 kB)\n", + "Using cached py_cpuinfo-9.0.0-py3-none-any.whl (22 kB)\n", + "Using cached certifi-2024.8.30-py3-none-any.whl (167 kB)\n", + "Using cached charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl (102 kB)\n", + "Using cached contourpy-1.3.0-cp310-cp310-win_amd64.whl (216 kB)\n", + "Using cached cycler-0.12.1-py3-none-any.whl (8.3 kB)\n", + "Using cached fonttools-4.54.1-cp310-cp310-win_amd64.whl (2.2 MB)\n", + "Using cached idna-3.10-py3-none-any.whl (70 kB)\n", + "Using cached kiwisolver-1.4.7-cp310-cp310-win_amd64.whl (55 kB)\n", + "Using cached pyparsing-3.2.0-py3-none-any.whl (106 kB)\n", + "Using cached pytz-2024.2-py2.py3-none-any.whl (508 kB)\n", + "Using cached tzdata-2024.2-py2.py3-none-any.whl (346 kB)\n", + "Using cached urllib3-2.2.3-py3-none-any.whl (126 kB)\n", + "Installing collected packages: pytz, py-cpuinfo, urllib3, tzdata, tqdm, scipy, pyyaml, pyparsing, kiwisolver, idna, fonttools, cycler, contourpy, charset-normalizer, certifi, requests, pandas, matplotlib, ultralytics-thop, seaborn, ultralytics\n", + "Successfully installed certifi-2024.8.30 charset-normalizer-3.4.0 contourpy-1.3.0 cycler-0.12.1 fonttools-4.54.1 idna-3.10 kiwisolver-1.4.7 matplotlib-3.9.2 pandas-2.2.3 py-cpuinfo-9.0.0 pyparsing-3.2.0 pytz-2024.2 pyyaml-6.0.2 requests-2.32.3 scipy-1.14.1 seaborn-0.13.2 tqdm-4.66.5 tzdata-2024.2 ultralytics-8.3.20 ultralytics-thop-2.0.9 urllib3-2.2.3\n" ] } ], @@ -666,7 +1296,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -676,32 +1306,15 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "New https://pypi.org/project/ultralytics/8.3.20 available 🃠Update with 'pip install -U ultralytics'\n", - "Ultralytics 8.3.19 🚀 Python-3.12.7 torch-2.5.0 MPS (Apple M3)\n", - "\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8s.pt, data=/Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/data.yaml, epochs=50, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=mps, workers=8, project=None, name=train, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=/Users/ischknv/Documents/GitHub/miem/aimm/runs/detect/train\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", - "To disable this warning, you can either:\n", - "\t- Avoid using `tokenizers` before the fork if possible\n", - "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Ultralytics 8.3.20 Python-3.10.11 torch-2.5.0+cu124 CUDA:0 (NVIDIA GeForce RTX 2060, 6144MiB)\n", + "\u001b[34m\u001b[1mengine\\trainer: \u001b[0mtask=detect, mode=train, model=yolov8s.pt, data=c:\\Users\\maxch\\Desktop\\aimm\\lab-2/dataset/data.yaml, epochs=50, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=cuda, workers=8, project=None, name=train, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=c:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\n", "Overriding model.yaml nc=80 with nc=2\n", "\n", " from n params module arguments \n", @@ -731,481 +1344,43 @@ "Model summary: 225 layers, 11,136,374 parameters, 11,136,358 gradients, 28.6 GFLOPs\n", "\n", "Transferred 349/355 items from pretrained weights\n", - "Freezing layer 'model.22.dfl.conv.weight'\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train... 565 images, 0 backgrounds, 426 corrupt: 100%|██████████| 565/565 [00:00<00:00, 5707.18it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0140.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [350.84933 354.79907 289.42383 372.0351 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0141.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [323.44394 296.44553 503.64194 294.64856]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0142.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [335.13156 303.34567 388.2635 419.89862]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0143.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [293.34613 335.63205 207.43427 275.1614 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0144.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.80786 329.3498 508.07294 599.8754 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0145.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.05124 329.32086 551.5852 365.07025]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0146.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [444.5042 279.4409 195.31519 205.59256]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0147.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [421.55246 139.18092 223.48941 276.7925 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0148.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.81503 318.5168 392.1365 381.3409 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0149.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [203.34253 334.35803 249.88275 298.1533 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0150.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [246.48584 375.76923 159.29271 218.21562]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0151.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.6702 334.86755 507.5556 328.82388]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0152.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [390.29602 259.18323 385.5002 253.8147 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0153.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.76727 318.8007 637.187 412.79077]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0154.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [382.9257 311.38867 202.34465 221.34167]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0155.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [302.84848 286.64304 340.72754 519.7564 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0156.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [314.9271 333.9851 607.43726 480.29788]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0157.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [202.74046 305.86166 195.15564 359.77832]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0158.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [317.07532 319.97046 609.4284 458.7991 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0159.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [441.37976 286.81055 245.3206 293.5136 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0160.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [421.59885 317.0772 376.73047 313.95282]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0161.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.31506 316.74985 318.87363 394.4186 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0162.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [366.31824 320.53717 185.05612 285.91376]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0163.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [284.54865 389.95712 209.41252 215.77216]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0164.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.30008 320.40707 326.19907 555.7524 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0165.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [431.60825 370.27417 369.92072 255.24026]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0166.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [362.65814 313.7342 254.83232 237.50533]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0167.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [104.99803 283.0066 191.28204 143.96039]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0168.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.55225 340.29742 398.27856 407.42798]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0169.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [308.0685 365.06046 347.9958 237.14911]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0170.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [217.88223 425.8313 153.18188 188.89273]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0171.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [342.85852 312.1658 387.074 411.76648]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0172.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.6891 323.59085 606.8808 401.56522]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0173.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [326.12048 308.63354 521.5536 254.11713]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0174.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [297.60007 267.27206 411.7248 437.2238 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0175.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [294.69724 313.5403 308.02713 486.9817 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0176.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [329.913 399.9608 449.48846 256.48303]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0177.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [367.4862 300.44556 296.81433 426.93845]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0178.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [239.88751 401.77383 453.36395 332.61316]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0179.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [331.1511 335.96347 369.9211 555.4656 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0180.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [497.23972 415.82532 174.21738 288.68768]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0181.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.73203 297.62656 379.94055 591.13416]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0182.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [468.23392 278.0328 289.74512 550.2421 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0183.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [340.8226 313.1465 390.0595 412.7348]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0184.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.28455 312.09067 435.70682 606.3701 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0185.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [105.576706 296.88928 184.58733 260.64996 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0186.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [455.6714 303.99908 309.20413 276.85455]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0187.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.35666 317.35593 627.63416 632.04346]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0188.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.34448 315.60013 428.95297 601.21686]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0189.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [302.82318 364.6391 185.44464 189.39502]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0190.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [325.97223 304.53137 491.03027 332.26068]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0191.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [253.97711 293.92645 69.42512 156.08081]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0192.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [342.3535 319.95453 425.95245 536.46906]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0193.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [308.65573 325.56494 338.58902 348.73663]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0194.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [336.65564 328.89145 332.17804 222.08992]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0195.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [317.44232 362.67065 559.12 342.88223]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0196.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.96268 269.93774 350.3775 410.9676 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0197.