From 104a2f5da80272b4d3ffbc4d1f73c53dc7cb3cfd Mon Sep 17 00:00:00 2001
From: Ivan Chekanov <ischekanov@miem.hse.ru>
Date: Tue, 22 Oct 2024 23:37:26 +0300
Subject: [PATCH] Update solution

---
 lab-2/result.ipynb | 3014 ++++++++++++++++++++++++++++++++++++--------
 1 file changed, 2459 insertions(+), 555 deletions(-)

diff --git a/lab-2/result.ipynb b/lab-2/result.ipynb
index c68c16e..bee3490 100644
--- a/lab-2/result.ipynb
+++ b/lab-2/result.ipynb
@@ -2,23 +2,610 @@
   "cells": [
     {
       "cell_type": "code",
-      "execution_count": 4,
+      "execution_count": 1,
       "metadata": {},
       "outputs": [
         {
           "name": "stdout",
           "output_type": "stream",
           "text": [
-            "Requirement already satisfied: opencv-python in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (4.10.0.84)\n",
-            "Requirement already satisfied: numpy>=1.21.2 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from opencv-python) (2.1.1)\n",
-            "\u001b[31mERROR: Could not find a version that satisfies the requirement PIL (from versions: none)\u001b[0m\u001b[31m\n",
-            "\u001b[0m\u001b[31mERROR: No matching distribution found for PIL\u001b[0m\u001b[31m\n",
-            "\u001b[0m"
+            "Collecting opencv-python\n",
+            "  Using cached opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl.metadata (20 kB)\n",
+            "Collecting numpy>=1.21.2 (from opencv-python)\n",
+            "  Using cached numpy-2.1.2-cp310-cp310-win_amd64.whl.metadata (59 kB)\n",
+            "Using cached opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl (38.8 MB)\n",
+            "Using cached numpy-2.1.2-cp310-cp310-win_amd64.whl (12.9 MB)\n",
+            "Installing collected packages: numpy, opencv-python\n",
+            "Successfully installed numpy-2.1.2 opencv-python-4.10.0.84\n",
+            "Looking in indexes: https://download.pytorch.org/whl/cu124\n",
+            "Collecting torch\n",
+            "  Downloading https://download.pytorch.org/whl/cu124/torch-2.5.0%2Bcu124-cp310-cp310-win_amd64.whl (2510.8 MB)\n",
+            "     ---------------------------------------- 0.0/2.5 GB ? eta -:--:--\n",
+            "     ---------------------------------------- 0.0/2.5 GB 16.8 MB/s eta 0:02:30\n",
+            "     ---------------------------------------- 0.0/2.5 GB 19.9 MB/s eta 0:02:06\n",
+            "     ---------------------------------------- 0.0/2.5 GB 19.7 MB/s eta 0:02:07\n",
+            "     ---------------------------------------- 0.0/2.5 GB 19.9 MB/s eta 0:02:06\n",
+            "     ---------------------------------------- 0.0/2.5 GB 20.4 MB/s eta 0:02:03\n",
+            "     ---------------------------------------- 0.0/2.5 GB 20.4 MB/s eta 0:02:02\n",
+            "     ---------------------------------------- 0.0/2.5 GB 20.0 MB/s eta 0:02:05\n",
+            "      --------------------------------------- 0.0/2.5 GB 19.7 MB/s eta 0:02:06\n",
+            "      --------------------------------------- 0.0/2.5 GB 19.7 MB/s eta 0:02:06\n",
+            "      --------------------------------------- 0.0/2.5 GB 19.5 MB/s eta 0:02:07\n",
+            "      --------------------------------------- 0.0/2.5 GB 19.5 MB/s eta 0:02:07\n",
+            "      --------------------------------------- 0.0/2.5 GB 19.4 MB/s eta 0:02:08\n",
+            "      --------------------------------------- 0.1/2.5 GB 19.4 MB/s eta 0:02:07\n",
+            "      --------------------------------------- 0.1/2.5 GB 19.3 MB/s eta 0:02:08\n",
+            "      --------------------------------------- 0.1/2.5 GB 19.2 MB/s eta 0:02:08\n",
+            "      --------------------------------------- 0.1/2.5 GB 19.1 MB/s eta 0:02:09\n",
+            "     - -------------------------------------- 0.1/2.5 GB 19.3 MB/s eta 0:02:07\n",
+            "     - -------------------------------------- 0.1/2.5 GB 19.4 MB/s eta 0:02:06\n",
+            "     - -------------------------------------- 0.1/2.5 GB 19.6 MB/s eta 0:02:05\n",
+            "     - -------------------------------------- 0.1/2.5 GB 19.8 MB/s eta 0:02:03\n",
+            "     - -------------------------------------- 0.1/2.5 GB 20.0 MB/s eta 0:02:02\n",
+            "     - -------------------------------------- 0.1/2.5 GB 20.1 MB/s eta 0:02:01\n",
+            "     - -------------------------------------- 0.1/2.5 GB 20.3 MB/s eta 0:02:00\n",
+            "     - -------------------------------------- 0.1/2.5 GB 20.3 MB/s eta 0:01:59\n",
+            "     - -------------------------------------- 0.1/2.5 GB 20.4 MB/s eta 0:01:58\n",
+            "     - -------------------------------------- 0.1/2.5 GB 20.5 MB/s eta 0:01:58\n",
+            "     - -------------------------------------- 0.1/2.5 GB 20.6 MB/s eta 0:01:57\n",
+            "     - -------------------------------------- 0.1/2.5 GB 20.7 MB/s eta 0:01:56\n",
+            "     - -------------------------------------- 0.1/2.5 GB 20.7 MB/s eta 0:01:56\n",
+            "     -- ------------------------------------- 0.1/2.5 GB 20.7 MB/s eta 0:01:55\n",
+            "     -- ------------------------------------- 0.1/2.5 GB 20.7 MB/s eta 0:01:55\n",
+            "     -- ------------------------------------- 0.1/2.5 GB 20.5 MB/s eta 0:01:57\n",
+            "     -- ------------------------------------- 0.1/2.5 GB 20.5 MB/s eta 0:01:56\n",
+            "     -- ------------------------------------- 0.1/2.5 GB 20.5 MB/s eta 0:01:56\n",
+            "     -- ------------------------------------- 0.1/2.5 GB 20.7 MB/s eta 0:01:55\n",
+            "     -- ------------------------------------- 0.2/2.5 GB 20.7 MB/s eta 0:01:54\n",
+            "     -- ------------------------------------- 0.2/2.5 GB 20.9 MB/s eta 0:01:53\n",
+            "     -- ------------------------------------- 0.2/2.5 GB 21.0 MB/s eta 0:01:52\n",
+            "     -- ------------------------------------- 0.2/2.5 GB 21.0 MB/s eta 0:01:52\n",
+            "     -- ------------------------------------- 0.2/2.5 GB 21.0 MB/s eta 0:01:52\n",
+            "     -- ------------------------------------- 0.2/2.5 GB 21.1 MB/s eta 0:01:51\n",
+            "     -- ------------------------------------- 0.2/2.5 GB 21.1 MB/s eta 0:01:51\n",
+            "     -- ------------------------------------- 0.2/2.5 GB 21.2 MB/s eta 0:01:50\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.3 MB/s eta 0:01:49\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.4 MB/s eta 0:01:49\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.3 MB/s eta 0:01:49\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.5 MB/s eta 0:01:48\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.6 MB/s eta 0:01:47\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.8 MB/s eta 0:01:46\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.8 MB/s eta 0:01:46\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.3 MB/s eta 0:01:48\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.2 MB/s eta 0:01:48\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.3 MB/s eta 0:01:47\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.4 MB/s eta 0:01:47\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.4 MB/s eta 0:01:46\n",
+            "     --- ------------------------------------ 0.2/2.5 GB 21.6 MB/s eta 0:01:45\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 21.7 MB/s eta 0:01:45\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 21.7 MB/s eta 0:01:44\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 21.9 MB/s eta 0:01:43\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 21.9 MB/s eta 0:01:43\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 22.1 MB/s eta 0:01:42\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 22.2 MB/s eta 0:01:41\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 22.3 MB/s eta 0:01:40\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 22.4 MB/s eta 0:01:39\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 22.7 MB/s eta 0:01:38\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 22.8 MB/s eta 0:01:37\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 23.0 MB/s eta 0:01:36\n",
+            "     ---- ----------------------------------- 0.3/2.5 GB 23.0 MB/s eta 0:01:36\n",
+            "     ----- ---------------------------------- 0.3/2.5 GB 23.1 MB/s eta 0:01:36\n",
+            "     ----- ---------------------------------- 0.3/2.5 GB 23.3 MB/s eta 0:01:35\n",
+            "     ----- ---------------------------------- 0.3/2.5 GB 23.3 MB/s eta 0:01:34\n",
+            "     ----- ---------------------------------- 0.3/2.5 GB 23.4 MB/s eta 0:01:34\n",
+            "     ----- ---------------------------------- 0.3/2.5 GB 23.4 MB/s eta 0:01:33\n",
+            "     ----- ---------------------------------- 0.3/2.5 GB 23.4 MB/s eta 0:01:33\n",
+            "     ----- ---------------------------------- 0.3/2.5 GB 23.5 MB/s eta 0:01:33\n",
+            "     ----- ---------------------------------- 0.3/2.5 GB 23.5 MB/s eta 0:01:32\n",
+            "     ----- ---------------------------------- 0.4/2.5 GB 23.5 MB/s eta 0:01:32\n",
+            "     ----- ---------------------------------- 0.4/2.5 GB 23.5 MB/s eta 0:01:32\n",
+            "     ----- ---------------------------------- 0.4/2.5 GB 23.4 MB/s eta 0:01:32\n",
+            "     ----- ---------------------------------- 0.4/2.5 GB 23.4 MB/s eta 0:01:32\n",
+            "     ----- ---------------------------------- 0.4/2.5 GB 23.5 MB/s eta 0:01:32\n",
+            "     ----- ---------------------------------- 0.4/2.5 GB 23.5 MB/s eta 0:01:31\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 23.5 MB/s eta 0:01:31\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 23.4 MB/s eta 0:01:31\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 23.6 MB/s eta 0:01:30\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 23.8 MB/s eta 0:01:29\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 23.8 MB/s eta 0:01:29\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:29\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:28\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:28\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:28\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:28\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:28\n",
+            "     ------ --------------------------------- 0.4/2.5 GB 24.0 MB/s eta 0:01:27\n",
+            "     ------- -------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:27\n",
+            "     ------- -------------------------------- 0.4/2.5 GB 23.9 MB/s eta 0:01:27\n",
+            "     ------- -------------------------------- 0.5/2.5 GB 23.9 MB/s eta 0:01:27\n",
+            "     ------- -------------------------------- 0.5/2.5 GB 23.9 MB/s eta 0:01:26\n",
+            "     ------- -------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:26\n",
+            "     ------- -------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:26\n",
+            "     ------- -------------------------------- 0.5/2.5 GB 23.5 MB/s eta 0:01:28\n",
+            "     ------- -------------------------------- 0.5/2.5 GB 23.5 MB/s eta 0:01:27\n",
+            "     ------- -------------------------------- 0.5/2.5 GB 23.5 MB/s eta 0:01:27\n",
+            "     ------- -------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:25\n",
+            "     ------- -------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:25\n",
+            "     ------- -------------------------------- 0.5/2.5 GB 24.1 MB/s eta 0:01:24\n",
+            "     ------- -------------------------------- 0.5/2.5 GB 24.2 MB/s eta 0:01:24\n",
+            "     -------- ------------------------------- 0.5/2.5 GB 24.2 MB/s eta 0:01:24\n",
+            "     -------- ------------------------------- 0.5/2.5 GB 24.1 MB/s eta 0:01:24\n",
+            "     -------- ------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:24\n",
+            "     -------- ------------------------------- 0.5/2.5 GB 24.0 MB/s eta 0:01:24\n",
+            "     -------- ------------------------------- 0.5/2.5 GB 23.9 MB/s eta 0:01:24\n",
+            "     -------- ------------------------------- 0.5/2.5 GB 23.9 MB/s eta 0:01:23\n",
+            "     -------- ------------------------------- 0.5/2.5 GB 23.9 MB/s eta 0:01:23\n",
+            "     -------- ------------------------------- 0.5/2.5 GB 23.8 MB/s eta 0:01:24\n",
+            "     -------- ------------------------------- 0.5/2.5 GB 23.7 MB/s eta 0:01:23\n",
+            "     -------- ------------------------------- 0.5/2.5 GB 23.7 MB/s eta 0:01:23\n",
+            "     -------- ------------------------------- 0.6/2.5 GB 23.6 MB/s eta 0:01:24\n",
+            "     -------- ------------------------------- 0.6/2.5 GB 23.5 MB/s eta 0:01:24\n",
+            "     -------- ------------------------------- 0.6/2.5 GB 23.5 MB/s eta 0:01:23\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.5 MB/s eta 0:01:23\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:23\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:22\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:22\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.5 MB/s eta 0:01:22\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:22\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:22\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.6 MB/s eta 0:01:22\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.4 MB/s eta 0:01:22\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.3 MB/s eta 0:01:22\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.2 MB/s eta 0:01:22\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.2 MB/s eta 0:01:22\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.3 MB/s eta 0:01:22\n",
+            "     --------- ------------------------------ 0.6/2.5 GB 23.4 MB/s eta 0:01:21\n",
+            "     ---------- ----------------------------- 0.6/2.5 GB 23.4 MB/s eta 0:01:21\n",
+            "     ---------- ----------------------------- 0.6/2.5 GB 23.4 MB/s eta 0:01:21\n",
+            "     ---------- ----------------------------- 0.6/2.5 GB 23.3 MB/s eta 0:01:21\n",
+            "     ---------- ----------------------------- 0.6/2.5 GB 23.2 MB/s eta 0:01:21\n",
+            "     ---------- ----------------------------- 0.7/2.5 GB 23.3 MB/s eta 0:01:20\n",
+            "     ---------- ----------------------------- 0.7/2.5 GB 23.3 MB/s eta 0:01:20\n",
+            "     ---------- ----------------------------- 0.7/2.5 GB 23.3 MB/s eta 0:01:20\n",
+            "     ---------- ----------------------------- 0.7/2.5 GB 23.3 MB/s eta 0:01:20\n",
+            "     ---------- ----------------------------- 0.7/2.5 GB 23.2 MB/s eta 0:01:20\n",
+            "     ---------- ----------------------------- 0.7/2.5 GB 23.2 MB/s eta 0:01:20\n",
+            "     ---------- ----------------------------- 0.7/2.5 GB 23.2 MB/s eta 0:01:19\n",
+            "     ---------- ----------------------------- 0.7/2.5 GB 23.3 MB/s eta 0:01:19\n",
+            "     ---------- ----------------------------- 0.7/2.5 GB 23.2 MB/s eta 0:01:19\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 23.2 MB/s eta 0:01:19\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 23.1 MB/s eta 0:01:19\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 23.1 MB/s eta 0:01:19\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 22.6 MB/s eta 0:01:21\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 22.7 MB/s eta 0:01:20\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 22.6 MB/s eta 0:01:20\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 22.4 MB/s eta 0:01:21\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 22.4 MB/s eta 0:01:21\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 22.3 MB/s eta 0:01:21\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 22.8 MB/s eta 0:01:19\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 22.8 MB/s eta 0:01:19\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 22.8 MB/s eta 0:01:18\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 22.7 MB/s eta 0:01:19\n",
+            "     ----------- ---------------------------- 0.7/2.5 GB 22.6 MB/s eta 0:01:19\n",
+            "     ----------- ---------------------------- 0.8/2.5 GB 22.6 MB/s eta 0:01:18\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.5 MB/s eta 0:01:19\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.4 MB/s eta 0:01:19\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.4 MB/s eta 0:01:19\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.4 MB/s eta 0:01:18\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.4 MB/s eta 0:01:18\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.3 MB/s eta 0:01:18\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.3 MB/s eta 0:01:18\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.3 MB/s eta 0:01:18\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.2 MB/s eta 0:01:18\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:18\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.2 MB/s eta 0:01:17\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.2 MB/s eta 0:01:17\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:17\n",
+            "     ------------ --------------------------- 0.8/2.5 GB 22.2 MB/s eta 0:01:17\n",
+            "     ------------- -------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:17\n",
+            "     ------------- -------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:17\n",
+            "     ------------- -------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:17\n",
+            "     ------------- -------------------------- 0.8/2.5 GB 22.1 MB/s eta 0:01:17\n",
+            "     ------------- -------------------------- 0.8/2.5 GB 22.0 MB/s eta 0:01:17\n",
+            "     ------------- -------------------------- 0.8/2.5 GB 22.0 MB/s eta 0:01:16\n",
+            "     ------------- -------------------------- 0.8/2.5 GB 22.0 MB/s eta 0:01:16\n",
+            "     ------------- -------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:16\n",
+            "     ------------- -------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:16\n",
+            "     ------------- -------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:16\n",
+            "     ------------- -------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:15\n",
+            "     ------------- -------------------------- 0.9/2.5 GB 22.1 MB/s eta 0:01:15\n",
+            "     ------------- -------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:15\n",
+            "     ------------- -------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:15\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:15\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:15\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:15\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:14\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:14\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:13\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:13\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 21.9 MB/s eta 0:01:13\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:13\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:12\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 22.0 MB/s eta 0:01:12\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 21.7 MB/s eta 0:01:14\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 21.7 MB/s eta 0:01:13\n",
+            "     -------------- ------------------------- 0.9/2.5 GB 21.7 MB/s eta 0:01:13\n",
+            "     --------------- ------------------------ 0.9/2.5 GB 21.7 MB/s eta 0:01:13\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 21.7 MB/s eta 0:01:12\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 21.7 MB/s eta 0:01:12\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 21.8 MB/s eta 0:01:12\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 22.2 MB/s eta 0:01:10\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 22.2 MB/s eta 0:01:10\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 22.3 MB/s eta 0:01:09\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 22.4 MB/s eta 0:01:09\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 22.4 MB/s eta 0:01:09\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 22.3 MB/s eta 0:01:09\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 22.3 MB/s eta 0:01:08\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 22.3 MB/s eta 0:01:08\n",
+            "     --------------- ------------------------ 1.0/2.5 GB 22.4 MB/s eta 0:01:08\n",
+            "     ---------------- ----------------------- 1.0/2.5 GB 22.5 MB/s eta 0:01:07\n",
+            "     ---------------- ----------------------- 1.0/2.5 GB 22.4 MB/s eta 0:01:07\n",
+            "     ---------------- ----------------------- 1.0/2.5 GB 22.4 MB/s eta 0:01:07\n",
+            "     ---------------- ----------------------- 1.0/2.5 GB 22.4 MB/s eta 0:01:07\n",
+            "     ---------------- ----------------------- 1.0/2.5 GB 22.5 MB/s eta 0:01:07\n",
+            "     ---------------- ----------------------- 1.0/2.5 GB 22.5 MB/s eta 0:01:06\n",
+            "     ---------------- ----------------------- 1.0/2.5 GB 22.6 MB/s eta 0:01:06\n",
+            "     ---------------- ----------------------- 1.0/2.5 GB 22.6 MB/s eta 0:01:06\n",
+            "     ---------------- ----------------------- 1.0/2.5 GB 22.7 MB/s eta 0:01:05\n",
+            "     ---------------- ----------------------- 1.1/2.5 GB 22.6 MB/s eta 0:01:05\n",
+            "     ---------------- ----------------------- 1.1/2.5 GB 22.6 MB/s eta 0:01:05\n",
+            "     ---------------- ----------------------- 1.1/2.5 GB 22.6 MB/s eta 0:01:05\n",
+            "     ---------------- ----------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:04\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 22.6 MB/s eta 0:01:04\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:04\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 22.6 MB/s eta 0:01:04\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:03\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:03\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:03\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 22.7 MB/s eta 0:01:03\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 22.8 MB/s eta 0:01:02\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 22.9 MB/s eta 0:01:02\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 23.0 MB/s eta 0:01:01\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 23.0 MB/s eta 0:01:01\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 22.9 MB/s eta 0:01:01\n",
+            "     ----------------- ---------------------- 1.1/2.5 GB 22.9 MB/s eta 0:01:01\n",
+            "     ------------------ --------------------- 1.1/2.5 GB 23.0 MB/s eta 0:01:01\n",
+            "     ------------------ --------------------- 1.1/2.5 GB 23.0 MB/s eta 0:01:00\n",
+            "     ------------------ --------------------- 1.1/2.5 GB 23.2 MB/s eta 0:01:00\n",
+            "     ------------------ --------------------- 1.1/2.5 GB 23.2 MB/s eta 0:00:59\n",
+            "     ------------------ --------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:59\n",
+            "     ------------------ --------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:59\n",
+            "     ------------------ --------------------- 1.2/2.5 GB 23.3 MB/s eta 0:00:58\n",
+            "     ------------------ --------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:58\n",
+            "     ------------------ --------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:58\n",
+            "     ------------------ --------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:58\n",
+            "     ------------------ --------------------- 1.2/2.5 GB 23.1 MB/s eta 0:00:58\n",
+            "     ------------------ --------------------- 1.2/2.5 GB 23.1 MB/s eta 0:00:58\n",
+            "     ------------------ --------------------- 1.2/2.5 GB 23.6 MB/s eta 0:00:57\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 23.5 MB/s eta 0:00:56\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 23.5 MB/s eta 0:00:56\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 23.4 MB/s eta 0:00:56\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 23.4 MB/s eta 0:00:56\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 23.3 MB/s eta 0:00:56\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 23.4 MB/s eta 0:00:56\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 23.3 MB/s eta 0:00:56\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 23.3 MB/s eta 0:00:56\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 23.3 MB/s eta 0:00:55\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:55\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 23.2 MB/s eta 0:00:55\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 22.7 MB/s eta 0:00:56\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 22.7 MB/s eta 0:00:56\n",
+            "     ------------------- -------------------- 1.2/2.5 GB 22.8 MB/s eta 0:00:56\n",
+            "     ------------------- -------------------- 1.3/2.5 GB 22.8 MB/s eta 0:00:56\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:56\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:55\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.8 MB/s eta 0:00:55\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.9 MB/s eta 0:00:55\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.8 MB/s eta 0:00:55\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:55\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:54\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:54\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.6 MB/s eta 0:00:54\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.6 MB/s eta 0:00:54\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:54\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:53\n",
+            "     -------------------- ------------------- 1.3/2.5 GB 22.7 MB/s eta 0:00:53\n",
+            "     --------------------- ------------------ 1.3/2.5 GB 22.8 MB/s eta 0:00:53\n",
+            "     --------------------- ------------------ 1.3/2.5 GB 22.7 MB/s eta 0:00:53\n",
+            "     --------------------- ------------------ 1.3/2.5 GB 22.7 MB/s eta 0:00:53\n",
+            "     --------------------- ------------------ 1.3/2.5 GB 22.7 MB/s eta 0:00:52\n",