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [477.36996 387.59668 192.26784 294.73798]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0198.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [311.89 344.69366 177.66064 171.44678]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0199.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [159.14612 367.30914 209.30038 148.72647]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0200.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [203.99664 250.58667 145.5332 142.96843]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0201.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.07437 312.36505 542.7735 380.95477]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0202.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [294.66974 313.5692 307.8706 487.13446]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0203.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [326.12927 322.5656 545.8755 389.4262 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0204.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [212.57205 286.10974 424.65387 550.9962 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0205.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [295.85266 325.16595 295.39447 357.23343]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0206.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [291.58215 317.84085 323.33188 223.01501]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0207.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [274.29956 369.4834 230.22137 235.43312]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0208.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [467.98718 278.6147 288.2067 548.8168 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0209.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [327.928 319.87454 501.07983 551.4227 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0210.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.7563 319.00134 285.12897 465.76355]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0211.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [487.4214 367.5083 143.04037 418.8165 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0212.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.13403 332.97504 286.57483 381.75168]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0213.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [354.4021 315.90723 396.43286 498.48376]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0214.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [323.5724 313.68875 399.61224 319.95642]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0215.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [345.3856 312.72348 426.98254 350.2386 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0216.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [397.09088 325.5421 226.22389 273.01617]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0217.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [338.84668 353.97382 201.19962 328.3826 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0218.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [325.3198 393.5056 371.5161 243.90196]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0219.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [473.83728 453.86127 112.90116 134.15514]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0220.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [288.8035 319.19995 269.11334 360.665 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0221.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [496.51447 351.77777 140.78235 235.45775]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0222.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.85947 323.47595 245.05629 314.00204]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0223.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.29517 319.10117 609.8519 637.8457 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0224.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [279.34488 309.94553 201.71663 180.51744]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0225.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.50085 392.9498 242.87817 341.67783]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0226.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [272.72437 313.59918 75.967514 83.65532 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0227.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.38373 375.14203 195.67725 218.37236]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0228.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [275.83115 292.94705 193.24213 227.53036]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0229.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [239.62698 402.63577 452.96616 334.495 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0230.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [294.2609 80.34127 210.19072 160.7953 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0231.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [433.60684 427.99927 325.17316 313.40616]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0232.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [299.92786 340.33078 384.43787 455.82608]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0233.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [280.28644 263.72034 288.78543 269.91904]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0234.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.82333 255.8359 209.2524 360.83115]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0235.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [509.3971 416.196 218.50305 163.1824 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0236.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.50684 348.7024 353.13885 286.29666]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0237.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [300.81317 313.45096 459.65173 361.91864]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0238.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.81506 318.59515 533.8433 339.20822]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0239.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [343.33038 356.26416 328.6411 199.80222]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0240.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [403.66797 356.00946 357.89932 565.19525]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0241.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [304.2177 333.24814 165.49704 218.25754]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0242.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [342.29846 319.9795 426.0636 536.6279 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0243.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.1401 316.39114 571.48737 506.1757 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0244.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [304.3412 333.48355 164.92018 218.70354]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0245.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [340.25745 328.41528 300.2774 408.67203]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0246.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [409.0681 324.04538 422.24506 372.57434]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0247.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [500.67868 322.05722 140.93677 233.01596]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0248.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [308.84 317.93668 581.2463 583.7235 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0249.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.25485 362.13208 479.36496 398.23672]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0250.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [214.81168 484.08188 79.59041 173.13148]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0251.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.1818 320.52487 426.32672 486.67325]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0252.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [327.39578 330.652 509.899 379.9593 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0253.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [286.01538 322.20416 314.35696 366.19934]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0254.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [397.22766 291.59067 310.8808 243.24236]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0255.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.11298 376.76407 245.20935 337.96814]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0256.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [254.18427 141.72453 297.24512 266.85666]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0257.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.88165 269.07004 126.99699 161.54955]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0258.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [173.21068 342.50848 199.63194 224.41776]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0259.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.37753 320.33813 576.6047 407.95514]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0260.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [284.5217 352.29443 243.72878 273.14853]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0261.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [460.95172 330.09097 356.60663 158.33327]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0262.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.3913 317.4317 349.12506 440.5539 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0263.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [326.14868 140.07907 125.16943 179.33052]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0264.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [166.84244 281.89786 190.945 275.31406]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0265.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [304.7352 317.34003 429.94128 541.31335]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0266.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [476.06503 355.74805 318.11163 287.39822]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0267.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [ 65.22345 251.4787 123.36419 102.93888]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0268.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [398.76398 460.34244 233.19202 265.11578]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0269.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [382.39355 310.46136 202.97891 219.05707]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0270.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.30786 270.285 349.46347 411.6727 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0271.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [306.65195 364.90665 263.38876 353.76215]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0272.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [457.0232 159.03 77.52279 122.061775]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0273.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [291.12225 355.56305 459.9131 356.0942 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0274.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [484.93555 342.90268 243.13535 280.49158]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0275.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [293.2037 323.29953 19.985043 24.973629]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0276.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [330.06046 324.55066 499.59094 307.61115]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0277.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [331.53946 311.0027 463.76862 611.6092 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0278.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [517.2517 414.38702 90.77785 153.64279]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0279.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [128.66556 353.00806 153.62608 237.10143]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0280.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.67053 298.19965 313.38437 353.3339 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0281.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [280.98898 309.1458 488.0727 455.59644]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0282.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [346.8988 355.1749 296.22342 373.06555]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0283.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [281.95444 354.71573 351.7885 563.0415 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0284.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.0964 313.1078 606.2688 363.55396]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0285.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.15894 251.57254 374.6814 433.257 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0286.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [244.97406 286.3697 395.1599 321.22296]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0287.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [348.4862 298.00662 256.35495 545.12 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0288.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [338.9582 328.32547 434.3191 323.23047]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0289.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.8231 315.93234 591.9439 392.60773]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0290.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.68945 306.11472 631.6857 559.67114]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0291.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.4478 319.5204 542.9983 597.468 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0292.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [376.1099 423.27533 114.53274 143.18513]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0293.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [338.208 320.1244 296.65042 333.89218]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0294.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [330.61682 360.79373 472.70816 277.18405]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0295.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [326.12573 296.1694 337.87347 403.78424]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0296.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.31793 418.98975 374.1086 244.0528 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0297.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.4081 320.26398 545.2462 424.39606]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0298.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [317.64285 319.28452 529.4823 545.2101 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0299.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [298.85474 294.09503 546.60516 375.42908]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0300.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [459.66443 366.97943 33.734314 40.101288]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0301.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [299.88925 275.86603 290.94144 467.8912 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0302.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [273.53326 363.19287 180.567 264.30606]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0303.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.02612 319.98022 453.0988 535.447 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0304.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [481.69247 340.32214 242.55325 281.3479 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0305.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.21463 298.72696 361.1334 423.16113]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0306.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [514.77136 268.2734 188.12929 359.30173]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0307.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [187.28151 414.53857 82.14576 172.6153 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0308.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [295.53363 310.11887 434.1409 438.2138 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0309.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [300.69904 373.74893 185.467 217.2712 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0310.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [242.7143 334.25775 374.04285 451.42657]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0311.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [416.40973 309.4997 305.13538 151.37312]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0312.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [246.19615 369.72284 206.54056 233.38858]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0313.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [305.64542 326.39084 475.27664 394.34125]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0314.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [353.35492 310.53693 386.04846 327.30072]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0315.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [324.22235 351.66965 455.0199 360.92084]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0316.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [300.9236 390.04825 187.36403 218.12656]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0317.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [311.66135 344.06308 177.90631 171.64752]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0318.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.5539 317.6972 467.02222 386.2309 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0319.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.9211 344.35544 556.4284 419.18793]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0320.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [269.14288 263.69174 498.47058 399.4084 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0321.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [252.20789 365.8127 122.17511 167.56987]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0322.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.07822 376.53812 246.09735 338.16837]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0323.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [253.58298 323.2452 253.55518 303.6115 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0324.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.57867 339.07852 470.93225 337.02133]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0325.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [299.00037 316.74838 539.26874 373.52127]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0326.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [246.88812 322.37476 339.06766 407.81616]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0327.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.19846 307.86728 623.7777 607.82324]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0328.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.6546 333.19202 396.2454 430.21213]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0329.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [314.32437 276.803 101.95604 83.09897]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0330.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [346.1552 192.60048 164.96553 178.16185]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0331.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [433.44904 427.96576 325.16003 313.4735 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0332.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [481.14618 340.61652 241.98256 281.4358 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0333.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [294.6859 302.53613 316.90607 344.15543]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0334.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.88412 345.1687 556.5362 421.17062]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0335.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.365 317.7728 349.274 441.98196]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0336.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.19537 319.6364 588.9263 372.6328 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0337.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [365.90698 295.0829 108.83335 131.03706]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0338.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [371.25928 369.2279 301.4641 429.35974]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0339.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.0176 338.75858 359.00986 257.8135 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0340.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [405.98935 289.241 461.4587 558.30054]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0341.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [258.57156 351.94342 345.98022 548.7479 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0342.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [399.379 381.92725 338.55606 291.17044]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0343.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.2453 302.36533 502.86694 466.90506]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0344.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [264.28592 326.5545 428.56326 554.3166 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0345.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [327.02405 329.67657 443.9572 442.41208]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0346.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [311.48892 324.76587 522.34753 422.97733]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0347.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [431.68597 371.32227 370.64267 253.43082]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0348.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [298.6111 361.87952 223.15503 237.27846]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0349.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [265.71088 265.24847 492.69455 401.81107]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0350.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.24005 329.89978 146.02725 193.42073]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0351.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [451.14896 281.2805 308.67776 217.70784]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0352.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.37314 313.1081 518.60724 483.94373]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0353.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [287.31052 292.8507 242.08517 291.86676]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0354.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [195.36868 356.10593 191.96855 232.50555]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0355.