+            "     --------------------- ------------------ 1.3/2.5 GB 22.8 MB/s eta 0:00:52\n",
+            "     --------------------- ------------------ 1.3/2.5 GB 22.7 MB/s eta 0:00:52\n",
+            "     --------------------- ------------------ 1.3/2.5 GB 22.7 MB/s eta 0:00:52\n",
+            "     --------------------- ------------------ 1.4/2.5 GB 22.6 MB/s eta 0:00:52\n",
+            "     --------------------- ------------------ 1.4/2.5 GB 22.6 MB/s eta 0:00:52\n",
+            "     --------------------- ------------------ 1.4/2.5 GB 22.5 MB/s eta 0:00:52\n",
+            "     --------------------- ------------------ 1.4/2.5 GB 22.5 MB/s eta 0:00:51\n",
+            "     --------------------- ------------------ 1.4/2.5 GB 22.4 MB/s eta 0:00:51\n",
+            "     --------------------- ------------------ 1.4/2.5 GB 22.3 MB/s eta 0:00:51\n",
+            "     --------------------- ------------------ 1.4/2.5 GB 22.3 MB/s eta 0:00:51\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:51\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:51\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:51\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:50\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:50\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:50\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:50\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.2 MB/s eta 0:00:50\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.2 MB/s eta 0:00:50\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.2 MB/s eta 0:00:49\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:49\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.3 MB/s eta 0:00:49\n",
+            "     ---------------------- ----------------- 1.4/2.5 GB 22.4 MB/s eta 0:00:48\n",
+            "     ----------------------- ---------------- 1.4/2.5 GB 22.4 MB/s eta 0:00:48\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 22.4 MB/s eta 0:00:48\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 22.5 MB/s eta 0:00:47\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 22.5 MB/s eta 0:00:47\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 22.6 MB/s eta 0:00:47\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 22.6 MB/s eta 0:00:46\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 22.6 MB/s eta 0:00:46\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 22.6 MB/s eta 0:00:46\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 22.7 MB/s eta 0:00:46\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 22.6 MB/s eta 0:00:46\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 22.7 MB/s eta 0:00:45\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:44\n",
+            "     ----------------------- ---------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:44\n",
+            "     ------------------------ --------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:44\n",
+            "     ------------------------ --------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:44\n",
+            "     ------------------------ --------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:43\n",
+            "     ------------------------ --------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:43\n",
+            "     ------------------------ --------------- 1.5/2.5 GB 23.1 MB/s eta 0:00:43\n",
+            "     ------------------------ --------------- 1.5/2.5 GB 23.0 MB/s eta 0:00:43\n",
+            "     ------------------------ --------------- 1.5/2.5 GB 23.0 MB/s eta 0:00:43\n",
+            "     ------------------------ --------------- 1.5/2.5 GB 23.0 MB/s eta 0:00:43\n",
+            "     ------------------------ --------------- 1.5/2.5 GB 23.0 MB/s eta 0:00:43\n",
+            "     ------------------------ --------------- 1.6/2.5 GB 23.0 MB/s eta 0:00:42\n",
+            "     ------------------------ --------------- 1.6/2.5 GB 22.9 MB/s eta 0:00:42\n",
+            "     ------------------------ --------------- 1.6/2.5 GB 22.8 MB/s eta 0:00:42\n",
+            "     ------------------------ --------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:42\n",
+            "     ------------------------ --------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:42\n",
+            "     ------------------------ --------------- 1.6/2.5 GB 22.6 MB/s eta 0:00:42\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.2 MB/s eta 0:00:43\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.2 MB/s eta 0:00:43\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.1 MB/s eta 0:00:43\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.2 MB/s eta 0:00:42\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.1 MB/s eta 0:00:42\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.1 MB/s eta 0:00:42\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.1 MB/s eta 0:00:42\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.2 MB/s eta 0:00:41\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.2 MB/s eta 0:00:41\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.3 MB/s eta 0:00:41\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.4 MB/s eta 0:00:40\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.6 MB/s eta 0:00:40\n",
+            "     ------------------------- -------------- 1.6/2.5 GB 22.6 MB/s eta 0:00:40\n",
+            "     -------------------------- ------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:39\n",
+            "     -------------------------- ------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:39\n",
+            "     -------------------------- ------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:39\n",
+            "     -------------------------- ------------- 1.6/2.5 GB 22.7 MB/s eta 0:00:39\n",
+            "     -------------------------- ------------- 1.7/2.5 GB 22.7 MB/s eta 0:00:38\n",
+            "     -------------------------- ------------- 1.7/2.5 GB 22.6 MB/s eta 0:00:38\n",
+            "     -------------------------- ------------- 1.7/2.5 GB 22.6 MB/s eta 0:00:38\n",
+            "     -------------------------- ------------- 1.7/2.5 GB 22.5 MB/s eta 0:00:38\n",
+            "     -------------------------- ------------- 1.7/2.5 GB 22.5 MB/s eta 0:00:38\n",
+            "     -------------------------- ------------- 1.7/2.5 GB 22.7 MB/s eta 0:00:37\n",
+            "     -------------------------- ------------- 1.7/2.5 GB 22.7 MB/s eta 0:00:37\n",
+            "     -------------------------- ------------- 1.7/2.5 GB 22.8 MB/s eta 0:00:37\n",
+            "     -------------------------- ------------- 1.7/2.5 GB 22.8 MB/s eta 0:00:36\n",
+            "     --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:36\n",
+            "     --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:36\n",
+            "     --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:36\n",
+            "     --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:35\n",
+            "     --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:35\n",
+            "     --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:35\n",
+            "     --------------------------- ------------ 1.7/2.5 GB 22.9 MB/s eta 0:00:35\n",
+            "     --------------------------- ------------ 1.7/2.5 GB 23.0 MB/s eta 0:00:34\n",
+            "     --------------------------- ------------ 1.7/2.5 GB 23.1 MB/s eta 0:00:34\n",
+            "     --------------------------- ------------ 1.7/2.5 GB 23.1 MB/s eta 0:00:34\n",
+            "     --------------------------- ------------ 1.8/2.5 GB 23.2 MB/s eta 0:00:33\n",
+            "     --------------------------- ------------ 1.8/2.5 GB 23.1 MB/s eta 0:00:33\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:33\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.3 MB/s eta 0:00:32\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.3 MB/s eta 0:00:32\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.3 MB/s eta 0:00:32\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:32\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:32\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:32\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:31\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.3 MB/s eta 0:00:31\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.4 MB/s eta 0:00:31\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.5 MB/s eta 0:00:30\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.5 MB/s eta 0:00:30\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.1 MB/s eta 0:00:31\n",
+            "     ---------------------------- ----------- 1.8/2.5 GB 23.2 MB/s eta 0:00:30\n",
+            "     ----------------------------- ---------- 1.8/2.5 GB 23.3 MB/s eta 0:00:30\n",
+            "     ----------------------------- ---------- 1.8/2.5 GB 23.9 MB/s eta 0:00:29\n",
+            "     ----------------------------- ---------- 1.8/2.5 GB 23.9 MB/s eta 0:00:29\n",
+            "     ----------------------------- ---------- 1.8/2.5 GB 24.1 MB/s eta 0:00:28\n",
+            "     ----------------------------- ---------- 1.8/2.5 GB 24.2 MB/s eta 0:00:28\n",
+            "     ----------------------------- ---------- 1.9/2.5 GB 24.3 MB/s eta 0:00:28\n",
+            "     ----------------------------- ---------- 1.9/2.5 GB 24.4 MB/s eta 0:00:27\n",
+            "     ----------------------------- ---------- 1.9/2.5 GB 24.4 MB/s eta 0:00:27\n",
+            "     ----------------------------- ---------- 1.9/2.5 GB 24.4 MB/s eta 0:00:27\n",
+            "     ----------------------------- ---------- 1.9/2.5 GB 24.5 MB/s eta 0:00:27\n",
+            "     ----------------------------- ---------- 1.9/2.5 GB 24.4 MB/s eta 0:00:26\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 24.5 MB/s eta 0:00:26\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 24.5 MB/s eta 0:00:26\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 24.5 MB/s eta 0:00:26\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 24.7 MB/s eta 0:00:25\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 24.8 MB/s eta 0:00:25\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 24.9 MB/s eta 0:00:25\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 25.0 MB/s eta 0:00:24\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 25.1 MB/s eta 0:00:24\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 25.1 MB/s eta 0:00:24\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 25.2 MB/s eta 0:00:23\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 25.2 MB/s eta 0:00:23\n",
+            "     ------------------------------ --------- 1.9/2.5 GB 25.1 MB/s eta 0:00:23\n",
+            "     ------------------------------- -------- 2.0/2.5 GB 25.2 MB/s eta 0:00:23\n",
+            "     ------------------------------- -------- 2.0/2.5 GB 25.2 MB/s eta 0:00:23\n",
+            "     ------------------------------- -------- 2.0/2.5 GB 25.1 MB/s eta 0:00:22\n",
+            "     ------------------------------- -------- 2.0/2.5 GB 25.1 MB/s eta 0:00:22\n",
+            "     ------------------------------- -------- 2.0/2.5 GB 25.2 MB/s eta 0:00:22\n",
+            "     ------------------------------- -------- 2.0/2.5 GB 25.3 MB/s eta 0:00:22\n",
+            "     ------------------------------- -------- 2.0/2.5 GB 25.3 MB/s eta 0:00:21\n",
+            "     ------------------------------- -------- 2.0/2.5 GB 25.3 MB/s eta 0:00:21\n",
+            "     ------------------------------- -------- 2.0/2.5 GB 25.3 MB/s eta 0:00:21\n",
+            "     ------------------------------- -------- 2.0/2.5 GB 25.3 MB/s eta 0:00:21\n",
+            "     ------------------------------- -------- 2.0/2.5 GB 25.4 MB/s eta 0:00:20\n",
+            "     -------------------------------- ------- 2.0/2.5 GB 25.4 MB/s eta 0:00:20\n",
+            "     -------------------------------- ------- 2.0/2.5 GB 25.4 MB/s eta 0:00:20\n",
+            "     -------------------------------- ------- 2.0/2.5 GB 25.5 MB/s eta 0:00:20\n",
+            "     -------------------------------- ------- 2.0/2.5 GB 25.5 MB/s eta 0:00:19\n",
+            "     -------------------------------- ------- 2.0/2.5 GB 25.4 MB/s eta 0:00:19\n",
+            "     -------------------------------- ------- 2.0/2.5 GB 25.4 MB/s eta 0:00:19\n",
+            "     -------------------------------- ------- 2.0/2.5 GB 25.6 MB/s eta 0:00:19\n",
+            "     -------------------------------- ------- 2.0/2.5 GB 25.6 MB/s eta 0:00:19\n",
+            "     -------------------------------- ------- 2.1/2.5 GB 25.7 MB/s eta 0:00:18\n",
+            "     -------------------------------- ------- 2.1/2.5 GB 25.8 MB/s eta 0:00:18\n",
+            "     -------------------------------- ------- 2.1/2.5 GB 25.8 MB/s eta 0:00:18\n",
+            "     -------------------------------- ------- 2.1/2.5 GB 25.9 MB/s eta 0:00:18\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 26.6 MB/s eta 0:00:17\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 26.6 MB/s eta 0:00:17\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 26.0 MB/s eta 0:00:17\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 26.0 MB/s eta 0:00:17\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 26.0 MB/s eta 0:00:17\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 26.0 MB/s eta 0:00:16\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 26.0 MB/s eta 0:00:16\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 25.9 MB/s eta 0:00:16\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 25.8 MB/s eta 0:00:16\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 25.7 MB/s eta 0:00:16\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 25.7 MB/s eta 0:00:16\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 25.7 MB/s eta 0:00:16\n",
+            "     --------------------------------- ------ 2.1/2.5 GB 25.7 MB/s eta 0:00:15\n",
+            "     ---------------------------------- ----- 2.1/2.5 GB 25.7 MB/s eta 0:00:15\n",
+            "     ---------------------------------- ----- 2.1/2.5 GB 25.7 MB/s eta 0:00:15\n",
+            "     ---------------------------------- ----- 2.1/2.5 GB 25.7 MB/s eta 0:00:15\n",
+            "     ---------------------------------- ----- 2.2/2.5 GB 25.6 MB/s eta 0:00:14\n",
+            "     ---------------------------------- ----- 2.2/2.5 GB 25.7 MB/s eta 0:00:14\n",
+            "     ---------------------------------- ----- 2.2/2.5 GB 25.5 MB/s eta 0:00:14\n",
+            "     ---------------------------------- ----- 2.2/2.5 GB 25.4 MB/s eta 0:00:14\n",
+            "     ---------------------------------- ----- 2.2/2.5 GB 25.4 MB/s eta 0:00:14\n",
+            "     ---------------------------------- ----- 2.2/2.5 GB 25.3 MB/s eta 0:00:14\n",
+            "     ---------------------------------- ----- 2.2/2.5 GB 25.2 MB/s eta 0:00:14\n",
+            "     ---------------------------------- ----- 2.2/2.5 GB 25.2 MB/s eta 0:00:13\n",
+            "     ---------------------------------- ----- 2.2/2.5 GB 25.2 MB/s eta 0:00:13\n",
+            "     ---------------------------------- ----- 2.2/2.5 GB 25.1 MB/s eta 0:00:13\n",
+            "     ----------------------------------- ---- 2.2/2.5 GB 25.0 MB/s eta 0:00:13\n",
+            "     ----------------------------------- ---- 2.2/2.5 GB 24.9 MB/s eta 0:00:13\n",
+            "     ----------------------------------- ---- 2.2/2.5 GB 24.9 MB/s eta 0:00:13\n",
+            "     ----------------------------------- ---- 2.2/2.5 GB 24.8 MB/s eta 0:00:12\n",
+            "     ----------------------------------- ---- 2.2/2.5 GB 24.8 MB/s eta 0:00:12\n",
+            "     ----------------------------------- ---- 2.2/2.5 GB 24.7 MB/s eta 0:00:12\n",
+            "     ----------------------------------- ---- 2.2/2.5 GB 24.6 MB/s eta 0:00:12\n",
+            "     ----------------------------------- ---- 2.2/2.5 GB 24.5 MB/s eta 0:00:12\n",
+            "     ----------------------------------- ---- 2.2/2.5 GB 24.4 MB/s eta 0:00:12\n",
+            "     ----------------------------------- ---- 2.2/2.5 GB 24.2 MB/s eta 0:00:12\n",
+            "     ----------------------------------- ---- 2.2/2.5 GB 24.2 MB/s eta 0:00:12\n",
+            "     ----------------------------------- ---- 2.3/2.5 GB 24.1 MB/s eta 0:00:11\n",
+            "     ----------------------------------- ---- 2.3/2.5 GB 24.0 MB/s eta 0:00:11\n",
+            "     ----------------------------------- ---- 2.3/2.5 GB 23.9 MB/s eta 0:00:11\n",
+            "     ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:11\n",
+            "     ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:11\n",
+            "     ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:10\n",
+            "     ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:10\n",
+            "     ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:10\n",
+            "     ------------------------------------ --- 2.3/2.5 GB 23.8 MB/s eta 0:00:10\n",
+            "     ------------------------------------ --- 2.3/2.5 GB 23.9 MB/s eta 0:00:09\n",
+            "     ------------------------------------ --- 2.3/2.5 GB 24.0 MB/s eta 0:00:09\n",
+            "     ------------------------------------ --- 2.3/2.5 GB 23.9 MB/s eta 0:00:09\n",
+            "     ------------------------------------ --- 2.3/2.5 GB 24.0 MB/s eta 0:00:09\n",
+            "     ------------------------------------ --- 2.3/2.5 GB 24.0 MB/s eta 0:00:09\n",
+            "     ------------------------------------- -- 2.3/2.5 GB 24.0 MB/s eta 0:00:08\n",
+            "     ------------------------------------- -- 2.3/2.5 GB 24.0 MB/s eta 0:00:08\n",
+            "     ------------------------------------- -- 2.3/2.5 GB 23.5 MB/s eta 0:00:08\n",
+            "     ------------------------------------- -- 2.3/2.5 GB 23.5 MB/s eta 0:00:08\n",
+            "     ------------------------------------- -- 2.3/2.5 GB 23.5 MB/s eta 0:00:08\n",
+            "     ------------------------------------- -- 2.3/2.5 GB 24.0 MB/s eta 0:00:07\n",
+            "     ------------------------------------- -- 2.3/2.5 GB 24.0 MB/s eta 0:00:07\n",
+            "     ------------------------------------- -- 2.4/2.5 GB 24.0 MB/s eta 0:00:07\n",
+            "     ------------------------------------- -- 2.4/2.5 GB 24.0 MB/s eta 0:00:07\n",
+            "     ------------------------------------- -- 2.4/2.5 GB 23.9 MB/s eta 0:00:07\n",
+            "     ------------------------------------- -- 2.4/2.5 GB 23.9 MB/s eta 0:00:06\n",
+            "     ------------------------------------- -- 2.4/2.5 GB 24.0 MB/s eta 0:00:06\n",
+            "     ------------------------------------- -- 2.4/2.5 GB 24.0 MB/s eta 0:00:06\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:06\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:06\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:05\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:05\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:05\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:05\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.0 MB/s eta 0:00:04\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.2 MB/s eta 0:00:04\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.1 MB/s eta 0:00:04\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.3 MB/s eta 0:00:04\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.3 MB/s eta 0:00:03\n",
+            "     -------------------------------------- - 2.4/2.5 GB 24.3 MB/s eta 0:00:03\n",
+            "     ---------------------------------------  2.4/2.5 GB 24.4 MB/s eta 0:00:03\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.4 MB/s eta 0:00:03\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.5 MB/s eta 0:00:03\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.5 MB/s eta 0:00:02\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.6 MB/s eta 0:00:02\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.6 MB/s eta 0:00:02\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.6 MB/s eta 0:00:02\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.6 MB/s eta 0:00:02\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.4 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.6 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.6 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.8 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.8 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------  2.5/2.5 GB 24.9 MB/s eta 0:00:01\n",
+            "     ---------------------------------------- 2.5/2.5 GB 19.7 MB/s eta 0:00:00\n",
+            "Collecting torchvision\n",
+            "  Downloading https://download.pytorch.org/whl/cu124/torchvision-0.20.0%2Bcu124-cp310-cp310-win_amd64.whl (6.1 MB)\n",
+            "     ---------------------------------------- 0.0/6.1 MB ? eta -:--:--\n",
+            "     ---------------------------- ----------- 4.5/6.1 MB 22.3 MB/s eta 0:00:01\n",
+            "     ---------------------------------------- 6.1/6.1 MB 20.9 MB/s eta 0:00:00\n",
+            "Collecting torchaudio\n",
+            "  Downloading https://download.pytorch.org/whl/cu124/torchaudio-2.5.0%2Bcu124-cp310-cp310-win_amd64.whl (4.1 MB)\n",
+            "     ---------------------------------------- 0.0/4.1 MB ? eta -:--:--\n",
+            "     ---------------------------------------- 4.1/4.1 MB 22.7 MB/s eta 0:00:00\n",
+            "Collecting filelock (from torch)\n",
+            "  Downloading https://download.pytorch.org/whl/filelock-3.13.1-py3-none-any.whl (11 kB)\n",
+            "Requirement already satisfied: typing-extensions>=4.8.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch) (4.12.2)\n",
+            "Collecting networkx (from torch)\n",
+            "  Downloading https://download.pytorch.org/whl/networkx-3.2.1-py3-none-any.whl (1.6 MB)\n",
+            "     ---------------------------------------- 0.0/1.6 MB ? eta -:--:--\n",
+            "     ---------------------------------------- 1.6/1.6 MB 22.3 MB/s eta 0:00:00\n",
+            "Collecting jinja2 (from torch)\n",
+            "  Downloading https://download.pytorch.org/whl/Jinja2-3.1.3-py3-none-any.whl (133 kB)\n",
+            "Collecting fsspec (from torch)\n",
+            "  Downloading https://download.pytorch.org/whl/fsspec-2024.2.0-py3-none-any.whl (170 kB)\n",
+            "Collecting sympy==1.13.1 (from torch)\n",
+            "  Downloading https://download.pytorch.org/whl/sympy-1.13.1-py3-none-any.whl (6.2 MB)\n",
+            "     ---------------------------------------- 0.0/6.2 MB ? eta -:--:--\n",
+            "     ------------------------------ --------- 4.7/6.2 MB 22.0 MB/s eta 0:00:01\n",
+            "     ---------------------------------------- 6.2/6.2 MB 19.0 MB/s eta 0:00:00\n",
+            "Collecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch)\n",
+            "  Downloading https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB)\n",
+            "     ---------------------------------------- 0.0/536.2 kB ? eta -:--:--\n",
+            "     ------------------------------------- 536.2/536.2 kB 18.3 MB/s eta 0:00:00\n",
+            "Requirement already satisfied: numpy in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torchvision) (2.1.2)\n",
+            "Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)\n",
+            "  Downloading https://download.pytorch.org/whl/pillow-10.2.0-cp310-cp310-win_amd64.whl (2.6 MB)\n",
+            "     ---------------------------------------- 0.0/2.6 MB ? eta -:--:--\n",
+            "     ---------------------------------------- 2.6/2.6 MB 18.9 MB/s eta 0:00:00\n",
+            "Collecting MarkupSafe>=2.0 (from jinja2->torch)\n",
+            "  Downloading https://download.pytorch.org/whl/MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl (17 kB)\n",
+            "Installing collected packages: mpmath, sympy, pillow, networkx, MarkupSafe, fsspec, filelock, jinja2, torch, torchvision, torchaudio\n",
+            "Successfully installed MarkupSafe-2.1.5 filelock-3.13.1 fsspec-2024.2.0 jinja2-3.1.3 mpmath-1.3.0 networkx-3.2.1 pillow-10.2.0 sympy-1.13.1 torch-2.5.0+cu124 torchaudio-2.5.0+cu124 torchvision-0.20.0+cu124\n"
           ]
         }
       ],
       "source": [
-        "!python -m pip install opencv-python"
+        "!python -m pip install opencv-python\n",
+        "!python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124"
       ]
     },
     {
@@ -65,7 +652,16 @@
       "metadata": {
         "id": "BAyQTQKZ9IIN"
       },
-      "outputs": [],
+      "outputs": [
+        {
+          "ename": "",
+          "evalue": "",
+          "output_type": "error",
+          "traceback": [
+            "\u001b[1;31mНе удалось запустить ядро, так как среда Python \".venv (Python 3.10.11)\" больше не доступна. Рассмотрите возможность выбрать другое ядро или обновить список сред Python."
+          ]
+        }
+      ],
       "source": [
         "import torch\n",
         "from sam2.sam2_image_predictor import SAM2ImagePredictor\n",
@@ -167,7 +763,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 1,
+      "execution_count": 6,
       "metadata": {},
       "outputs": [],
       "source": [
@@ -601,62 +1197,96 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 85,
+      "execution_count": 3,
       "metadata": {},
       "outputs": [
         {
-          "name": "stderr",
+          "name": "stdout",
           "output_type": "stream",
           "text": [
-            "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
-            "To disable this warning, you can either:\n",
-            "\t- Avoid using `tokenizers` before the fork if possible\n",
-            "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
-          ]
-        },
-        {
-          "name": "stdout",
-          "output_type": "stream",
-          "text": [
-            "Requirement already satisfied: ultralytics in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (8.3.19)\n",
-            "Requirement already satisfied: numpy>=1.23.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (2.1.1)\n",
-            "Requirement already satisfied: matplotlib>=3.3.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (3.9.2)\n",
-            "Requirement already satisfied: opencv-python>=4.6.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (4.10.0.84)\n",
-            "Requirement already satisfied: pillow>=7.1.2 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (10.4.0)\n",
-            "Requirement already satisfied: pyyaml>=5.3.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (6.0.2)\n",
-            "Requirement already satisfied: requests>=2.23.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (2.32.3)\n",
-            "Requirement already satisfied: scipy>=1.4.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (1.14.1)\n",
-            "Requirement already satisfied: torch>=1.8.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (2.5.0)\n",
-            "Requirement already satisfied: torchvision>=0.9.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (0.20.0)\n",
-            "Requirement already satisfied: tqdm>=4.64.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (4.66.5)\n",
-            "Requirement already satisfied: psutil in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (6.0.0)\n",
-            "Requirement already satisfied: py-cpuinfo in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (9.0.0)\n",
-            "Requirement already satisfied: pandas>=1.1.4 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (2.2.3)\n",
-            "Requirement already satisfied: seaborn>=0.11.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (0.13.2)\n",
-            "Requirement already satisfied: ultralytics-thop>=2.0.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from ultralytics) (2.0.9)\n",
-            "Requirement already satisfied: contourpy>=1.0.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (1.3.0)\n",
-            "Requirement already satisfied: cycler>=0.10 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n",
-            "Requirement already satisfied: fonttools>=4.22.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (4.54.1)\n",
-            "Requirement already satisfied: kiwisolver>=1.3.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (1.4.7)\n",
-            "Requirement already satisfied: packaging>=20.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (24.1)\n",
-            "Requirement already satisfied: pyparsing>=2.3.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (3.1.4)\n",
-            "Requirement already satisfied: python-dateutil>=2.7 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0.post0)\n",
-            "Requirement already satisfied: pytz>=2020.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from pandas>=1.1.4->ultralytics) (2024.2)\n",
-            "Requirement already satisfied: tzdata>=2022.7 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from pandas>=1.1.4->ultralytics) (2024.2)\n",
-            "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics) (3.3.2)\n",
-            "Requirement already satisfied: idna<4,>=2.5 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics) (3.10)\n",
-            "Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics) (2.2.3)\n",
-            "Requirement already satisfied: certifi>=2017.4.17 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics) (2024.8.30)\n",
-            "Requirement already satisfied: filelock in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (3.16.1)\n",
-            "Requirement already satisfied: typing-extensions>=4.8.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (4.12.2)\n",
-            "Requirement already satisfied: networkx in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (3.4.2)\n",
-            "Requirement already satisfied: jinja2 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (3.1.4)\n",
-            "Requirement already satisfied: fsspec in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (2024.10.0)\n",
-            "Requirement already satisfied: setuptools in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (75.1.0)\n",
-            "Requirement already satisfied: sympy==1.13.1 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics) (1.13.1)\n",
-            "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from sympy==1.13.1->torch>=1.8.0->ultralytics) (1.3.0)\n",
-            "Requirement already satisfied: six>=1.5 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.16.0)\n",
-            "Requirement already satisfied: MarkupSafe>=2.0 in /Users/ischknv/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages (from jinja2->torch>=1.8.0->ultralytics) (2.1.5)\n"
+            "Collecting ultralytics\n",
+            "  Using cached ultralytics-8.3.20-py3-none-any.whl.metadata (34 kB)\n",
+            "Requirement already satisfied: numpy>=1.23.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (2.1.2)\n",
+            "Collecting matplotlib>=3.3.0 (from ultralytics)\n",
+            "  Using cached matplotlib-3.9.2-cp310-cp310-win_amd64.whl.metadata (11 kB)\n",
+            "Requirement already satisfied: opencv-python>=4.6.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (4.10.0.84)\n",
+            "Requirement already satisfied: pillow>=7.1.2 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (10.2.0)\n",
+            "Collecting pyyaml>=5.3.1 (from ultralytics)\n",
+            "  Using cached PyYAML-6.0.2-cp310-cp310-win_amd64.whl.metadata (2.1 kB)\n",
+            "Collecting requests>=2.23.0 (from ultralytics)\n",
+            "  Using cached requests-2.32.3-py3-none-any.whl.metadata (4.6 kB)\n",
+            "Collecting scipy>=1.4.1 (from ultralytics)\n",
+            "  Using cached scipy-1.14.1-cp310-cp310-win_amd64.whl.metadata (60 kB)\n",
+            "Requirement already satisfied: torch>=1.8.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (2.5.0+cu124)\n",
+            "Requirement already satisfied: torchvision>=0.9.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (0.20.0+cu124)\n",
+            "Collecting tqdm>=4.64.0 (from ultralytics)\n",
+            "  Using cached tqdm-4.66.5-py3-none-any.whl.metadata (57 kB)\n",
+            "Requirement already satisfied: psutil in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from ultralytics) (6.1.0)\n",
+            "Collecting py-cpuinfo (from ultralytics)\n",
+            "  Using cached py_cpuinfo-9.0.0-py3-none-any.whl.metadata (794 bytes)\n",
+            "Collecting pandas>=1.1.4 (from ultralytics)\n",
+            "  Using cached pandas-2.2.3-cp310-cp310-win_amd64.whl.metadata (19 kB)\n",
+            "Collecting seaborn>=0.11.0 (from ultralytics)\n",
+            "  Using cached seaborn-0.13.2-py3-none-any.whl.metadata (5.4 kB)\n",
+            "Collecting ultralytics-thop>=2.0.0 (from ultralytics)\n",
+            "  Using cached ultralytics_thop-2.0.9-py3-none-any.whl.metadata (9.3 kB)\n",
+            "Collecting contourpy>=1.0.1 (from matplotlib>=3.3.0->ultralytics)\n",
+            "  Using cached contourpy-1.3.0-cp310-cp310-win_amd64.whl.metadata (5.4 kB)\n",
+            "Collecting cycler>=0.10 (from matplotlib>=3.3.0->ultralytics)\n",
+            "  Using cached cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)\n",
+            "Collecting fonttools>=4.22.0 (from matplotlib>=3.3.0->ultralytics)\n",
+            "  Using cached fonttools-4.54.1-cp310-cp310-win_amd64.whl.metadata (167 kB)\n",
+            "Collecting kiwisolver>=1.3.1 (from matplotlib>=3.3.0->ultralytics)\n",
+            "  Using cached kiwisolver-1.4.7-cp310-cp310-win_amd64.whl.metadata (6.4 kB)\n",
+            "Requirement already satisfied: packaging>=20.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (24.1)\n",
+            "Collecting pyparsing>=2.3.1 (from matplotlib>=3.3.0->ultralytics)\n",
+            "  Using cached pyparsing-3.2.0-py3-none-any.whl.metadata (5.0 kB)\n",
+            "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0.post0)\n",
+            "Collecting pytz>=2020.1 (from pandas>=1.1.4->ultralytics)\n",
+            "  Using cached pytz-2024.2-py2.py3-none-any.whl.metadata (22 kB)\n",
+            "Collecting tzdata>=2022.7 (from pandas>=1.1.4->ultralytics)\n",
+            "  Using cached tzdata-2024.2-py2.py3-none-any.whl.metadata (1.4 kB)\n",
+            "Collecting charset-normalizer<4,>=2 (from requests>=2.23.0->ultralytics)\n",
+            "  Using cached charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl.metadata (34 kB)\n",
+            "Collecting idna<4,>=2.5 (from requests>=2.23.0->ultralytics)\n",
+            "  Using cached idna-3.10-py3-none-any.whl.metadata (10 kB)\n",
+            "Collecting urllib3<3,>=1.21.1 (from requests>=2.23.0->ultralytics)\n",
+            "  Using cached urllib3-2.2.3-py3-none-any.whl.metadata (6.5 kB)\n",
+            "Collecting certifi>=2017.4.17 (from requests>=2.23.0->ultralytics)\n",
+            "  Using cached certifi-2024.8.30-py3-none-any.whl.metadata (2.2 kB)\n",
+            "Requirement already satisfied: filelock in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.13.1)\n",
+            "Requirement already satisfied: typing-extensions>=4.8.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (4.12.2)\n",
+            "Requirement already satisfied: networkx in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.2.1)\n",
+            "Requirement already satisfied: jinja2 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.1.3)\n",
+            "Requirement already satisfied: fsspec in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (2024.2.0)\n",
+            "Requirement already satisfied: sympy==1.13.1 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from torch>=1.8.0->ultralytics) (1.13.1)\n",
+            "Requirement already satisfied: mpmath<1.4,>=1.1.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from sympy==1.13.1->torch>=1.8.0->ultralytics) (1.3.0)\n",
+            "Requirement already satisfied: colorama in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from tqdm>=4.64.0->ultralytics) (0.4.6)\n",
+            "Requirement already satisfied: six>=1.5 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.16.0)\n",
+            "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\maxch\\desktop\\aimm\\.venv\\lib\\site-packages (from jinja2->torch>=1.8.0->ultralytics) (2.1.5)\n",
+            "Using cached ultralytics-8.3.20-py3-none-any.whl (876 kB)\n",
+            "Using cached matplotlib-3.9.2-cp310-cp310-win_amd64.whl (7.8 MB)\n",
+            "Using cached pandas-2.2.3-cp310-cp310-win_amd64.whl (11.6 MB)\n",
+            "Using cached PyYAML-6.0.2-cp310-cp310-win_amd64.whl (161 kB)\n",
+            "Using cached requests-2.32.3-py3-none-any.whl (64 kB)\n",
+            "Using cached scipy-1.14.1-cp310-cp310-win_amd64.whl (44.8 MB)\n",
+            "Using cached seaborn-0.13.2-py3-none-any.whl (294 kB)\n",
+            "Using cached tqdm-4.66.5-py3-none-any.whl (78 kB)\n",
+            "Using cached ultralytics_thop-2.0.9-py3-none-any.whl (26 kB)\n",
+            "Using cached py_cpuinfo-9.0.0-py3-none-any.whl (22 kB)\n",
+            "Using cached certifi-2024.8.30-py3-none-any.whl (167 kB)\n",
+            "Using cached charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl (102 kB)\n",
+            "Using cached contourpy-1.3.0-cp310-cp310-win_amd64.whl (216 kB)\n",
+            "Using cached cycler-0.12.1-py3-none-any.whl (8.3 kB)\n",
+            "Using cached fonttools-4.54.1-cp310-cp310-win_amd64.whl (2.2 MB)\n",
+            "Using cached idna-3.10-py3-none-any.whl (70 kB)\n",
+            "Using cached kiwisolver-1.4.7-cp310-cp310-win_amd64.whl (55 kB)\n",
+            "Using cached pyparsing-3.2.0-py3-none-any.whl (106 kB)\n",
+            "Using cached pytz-2024.2-py2.py3-none-any.whl (508 kB)\n",
+            "Using cached tzdata-2024.2-py2.py3-none-any.whl (346 kB)\n",
+            "Using cached urllib3-2.2.3-py3-none-any.whl (126 kB)\n",
+            "Installing collected packages: pytz, py-cpuinfo, urllib3, tzdata, tqdm, scipy, pyyaml, pyparsing, kiwisolver, idna, fonttools, cycler, contourpy, charset-normalizer, certifi, requests, pandas, matplotlib, ultralytics-thop, seaborn, ultralytics\n",
+            "Successfully installed certifi-2024.8.30 charset-normalizer-3.4.0 contourpy-1.3.0 cycler-0.12.1 fonttools-4.54.1 idna-3.10 kiwisolver-1.4.7 matplotlib-3.9.2 pandas-2.2.3 py-cpuinfo-9.0.0 pyparsing-3.2.0 pytz-2024.2 pyyaml-6.0.2 requests-2.32.3 scipy-1.14.1 seaborn-0.13.2 tqdm-4.66.5 tzdata-2024.2 ultralytics-8.3.20 ultralytics-thop-2.0.9 urllib3-2.2.3\n"
           ]
         }
       ],
@@ -666,7 +1296,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 96,
+      "execution_count": 4,
       "metadata": {},
       "outputs": [],
       "source": [
@@ -676,32 +1306,15 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 99,
+      "execution_count": 7,
       "metadata": {},
       "outputs": [
         {
           "name": "stdout",
           "output_type": "stream",
           "text": [
-            "New https://pypi.org/project/ultralytics/8.3.20 available 😃 Update with 'pip install -U ultralytics'\n",
-            "Ultralytics 8.3.19 рџљЂ Python-3.12.7 torch-2.5.0 MPS (Apple M3)\n",
-            "\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8s.pt, data=/Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/data.yaml, epochs=50, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=mps, workers=8, project=None, name=train, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=/Users/ischknv/Documents/GitHub/miem/aimm/runs/detect/train\n"
-          ]
-        },
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
-            "To disable this warning, you can either:\n",
-            "\t- Avoid using `tokenizers` before the fork if possible\n",
-            "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
-          ]
-        },
-        {
-          "name": "stdout",
-          "output_type": "stream",
-          "text": [
+            "Ultralytics 8.3.20  Python-3.10.11 torch-2.5.0+cu124 CUDA:0 (NVIDIA GeForce RTX 2060, 6144MiB)\n",
+            "\u001b[34m\u001b[1mengine\\trainer: \u001b[0mtask=detect, mode=train, model=yolov8s.pt, data=c:\\Users\\maxch\\Desktop\\aimm\\lab-2/dataset/data.yaml, epochs=50, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=cuda, workers=8, project=None, name=train, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=c:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\n",
             "Overriding model.yaml nc=80 with nc=2\n",
             "\n",
             "                   from  n    params  module                                       arguments                     \n",
@@ -731,481 +1344,43 @@
             "Model summary: 225 layers, 11,136,374 parameters, 11,136,358 gradients, 28.6 GFLOPs\n",
             "\n",
             "Transferred 349/355 items from pretrained weights\n",
-            "Freezing layer 'model.22.dfl.conv.weight'\n"
-          ]
-        },
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train... 565 images, 0 backgrounds, 426 corrupt: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 565/565 [00:00<00:00, 5707.18it/s]"
-          ]
-        },
-        {
-          "name": "stdout",
-          "output_type": "stream",
-          "text": [
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0140.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [350.84933 354.79907 289.42383 372.0351 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0141.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [323.44394 296.44553 503.64194 294.64856]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0142.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [335.13156 303.34567 388.2635  419.89862]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0143.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [293.34613 335.63205 207.43427 275.1614 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0144.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.80786 329.3498  508.07294 599.8754 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0145.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.05124 329.32086 551.5852  365.07025]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0146.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [444.5042  279.4409  195.31519 205.59256]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0147.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [421.55246 139.18092 223.48941 276.7925 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0148.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.81503 318.5168  392.1365  381.3409 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0149.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [203.34253 334.35803 249.88275 298.1533 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0150.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [246.48584 375.76923 159.29271 218.21562]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0151.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.6702  334.86755 507.5556  328.82388]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0152.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [390.29602 259.18323 385.5002  253.8147 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0153.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.76727 318.8007  637.187   412.79077]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0154.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [382.9257  311.38867 202.34465 221.34167]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0155.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [302.84848 286.64304 340.72754 519.7564 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0156.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [314.9271  333.9851  607.43726 480.29788]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0157.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [202.74046 305.86166 195.15564 359.77832]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0158.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [317.07532 319.97046 609.4284  458.7991 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0159.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [441.37976 286.81055 245.3206  293.5136 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0160.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [421.59885 317.0772  376.73047 313.95282]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0161.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.31506 316.74985 318.87363 394.4186 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0162.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [366.31824 320.53717 185.05612 285.91376]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0163.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [284.54865 389.95712 209.41252 215.77216]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0164.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.30008 320.40707 326.19907 555.7524 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0165.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [431.60825 370.27417 369.92072 255.24026]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0166.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [362.65814 313.7342  254.83232 237.50533]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0167.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [104.99803 283.0066  191.28204 143.96039]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0168.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.55225 340.29742 398.27856 407.42798]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0169.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [308.0685  365.06046 347.9958  237.14911]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0170.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [217.88223 425.8313  153.18188 188.89273]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0171.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [342.85852 312.1658  387.074   411.76648]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0172.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.6891  323.59085 606.8808  401.56522]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0173.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [326.12048 308.63354 521.5536  254.11713]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0174.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [297.60007 267.27206 411.7248  437.2238 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0175.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [294.69724 313.5403  308.02713 486.9817 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0176.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [329.913   399.9608  449.48846 256.48303]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0177.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [367.4862  300.44556 296.81433 426.93845]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0178.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [239.88751 401.77383 453.36395 332.61316]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0179.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [331.1511  335.96347 369.9211  555.4656 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0180.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [497.23972 415.82532 174.21738 288.68768]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0181.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.73203 297.62656 379.94055 591.13416]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0182.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [468.23392 278.0328  289.74512 550.2421 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0183.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [340.8226 313.1465 390.0595 412.7348]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0184.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.28455 312.09067 435.70682 606.3701 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0185.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [105.576706 296.88928  184.58733  260.64996 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0186.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [455.6714  303.99908 309.20413 276.85455]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0187.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.35666 317.35593 627.63416 632.04346]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0188.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.34448 315.60013 428.95297 601.21686]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0189.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [302.82318 364.6391  185.44464 189.39502]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0190.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [325.97223 304.53137 491.03027 332.26068]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0191.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [253.97711 293.92645  69.42512 156.08081]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0192.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [342.3535  319.95453 425.95245 536.46906]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0193.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [308.65573 325.56494 338.58902 348.73663]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0194.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [336.65564 328.89145 332.17804 222.08992]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0195.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [317.44232 362.67065 559.12    342.88223]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0196.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.96268 269.93774 350.3775  410.9676 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0197.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [477.36996 387.59668 192.26784 294.73798]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0198.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [311.89    344.69366 177.66064 171.44678]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0199.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [159.14612 367.30914 209.30038 148.72647]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0200.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [203.99664 250.58667 145.5332  142.96843]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0201.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.07437 312.36505 542.7735  380.95477]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0202.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [294.66974 313.5692  307.8706  487.13446]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0203.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [326.12927 322.5656  545.8755  389.4262 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0204.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [212.57205 286.10974 424.65387 550.9962 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0205.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [295.85266 325.16595 295.39447 357.23343]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0206.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [291.58215 317.84085 323.33188 223.01501]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0207.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [274.29956 369.4834  230.22137 235.43312]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0208.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [467.98718 278.6147  288.2067  548.8168 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0209.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [327.928   319.87454 501.07983 551.4227 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0210.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.7563  319.00134 285.12897 465.76355]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0211.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [487.4214  367.5083  143.04037 418.8165 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0212.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.13403 332.97504 286.57483 381.75168]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0213.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [354.4021  315.90723 396.43286 498.48376]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0214.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [323.5724  313.68875 399.61224 319.95642]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0215.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [345.3856  312.72348 426.98254 350.2386 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0216.