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.01703 318.69098 585.0179 458.71066]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0356.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.95703 321.38245 457.2832 495.19315]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0357.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [399.26385 339.70624 313.66907 226.72623]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0358.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.0356 387.48163 382.17413 298.51495]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0359.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [306.3911 364.84158 242.5923 352.48615]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0360.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [448.12317 296.24774 247.59285 192.01308]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0361.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.27142 287.88132 248.64865 293.07977]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0362.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.3706 432.63565 455.9449 367.61703]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0363.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [448.66943 314.66962 193.72453 245.08218]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0364.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.64166 299.62405 490.83344 301.16064]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0365.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [475.67145 466.293 257.01718 276.8786 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0366.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [388.73865 332.5194 193.6399 168.23502]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0367.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.16943 320.17053 485.23267 520.39526]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0368.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [308.77704 318.8352 458.3661 386.65298]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0369.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [311.99777 319.20697 440.1518 411.20816]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0370.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [313.74625 496.23163 145.43234 89.74422]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0371.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [248.22874 312.01694 337.78406 327.62073]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0372.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.17712 322.3137 458.9191 314.81433]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0373.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [331.70825 315.15985 485.19363 356.70474]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0374.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [350.3553 334.14233 325.8803 343.81567]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0375.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [240.42055 403.01266 453.0624 335.54797]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0376.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [441.00012 391.65588 268.05057 197.0998 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0377.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [441.44092 355.4408 394.05856 318.39972]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0378.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [338.51392 323.0473 286.95883 186.10803]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0379.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.84912 394.74493 243.15102 272.90067]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0380.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.41855 331.39874 624.3194 447.55383]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0381.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [325.18604 319.3331 478.8341 580.0947 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0382.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [323.93387 90.22018 124.90876 140.26065]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0383.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [163.55417 376.92642 301.88083 362.53726]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0384.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.0304 297.23956 600.7394 436.52695]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0385.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [482.46246 297.10107 117.02875 426.00525]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0386.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [214.89832 472.53613 146.49527 166.85295]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0387.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [398.711 326.471 224.06836 273.12894]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0388.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [313.95123 371.77264 290.9222 391.5349 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0389.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.15887 318.45334 608.8381 421.9708 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0390.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [325.74582 308.80652 188.69598 373.30856]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0391.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [302.00836 323.71027 244.45471 313.37405]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0392.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [286.42215 236.33539 228.77264 206.61246]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0393.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.9123 364.80084 240.86142 352.92334]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0394.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [433.45944 428.0806 324.93518 313.72586]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0395.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [323.86105 427.84988 177.9042 228.87164]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0396.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [534.53253 286.85834 208.84033 357.20535]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0397.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [134.68481 271.94324 244.43842 263.96823]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0398.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.63657 315.28143 611.1172 452.02258]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0399.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.17822 319.27576 616.86194 346.80664]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0400.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [341.5998 362.5171 355.4317 399.93884]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0401.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [442.78052 447.25528 237.26465 243.26059]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0402.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [313.91837 331.96143 74.69832 108.25034]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0403.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.5221 394.7912 244.00298 272.56567]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0404.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [443.5747 326.8194 248.18321 276.90768]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0405.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.61603 447.51385 194.01111 189.62439]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0406.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [348.96835 241.72916 321.23444 405.5874 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0407.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [516.9095 411.34058 182.82585 291.11533]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0408.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [414.76245 460.93774 232.91971 264.77512]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0409.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [214.50665 345.73178 210.14223 154.37311]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0410.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [135.1049 274.44403 245.48578 269.52548]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0411.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [253.93451 369.2668 141.13708 192.79187]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0412.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [290.15417 337.54807 76.95313 106.97269]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0413.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.7921 372.97 264.0894 286.44055]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0414.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [468.45105 305.989 169.05667 422.4052 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0415.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.40277 318.1815 348.6433 442.03333]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0416.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [343.64575 309.5479 357.89233 421.23956]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0417.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [304.94147 308.0395 434.18546 284.72284]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0418.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [456.20905 241.25116 302.93158 364.21497]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0419.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [247.79219 320.21085 335.16995 398.79398]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0420.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [ 66.02456 251.67154 125.39938 102.72891]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0421.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [281.92264 320.62036 283.69922 295.7155 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0422.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [424.8117 400.774 169.93181 161.3229 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0423.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [332.7203 423.17627 224.29254 275.37982]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0424.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [275.6626 293.11743 192.54956 227.35446]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0425.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.71 297.8479 383.0533 590.76166]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0426.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [361.92816 290.08823 199.8468 223.84326]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0427.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [274.92932 267.2631 372.60846 437.2827 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0428.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [303.82806 286.5929 303.25748 380.63705]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0429.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [432.36267 377.76605 376.16718 449.87854]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0430.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [386.6333 303.89194 375.7563 305.55606]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0431.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.94336 329.52267 395.4683 439.00732]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0432.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [307.88815 375.97562 404.1717 262.26718]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0433.