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [397.09088 325.5421  226.22389 273.01617]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0217.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [338.84668 353.97382 201.19962 328.3826 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0218.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [325.3198  393.5056  371.5161  243.90196]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0219.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [473.83728 453.86127 112.90116 134.15514]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0220.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [288.8035  319.19995 269.11334 360.665  ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0221.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [496.51447 351.77777 140.78235 235.45775]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0222.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.85947 323.47595 245.05629 314.00204]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0223.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.29517 319.10117 609.8519  637.8457 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0224.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [279.34488 309.94553 201.71663 180.51744]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0225.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.50085 392.9498  242.87817 341.67783]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0226.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [272.72437  313.59918   75.967514  83.65532 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0227.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.38373 375.14203 195.67725 218.37236]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0228.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [275.83115 292.94705 193.24213 227.53036]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0229.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [239.62698 402.63577 452.96616 334.495  ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0230.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [294.2609   80.34127 210.19072 160.7953 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0231.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [433.60684 427.99927 325.17316 313.40616]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0232.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [299.92786 340.33078 384.43787 455.82608]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0233.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [280.28644 263.72034 288.78543 269.91904]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0234.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.82333 255.8359  209.2524  360.83115]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0235.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [509.3971  416.196   218.50305 163.1824 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0236.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.50684 348.7024  353.13885 286.29666]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0237.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [300.81317 313.45096 459.65173 361.91864]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0238.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.81506 318.59515 533.8433  339.20822]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0239.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [343.33038 356.26416 328.6411  199.80222]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0240.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [403.66797 356.00946 357.89932 565.19525]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0241.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [304.2177  333.24814 165.49704 218.25754]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0242.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [342.29846 319.9795  426.0636  536.6279 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0243.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.1401  316.39114 571.48737 506.1757 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0244.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [304.3412  333.48355 164.92018 218.70354]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0245.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [340.25745 328.41528 300.2774  408.67203]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0246.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [409.0681  324.04538 422.24506 372.57434]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0247.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [500.67868 322.05722 140.93677 233.01596]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0248.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [308.84    317.93668 581.2463  583.7235 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0249.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.25485 362.13208 479.36496 398.23672]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0250.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [214.81168 484.08188  79.59041 173.13148]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0251.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.1818  320.52487 426.32672 486.67325]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0252.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [327.39578 330.652   509.899   379.9593 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0253.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [286.01538 322.20416 314.35696 366.19934]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0254.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [397.22766 291.59067 310.8808  243.24236]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0255.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.11298 376.76407 245.20935 337.96814]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0256.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [254.18427 141.72453 297.24512 266.85666]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0257.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.88165 269.07004 126.99699 161.54955]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0258.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [173.21068 342.50848 199.63194 224.41776]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0259.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.37753 320.33813 576.6047  407.95514]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0260.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [284.5217  352.29443 243.72878 273.14853]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0261.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [460.95172 330.09097 356.60663 158.33327]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0262.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.3913  317.4317  349.12506 440.5539 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0263.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [326.14868 140.07907 125.16943 179.33052]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0264.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [166.84244 281.89786 190.945   275.31406]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0265.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [304.7352  317.34003 429.94128 541.31335]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0266.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [476.06503 355.74805 318.11163 287.39822]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0267.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [ 65.22345 251.4787  123.36419 102.93888]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0268.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [398.76398 460.34244 233.19202 265.11578]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0269.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [382.39355 310.46136 202.97891 219.05707]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0270.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.30786 270.285   349.46347 411.6727 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0271.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [306.65195 364.90665 263.38876 353.76215]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0272.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [457.0232   159.03      77.52279  122.061775]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0273.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [291.12225 355.56305 459.9131  356.0942 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0274.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [484.93555 342.90268 243.13535 280.49158]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0275.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [293.2037   323.29953   19.985043  24.973629]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0276.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [330.06046 324.55066 499.59094 307.61115]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0277.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [331.53946 311.0027  463.76862 611.6092 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0278.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [517.2517  414.38702  90.77785 153.64279]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0279.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [128.66556 353.00806 153.62608 237.10143]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0280.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.67053 298.19965 313.38437 353.3339 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0281.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [280.98898 309.1458  488.0727  455.59644]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0282.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [346.8988  355.1749  296.22342 373.06555]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0283.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [281.95444 354.71573 351.7885  563.0415 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0284.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.0964  313.1078  606.2688  363.55396]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0285.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.15894 251.57254 374.6814  433.257  ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0286.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [244.97406 286.3697  395.1599  321.22296]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0287.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [348.4862  298.00662 256.35495 545.12   ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0288.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [338.9582  328.32547 434.3191  323.23047]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0289.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.8231  315.93234 591.9439  392.60773]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0290.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.68945 306.11472 631.6857  559.67114]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0291.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.4478 319.5204 542.9983 597.468 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0292.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [376.1099  423.27533 114.53274 143.18513]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0293.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [338.208   320.1244  296.65042 333.89218]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0294.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [330.61682 360.79373 472.70816 277.18405]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0295.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [326.12573 296.1694  337.87347 403.78424]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0296.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.31793 418.98975 374.1086  244.0528 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0297.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.4081  320.26398 545.2462  424.39606]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0298.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [317.64285 319.28452 529.4823  545.2101 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0299.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [298.85474 294.09503 546.60516 375.42908]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0300.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [459.66443  366.97943   33.734314  40.101288]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0301.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [299.88925 275.86603 290.94144 467.8912 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0302.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [273.53326 363.19287 180.567   264.30606]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0303.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.02612 319.98022 453.0988  535.447  ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0304.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [481.69247 340.32214 242.55325 281.3479 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0305.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.21463 298.72696 361.1334  423.16113]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0306.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [514.77136 268.2734  188.12929 359.30173]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0307.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [187.28151 414.53857  82.14576 172.6153 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0308.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [295.53363 310.11887 434.1409  438.2138 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0309.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [300.69904 373.74893 185.467   217.2712 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0310.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [242.7143  334.25775 374.04285 451.42657]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0311.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [416.40973 309.4997  305.13538 151.37312]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0312.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [246.19615 369.72284 206.54056 233.38858]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0313.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [305.64542 326.39084 475.27664 394.34125]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0314.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [353.35492 310.53693 386.04846 327.30072]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0315.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [324.22235 351.66965 455.0199  360.92084]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0316.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [300.9236  390.04825 187.36403 218.12656]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0317.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [311.66135 344.06308 177.90631 171.64752]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0318.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.5539  317.6972  467.02222 386.2309 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0319.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.9211  344.35544 556.4284  419.18793]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0320.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [269.14288 263.69174 498.47058 399.4084 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0321.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [252.20789 365.8127  122.17511 167.56987]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0322.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.07822 376.53812 246.09735 338.16837]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0323.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [253.58298 323.2452  253.55518 303.6115 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0324.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.57867 339.07852 470.93225 337.02133]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0325.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [299.00037 316.74838 539.26874 373.52127]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0326.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [246.88812 322.37476 339.06766 407.81616]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0327.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.19846 307.86728 623.7777  607.82324]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0328.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.6546  333.19202 396.2454  430.21213]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0329.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [314.32437 276.803   101.95604  83.09897]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0330.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [346.1552  192.60048 164.96553 178.16185]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0331.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [433.44904 427.96576 325.16003 313.4735 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0332.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [481.14618 340.61652 241.98256 281.4358 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0333.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [294.6859  302.53613 316.90607 344.15543]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0334.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.88412 345.1687  556.5362  421.17062]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0335.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.365   317.7728  349.274   441.98196]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0336.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.19537 319.6364  588.9263  372.6328 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0337.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [365.90698 295.0829  108.83335 131.03706]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0338.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [371.25928 369.2279  301.4641  429.35974]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0339.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.0176  338.75858 359.00986 257.8135 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0340.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [405.98935 289.241   461.4587  558.30054]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0341.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [258.57156 351.94342 345.98022 548.7479 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0342.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [399.379   381.92725 338.55606 291.17044]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0343.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.2453  302.36533 502.86694 466.90506]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0344.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [264.28592 326.5545  428.56326 554.3166 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0345.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [327.02405 329.67657 443.9572  442.41208]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0346.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [311.48892 324.76587 522.34753 422.97733]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0347.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [431.68597 371.32227 370.64267 253.43082]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0348.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [298.6111  361.87952 223.15503 237.27846]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0349.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [265.71088 265.24847 492.69455 401.81107]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0350.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [301.24005 329.89978 146.02725 193.42073]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0351.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [451.14896 281.2805  308.67776 217.70784]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0352.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.37314 313.1081  518.60724 483.94373]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0353.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [287.31052 292.8507  242.08517 291.86676]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0354.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [195.36868 356.10593 191.96855 232.50555]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0355.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.01703 318.69098 585.0179  458.71066]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0356.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.95703 321.38245 457.2832  495.19315]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0357.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [399.26385 339.70624 313.66907 226.72623]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0358.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.0356  387.48163 382.17413 298.51495]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0359.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [306.3911  364.84158 242.5923  352.48615]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0360.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [448.12317 296.24774 247.59285 192.01308]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0361.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.27142 287.88132 248.64865 293.07977]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0362.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.3706  432.63565 455.9449  367.61703]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0363.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [448.66943 314.66962 193.72453 245.08218]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0364.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.64166 299.62405 490.83344 301.16064]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0365.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [475.67145 466.293   257.01718 276.8786 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0366.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [388.73865 332.5194  193.6399  168.23502]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0367.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.16943 320.17053 485.23267 520.39526]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0368.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [308.77704 318.8352  458.3661  386.65298]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0369.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [311.99777 319.20697 440.1518  411.20816]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0370.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [313.74625 496.23163 145.43234  89.74422]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0371.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [248.22874 312.01694 337.78406 327.62073]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0372.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.17712 322.3137  458.9191  314.81433]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0373.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [331.70825 315.15985 485.19363 356.70474]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0374.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [350.3553  334.14233 325.8803  343.81567]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0375.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [240.42055 403.01266 453.0624  335.54797]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0376.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [441.00012 391.65588 268.05057 197.0998 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0377.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [441.44092 355.4408  394.05856 318.39972]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0378.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [338.51392 323.0473  286.95883 186.10803]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0379.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.84912 394.74493 243.15102 272.90067]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0380.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.41855 331.39874 624.3194  447.55383]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0381.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [325.18604 319.3331  478.8341  580.0947 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0382.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [323.93387  90.22018 124.90876 140.26065]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0383.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [163.55417 376.92642 301.88083 362.53726]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0384.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.0304  297.23956 600.7394  436.52695]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0385.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [482.46246 297.10107 117.02875 426.00525]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0386.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [214.89832 472.53613 146.49527 166.85295]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0387.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [398.711   326.471   224.06836 273.12894]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0388.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [313.95123 371.77264 290.9222  391.5349 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0389.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.15887 318.45334 608.8381  421.9708 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0390.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [325.74582 308.80652 188.69598 373.30856]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0391.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [302.00836 323.71027 244.45471 313.37405]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0392.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [286.42215 236.33539 228.77264 206.61246]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0393.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [310.9123  364.80084 240.86142 352.92334]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0394.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [433.45944 428.0806  324.93518 313.72586]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0395.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [323.86105 427.84988 177.9042  228.87164]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0396.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [534.53253 286.85834 208.84033 357.20535]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0397.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [134.68481 271.94324 244.43842 263.96823]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0398.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.63657 315.28143 611.1172  452.02258]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0399.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.17822 319.27576 616.86194 346.80664]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0400.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [341.5998  362.5171  355.4317  399.93884]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0401.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [442.78052 447.25528 237.26465 243.26059]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0402.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [313.91837 331.96143  74.69832 108.25034]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0403.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.5221  394.7912  244.00298 272.56567]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0404.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [443.5747  326.8194  248.18321 276.90768]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0405.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.61603 447.51385 194.01111 189.62439]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0406.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [348.96835 241.72916 321.23444 405.5874 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0407.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [516.9095  411.34058 182.82585 291.11533]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0408.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [414.76245 460.93774 232.91971 264.77512]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0409.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [214.50665 345.73178 210.14223 154.37311]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0410.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [135.1049  274.44403 245.48578 269.52548]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0411.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [253.93451 369.2668  141.13708 192.79187]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0412.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [290.15417 337.54807  76.95313 106.97269]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0413.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.7921  372.97    264.0894  286.44055]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0414.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [468.45105 305.989   169.05667 422.4052 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0415.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [339.40277 318.1815  348.6433  442.03333]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0416.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [343.64575 309.5479  357.89233 421.23956]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0417.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [304.94147 308.0395  434.18546 284.72284]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0418.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [456.20905 241.25116 302.93158 364.21497]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0419.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [247.79219 320.21085 335.16995 398.79398]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0420.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [ 66.02456 251.67154 125.39938 102.72891]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0421.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [281.92264 320.62036 283.69922 295.7155 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0422.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [424.8117  400.774   169.93181 161.3229 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0423.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [332.7203  423.17627 224.29254 275.37982]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0424.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [275.6626  293.11743 192.54956 227.35446]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0425.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.71    297.8479  383.0533  590.76166]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0426.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [361.92816 290.08823 199.8468  223.84326]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0427.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [274.92932 267.2631  372.60846 437.2827 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0428.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [303.82806 286.5929  303.25748 380.63705]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0429.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [432.36267 377.76605 376.16718 449.87854]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0430.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [386.6333  303.89194 375.7563  305.55606]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0431.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.94336 329.52267 395.4683  439.00732]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0432.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [307.88815 375.97562 404.1717  262.26718]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0433.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [313.07617 321.06958 402.75903 479.39795]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0434.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.65253 372.34344 340.6452  321.98834]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0435.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [300.71188 373.75018 185.33644 217.31726]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0436.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [204.36136 288.56012 377.33258 355.71655]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0437.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [204.19127 324.76685 393.3659  469.02716]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0438.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [511.00555 466.03345 223.56789 272.8889 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0439.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [395.45285 298.16827 420.17957 289.76385]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0440.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [195.65225 356.40866 192.52776 234.39543]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0441.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.37762 320.38196 449.06552 542.26166]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0442.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.087   338.71472 620.60657 522.21014]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0443.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [103.92068 296.06348 185.13939 260.01392]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0444.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.62045 369.27548 370.69858 309.31546]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0445.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [347.29877 383.91992 334.87085 295.20197]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0446.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.83047 333.8199  472.6782  254.57181]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0447.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [307.7985  369.27496 280.61703 341.16043]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0448.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [441.16458 348.31635 220.79202 274.8817 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0449.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.33545 302.03558 356.76666 494.30322]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0450.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [342.74072 312.273   386.38837 410.9918 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0451.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [456.44324 292.03687 357.04352 268.04648]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0452.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [334.48517 303.0476  424.23053 392.47778]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0453.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [345.71558 350.79483 424.66446 364.38815]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0454.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [135.16696 278.35654 245.9065  278.87183]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0455.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [188.70346 348.5065   96.15699 139.44876]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0456.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.0138  320.25043 486.44098 543.3393 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0457.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.33444 324.36142 479.59418 446.6888 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0458.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [286.75656 364.9743  261.89197 339.81555]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0459.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.704   376.81595 482.09567 442.85077]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0460.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [547.8631  351.92844 157.23276 297.59464]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0461.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [327.14078 302.25247 241.42412 284.82974]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0462.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [348.60562 292.8539  256.1597  533.27203]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0463.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [308.02887 320.70813 550.3013  373.239  ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0464.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [347.01038 332.4019  468.07123 539.024  ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0465.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [303.92526 423.17062 335.97235 291.69083]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0466.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [298.3034  387.76178 234.21103 249.69937]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0467.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [292.74405 346.57132 465.9653  471.74384]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0468.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [496.49677 290.99207 274.99414 303.28986]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0469.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [299.1937  317.79218 538.95514 374.42737]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0470.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [512.5116  327.0149  178.14432 214.48529]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0471.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [287.3174  303.46887 341.67468 413.5945 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0472.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.4859  314.7742  498.39233 357.622  ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0473.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [322.45703 345.5656  427.4971  302.03387]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0474.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [415.99472 283.05328 351.87946 290.16095]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0475.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [351.0854  366.72986 104.16558 163.74527]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0476.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [296.5593 315.2104 581.2903 400.4852]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0477.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [430.70947 270.60547 227.15283 265.63824]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0478.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [392.53644 316.95767 329.76474 279.29385]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0479.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [105.595795 296.8437   188.17932  260.78815 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0480.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [530.18207 357.15094 157.89258 286.2882 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0481.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [279.68256 349.4788  315.02576 284.24557]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0482.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [333.38196 336.2019  332.415   411.7586 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0483.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [287.294   352.9345  351.0667  459.30182]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0484.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [350.73026 335.59726 289.24045 410.79504]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0485.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.5897  268.91406 347.35535 410.1728 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0486.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [336.67853 305.80582 522.993   406.3901 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0487.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [345.7733  392.80655 223.43172 340.85498]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0488.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [212.87712 393.5933  351.45288 242.88486]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0489.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [294.7273  303.707   323.6514  328.06888]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0490.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [330.56308 336.98383  80.19161 107.73114]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0491.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [282.30444 320.37744 284.49496 295.2056 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0492.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [321.63773 304.7276  613.92633 436.0255 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0493.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [401.75308 126.39724 131.85217 199.04166]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0494.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.58557 378.13824 482.17188 445.20572]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0495.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [336.65585 328.11914 531.35736 296.6305 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0496.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.73798 427.95142 194.38657 229.32648]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0497.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [361.8308  290.07928 200.1867  223.97401]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0498.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [328.31387 298.75433 568.6841  595.9212 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0499.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [345.0563  336.62616 222.22414 146.10542]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0500.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [349.32205 335.94965 256.11987 471.06766]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0501.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [280.38474 357.20828 271.11002 305.22275]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0502.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [145.38408 298.87677 252.78032 280.0924 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0503.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [342.67383 327.06476 241.93625 352.74933]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0504.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [325.5695  317.84146 574.6953  574.78674]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0505.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.3527  318.8608  443.67877 339.44946]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0506.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [337.4617  322.00494 383.60306 412.89984]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0507.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [461.46875 265.7127  314.59576 358.95535]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0508.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [187.74051 323.92972 285.49164 385.10526]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0509.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [330.9645  313.99512 431.8598  506.01703]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0510.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [305.02148 298.7344  330.38724 176.26645]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0511.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [484.3616   323.76825   59.072895  74.12784 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0512.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [299.7237  275.7569  290.75705 467.6981 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0513.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [273.09604 377.89667 216.69254 268.50528]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0514.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.7061  339.36957 611.60095 444.7375 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0515.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [300.07272 274.4075  274.51154 434.74927]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0516.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [302.4672  310.41562 529.34766 455.72705]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0517.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.98492 345.28265 556.48224 421.24695]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0518.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [361.41895 327.25555 356.69186 292.16907]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0519.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [402.60974 307.20215 424.3949  557.9231 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0520.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [442.76218 452.67392  71.28998 172.0983 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0521.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [173.02397 323.92715 199.3708  223.77115]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0522.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [328.86066 288.7605  462.08783 559.34393]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0523.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [394.28583 344.45145 365.4818  441.65674]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0524.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [318.5915  300.37137 487.1727  333.66187]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0525.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [343.0949  310.78574 440.4234  611.20447]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0526.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [ 92.20636 357.16437 167.21053 241.72685]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0527.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [231.94824 348.28278 440.30646 358.37512]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0528.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [336.45673 388.3087  407.70428 473.46988]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0529.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [289.60193 319.51132 301.83887 361.80966]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0530.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [340.03125 351.3196  202.98628 325.96423]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0531.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [326.80817 381.27792 296.65128 345.6009 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0532.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [208.15134 348.02332 301.8466  224.35513]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0533.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [298.30225 199.70398 378.4367  363.8533 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0534.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [319.34766 321.86386 620.2488  448.5164 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0535.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [305.1571  304.18546 250.31029 358.3995 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0536.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [312.16635 324.08057 413.47745 288.84134]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0537.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [183.59961 377.78226 144.78159 195.84358]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0538.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [480.64175 289.97498 273.5524  326.7865 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0539.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [375.26306 314.53387 458.093   510.1987 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0540.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [195.54594 356.69888 191.88614 234.39384]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0541.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [144.3475  278.57288 255.50586 206.5951 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0542.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [535.557   463.09967  91.6006  151.93575]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0543.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [283.07065 348.96393 506.5071  336.56787]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0544.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.66043 335.04156 609.0819  437.13882]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0545.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [302.11853 269.37894 127.10862 161.2967 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0546.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.36835 369.2885  370.67746 309.5699 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0547.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [315.46533 402.67288 471.11847 293.30875]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0548.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [316.5845  306.33548 621.67926 359.6198 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0549.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [320.10056 319.70676 518.3296  318.30176]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0550.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [399.9272  344.4255  289.76645 332.9579 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0551.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [365.16425 302.89026  74.01135 155.89238]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0552.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [408.8142  380.11005 174.98085 211.80559]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0553.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [280.36557 263.46225 288.65994 269.68936]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0554.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [450.13583 321.85635 287.07355 362.6974 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0555.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [474.98245 301.53387 233.89862 371.6502 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0556.jpeg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [422.80292 265.2317  149.86087 148.58524]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0557.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [197.55984 316.12482 394.83978 304.41443]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0558.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [355.92816 306.4464  241.48065 304.49252]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0559.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [328.31256 310.38855 251.58112 196.80351]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0560.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [481.01712 340.7845  242.73253 281.0235 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0561.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [411.51187 391.56213 368.50305 202.68378]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0562.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [281.94202 320.60397 283.82922 295.71454]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0563.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [427.65625 247.70584 222.36386 191.8538 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0564.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [469.84412 279.38965 285.4933  548.4157 ]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mWARNING вљ пёЏ /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train/0565.jpg: ignoring corrupt image/label: non-normalized or out of bounds coordinates [330.82208 305.52722 374.75528 473.72696]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/train.cache\n"
+            "Freezing layer 'model.22.dfl.conv.weight'\n",
+            "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks...\n",
+            "Downloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt to 'yolo11n.pt'...\n"
           ]
         },
         {
           "name": "stderr",
           "output_type": "stream",