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [313.07617 321.06958 402.75903 479.39795]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0434.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.65253 372.34344 340.6452 321.98834]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0435.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [300.71188 373.75018 185.33644 217.31726]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0436.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [204.36136 288.56012 377.33258 355.71655]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0437.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [204.19127 324.76685 393.3659 469.02716]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0438.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [511.00555 466.03345 223.56789 272.8889 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0439.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [395.45285 298.16827 420.17957 289.76385]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0440.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [195.65225 356.40866 192.52776 234.39543]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0441.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.37762 320.38196 449.06552 542.26166]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0442.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.087 338.71472 620.60657 522.21014]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0443.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [103.92068 296.06348 185.13939 260.01392]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0444.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.62045 369.27548 370.69858 309.31546]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0445.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [347.29877 383.91992 334.87085 295.20197]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0446.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.83047 333.8199 472.6782 254.57181]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0447.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [307.7985 369.27496 280.61703 341.16043]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0448.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [441.16458 348.31635 220.79202 274.8817 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0449.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.33545 302.03558 356.76666 494.30322]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0450.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [342.74072 312.273 386.38837 410.9918 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0451.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [456.44324 292.03687 357.04352 268.04648]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0452.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [334.48517 303.0476 424.23053 392.47778]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0453.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [345.71558 350.79483 424.66446 364.38815]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0454.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [135.16696 278.35654 245.9065 278.87183]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0455.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [188.70346 348.5065 96.15699 139.44876]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0456.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.0138 320.25043 486.44098 543.3393 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0457.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.33444 324.36142 479.59418 446.6888 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0458.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [286.75656 364.9743 261.89197 339.81555]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0459.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.704 376.81595 482.09567 442.85077]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0460.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [547.8631 351.92844 157.23276 297.59464]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0461.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [327.14078 302.25247 241.42412 284.82974]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0462.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [348.60562 292.8539 256.1597 533.27203]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0463.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [308.02887 320.70813 550.3013 373.239 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0464.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [347.01038 332.4019 468.07123 539.024 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0465.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [303.92526 423.17062 335.97235 291.69083]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0466.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [298.3034 387.76178 234.21103 249.69937]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0467.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [292.74405 346.57132 465.9653 471.74384]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0468.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [496.49677 290.99207 274.99414 303.28986]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0469.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [299.1937 317.79218 538.95514 374.42737]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0470.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [512.5116 327.0149 178.14432 214.48529]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0471.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [287.3174 303.46887 341.67468 413.5945 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0472.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.4859 314.7742 498.39233 357.622 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0473.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.45703 345.5656 427.4971 302.03387]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0474.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [415.99472 283.05328 351.87946 290.16095]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0475.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [351.0854 366.72986 104.16558 163.74527]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0476.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [296.5593 315.2104 581.2903 400.4852]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0477.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [430.70947 270.60547 227.15283 265.63824]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0478.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [392.53644 316.95767 329.76474 279.29385]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0479.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [105.595795 296.8437 188.17932 260.78815 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0480.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [530.18207 357.15094 157.89258 286.2882 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0481.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [279.68256 349.4788 315.02576 284.24557]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0482.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [333.38196 336.2019 332.415 411.7586 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0483.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [287.294 352.9345 351.0667 459.30182]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0484.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [350.73026 335.59726 289.24045 410.79504]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0485.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.5897 268.91406 347.35535 410.1728 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0486.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [336.67853 305.80582 522.993 406.3901 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0487.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [345.7733 392.80655 223.43172 340.85498]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0488.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [212.87712 393.5933 351.45288 242.88486]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0489.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [294.7273 303.707 323.6514 328.06888]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0490.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [330.56308 336.98383 80.19161 107.73114]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0491.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [282.30444 320.37744 284.49496 295.2056 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0492.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.63773 304.7276 613.92633 436.0255 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0493.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [401.75308 126.39724 131.85217 199.04166]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0494.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.58557 378.13824 482.17188 445.20572]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0495.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [336.65585 328.11914 531.35736 296.6305 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0496.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.73798 427.95142 194.38657 229.32648]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0497.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [361.8308 290.07928 200.1867 223.97401]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0498.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [328.31387 298.75433 568.6841 595.9212 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0499.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [345.0563 336.62616 222.22414 146.10542]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0500.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [349.32205 335.94965 256.11987 471.06766]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0501.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [280.38474 357.20828 271.11002 305.22275]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0502.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [145.38408 298.87677 252.78032 280.0924 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0503.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [342.67383 327.06476 241.93625 352.74933]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0504.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [325.5695 317.84146 574.6953 574.78674]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0505.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.3527 318.8608 443.67877 339.44946]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0506.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.4617 322.00494 383.60306 412.89984]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0507.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [461.46875 265.7127 314.59576 358.95535]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0508.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [187.74051 323.92972 285.49164 385.10526]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0509.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [330.9645 313.99512 431.8598 506.01703]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0510.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [305.02148 298.7344 330.38724 176.26645]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0511.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [484.3616 323.76825 59.072895 74.12784 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0512.