           "text": [
-            "\n",
-            "\u001b[34m\u001b[1mval: \u001b[0mScanning /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/val... 139 images, 0 backgrounds, 0 corrupt: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 139/139 [00:00<00:00, 5359.32it/s]"
+            "100.0%\n"
           ]
         },
         {
           "name": "stdout",
           "output_type": "stream",
           "text": [
-            "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /Users/ischknv/Documents/GitHub/miem/aimm/lab-2/dataset/val.cache\n"
+            "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed \n"
           ]
         },
         {
           "name": "stderr",
           "output_type": "stream",
           "text": [
-            "\n"
+            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning C:\\Users\\maxch\\Desktop\\aimm\\lab-2\\dataset\\train.cache... 565 images, 0 backgrounds, 0 corrupt: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 565/565 [00:00<?, ?it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning C:\\Users\\maxch\\Desktop\\aimm\\lab-2\\dataset\\val.cache... 139 images, 0 backgrounds, 0 corrupt: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 139/139 [00:00<?, ?it/s]\n"
           ]
         },
         {
           "name": "stdout",
           "output_type": "stream",
           "text": [
-            "Plotting labels to /Users/ischknv/Documents/GitHub/miem/aimm/runs/detect/train/labels.jpg... \n",
+            "Plotting labels to c:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\\labels.jpg... \n",
             "\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n",
             "\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.001667, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)\n",
             "Image sizes 640 train, 640 val\n",
-            "Using 0 dataloader workers\n",
-            "Logging results to \u001b[1m/Users/ischknv/Documents/GitHub/miem/aimm/runs/detect/train\u001b[0m\n",
+            "Using 6 dataloader workers\n",
+            "Logging results to \u001b[1mc:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\u001b[0m\n",
             "Starting training for 50 epochs...\n",
             "\n",
             "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
@@ -1215,34 +1390,1762 @@
           "name": "stderr",
           "output_type": "stream",
           "text": [
-            "  0%|          | 0/9 [00:10<?, ?it/s]\n"
+            "       1/50      4.12G     0.8632      2.393      1.392          6        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:10<00:00,  3.53it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.79it/s]"
           ]
         },
         {
-          "ename": "KeyboardInterrupt",
-          "evalue": "",
-          "output_type": "error",
-          "traceback": [
-            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-            "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
-            "Cell \u001b[0;32mIn[99], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mHOME\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m/dataset/data.yaml\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmps\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m16\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m50\u001b[39;49m\u001b[43m)\u001b[49m\n",
-            "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/engine/model.py:802\u001b[0m, in \u001b[0;36mModel.train\u001b[0;34m(self, trainer, **kwargs)\u001b[0m\n\u001b[1;32m    799\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer\u001b[38;5;241m.\u001b[39mmodel\n\u001b[1;32m    801\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer\u001b[38;5;241m.\u001b[39mhub_session \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msession  \u001b[38;5;66;03m# attach optional HUB session\u001b[39;00m\n\u001b[0;32m--> 802\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    803\u001b[0m \u001b[38;5;66;03m# Update model and cfg after training\u001b[39;00m\n\u001b[1;32m    804\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m RANK \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m0\u001b[39m}:\n",
-            "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/engine/trainer.py:207\u001b[0m, in \u001b[0;36mBaseTrainer.train\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    204\u001b[0m         ddp_cleanup(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28mstr\u001b[39m(file))\n\u001b[1;32m    206\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 207\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_train\u001b[49m\u001b[43m(\u001b[49m\u001b[43mworld_size\u001b[49m\u001b[43m)\u001b[49m\n",
-            "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/engine/trainer.py:385\u001b[0m, in \u001b[0;36mBaseTrainer._do_train\u001b[0;34m(self, world_size)\u001b[0m\n\u001b[1;32m    383\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m autocast(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mamp):\n\u001b[1;32m    384\u001b[0m     batch \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpreprocess_batch(batch)\n\u001b[0;32m--> 385\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloss, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloss_items \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbatch\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    386\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m RANK \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m    387\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloss \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m=\u001b[39m world_size\n",
-            "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1736\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1734\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)  \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m   1735\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1736\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
-            "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1747\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1742\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1743\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1744\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1745\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1746\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1747\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1749\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m   1750\u001b[0m called_always_called_hooks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mset\u001b[39m()\n",
-            "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/nn/tasks.py:111\u001b[0m, in \u001b[0;36mBaseModel.forward\u001b[0;34m(self, x, *args, **kwargs)\u001b[0m\n\u001b[1;32m     97\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m     98\u001b[0m \u001b[38;5;124;03mPerform forward pass of the model for either training or inference.\u001b[39;00m\n\u001b[1;32m     99\u001b[0m \n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    108\u001b[0m \u001b[38;5;124;03m    (torch.Tensor): Loss if x is a dict (training), or network predictions (inference).\u001b[39;00m\n\u001b[1;32m    109\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    110\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mdict\u001b[39m):  \u001b[38;5;66;03m# for cases of training and validating while training.\u001b[39;00m\n\u001b[0;32m--> 111\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloss\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    112\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpredict(x, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
-            "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/nn/tasks.py:293\u001b[0m, in \u001b[0;36mBaseModel.loss\u001b[0;34m(self, batch, preds)\u001b[0m\n\u001b[1;32m    290\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcriterion \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minit_criterion()\n\u001b[1;32m    292\u001b[0m preds \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mforward(batch[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mimg\u001b[39m\u001b[38;5;124m\"\u001b[39m]) \u001b[38;5;28;01mif\u001b[39;00m preds \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m preds\n\u001b[0;32m--> 293\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcriterion\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpreds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch\u001b[49m\u001b[43m)\u001b[49m\n",
-            "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/utils/loss.py:253\u001b[0m, in \u001b[0;36mv8DetectionLoss.__call__\u001b[0;34m(self, preds, batch)\u001b[0m\n\u001b[1;32m    251\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m fg_mask\u001b[38;5;241m.\u001b[39msum():\n\u001b[1;32m    252\u001b[0m     target_bboxes \u001b[38;5;241m/\u001b[39m\u001b[38;5;241m=\u001b[39m stride_tensor\n\u001b[0;32m--> 253\u001b[0m     loss[\u001b[38;5;241m0\u001b[39m], loss[\u001b[38;5;241m2\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbbox_loss\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    254\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpred_distri\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpred_bboxes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43manchor_points\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtarget_bboxes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtarget_scores\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtarget_scores_sum\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfg_mask\u001b[49m\n\u001b[1;32m    255\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    257\u001b[0m loss[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhyp\u001b[38;5;241m.\u001b[39mbox  \u001b[38;5;66;03m# box gain\u001b[39;00m\n\u001b[1;32m    258\u001b[0m loss[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhyp\u001b[38;5;241m.\u001b[39mcls  \u001b[38;5;66;03m# cls gain\u001b[39;00m\n",
-            "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1736\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1734\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)  \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m   1735\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1736\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
-            "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1747\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1742\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1743\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1744\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1745\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1746\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1747\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1749\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m   1750\u001b[0m called_always_called_hooks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mset\u001b[39m()\n",
-            "File \u001b[0;32m~/Documents/GitHub/miem/aimm/.venv/lib/python3.12/site-packages/ultralytics/utils/loss.py:103\u001b[0m, in \u001b[0;36mBboxLoss.forward\u001b[0;34m(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask)\u001b[0m\n\u001b[1;32m    101\u001b[0m weight \u001b[38;5;241m=\u001b[39m target_scores\u001b[38;5;241m.\u001b[39msum(\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)[fg_mask]\u001b[38;5;241m.\u001b[39munsqueeze(\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m    102\u001b[0m iou \u001b[38;5;241m=\u001b[39m bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, CIoU\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m--> 103\u001b[0m loss_iou \u001b[38;5;241m=\u001b[39m \u001b[43m(\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1.0\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43miou\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mweight\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msum\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;241m/\u001b[39m target_scores_sum\n\u001b[1;32m    105\u001b[0m \u001b[38;5;66;03m# DFL loss\u001b[39;00m\n\u001b[1;32m    106\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdfl_loss:\n",
-            "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.415       0.56      0.408      0.246\n"
           ]
-        }
-      ],
-      "source": [
-        "model.train(data=f\"{HOME}/dataset/data.yaml\", device=\"mps\", batch=16, epochs=50)"
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "       2/50      4.04G     0.9583      1.467      1.405         12        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.01it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.02it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.187      0.587       0.28       0.13\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "       3/50      4.18G      1.025      1.395      1.437         11        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.10it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.03it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.596     0.0779      0.041     0.0104\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "       4/50      4.05G      1.127      1.418      1.515         11        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.14it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.06it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.653      0.287      0.169     0.0754\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "       5/50      4.05G       1.12      1.329      1.519         10        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.10it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.06it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.111      0.275      0.155     0.0764\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "       6/50      4.04G      1.043      1.266      1.433          9        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.10it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.96it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.667     0.0779     0.0642     0.0348\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "       7/50      4.05G      1.018      1.245      1.426         11        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.08it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.02it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.806      0.332      0.386      0.268\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "       8/50      3.88G      0.961      1.214      1.385         13        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.10it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.02it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.425      0.405      0.408      0.239\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "       9/50      4.05G     0.9582      1.205      1.381         14        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.10it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.01it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.488       0.67      0.567      0.407\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      10/50      4.05G     0.9233      1.108       1.36         11        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.09it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.80it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.273      0.644      0.502      0.353\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      11/50      3.89G     0.9202       1.08      1.343         13        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.07it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.05it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139       0.52      0.626      0.625       0.46\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      12/50      3.89G     0.9089      1.076      1.342         10        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.10it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.87it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.523      0.529      0.522      0.373\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      13/50      3.88G      0.832     0.9542      1.304         17        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.01it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.97it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.405      0.636      0.487       0.38\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      14/50      4.05G     0.7959     0.9881      1.273         12        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.10it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.12it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.404      0.671      0.519      0.379\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      15/50      4.04G     0.7749     0.9188      1.253          7        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.08it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.15it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.619      0.752      0.626      0.489\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      16/50      4.04G     0.7875     0.9427      1.255         12        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.09it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.00it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139       0.52      0.687      0.606      0.478\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      17/50      3.89G     0.7699     0.9034      1.261         14        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.09it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.99it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.607      0.693      0.615      0.498\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      18/50      4.05G     0.7406     0.8857      1.227         14        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.09it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.10it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.561      0.815      0.641      0.553\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      19/50      4.05G     0.7608     0.9384      1.245         12        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.08it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.90it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.613      0.826      0.695      0.567\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      20/50      3.88G     0.6756     0.8571      1.195         12        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.08it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.98it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.653      0.528      0.636      0.494\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      21/50      4.04G     0.6815     0.8118      1.199         11        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.10it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.99it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.446      0.749       0.61        0.5\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      22/50      3.88G     0.7054     0.8398      1.214          9        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.08it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.07it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.509      0.739      0.582      0.429\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      23/50      3.88G     0.6626     0.8061      1.164          6        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.11it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.04it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.747      0.678       0.78      0.681\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      24/50      3.88G     0.6705     0.7657      1.186         13        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.07it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.02it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139       0.73      0.703      0.775      0.688\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      25/50      4.05G     0.6679     0.7809      1.187          8        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.09it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.11it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139       0.64      0.845       0.78      0.706\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      26/50      4.05G      0.639      0.747       1.15         10        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.09it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.99it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.729       0.69      0.715      0.616\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      27/50      3.88G     0.6702     0.7641      1.183         13        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.08it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.99it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.652      0.817      0.699      0.619\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      28/50      4.04G     0.5833      0.693      1.132         12        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.09it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.12it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.764      0.772      0.773      0.709\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      29/50      3.88G     0.6358     0.7188      1.165          8        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.09it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.01it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.718      0.764      0.758      0.702\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      30/50      3.88G     0.6049     0.7009      1.145         11        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.07it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.07it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.765      0.819      0.823      0.757\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      31/50      4.05G     0.5572     0.6595      1.109         14        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.08it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.07it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.767      0.783      0.813      0.759\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      32/50      4.05G      0.607     0.6676      1.154         12        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.08it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.02it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.703      0.749      0.729      0.621\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      33/50      3.89G     0.5658     0.6765       1.12         10        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.06it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.05it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.707      0.849      0.818      0.749\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      34/50      4.05G     0.5607     0.6389       1.11         11        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.06it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.07it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.813      0.778      0.852      0.783\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      35/50      3.89G     0.5751      0.664      1.123          8        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.08it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.02it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.822      0.783      0.829      0.762\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      36/50      4.05G     0.5353     0.5959        1.1         11        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.07it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.14it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.746      0.863      0.775      0.717\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      37/50      3.89G     0.5403     0.6157      1.098          9        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.06it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.10it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139       0.77      0.775       0.79      0.738\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      38/50      4.04G     0.4998     0.5489      1.067         13        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.06it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.02it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.758      0.795      0.781      0.734\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      39/50      4.05G     0.5067     0.5567      1.069         11        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.05it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.08it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139       0.82      0.851      0.836      0.782\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      40/50      4.04G     0.4901      0.547      1.072         10        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.09it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.00it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.743      0.875       0.81      0.772\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "Closing dataloader mosaic\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      41/50      4.05G     0.3248     0.4154     0.9601          5        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.00it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.01it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.756      0.804      0.804      0.751\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      42/50      4.04G     0.3303     0.4127     0.9611          5        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.11it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.09it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.829      0.792      0.822      0.768\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      43/50      4.05G     0.3124     0.3661     0.9499          5        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.14it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.09it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.742       0.87      0.808       0.76\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      44/50      4.04G     0.2995     0.3769     0.9324          5        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.11it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.07it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.766      0.896      0.813      0.766\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      45/50      4.05G      0.288     0.3315     0.9243          5        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.11it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.07it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.742      0.896      0.826      0.772\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      46/50      4.04G     0.2691     0.3193      0.899          5        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.12it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.15it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.766      0.858      0.834      0.785\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      47/50      3.89G     0.2642     0.3187      0.908          5        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.11it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.05it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.805      0.861      0.836        0.8\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      48/50      4.04G     0.2467     0.3186     0.8996          5        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.08it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.98it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.764      0.844      0.815      0.782\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      49/50      4.05G     0.2444     0.2988     0.8823          5        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.10it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.03it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.712      0.861      0.804      0.778\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "      50/50      4.04G      0.241     0.2933     0.8898          5        640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 36/36 [00:08<00:00,  4.11it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  4.05it/s]"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.732      0.905      0.813      0.783\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "50 epochs completed in 0.156 hours.\n",
+            "Optimizer stripped from c:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\\weights\\last.pt, 22.5MB\n",
+            "Optimizer stripped from c:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\\weights\\best.pt, 22.5MB\n",
+            "\n",
+            "Validating c:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\\weights\\best.pt...\n",
+            "Ultralytics 8.3.20  Python-3.10.11 torch-2.5.0+cu124 CUDA:0 (NVIDIA GeForce RTX 2060, 6144MiB)\n",
+            "Model summary (fused): 168 layers, 11,126,358 parameters, 0 gradients, 28.4 GFLOPs\n"
+          ]
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 5/5 [00:01<00:00,  3.12it/s]\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "                   all        139        139      0.806      0.862      0.836        0.8\n",
+            "                kettle         17         17      0.697      0.814      0.709      0.709\n",
+            "                teapot        122        122      0.914       0.91      0.963      0.891\n",
+            "Speed: 0.3ms preprocess, 4.4ms inference, 0.0ms loss, 1.9ms postprocess per image\n",
+            "Results saved to \u001b[1mc:\\Users\\maxch\\Desktop\\aimm\\runs\\detect\\train\u001b[0m\n"
+          ]
+        },
+        {
+          "data": {
+            "text/plain": [
+              "ultralytics.utils.metrics.DetMetrics object with attributes:\n",
+              "\n",
+              "ap_class_index: array([0, 1])\n",
+              "box: ultralytics.utils.metrics.Metric object\n",
+              "confusion_matrix: <ultralytics.utils.metrics.ConfusionMatrix object at 0x000001EF150EEDD0>\n",
+              "curves: ['Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)']\n",
+              "curves_results: [[array([          0,    0.001001,    0.002002,    0.003003,    0.004004,    0.005005,    0.006006,    0.007007,    0.008008,    0.009009,     0.01001,    0.011011,    0.012012,    0.013013,    0.014014,    0.015015,    0.016016,    0.017017,    0.018018,    0.019019,     0.02002,    0.021021,    0.022022,    0.023023,\n",
+              "          0.024024,    0.025025,    0.026026,    0.027027,    0.028028,    0.029029,     0.03003,    0.031031,    0.032032,    0.033033,    0.034034,    0.035035,    0.036036,    0.037037,    0.038038,    0.039039,     0.04004,    0.041041,    0.042042,    0.043043,    0.044044,    0.045045,    0.046046,    0.047047,\n",
+              "          0.048048,    0.049049,     0.05005,    0.051051,    0.052052,    0.053053,    0.054054,    0.055055,    0.056056,    0.057057,    0.058058,    0.059059,     0.06006,    0.061061,    0.062062,    0.063063,    0.064064,    0.065065,    0.066066,    0.067067,    0.068068,    0.069069,     0.07007,    0.071071,\n",
+              "          0.072072,    0.073073,    0.074074,    0.075075,    0.076076,    0.077077,    0.078078,    0.079079,     0.08008,    0.081081,    0.082082,    0.083083,    0.084084,    0.085085,    0.086086,    0.087087,    0.088088,    0.089089,     0.09009,    0.091091,    0.092092,    0.093093,    0.094094,    0.095095,\n",
+              "          0.096096,    0.097097,    0.098098,    0.099099,      0.1001,      0.1011,      0.1021,      0.1031,      0.1041,     0.10511,     0.10611,     0.10711,     0.10811,     0.10911,     0.11011,     0.11111,     0.11211,     0.11311,     0.11411,     0.11512,     0.11612,     0.11712,     0.11812,     0.11912,\n",
+              "           0.12012,     0.12112,     0.12212,     0.12312,     0.12412,     0.12513,     0.12613,     0.12713,     0.12813,     0.12913,     0.13013,     0.13113,     0.13213,     0.13313,     0.13413,     0.13514,     0.13614,     0.13714,     0.13814,     0.13914,     0.14014,     0.14114,     0.14214,     0.14314,\n",
+              "           0.14414,     0.14515,     0.14615,     0.14715,     0.14815,     0.14915,     0.15015,     0.15115,     0.15215,     0.15315,     0.15415,     0.15516,     0.15616,     0.15716,     0.15816,     0.15916,     0.16016,     0.16116,     0.16216,     0.16316,     0.16416,     0.16517,     0.16617,     0.16717,\n",
+              "           0.16817,     0.16917,     0.17017,     0.17117,     0.17217,     0.17317,     0.17417,     0.17518,     0.17618,     0.17718,     0.17818,     0.17918,     0.18018,     0.18118,     0.18218,     0.18318,     0.18418,     0.18519,     0.18619,     0.18719,     0.18819,     0.18919,     0.19019,     0.19119,\n",
+              "           0.19219,     0.19319,     0.19419,      0.1952,      0.1962,      0.1972,      0.1982,      0.1992,      0.2002,      0.2012,      0.2022,      0.2032,      0.2042,     0.20521,     0.20621,     0.20721,     0.20821,     0.20921,     0.21021,     0.21121,     0.21221,     0.21321,     0.21421,     0.21522,\n",
+              "           0.21622,     0.21722,     0.21822,     0.21922,     0.22022,     0.22122,     0.22222,     0.22322,     0.22422,     0.22523,     0.22623,     0.22723,     0.22823,     0.22923,     0.23023,     0.23123,     0.23223,     0.23323,     0.23423,     0.23524,     0.23624,     0.23724,     0.23824,     0.23924,\n",
+              "           0.24024,     0.24124,     0.24224,     0.24324,     0.24424,     0.24525,     0.24625,     0.24725,     0.24825,     0.24925,     0.25025,     0.25125,     0.25225,     0.25325,     0.25425,     0.25526,     0.25626,     0.25726,     0.25826,     0.25926,     0.26026,     0.26126,     0.26226,     0.26326,\n",
+              "           0.26426,     0.26527,     0.26627,     0.26727,     0.26827,     0.26927,     0.27027,     0.27127,     0.27227,     0.27327,     0.27427,     0.27528,     0.27628,     0.27728,     0.27828,     0.27928,     0.28028,     0.28128,     0.28228,     0.28328,     0.28428,     0.28529,     0.28629,     0.28729,\n",
+              "           0.28829,     0.28929,     0.29029,     0.29129,     0.29229,     0.29329,     0.29429,      0.2953,      0.2963,      0.2973,      0.2983,      0.2993,      0.3003,      0.3013,      0.3023,      0.3033,      0.3043,     0.30531,     0.30631,     0.30731,     0.30831,     0.30931,     0.31031,     0.31131,\n",
+              "           0.31231,     0.31331,     0.31431,     0.31532,     0.31632,     0.31732,     0.31832,     0.31932,     0.32032,     0.32132,     0.32232,     0.32332,     0.32432,     0.32533,     0.32633,     0.32733,     0.32833,     0.32933,     0.33033,     0.33133,     0.33233,     0.33333,     0.33433,     0.33534,\n",
+              "           0.33634,     0.33734,     0.33834,     0.33934,     0.34034,     0.34134,     0.34234,     0.34334,     0.34434,     0.34535,     0.34635,     0.34735,     0.34835,     0.34935,     0.35035,     0.35135,     0.35235,     0.35335,     0.35435,     0.35536,     0.35636,     0.35736,     0.35836,     0.35936,\n",
+              "           0.36036,     0.36136,     0.36236,     0.36336,     0.36436,     0.36537,     0.36637,     0.36737,     0.36837,     0.36937,     0.37037,     0.37137,     0.37237,     0.37337,     0.37437,     0.37538,     0.37638,     0.37738,     0.37838,     0.37938,     0.38038,     0.38138,     0.38238,     0.38338,\n",
+              "           0.38438,     0.38539,     0.38639,     0.38739,     0.38839,     0.38939,     0.39039,     0.39139,     0.39239,     0.39339,     0.39439,      0.3954,      0.3964,      0.3974,      0.3984,      0.3994,      0.4004,      0.4014,      0.4024,      0.4034,      0.4044,     0.40541,     0.40641,     0.40741,\n",
+              "           0.40841,     0.40941,     0.41041,     0.41141,     0.41241,     0.41341,     0.41441,     0.41542,     0.41642,     0.41742,     0.41842,     0.41942,     0.42042,     0.42142,     0.42242,     0.42342,     0.42442,     0.42543,     0.42643,     0.42743,     0.42843,     0.42943,     0.43043,     0.43143,\n",
+              "           0.43243,     0.43343,     0.43443,     0.43544,     0.43644,     0.43744,     0.43844,     0.43944,     0.44044,     0.44144,     0.44244,     0.44344,     0.44444,     0.44545,     0.44645,     0.44745,     0.44845,     0.44945,     0.45045,     0.45145,     0.45245,     0.45345,     0.45445,     0.45546,\n",
+              "           0.45646,     0.45746,     0.45846,     0.45946,     0.46046,     0.46146,     0.46246,     0.46346,     0.46446,     0.46547,     0.46647,     0.46747,     0.46847,     0.46947,     0.47047,     0.47147,     0.47247,     0.47347,     0.47447,     0.47548,     0.47648,     0.47748,     0.47848,     0.47948,\n",
+              "           0.48048,     0.48148,     0.48248,     0.48348,     0.48448,     0.48549,     0.48649,     0.48749,     0.48849,     0.48949,     0.49049,     0.49149,     0.49249,     0.49349,     0.49449,      0.4955,      0.4965,      0.4975,      0.4985,      0.4995,      0.5005,      0.5015,      0.5025,      0.5035,\n",
+              "            0.5045,     0.50551,     0.50651,     0.50751,     0.50851,     0.50951,     0.51051,     0.51151,     0.51251,     0.51351,     0.51451,     0.51552,     0.51652,     0.51752,     0.51852,     0.51952,     0.52052,     0.52152,     0.52252,     0.52352,     0.52452,     0.52553,     0.52653,     0.52753,\n",
+              "           0.52853,     0.52953,     0.53053,     0.53153,     0.53253,     0.53353,     0.53453,     0.53554,     0.53654,     0.53754,     0.53854,     0.53954,     0.54054,     0.54154,     0.54254,     0.54354,     0.54454,     0.54555,     0.54655,     0.54755,     0.54855,     0.54955,     0.55055,     0.55155,\n",
+              "           0.55255,     0.55355,     0.55455,     0.55556,     0.55656,     0.55756,     0.55856,     0.55956,     0.56056,     0.56156,     0.56256,     0.56356,     0.56456,     0.56557,     0.56657,     0.56757,     0.56857,     0.56957,     0.57057,     0.57157,     0.57257,     0.57357,     0.57457,     0.57558,\n",
+              "           0.57658,     0.57758,     0.57858,     0.57958,     0.58058,     0.58158,     0.58258,     0.58358,     0.58458,     0.58559,     0.58659,     0.58759,     0.58859,     0.58959,     0.59059,     0.59159,     0.59259,     0.59359,     0.59459,      0.5956,      0.5966,      0.5976,      0.5986,      0.5996,\n",
+              "            0.6006,      0.6016,      0.6026,      0.6036,      0.6046,     0.60561,     0.60661,     0.60761,     0.60861,     0.60961,     0.61061,     0.61161,     0.61261,     0.61361,     0.61461,     0.61562,     0.61662,     0.61762,     0.61862,     0.61962,     0.62062,     0.62162,     0.62262,     0.62362,\n",
+              "           0.62462,     0.62563,     0.62663,     0.62763,     0.62863,     0.62963,     0.63063,     0.63163,     0.63263,     0.63363,     0.63463,     0.63564,     0.63664,     0.63764,     0.63864,     0.63964,     0.64064,     0.64164,     0.64264,     0.64364,     0.64464,     0.64565,     0.64665,     0.64765,\n",
+              "           0.64865,     0.64965,     0.65065,     0.65165,     0.65265,     0.65365,     0.65465,     0.65566,     0.65666,     0.65766,     0.65866,     0.65966,     0.66066,     0.66166,     0.66266,     0.66366,     0.66466,     0.66567,     0.66667,     0.66767,     0.66867,     0.66967,     0.67067,     0.67167,\n",
+              "           0.67267,     0.67367,     0.67467,     0.67568,     0.67668,     0.67768,     0.67868,     0.67968,     0.68068,     0.68168,     0.68268,     0.68368,     0.68468,     0.68569,     0.68669,     0.68769,     0.68869,     0.68969,     0.69069,     0.69169,     0.69269,     0.69369,     0.69469,      0.6957,\n",
+              "            0.6967,      0.6977,      0.6987,      0.6997,      0.7007,      0.7017,      0.7027,      0.7037,      0.7047,     0.70571,     0.70671,     0.70771,     0.70871,     0.70971,     0.71071,     0.71171,     0.71271,     0.71371,     0.71471,     0.71572,     0.71672,     0.71772,     0.71872,     0.71972,\n",
+              "           0.72072,     0.72172,     0.72272,     0.72372,     0.72472,     0.72573,     0.72673,     0.72773,     0.72873,     0.72973,     0.73073,     0.73173,     0.73273,     0.73373,     0.73473,     0.73574,     0.73674,     0.73774,     0.73874,     0.73974,     0.74074,     0.74174,     0.74274,     0.74374,\n",
+              "           0.74474,     0.74575,     0.74675,     0.74775,     0.74875,     0.74975,     0.75075,     0.75175,     0.75275,     0.75375,     0.75475,     0.75576,     0.75676,     0.75776,     0.75876,     0.75976,     0.76076,     0.76176,     0.76276,     0.76376,     0.76476,     0.76577,     0.76677,     0.76777,\n",
+              "           0.76877,     0.76977,     0.77077,     0.77177,     0.77277,     0.77377,     0.77477,     0.77578,     0.77678,     0.77778,     0.77878,     0.77978,     0.78078,     0.78178,     0.78278,     0.78378,     0.78478,     0.78579,     0.78679,     0.78779,     0.78879,     0.78979,     0.79079,     0.79179,\n",
+              "           0.79279,     0.79379,     0.79479,      0.7958,      0.7968,      0.7978,      0.7988,      0.7998,      0.8008,      0.8018,      0.8028,      0.8038,      0.8048,     0.80581,     0.80681,     0.80781,     0.80881,     0.80981,     0.81081,     0.81181,     0.81281,     0.81381,     0.81481,     0.81582,\n",
+              "           0.81682,     0.81782,     0.81882,     0.81982,     0.82082,     0.82182,     0.82282,     0.82382,     0.82482,     0.82583,     0.82683,     0.82783,     0.82883,     0.82983,     0.83083,     0.83183,     0.83283,     0.83383,     0.83483,     0.83584,     0.83684,     0.83784,     0.83884,     0.83984,\n",
+              "           0.84084,     0.84184,     0.84284,     0.84384,     0.84484,     0.84585,     0.84685,     0.84785,     0.84885,     0.84985,     0.85085,     0.85185,     0.85285,     0.85385,     0.85485,     0.85586,     0.85686,     0.85786,     0.85886,     0.85986,     0.86086,     0.86186,     0.86286,     0.86386,\n",
+              "           0.86486,     0.86587,     0.86687,     0.86787,     0.86887,     0.86987,     0.87087,     0.87187,     0.87287,     0.87387,     0.87487,     0.87588,     0.87688,     0.87788,     0.87888,     0.87988,     0.88088,     0.88188,     0.88288,     0.88388,     0.88488,     0.88589,     0.88689,     0.88789,\n",
+              "           0.88889,     0.88989,     0.89089,     0.89189,     0.89289,     0.89389,     0.89489,      0.8959,      0.8969,      0.8979,      0.8989,      0.8999,      0.9009,      0.9019,      0.9029,      0.9039,      0.9049,     0.90591,     0.90691,     0.90791,     0.90891,     0.90991,     0.91091,     0.91191,\n",
+              "           0.91291,     0.91391,     0.91491,     0.91592,     0.91692,     0.91792,     0.91892,     0.91992,     0.92092,     0.92192,     0.92292,     0.92392,     0.92492,     0.92593,     0.92693,     0.92793,     0.92893,     0.92993,     0.93093,     0.93193,     0.93293,     0.93393,     0.93493,     0.93594,\n",
+              "           0.93694,     0.93794,     0.93894,     0.93994,     0.94094,     0.94194,     0.94294,     0.94394,     0.94494,     0.94595,     0.94695,     0.94795,     0.94895,     0.94995,     0.95095,     0.95195,     0.95295,     0.95395,     0.95495,     0.95596,     0.95696,     0.95796,     0.95896,     0.95996,\n",
+              "           0.96096,     0.96196,     0.96296,     0.96396,     0.96496,     0.96597,     0.96697,     0.96797,     0.96897,     0.96997,     0.97097,     0.97197,     0.97297,     0.97397,     0.97497,     0.97598,     0.97698,     0.97798,     0.97898,     0.97998,     0.98098,     0.98198,     0.98298,     0.98398,\n",
+              "           0.98498,     0.98599,     0.98699,     0.98799,     0.98899,     0.98999,     0.99099,     0.99199,     0.99299,     0.99399,     0.99499,       0.996,       0.997,       0.998,       0.999,           1]), array([[          1,           1,           1, ...,     0.18085,     0.18085,           0],\n",
+              "       [          1,           1,           1, ...,     0.11681,    0.058406,           0]]), 'Recall', 'Precision'], [array([          0,    0.001001,    0.002002,    0.003003,    0.004004,    0.005005,    0.006006,    0.007007,    0.008008,    0.009009,     0.01001,    0.011011,    0.012012,    0.013013,    0.014014,    0.015015,    0.016016,    0.017017,    0.018018,    0.019019,     0.02002,    0.021021,    0.022022,    0.023023,\n",
+              "          0.024024,    0.025025,    0.026026,    0.027027,    0.028028,    0.029029,     0.03003,    0.031031,    0.032032,    0.033033,    0.034034,    0.035035,    0.036036,    0.037037,    0.038038,    0.039039,     0.04004,    0.041041,    0.042042,    0.043043,    0.044044,    0.045045,    0.046046,    0.047047,\n",
+              "          0.048048,    0.049049,     0.05005,    0.051051,    0.052052,    0.053053,    0.054054,    0.055055,    0.056056,    0.057057,    0.058058,    0.059059,     0.06006,    0.061061,    0.062062,    0.063063,    0.064064,    0.065065,    0.066066,    0.067067,    0.068068,    0.069069,     0.07007,    0.071071,\n",
+              "          0.072072,    0.073073,    0.074074,    0.075075,    0.076076,    0.077077,    0.078078,    0.079079,     0.08008,    0.081081,    0.082082,    0.083083,    0.084084,    0.085085,    0.086086,    0.087087,    0.088088,    0.089089,     0.09009,    0.091091,    0.092092,    0.093093,    0.094094,    0.095095,\n",
+              "          0.096096,    0.097097,    0.098098,    0.099099,      0.1001,      0.1011,      0.1021,      0.1031,      0.1041,     0.10511,     0.10611,     0.10711,     0.10811,     0.10911,     0.11011,     0.11111,     0.11211,     0.11311,     0.11411,     0.11512,     0.11612,     0.11712,     0.11812,     0.11912,\n",
+              "           0.12012,     0.12112,     0.12212,     0.12312,     0.12412,     0.12513,     0.12613,     0.12713,     0.12813,     0.12913,     0.13013,     0.13113,     0.13213,     0.13313,     0.13413,     0.13514,     0.13614,     0.13714,     0.13814,     0.13914,     0.14014,     0.14114,     0.14214,     0.14314,\n",
+              "           0.14414,     0.14515,     0.14615,     0.14715,     0.14815,     0.14915,     0.15015,     0.15115,     0.15215,     0.15315,     0.15415,     0.15516,     0.15616,     0.15716,     0.15816,     0.15916,     0.16016,     0.16116,     0.16216,     0.16316,     0.16416,     0.16517,     0.16617,     0.16717,\n",
+              "           0.16817,     0.16917,     0.17017,     0.17117,     0.17217,     0.17317,     0.17417,     0.17518,     0.17618,     0.17718,     0.17818,     0.17918,     0.18018,     0.18118,     0.18218,     0.18318,     0.18418,     0.18519,     0.18619,     0.18719,     0.18819,     0.18919,     0.19019,     0.19119,\n",
+              "           0.19219,     0.19319,     0.19419,      0.1952,      0.1962,      0.1972,      0.1982,      0.1992,      0.2002,      0.2012,      0.2022,      0.2032,      0.2042,     0.20521,     0.20621,     0.20721,     0.20821,     0.20921,     0.21021,     0.21121,     0.21221,     0.21321,     0.21421,     0.21522,\n",
+              "           0.21622,     0.21722,     0.21822,     0.21922,     0.22022,     0.22122,     0.22222,     0.22322,     0.22422,     0.22523,     0.22623,     0.22723,     0.22823,     0.22923,     0.23023,     0.23123,     0.23223,     0.23323,     0.23423,     0.23524,     0.23624,     0.23724,     0.23824,     0.23924,\n",
+              "           0.24024,     0.24124,     0.24224,     0.24324,     0.24424,     0.24525,     0.24625,     0.24725,     0.24825,     0.24925,     0.25025,     0.25125,     0.25225,     0.25325,     0.25425,     0.25526,     0.25626,     0.25726,     0.25826,     0.25926,     0.26026,     0.26126,     0.26226,     0.26326,\n",
+              "           0.26426,     0.26527,     0.26627,     0.26727,     0.26827,     0.26927,     0.27027,     0.27127,     0.27227,     0.27327,     0.27427,     0.27528,     0.27628,     0.27728,     0.27828,     0.27928,     0.28028,     0.28128,     0.28228,     0.28328,     0.28428,     0.28529,     0.28629,     0.28729,\n",
+              "           0.28829,     0.28929,     0.29029,     0.29129,     0.29229,     0.29329,     0.29429,      0.2953,      0.2963,      0.2973,      0.2983,      0.2993,      0.3003,      0.3013,      0.3023,      0.3033,      0.3043,     0.30531,     0.30631,     0.30731,     0.30831,     0.30931,     0.31031,     0.31131,\n",
+              "           0.31231,     0.31331,     0.31431,     0.31532,     0.31632,     0.31732,     0.31832,     0.31932,     0.32032,     0.32132,     0.32232,     0.32332,     0.32432,     0.32533,     0.32633,     0.32733,     0.32833,     0.32933,     0.33033,     0.33133,     0.33233,     0.33333,     0.33433,     0.33534,\n",
+              "           0.33634,     0.33734,     0.33834,     0.33934,     0.34034,     0.34134,     0.34234,     0.34334,     0.34434,     0.34535,     0.34635,     0.34735,     0.34835,     0.34935,     0.35035,     0.35135,     0.35235,     0.35335,     0.35435,     0.35536,     0.35636,     0.35736,     0.35836,     0.35936,\n",
+              "           0.36036,     0.36136,     0.36236,     0.36336,     0.36436,     0.36537,     0.36637,     0.36737,     0.36837,     0.36937,     0.37037,     0.37137,     0.37237,     0.37337,     0.37437,     0.37538,     0.37638,     0.37738,     0.37838,     0.37938,     0.38038,     0.38138,     0.38238,     0.38338,\n",
+              "           0.38438,     0.38539,     0.38639,     0.38739,     0.38839,     0.38939,     0.39039,     0.39139,     0.39239,     0.39339,     0.39439,      0.3954,      0.3964,      0.3974,      0.3984,      0.3994,      0.4004,      0.4014,      0.4024,      0.4034,      0.4044,     0.40541,     0.40641,     0.40741,\n",
+              "           0.40841,     0.40941,     0.41041,     0.41141,     0.41241,     0.41341,     0.41441,     0.41542,     0.41642,     0.41742,     0.41842,     0.41942,     0.42042,     0.42142,     0.42242,     0.42342,     0.42442,     0.42543,     0.42643,     0.42743,     0.42843,     0.42943,     0.43043,     0.43143,\n",
+              "           0.43243,     0.43343,     0.43443,     0.43544,     0.43644,     0.43744,     0.43844,     0.43944,     0.44044,     0.44144,     0.44244,     0.44344,     0.44444,     0.44545,     0.44645,     0.44745,     0.44845,     0.44945,     0.45045,     0.45145,     0.45245,     0.45345,     0.45445,     0.45546,\n",
+              "           0.45646,     0.45746,     0.45846,     0.45946,     0.46046,     0.46146,     0.46246,     0.46346,     0.46446,     0.46547,     0.46647,     0.46747,     0.46847,     0.46947,     0.47047,     0.47147,     0.47247,     0.47347,     0.47447,     0.47548,     0.47648,     0.47748,     0.47848,     0.47948,\n",
+              "           0.48048,     0.48148,     0.48248,     0.48348,     0.48448,     0.48549,     0.48649,     0.48749,     0.48849,     0.48949,     0.49049,     0.49149,     0.49249,     0.49349,     0.49449,      0.4955,      0.4965,      0.4975,      0.4985,      0.4995,      0.5005,      0.5015,      0.5025,      0.5035,\n",
+              "            0.5045,     0.50551,     0.50651,     0.50751,     0.50851,     0.50951,     0.51051,     0.51151,     0.51251,     0.51351,     0.51451,     0.51552,     0.51652,     0.51752,     0.51852,     0.51952,     0.52052,     0.52152,     0.52252,     0.52352,     0.52452,     0.52553,     0.52653,     0.52753,\n",
+              "           0.52853,     0.52953,     0.53053,     0.53153,     0.53253,     0.53353,     0.53453,     0.53554,     0.53654,     0.53754,     0.53854,     0.53954,     0.54054,     0.54154,     0.54254,     0.54354,     0.54454,     0.54555,     0.54655,     0.54755,     0.54855,     0.54955,     0.55055,     0.55155,\n",