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [299.7237 275.7569 290.75705 467.6981 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0513.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [273.09604 377.89667 216.69254 268.50528]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0514.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.7061 339.36957 611.60095 444.7375 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0515.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [300.07272 274.4075 274.51154 434.74927]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0516.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [302.4672 310.41562 529.34766 455.72705]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0517.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.98492 345.28265 556.48224 421.24695]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0518.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [361.41895 327.25555 356.69186 292.16907]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0519.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [402.60974 307.20215 424.3949 557.9231 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0520.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [442.76218 452.67392 71.28998 172.0983 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0521.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [173.02397 323.92715 199.3708 223.77115]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0522.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [328.86066 288.7605 462.08783 559.34393]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0523.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [394.28583 344.45145 365.4818 441.65674]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0524.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.5915 300.37137 487.1727 333.66187]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0525.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [343.0949 310.78574 440.4234 611.20447]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0526.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [ 92.20636 357.16437 167.21053 241.72685]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0527.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [231.94824 348.28278 440.30646 358.37512]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0528.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [336.45673 388.3087 407.70428 473.46988]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0529.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [289.60193 319.51132 301.83887 361.80966]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0530.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [340.03125 351.3196 202.98628 325.96423]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0531.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [326.80817 381.27792 296.65128 345.6009 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0532.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [208.15134 348.02332 301.8466 224.35513]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0533.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [298.30225 199.70398 378.4367 363.8533 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0534.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.34766 321.86386 620.2488 448.5164 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0535.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [305.1571 304.18546 250.31029 358.3995 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0536.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.16635 324.08057 413.47745 288.84134]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0537.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [183.59961 377.78226 144.78159 195.84358]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0538.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [480.64175 289.97498 273.5524 326.7865 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0539.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [375.26306 314.53387 458.093 510.1987 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0540.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [195.54594 356.69888 191.88614 234.39384]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0541.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [144.3475 278.57288 255.50586 206.5951 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0542.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [535.557 463.09967 91.6006 151.93575]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0543.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [283.07065 348.96393 506.5071 336.56787]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0544.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.66043 335.04156 609.0819 437.13882]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0545.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [302.11853 269.37894 127.10862 161.2967 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0546.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.36835 369.2885 370.67746 309.5699 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0547.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.46533 402.67288 471.11847 293.30875]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0548.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.5845 306.33548 621.67926 359.6198 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0549.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.10056 319.70676 518.3296 318.30176]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0550.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [399.9272 344.4255 289.76645 332.9579 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0551.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [365.16425 302.89026 74.01135 155.89238]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0552.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [408.8142 380.11005 174.98085 211.80559]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0553.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [280.36557 263.46225 288.65994 269.68936]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0554.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [450.13583 321.85635 287.07355 362.6974 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0555.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [474.98245 301.53387 233.89862 371.6502 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0556.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [422.80292 265.2317 149.86087 148.58524]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0557.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [197.55984 316.12482 394.83978 304.41443]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0558.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [355.92816 306.4464 241.48065 304.49252]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0559.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [328.31256 310.38855 251.58112 196.80351]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0560.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [481.01712 340.7845 242.73253 281.0235 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0561.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [411.51187 391.56213 368.50305 202.68378]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0562.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [281.94202 320.60397 283.82922 295.71454]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0563.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [427.65625 247.70584 222.36386 191.8538 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0564.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [469.84412 279.38965 285.4933 548.4157 ]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING ⚠️ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0565.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [330.82208 305.52722 374.75528 473.72696]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train.cache\n" + "Freezing layer 'model.22.dfl.conv.weight'\n", + "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks...\n", + "Downloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt to 'yolo11n.pt'...\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\n", - "\u001b[34m\u001b[1mval: \u001b[0mScanning /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/val... 139 images, 0 backgrounds, 0 corrupt: 100%|██████████| 139/139 [00:00<00:00, 5359.32it/s]" + "100.0%\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/val.cache\n" + "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\n" + "\u001b[34m\u001b[1mtrain: \u001b[0mScanning C:\\Users\\maxch\\Desktop\\aimm\\lab-2\\dataset\\train.cache... 565 images, 0 backgrounds, 0 corrupt: 100%|██████████| 565/565 [00:00<?, ?it/s]\n", + "\u001b[34m\u001b[1mval: \u001b[0mScanning C:\\Users\\maxch\\Desktop\\aimm\\lab-2\\dataset\\val.cache... 139 images, 0 backgrounds, 0 corrupt: 100%|██████████| 139/139 [00:00<?, ?it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Plotting labels to /Users/ischknv/Documents/GitHub/miem/aimm/runs/detect/train/labels.jpg... \n", + "Plotting labels to c:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\\labels.jpg... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.001667, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)\n", "Image sizes 640 train, 640 val\n", - "Using 0 dataloader workers\n", - "Logging results to \u001b[1m/Users/ischknv/Documents/GitHub/miem/aimm/runs/detect/train\u001b[0m\n", + "Using 6 dataloader workers\n", + "Logging results to \u001b[1mc:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\u001b[0m\n", "Starting training for 50 epochs...\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" @@ -1215,34 +1390,1762 @@ "name": "stderr", "output_type": "stream", "text": [ - " 0%| | 0/9 [00:10<?, ?it/s]\n" + " 1/50 4.12G 0.8632 2.393 1.392 6 640: 100%|██████████| 36/36 [00:10<00:00, 3.53it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.79it/s]" ] }, { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[99], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mHOME\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m/dataset/data.yaml\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmps\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m16\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m50\u001b[39;49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/engine/model.py:802\u001b[0m, in \u001b[0;36mModel.train\u001b[0;34m(self, trainer, **kwargs)\u001b[0m\n\u001b[1;32m 799\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer\u001b[38;5;241m.\u001b[39mmodel\n\u001b[1;32m 801\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer\u001b[38;5;241m.\u001b[39mhub_session \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msession \u001b[38;5;66;03m# attach optional HUB session\u001b[39;00m\n\u001b[0;32m--> 802\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 803\u001b[0m \u001b[38;5;66;03m# Update model and cfg after training\u001b[39;00m\n\u001b[1;32m 804\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m RANK \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m0\u001b[39m}:\n", - "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/engine/trainer.py:207\u001b[0m, in \u001b[0;36mBaseTrainer.train\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 204\u001b[0m ddp_cleanup(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28mstr\u001b[39m(file))\n\u001b[1;32m 206\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 207\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_train\u001b[49m\u001b[43m(\u001b[49m\u001b[43mworld_size\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/engine/trainer.py:385\u001b[0m, in \u001b[0;36mBaseTrainer._do_train\u001b[0;34m(self, world_size)\u001b[0m\n\u001b[1;32m 383\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m autocast(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mamp):\n\u001b[1;32m 384\u001b[0m batch \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpreprocess_batch(batch)\n\u001b[0;32m--> 385\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloss, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloss_items \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbatch\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 386\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m RANK \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 387\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloss \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m=\u001b[39m world_size\n", - "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1736\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1734\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1735\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1736\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1747\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1742\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1743\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1744\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1745\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1746\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1747\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1749\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1750\u001b[0m called_always_called_hooks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mset\u001b[39m()\n", - "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/nn/tasks.py:111\u001b[0m, in \u001b[0;36mBaseModel.forward\u001b[0;34m(self, x, *args, **kwargs)\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 98\u001b[0m \u001b[38;5;124;03mPerform forward pass of the model for either training or inference.\u001b[39;00m\n\u001b[1;32m 99\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[38;5;124;03m (torch.Tensor): Loss if x is a dict (training), or network predictions (inference).\u001b[39;00m\n\u001b[1;32m 109\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mdict\u001b[39m): \u001b[38;5;66;03m# for cases of training and validating while training.\u001b[39;00m\n\u001b[0;32m--> 111\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloss\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpredict(x, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", - "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/nn/tasks.py:293\u001b[0m, in \u001b[0;36mBaseModel.loss\u001b[0;34m(self, batch, preds)\u001b[0m\n\u001b[1;32m 290\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcriterion \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minit_criterion()\n\u001b[1;32m 292\u001b[0m preds \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mforward(batch[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mimg\u001b[39m\u001b[38;5;124m\"\u001b[39m]) \u001b[38;5;28;01mif\u001b[39;00m preds \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m preds\n\u001b[0;32m--> 293\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcriterion\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpreds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/utils/loss.py:253\u001b[0m, in \u001b[0;36mv8DetectionLoss.__call__\u001b[0;34m(self, preds, batch)\u001b[0m\n\u001b[1;32m 251\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m fg_mask\u001b[38;5;241m.\u001b[39msum():\n\u001b[1;32m 252\u001b[0m target_bboxes \u001b[38;5;241m/\u001b[39m\u001b[38;5;241m=\u001b[39m stride_tensor\n\u001b[0;32m--> 253\u001b[0m loss[\u001b[38;5;241m0\u001b[39m], loss[\u001b[38;5;241m2\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbbox_loss\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 254\u001b[0m \u001b[43m \u001b[49m\u001b[43mpred_distri\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpred_bboxes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43manchor_points\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtarget_bboxes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtarget_scores\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtarget_scores_sum\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfg_mask\u001b[49m\n\u001b[1;32m 255\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 257\u001b[0m loss[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhyp\u001b[38;5;241m.\u001b[39mbox \u001b[38;5;66;03m# box gain\u001b[39;00m\n\u001b[1;32m 258\u001b[0m loss[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhyp\u001b[38;5;241m.\u001b[39mcls \u001b[38;5;66;03m# cls gain\u001b[39;00m\n", - "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1736\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1734\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1735\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1736\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1747\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1742\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1743\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1744\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1745\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1746\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1747\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1749\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1750\u001b[0m called_always_called_hooks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mset\u001b[39m()\n", - "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/utils/loss.py:103\u001b[0m, in \u001b[0;36mBboxLoss.forward\u001b[0;34m(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask)\u001b[0m\n\u001b[1;32m 101\u001b[0m weight \u001b[38;5;241m=\u001b[39m target_scores\u001b[38;5;241m.\u001b[39msum(\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)[fg_mask]\u001b[38;5;241m.\u001b[39munsqueeze(\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 102\u001b[0m iou \u001b[38;5;241m=\u001b[39m bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, CIoU\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m--> 103\u001b[0m loss_iou \u001b[38;5;241m=\u001b[39m \u001b[43m(\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1.0\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43miou\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mweight\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msum\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;241m/\u001b[39m target_scores_sum\n\u001b[1;32m 105\u001b[0m \u001b[38;5;66;03m# DFL loss\u001b[39;00m\n\u001b[1;32m 106\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdfl_loss:\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.415 0.56 0.408 0.246\n" ] - } - ], - "source": [ - "model.train(data=f\"{HOME}/dataset/data.yaml\", device=\"mps\", batch=16, epochs=50)" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 2/50 4.04G 0.9583 1.467 1.405 12 640: 100%|██████████| 36/36 [00:08<00:00, 4.01it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.187 0.587 0.28 0.13\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 3/50 4.18G 1.025 1.395 1.437 11 640: 100%|██████████| 36/36 [00:08<00:00, 4.10it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.03it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.596 0.0779 0.041 0.0104\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 4/50 4.05G 1.127 1.418 1.515 11 640: 100%|██████████| 36/36 [00:08<00:00, 4.14it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.06it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.653 0.287 0.169 0.0754\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 5/50 4.05G 1.12 1.329 1.519 10 640: 100%|██████████| 36/36 [00:08<00:00, 4.10it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.06it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.111 0.275 0.155 0.0764\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 6/50 4.04G 1.043 1.266 1.433 9 640: 100%|██████████| 36/36 [00:08<00:00, 4.10it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.96it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.667 0.0779 0.0642 0.0348\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 7/50 4.05G 1.018 1.245 1.426 11 640: 100%|██████████| 36/36 [00:08<00:00, 4.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.806 0.332 0.386 0.268\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 8/50 3.88G 0.961 1.214 1.385 13 640: 100%|██████████| 36/36 [00:08<00:00, 4.10it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.425 0.405 0.408 0.239\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 9/50 4.05G 0.9582 1.205 1.381 14 640: 100%|██████████| 36/36 [00:08<00:00, 4.10it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.01it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.488 0.67 0.567 0.407\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 10/50 4.05G 0.9233 1.108 1.36 11 640: 100%|██████████| 36/36 [00:08<00:00, 4.09it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.80it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.273 0.644 0.502 0.353\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 11/50 3.89G 0.9202 1.08 1.343 13 640: 100%|██████████| 36/36 [00:08<00:00, 4.07it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.05it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.52 0.626 0.625 0.46\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 12/50 3.89G 0.9089 1.076 1.342 10 640: 100%|██████████| 36/36 [00:08<00:00, 4.10it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.87it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.523 0.529 0.522 0.373\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 13/50 3.88G 0.832 0.9542 1.304 17 640: 100%|██████████| 36/36 [00:08<00:00, 4.01it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.97it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.405 0.636 0.487 0.38\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 14/50 4.05G 0.7959 0.9881 1.273 12 640: 100%|██████████| 36/36 [00:08<00:00, 4.10it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.12it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.404 0.671 0.519 0.379\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 15/50 4.04G 0.7749 0.9188 1.253 7 640: 100%|██████████| 36/36 [00:08<00:00, 4.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.15it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.619 0.752 0.626 0.489\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 16/50 4.04G 0.7875 0.9427 1.255 12 640: 100%|██████████| 36/36 [00:08<00:00, 4.09it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.00it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.52 0.687 0.606 0.478\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 17/50 3.89G 0.7699 0.9034 1.261 14 640: 100%|██████████| 36/36 [00:08<00:00, 4.09it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.99it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.607 0.693 0.615 0.498\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 18/50 4.05G 0.7406 0.8857 1.227 14 640: 100%|██████████| 36/36 [00:08<00:00, 4.09it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.10it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.561 0.815 0.641 0.553\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 19/50 4.05G 0.7608 0.9384 1.245 12 640: 100%|██████████| 36/36 [00:08<00:00, 4.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.613 0.826 0.695 0.567\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 20/50 3.88G 0.6756 0.8571 1.195 12 640: 100%|██████████| 36/36 [00:08<00:00, 4.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.98it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.653 0.528 0.636 0.494\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 21/50 4.04G 0.6815 0.8118 1.199 11 640: 100%|██████████| 36/36 [00:08<00:00, 4.10it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.99it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.446 0.749 0.61 0.5\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 22/50 3.88G 0.7054 0.8398 1.214 9 640: 100%|██████████| 36/36 [00:08<00:00, 4.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.509 0.739 0.582 0.429\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 23/50 3.88G 0.6626 0.8061 1.164 6 640: 100%|██████████| 36/36 [00:08<00:00, 4.11it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.04it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.747 0.678 0.78 0.681\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 24/50 3.88G 0.6705 0.7657 1.186 13 640: 100%|██████████| 36/36 [00:08<00:00, 4.07it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.73 0.703 0.775 0.688\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 25/50 4.05G 0.6679 0.7809 1.187 8 640: 100%|██████████| 36/36 [00:08<00:00, 4.09it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.11it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.64 0.845 0.78 0.706\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 26/50 4.05G 0.639 0.747 1.15 10 640: 100%|██████████| 36/36 [00:08<00:00, 4.09it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.99it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.729 0.69 0.715 0.616\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 27/50 3.88G 0.6702 0.7641 1.183 13 640: 100%|██████████| 36/36 [00:08<00:00, 4.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.99it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.652 0.817 0.699 0.619\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 28/50 4.04G 0.5833 0.693 1.132 12 640: 100%|██████████| 36/36 [00:08<00:00, 4.09it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.12it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.764 0.772 0.773 0.709\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 29/50 3.88G 0.6358 0.7188 1.165 8 640: 100%|██████████| 36/36 [00:08<00:00, 4.09it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.01it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.718 0.764 0.758 0.702\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 30/50 3.88G 0.6049 0.7009 1.145 11 640: 100%|██████████| 36/36 [00:08<00:00, 4.07it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.765 0.819 0.823 0.757\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 31/50 4.05G 0.5572 0.6595 1.109 14 640: 100%|██████████| 36/36 [00:08<00:00, 4.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.767 0.783 0.813 0.759\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 32/50 4.05G 0.607 0.6676 1.154 12 640: 100%|██████████| 36/36 [00:08<00:00, 4.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.703 0.749 0.729 0.621\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 33/50 3.89G 0.5658 0.6765 1.12 10 640: 100%|██████████| 36/36 [00:08<00:00, 4.06it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.05it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.707 0.849 0.818 0.749\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 34/50 4.05G 0.5607 0.6389 1.11 11 640: 100%|██████████| 36/36 [00:08<00:00, 4.06it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.813 0.778 0.852 0.783\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 35/50 3.89G 0.5751 0.664 1.123 8 640: 100%|██████████| 36/36 [00:08<00:00, 4.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.822 0.783 0.829 0.762\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 36/50 4.05G 0.5353 0.5959 1.1 11 640: 100%|██████████| 36/36 [00:08<00:00, 4.07it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.14it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.746 0.863 0.775 0.717\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 37/50 3.89G 0.5403 0.6157 1.098 9 640: 100%|██████████| 36/36 [00:08<00:00, 4.06it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.10it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.77 0.775 0.79 0.738\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 38/50 4.04G 0.4998 0.5489 1.067 13 640: 100%|██████████| 36/36 [00:08<00:00, 4.06it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.758 0.795 0.781 0.734\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 39/50 4.05G 0.5067 0.5567 1.069 11 640: 100%|██████████| 36/36 [00:08<00:00, 4.05it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.08it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.82 0.851 0.836 0.782\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 40/50 4.04G 0.4901 0.547 1.072 10 640: 100%|██████████| 36/36 [00:08<00:00, 4.09it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.00it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.743 0.875 0.81 0.772\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Closing dataloader mosaic\n", + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 41/50 4.05G 0.3248 0.4154 0.9601 5 640: 100%|██████████| 36/36 [00:08<00:00, 4.00it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.01it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.756 0.804 0.804 0.751\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 42/50 4.04G 0.3303 0.4127 0.9611 5 640: 100%|██████████| 36/36 [00:08<00:00, 4.11it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.09it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.829 0.792 0.822 0.768\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 43/50 4.05G 0.3124 0.3661 0.9499 5 640: 100%|██████████| 36/36 [00:08<00:00, 4.14it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.09it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.742 0.87 0.808 0.76\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 44/50 4.04G 0.2995 0.3769 0.9324 5 640: 100%|██████████| 36/36 [00:08<00:00, 4.11it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.766 0.896 0.813 0.766\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 45/50 4.05G 0.288 0.3315 0.9243 5 640: 100%|██████████| 36/36 [00:08<00:00, 4.11it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.742 0.896 0.826 0.772\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 46/50 4.04G 0.2691 0.3193 0.899 5 640: 100%|██████████| 36/36 [00:08<00:00, 4.12it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.15it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.766 0.858 0.834 0.785\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 47/50 3.89G 0.2642 0.3187 0.908 5 640: 100%|██████████| 36/36 [00:08<00:00, 4.11it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.05it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.805 0.861 0.836 0.8\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 48/50 4.04G 0.2467 0.3186 0.8996 5 640: 100%|██████████| 36/36 [00:08<00:00, 4.08it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.98it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.764 0.844 0.815 0.782\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 49/50 4.05G 0.2444 0.2988 0.8823 5 640: 100%|██████████| 36/36 [00:08<00:00, 4.10it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.03it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.712 0.861 0.804 0.778\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 50/50 4.04G 0.241 0.2933 0.8898 5 640: 100%|██████████| 36/36 [00:08<00:00, 4.11it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 4.05it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.732 0.905 0.813 0.783\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "50 epochs completed in 0.156 hours.\n", + "Optimizer stripped from c:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\\weights\\last.pt, 22.5MB\n", + "Optimizer stripped from c:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\\weights\\best.pt, 22.5MB\n", + "\n", + "Validating c:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\\weights\\best.pt...\n", + "Ultralytics 8.3.20 Python-3.10.11 torch-2.5.0+cu124 CUDA:0 (NVIDIA GeForce RTX 2060, 6144MiB)\n", + "Model summary (fused): 168 layers, 11,126,358 parameters, 0 gradients, 28.4 GFLOPs\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 5/5 [00:01<00:00, 3.12it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 139 139 0.806 0.862 0.836 0.8\n", + " kettle 17 17 0.697 0.814 0.709 0.709\n", + " teapot 122 122 0.914 0.91 0.963 0.891\n", + "Speed: 0.3ms preprocess, 4.4ms inference, 0.0ms loss, 1.9ms postprocess per image\n", + "Results saved to \u001b[1mc:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\u001b[0m\n" + ] + }, + { + "data": { + "text/plain": [ + "ultralytics.utils.metrics.DetMetrics object with attributes:\n", + "\n", + "ap_class_index: array([0, 1])\n", + "box: ultralytics.utils.metrics.Metric object\n", + "confusion_matrix: <ultralytics.utils.metrics.ConfusionMatrix object at 0x000001EF150EEDD0>\n", + "curves: ['Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)']\n", + "curves_results: [[array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 0.18085, 0.18085, 0],\n", + " [ 1, 1, 1, ..., 0.11681, 0.058406, 0]]), 'Recall', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.20482, 0.20482, 0.2705, ..., 0, 0, 0],\n", + " [ 0.64533, 0.64533, 0.72089, ..., 0, 0, 0]]), 'Confidence', 'F1'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.11409, 0.11409, 0.1564, ..., 1, 1, 1],\n", + " [ 0.47826, 0.47826, 0.56623, ..., 1, 1, 1]]), 'Confidence', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 0, 0, 0],\n", + " [ 0.9918, 0.9918, 0.9918, ..., 0, 0, 0]]), 'Confidence', 'Recall']]\n", + "fitness: np.float64(0.8033924789666338)\n", + "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']\n", + "maps: array([ 0.7087, 0.89085])\n", + "names: {0: 'kettle', 1: 'teapot'}\n", + "plot: True\n", + "results_dict: {'metrics/precision(B)': np.float64(0.8055972010864378), 'metrics/recall(B)': np.float64(0.8617328954841008), 'metrics/mAP50(B)': np.float64(0.8359362210577036), 'metrics/mAP50-95(B)': np.float64(0.7997765076231815), 'fitness': np.float64(0.8033924789666338)}\n", + "save_dir: WindowsPath('c:/Users/maxch/Desktop/aimm/runs/detect/train')\n", + "speed: {'preprocess': 0.3013267791528496, 'inference': 4.441570034987635, 'loss': 0.0, 'postprocess': 1.9155354808560379}\n", + "task: 'detect'" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.train(data=f\"{HOME}/dataset/data.yaml\", device=\"cuda\", batch=16, epochs=50)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "image 1/1 c:\\Users\\maxch\\Desktop\\aimm\\lab-2\\dataset\\train\\0002.jpg: 640x640 1 teapot, 37.9ms\n", + "Speed: 4.0ms preprocess, 37.9ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n" + ] + }, + { + "data": { + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from ultralytics import YOLO\n", + "import matplotlib.pyplot as plt\n", + "import cv2\n", + "model_path = f\"{HOME}/../runs/detect/train/weights/best.pt\"\n", + "dataset_dir = f\"{HOME}/dataset/\" # путь к папке с вашим датасетом\n", + "model = YOLO(model_path)\n", + "results = model.predict(dataset_dir+\"train/0002.jpg\")\n", + "result = results[0]\n", + "res_plotted = result.plot()\n", + "plt.imshow(cv2.cvtColor(res_plotted, cv2.COLOR_BGR2RGB))\n", + "plt.axis('off')\n", + "plt.show()" ] } ], @@ -1253,7 +3156,8 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3", + "display_name": ".venv", + "language": "python", "name": "python3" }, "language_info": { @@ -1266,7 +3170,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.7" + "version": "3.10.11" }, "widgets": { "application/vnd.jupyter.widget-state+json": {