+              "           0.55255,     0.55355,     0.55455,     0.55556,     0.55656,     0.55756,     0.55856,     0.55956,     0.56056,     0.56156,     0.56256,     0.56356,     0.56456,     0.56557,     0.56657,     0.56757,     0.56857,     0.56957,     0.57057,     0.57157,     0.57257,     0.57357,     0.57457,     0.57558,\n",
+              "           0.57658,     0.57758,     0.57858,     0.57958,     0.58058,     0.58158,     0.58258,     0.58358,     0.58458,     0.58559,     0.58659,     0.58759,     0.58859,     0.58959,     0.59059,     0.59159,     0.59259,     0.59359,     0.59459,      0.5956,      0.5966,      0.5976,      0.5986,      0.5996,\n",
+              "            0.6006,      0.6016,      0.6026,      0.6036,      0.6046,     0.60561,     0.60661,     0.60761,     0.60861,     0.60961,     0.61061,     0.61161,     0.61261,     0.61361,     0.61461,     0.61562,     0.61662,     0.61762,     0.61862,     0.61962,     0.62062,     0.62162,     0.62262,     0.62362,\n",
+              "           0.62462,     0.62563,     0.62663,     0.62763,     0.62863,     0.62963,     0.63063,     0.63163,     0.63263,     0.63363,     0.63463,     0.63564,     0.63664,     0.63764,     0.63864,     0.63964,     0.64064,     0.64164,     0.64264,     0.64364,     0.64464,     0.64565,     0.64665,     0.64765,\n",
+              "           0.64865,     0.64965,     0.65065,     0.65165,     0.65265,     0.65365,     0.65465,     0.65566,     0.65666,     0.65766,     0.65866,     0.65966,     0.66066,     0.66166,     0.66266,     0.66366,     0.66466,     0.66567,     0.66667,     0.66767,     0.66867,     0.66967,     0.67067,     0.67167,\n",
+              "           0.67267,     0.67367,     0.67467,     0.67568,     0.67668,     0.67768,     0.67868,     0.67968,     0.68068,     0.68168,     0.68268,     0.68368,     0.68468,     0.68569,     0.68669,     0.68769,     0.68869,     0.68969,     0.69069,     0.69169,     0.69269,     0.69369,     0.69469,      0.6957,\n",
+              "            0.6967,      0.6977,      0.6987,      0.6997,      0.7007,      0.7017,      0.7027,      0.7037,      0.7047,     0.70571,     0.70671,     0.70771,     0.70871,     0.70971,     0.71071,     0.71171,     0.71271,     0.71371,     0.71471,     0.71572,     0.71672,     0.71772,     0.71872,     0.71972,\n",
+              "           0.72072,     0.72172,     0.72272,     0.72372,     0.72472,     0.72573,     0.72673,     0.72773,     0.72873,     0.72973,     0.73073,     0.73173,     0.73273,     0.73373,     0.73473,     0.73574,     0.73674,     0.73774,     0.73874,     0.73974,     0.74074,     0.74174,     0.74274,     0.74374,\n",
+              "           0.74474,     0.74575,     0.74675,     0.74775,     0.74875,     0.74975,     0.75075,     0.75175,     0.75275,     0.75375,     0.75475,     0.75576,     0.75676,     0.75776,     0.75876,     0.75976,     0.76076,     0.76176,     0.76276,     0.76376,     0.76476,     0.76577,     0.76677,     0.76777,\n",
+              "           0.76877,     0.76977,     0.77077,     0.77177,     0.77277,     0.77377,     0.77477,     0.77578,     0.77678,     0.77778,     0.77878,     0.77978,     0.78078,     0.78178,     0.78278,     0.78378,     0.78478,     0.78579,     0.78679,     0.78779,     0.78879,     0.78979,     0.79079,     0.79179,\n",
+              "           0.79279,     0.79379,     0.79479,      0.7958,      0.7968,      0.7978,      0.7988,      0.7998,      0.8008,      0.8018,      0.8028,      0.8038,      0.8048,     0.80581,     0.80681,     0.80781,     0.80881,     0.80981,     0.81081,     0.81181,     0.81281,     0.81381,     0.81481,     0.81582,\n",
+              "           0.81682,     0.81782,     0.81882,     0.81982,     0.82082,     0.82182,     0.82282,     0.82382,     0.82482,     0.82583,     0.82683,     0.82783,     0.82883,     0.82983,     0.83083,     0.83183,     0.83283,     0.83383,     0.83483,     0.83584,     0.83684,     0.83784,     0.83884,     0.83984,\n",
+              "           0.84084,     0.84184,     0.84284,     0.84384,     0.84484,     0.84585,     0.84685,     0.84785,     0.84885,     0.84985,     0.85085,     0.85185,     0.85285,     0.85385,     0.85485,     0.85586,     0.85686,     0.85786,     0.85886,     0.85986,     0.86086,     0.86186,     0.86286,     0.86386,\n",
+              "           0.86486,     0.86587,     0.86687,     0.86787,     0.86887,     0.86987,     0.87087,     0.87187,     0.87287,     0.87387,     0.87487,     0.87588,     0.87688,     0.87788,     0.87888,     0.87988,     0.88088,     0.88188,     0.88288,     0.88388,     0.88488,     0.88589,     0.88689,     0.88789,\n",
+              "           0.88889,     0.88989,     0.89089,     0.89189,     0.89289,     0.89389,     0.89489,      0.8959,      0.8969,      0.8979,      0.8989,      0.8999,      0.9009,      0.9019,      0.9029,      0.9039,      0.9049,     0.90591,     0.90691,     0.90791,     0.90891,     0.90991,     0.91091,     0.91191,\n",
+              "           0.91291,     0.91391,     0.91491,     0.91592,     0.91692,     0.91792,     0.91892,     0.91992,     0.92092,     0.92192,     0.92292,     0.92392,     0.92492,     0.92593,     0.92693,     0.92793,     0.92893,     0.92993,     0.93093,     0.93193,     0.93293,     0.93393,     0.93493,     0.93594,\n",
+              "           0.93694,     0.93794,     0.93894,     0.93994,     0.94094,     0.94194,     0.94294,     0.94394,     0.94494,     0.94595,     0.94695,     0.94795,     0.94895,     0.94995,     0.95095,     0.95195,     0.95295,     0.95395,     0.95495,     0.95596,     0.95696,     0.95796,     0.95896,     0.95996,\n",
+              "           0.96096,     0.96196,     0.96296,     0.96396,     0.96496,     0.96597,     0.96697,     0.96797,     0.96897,     0.96997,     0.97097,     0.97197,     0.97297,     0.97397,     0.97497,     0.97598,     0.97698,     0.97798,     0.97898,     0.97998,     0.98098,     0.98198,     0.98298,     0.98398,\n",
+              "           0.98498,     0.98599,     0.98699,     0.98799,     0.98899,     0.98999,     0.99099,     0.99199,     0.99299,     0.99399,     0.99499,       0.996,       0.997,       0.998,       0.999,           1]), array([[    0.20482,     0.20482,      0.2705, ...,           0,           0,           0],\n",
+              "       [    0.64533,     0.64533,     0.72089, ...,           0,           0,           0]]), 'Confidence', 'F1'], [array([          0,    0.001001,    0.002002,    0.003003,    0.004004,    0.005005,    0.006006,    0.007007,    0.008008,    0.009009,     0.01001,    0.011011,    0.012012,    0.013013,    0.014014,    0.015015,    0.016016,    0.017017,    0.018018,    0.019019,     0.02002,    0.021021,    0.022022,    0.023023,\n",
+              "          0.024024,    0.025025,    0.026026,    0.027027,    0.028028,    0.029029,     0.03003,    0.031031,    0.032032,    0.033033,    0.034034,    0.035035,    0.036036,    0.037037,    0.038038,    0.039039,     0.04004,    0.041041,    0.042042,    0.043043,    0.044044,    0.045045,    0.046046,    0.047047,\n",
+              "          0.048048,    0.049049,     0.05005,    0.051051,    0.052052,    0.053053,    0.054054,    0.055055,    0.056056,    0.057057,    0.058058,    0.059059,     0.06006,    0.061061,    0.062062,    0.063063,    0.064064,    0.065065,    0.066066,    0.067067,    0.068068,    0.069069,     0.07007,    0.071071,\n",
+              "          0.072072,    0.073073,    0.074074,    0.075075,    0.076076,    0.077077,    0.078078,    0.079079,     0.08008,    0.081081,    0.082082,    0.083083,    0.084084,    0.085085,    0.086086,    0.087087,    0.088088,    0.089089,     0.09009,    0.091091,    0.092092,    0.093093,    0.094094,    0.095095,\n",
+              "          0.096096,    0.097097,    0.098098,    0.099099,      0.1001,      0.1011,      0.1021,      0.1031,      0.1041,     0.10511,     0.10611,     0.10711,     0.10811,     0.10911,     0.11011,     0.11111,     0.11211,     0.11311,     0.11411,     0.11512,     0.11612,     0.11712,     0.11812,     0.11912,\n",
+              "           0.12012,     0.12112,     0.12212,     0.12312,     0.12412,     0.12513,     0.12613,     0.12713,     0.12813,     0.12913,     0.13013,     0.13113,     0.13213,     0.13313,     0.13413,     0.13514,     0.13614,     0.13714,     0.13814,     0.13914,     0.14014,     0.14114,     0.14214,     0.14314,\n",
+              "           0.14414,     0.14515,     0.14615,     0.14715,     0.14815,     0.14915,     0.15015,     0.15115,     0.15215,     0.15315,     0.15415,     0.15516,     0.15616,     0.15716,     0.15816,     0.15916,     0.16016,     0.16116,     0.16216,     0.16316,     0.16416,     0.16517,     0.16617,     0.16717,\n",
+              "           0.16817,     0.16917,     0.17017,     0.17117,     0.17217,     0.17317,     0.17417,     0.17518,     0.17618,     0.17718,     0.17818,     0.17918,     0.18018,     0.18118,     0.18218,     0.18318,     0.18418,     0.18519,     0.18619,     0.18719,     0.18819,     0.18919,     0.19019,     0.19119,\n",
+              "           0.19219,     0.19319,     0.19419,      0.1952,      0.1962,      0.1972,      0.1982,      0.1992,      0.2002,      0.2012,      0.2022,      0.2032,      0.2042,     0.20521,     0.20621,     0.20721,     0.20821,     0.20921,     0.21021,     0.21121,     0.21221,     0.21321,     0.21421,     0.21522,\n",
+              "           0.21622,     0.21722,     0.21822,     0.21922,     0.22022,     0.22122,     0.22222,     0.22322,     0.22422,     0.22523,     0.22623,     0.22723,     0.22823,     0.22923,     0.23023,     0.23123,     0.23223,     0.23323,     0.23423,     0.23524,     0.23624,     0.23724,     0.23824,     0.23924,\n",
+              "           0.24024,     0.24124,     0.24224,     0.24324,     0.24424,     0.24525,     0.24625,     0.24725,     0.24825,     0.24925,     0.25025,     0.25125,     0.25225,     0.25325,     0.25425,     0.25526,     0.25626,     0.25726,     0.25826,     0.25926,     0.26026,     0.26126,     0.26226,     0.26326,\n",
+              "           0.26426,     0.26527,     0.26627,     0.26727,     0.26827,     0.26927,     0.27027,     0.27127,     0.27227,     0.27327,     0.27427,     0.27528,     0.27628,     0.27728,     0.27828,     0.27928,     0.28028,     0.28128,     0.28228,     0.28328,     0.28428,     0.28529,     0.28629,     0.28729,\n",
+              "           0.28829,     0.28929,     0.29029,     0.29129,     0.29229,     0.29329,     0.29429,      0.2953,      0.2963,      0.2973,      0.2983,      0.2993,      0.3003,      0.3013,      0.3023,      0.3033,      0.3043,     0.30531,     0.30631,     0.30731,     0.30831,     0.30931,     0.31031,     0.31131,\n",
+              "           0.31231,     0.31331,     0.31431,     0.31532,     0.31632,     0.31732,     0.31832,     0.31932,     0.32032,     0.32132,     0.32232,     0.32332,     0.32432,     0.32533,     0.32633,     0.32733,     0.32833,     0.32933,     0.33033,     0.33133,     0.33233,     0.33333,     0.33433,     0.33534,\n",
+              "           0.33634,     0.33734,     0.33834,     0.33934,     0.34034,     0.34134,     0.34234,     0.34334,     0.34434,     0.34535,     0.34635,     0.34735,     0.34835,     0.34935,     0.35035,     0.35135,     0.35235,     0.35335,     0.35435,     0.35536,     0.35636,     0.35736,     0.35836,     0.35936,\n",
+              "           0.36036,     0.36136,     0.36236,     0.36336,     0.36436,     0.36537,     0.36637,     0.36737,     0.36837,     0.36937,     0.37037,     0.37137,     0.37237,     0.37337,     0.37437,     0.37538,     0.37638,     0.37738,     0.37838,     0.37938,     0.38038,     0.38138,     0.38238,     0.38338,\n",
+              "           0.38438,     0.38539,     0.38639,     0.38739,     0.38839,     0.38939,     0.39039,     0.39139,     0.39239,     0.39339,     0.39439,      0.3954,      0.3964,      0.3974,      0.3984,      0.3994,      0.4004,      0.4014,      0.4024,      0.4034,      0.4044,     0.40541,     0.40641,     0.40741,\n",
+              "           0.40841,     0.40941,     0.41041,     0.41141,     0.41241,     0.41341,     0.41441,     0.41542,     0.41642,     0.41742,     0.41842,     0.41942,     0.42042,     0.42142,     0.42242,     0.42342,     0.42442,     0.42543,     0.42643,     0.42743,     0.42843,     0.42943,     0.43043,     0.43143,\n",
+              "           0.43243,     0.43343,     0.43443,     0.43544,     0.43644,     0.43744,     0.43844,     0.43944,     0.44044,     0.44144,     0.44244,     0.44344,     0.44444,     0.44545,     0.44645,     0.44745,     0.44845,     0.44945,     0.45045,     0.45145,     0.45245,     0.45345,     0.45445,     0.45546,\n",
+              "           0.45646,     0.45746,     0.45846,     0.45946,     0.46046,     0.46146,     0.46246,     0.46346,     0.46446,     0.46547,     0.46647,     0.46747,     0.46847,     0.46947,     0.47047,     0.47147,     0.47247,     0.47347,     0.47447,     0.47548,     0.47648,     0.47748,     0.47848,     0.47948,\n",
+              "           0.48048,     0.48148,     0.48248,     0.48348,     0.48448,     0.48549,     0.48649,     0.48749,     0.48849,     0.48949,     0.49049,     0.49149,     0.49249,     0.49349,     0.49449,      0.4955,      0.4965,      0.4975,      0.4985,      0.4995,      0.5005,      0.5015,      0.5025,      0.5035,\n",
+              "            0.5045,     0.50551,     0.50651,     0.50751,     0.50851,     0.50951,     0.51051,     0.51151,     0.51251,     0.51351,     0.51451,     0.51552,     0.51652,     0.51752,     0.51852,     0.51952,     0.52052,     0.52152,     0.52252,     0.52352,     0.52452,     0.52553,     0.52653,     0.52753,\n",
+              "           0.52853,     0.52953,     0.53053,     0.53153,     0.53253,     0.53353,     0.53453,     0.53554,     0.53654,     0.53754,     0.53854,     0.53954,     0.54054,     0.54154,     0.54254,     0.54354,     0.54454,     0.54555,     0.54655,     0.54755,     0.54855,     0.54955,     0.55055,     0.55155,\n",
+              "           0.55255,     0.55355,     0.55455,     0.55556,     0.55656,     0.55756,     0.55856,     0.55956,     0.56056,     0.56156,     0.56256,     0.56356,     0.56456,     0.56557,     0.56657,     0.56757,     0.56857,     0.56957,     0.57057,     0.57157,     0.57257,     0.57357,     0.57457,     0.57558,\n",
+              "           0.57658,     0.57758,     0.57858,     0.57958,     0.58058,     0.58158,     0.58258,     0.58358,     0.58458,     0.58559,     0.58659,     0.58759,     0.58859,     0.58959,     0.59059,     0.59159,     0.59259,     0.59359,     0.59459,      0.5956,      0.5966,      0.5976,      0.5986,      0.5996,\n",
+              "            0.6006,      0.6016,      0.6026,      0.6036,      0.6046,     0.60561,     0.60661,     0.60761,     0.60861,     0.60961,     0.61061,     0.61161,     0.61261,     0.61361,     0.61461,     0.61562,     0.61662,     0.61762,     0.61862,     0.61962,     0.62062,     0.62162,     0.62262,     0.62362,\n",
+              "           0.62462,     0.62563,     0.62663,     0.62763,     0.62863,     0.62963,     0.63063,     0.63163,     0.63263,     0.63363,     0.63463,     0.63564,     0.63664,     0.63764,     0.63864,     0.63964,     0.64064,     0.64164,     0.64264,     0.64364,     0.64464,     0.64565,     0.64665,     0.64765,\n",
+              "           0.64865,     0.64965,     0.65065,     0.65165,     0.65265,     0.65365,     0.65465,     0.65566,     0.65666,     0.65766,     0.65866,     0.65966,     0.66066,     0.66166,     0.66266,     0.66366,     0.66466,     0.66567,     0.66667,     0.66767,     0.66867,     0.66967,     0.67067,     0.67167,\n",
+              "           0.67267,     0.67367,     0.67467,     0.67568,     0.67668,     0.67768,     0.67868,     0.67968,     0.68068,     0.68168,     0.68268,     0.68368,     0.68468,     0.68569,     0.68669,     0.68769,     0.68869,     0.68969,     0.69069,     0.69169,     0.69269,     0.69369,     0.69469,      0.6957,\n",
+              "            0.6967,      0.6977,      0.6987,      0.6997,      0.7007,      0.7017,      0.7027,      0.7037,      0.7047,     0.70571,     0.70671,     0.70771,     0.70871,     0.70971,     0.71071,     0.71171,     0.71271,     0.71371,     0.71471,     0.71572,     0.71672,     0.71772,     0.71872,     0.71972,\n",
+              "           0.72072,     0.72172,     0.72272,     0.72372,     0.72472,     0.72573,     0.72673,     0.72773,     0.72873,     0.72973,     0.73073,     0.73173,     0.73273,     0.73373,     0.73473,     0.73574,     0.73674,     0.73774,     0.73874,     0.73974,     0.74074,     0.74174,     0.74274,     0.74374,\n",
+              "           0.74474,     0.74575,     0.74675,     0.74775,     0.74875,     0.74975,     0.75075,     0.75175,     0.75275,     0.75375,     0.75475,     0.75576,     0.75676,     0.75776,     0.75876,     0.75976,     0.76076,     0.76176,     0.76276,     0.76376,     0.76476,     0.76577,     0.76677,     0.76777,\n",
+              "           0.76877,     0.76977,     0.77077,     0.77177,     0.77277,     0.77377,     0.77477,     0.77578,     0.77678,     0.77778,     0.77878,     0.77978,     0.78078,     0.78178,     0.78278,     0.78378,     0.78478,     0.78579,     0.78679,     0.78779,     0.78879,     0.78979,     0.79079,     0.79179,\n",
+              "           0.79279,     0.79379,     0.79479,      0.7958,      0.7968,      0.7978,      0.7988,      0.7998,      0.8008,      0.8018,      0.8028,      0.8038,      0.8048,     0.80581,     0.80681,     0.80781,     0.80881,     0.80981,     0.81081,     0.81181,     0.81281,     0.81381,     0.81481,     0.81582,\n",
+              "           0.81682,     0.81782,     0.81882,     0.81982,     0.82082,     0.82182,     0.82282,     0.82382,     0.82482,     0.82583,     0.82683,     0.82783,     0.82883,     0.82983,     0.83083,     0.83183,     0.83283,     0.83383,     0.83483,     0.83584,     0.83684,     0.83784,     0.83884,     0.83984,\n",
+              "           0.84084,     0.84184,     0.84284,     0.84384,     0.84484,     0.84585,     0.84685,     0.84785,     0.84885,     0.84985,     0.85085,     0.85185,     0.85285,     0.85385,     0.85485,     0.85586,     0.85686,     0.85786,     0.85886,     0.85986,     0.86086,     0.86186,     0.86286,     0.86386,\n",
+              "           0.86486,     0.86587,     0.86687,     0.86787,     0.86887,     0.86987,     0.87087,     0.87187,     0.87287,     0.87387,     0.87487,     0.87588,     0.87688,     0.87788,     0.87888,     0.87988,     0.88088,     0.88188,     0.88288,     0.88388,     0.88488,     0.88589,     0.88689,     0.88789,\n",
+              "           0.88889,     0.88989,     0.89089,     0.89189,     0.89289,     0.89389,     0.89489,      0.8959,      0.8969,      0.8979,      0.8989,      0.8999,      0.9009,      0.9019,      0.9029,      0.9039,      0.9049,     0.90591,     0.90691,     0.90791,     0.90891,     0.90991,     0.91091,     0.91191,\n",
+              "           0.91291,     0.91391,     0.91491,     0.91592,     0.91692,     0.91792,     0.91892,     0.91992,     0.92092,     0.92192,     0.92292,     0.92392,     0.92492,     0.92593,     0.92693,     0.92793,     0.92893,     0.92993,     0.93093,     0.93193,     0.93293,     0.93393,     0.93493,     0.93594,\n",
+              "           0.93694,     0.93794,     0.93894,     0.93994,     0.94094,     0.94194,     0.94294,     0.94394,     0.94494,     0.94595,     0.94695,     0.94795,     0.94895,     0.94995,     0.95095,     0.95195,     0.95295,     0.95395,     0.95495,     0.95596,     0.95696,     0.95796,     0.95896,     0.95996,\n",
+              "           0.96096,     0.96196,     0.96296,     0.96396,     0.96496,     0.96597,     0.96697,     0.96797,     0.96897,     0.96997,     0.97097,     0.97197,     0.97297,     0.97397,     0.97497,     0.97598,     0.97698,     0.97798,     0.97898,     0.97998,     0.98098,     0.98198,     0.98298,     0.98398,\n",
+              "           0.98498,     0.98599,     0.98699,     0.98799,     0.98899,     0.98999,     0.99099,     0.99199,     0.99299,     0.99399,     0.99499,       0.996,       0.997,       0.998,       0.999,           1]), array([[    0.11409,     0.11409,      0.1564, ...,           1,           1,           1],\n",
+              "       [    0.47826,     0.47826,     0.56623, ...,           1,           1,           1]]), 'Confidence', 'Precision'], [array([          0,    0.001001,    0.002002,    0.003003,    0.004004,    0.005005,    0.006006,    0.007007,    0.008008,    0.009009,     0.01001,    0.011011,    0.012012,    0.013013,    0.014014,    0.015015,    0.016016,    0.017017,    0.018018,    0.019019,     0.02002,    0.021021,    0.022022,    0.023023,\n",
+              "          0.024024,    0.025025,    0.026026,    0.027027,    0.028028,    0.029029,     0.03003,    0.031031,    0.032032,    0.033033,    0.034034,    0.035035,    0.036036,    0.037037,    0.038038,    0.039039,     0.04004,    0.041041,    0.042042,    0.043043,    0.044044,    0.045045,    0.046046,    0.047047,\n",
+              "          0.048048,    0.049049,     0.05005,    0.051051,    0.052052,    0.053053,    0.054054,    0.055055,    0.056056,    0.057057,    0.058058,    0.059059,     0.06006,    0.061061,    0.062062,    0.063063,    0.064064,    0.065065,    0.066066,    0.067067,    0.068068,    0.069069,     0.07007,    0.071071,\n",
+              "          0.072072,    0.073073,    0.074074,    0.075075,    0.076076,    0.077077,    0.078078,    0.079079,     0.08008,    0.081081,    0.082082,    0.083083,    0.084084,    0.085085,    0.086086,    0.087087,    0.088088,    0.089089,     0.09009,    0.091091,    0.092092,    0.093093,    0.094094,    0.095095,\n",
+              "          0.096096,    0.097097,    0.098098,    0.099099,      0.1001,      0.1011,      0.1021,      0.1031,      0.1041,     0.10511,     0.10611,     0.10711,     0.10811,     0.10911,     0.11011,     0.11111,     0.11211,     0.11311,     0.11411,     0.11512,     0.11612,     0.11712,     0.11812,     0.11912,\n",
+              "           0.12012,     0.12112,     0.12212,     0.12312,     0.12412,     0.12513,     0.12613,     0.12713,     0.12813,     0.12913,     0.13013,     0.13113,     0.13213,     0.13313,     0.13413,     0.13514,     0.13614,     0.13714,     0.13814,     0.13914,     0.14014,     0.14114,     0.14214,     0.14314,\n",
+              "           0.14414,     0.14515,     0.14615,     0.14715,     0.14815,     0.14915,     0.15015,     0.15115,     0.15215,     0.15315,     0.15415,     0.15516,     0.15616,     0.15716,     0.15816,     0.15916,     0.16016,     0.16116,     0.16216,     0.16316,     0.16416,     0.16517,     0.16617,     0.16717,\n",
+              "           0.16817,     0.16917,     0.17017,     0.17117,     0.17217,     0.17317,     0.17417,     0.17518,     0.17618,     0.17718,     0.17818,     0.17918,     0.18018,     0.18118,     0.18218,     0.18318,     0.18418,     0.18519,     0.18619,     0.18719,     0.18819,     0.18919,     0.19019,     0.19119,\n",
+              "           0.19219,     0.19319,     0.19419,      0.1952,      0.1962,      0.1972,      0.1982,      0.1992,      0.2002,      0.2012,      0.2022,      0.2032,      0.2042,     0.20521,     0.20621,     0.20721,     0.20821,     0.20921,     0.21021,     0.21121,     0.21221,     0.21321,     0.21421,     0.21522,\n",
+              "           0.21622,     0.21722,     0.21822,     0.21922,     0.22022,     0.22122,     0.22222,     0.22322,     0.22422,     0.22523,     0.22623,     0.22723,     0.22823,     0.22923,     0.23023,     0.23123,     0.23223,     0.23323,     0.23423,     0.23524,     0.23624,     0.23724,     0.23824,     0.23924,\n",
+              "           0.24024,     0.24124,     0.24224,     0.24324,     0.24424,     0.24525,     0.24625,     0.24725,     0.24825,     0.24925,     0.25025,     0.25125,     0.25225,     0.25325,     0.25425,     0.25526,     0.25626,     0.25726,     0.25826,     0.25926,     0.26026,     0.26126,     0.26226,     0.26326,\n",
+              "           0.26426,     0.26527,     0.26627,     0.26727,     0.26827,     0.26927,     0.27027,     0.27127,     0.27227,     0.27327,     0.27427,     0.27528,     0.27628,     0.27728,     0.27828,     0.27928,     0.28028,     0.28128,     0.28228,     0.28328,     0.28428,     0.28529,     0.28629,     0.28729,\n",
+              "           0.28829,     0.28929,     0.29029,     0.29129,     0.29229,     0.29329,     0.29429,      0.2953,      0.2963,      0.2973,      0.2983,      0.2993,      0.3003,      0.3013,      0.3023,      0.3033,      0.3043,     0.30531,     0.30631,     0.30731,     0.30831,     0.30931,     0.31031,     0.31131,\n",
+              "           0.31231,     0.31331,     0.31431,     0.31532,     0.31632,     0.31732,     0.31832,     0.31932,     0.32032,     0.32132,     0.32232,     0.32332,     0.32432,     0.32533,     0.32633,     0.32733,     0.32833,     0.32933,     0.33033,     0.33133,     0.33233,     0.33333,     0.33433,     0.33534,\n",
+              "           0.33634,     0.33734,     0.33834,     0.33934,     0.34034,     0.34134,     0.34234,     0.34334,     0.34434,     0.34535,     0.34635,     0.34735,     0.34835,     0.34935,     0.35035,     0.35135,     0.35235,     0.35335,     0.35435,     0.35536,     0.35636,     0.35736,     0.35836,     0.35936,\n",
+              "           0.36036,     0.36136,     0.36236,     0.36336,     0.36436,     0.36537,     0.36637,     0.36737,     0.36837,     0.36937,     0.37037,     0.37137,     0.37237,     0.37337,     0.37437,     0.37538,     0.37638,     0.37738,     0.37838,     0.37938,     0.38038,     0.38138,     0.38238,     0.38338,\n",
+              "           0.38438,     0.38539,     0.38639,     0.38739,     0.38839,     0.38939,     0.39039,     0.39139,     0.39239,     0.39339,     0.39439,      0.3954,      0.3964,      0.3974,      0.3984,      0.3994,      0.4004,      0.4014,      0.4024,      0.4034,      0.4044,     0.40541,     0.40641,     0.40741,\n",
+              "           0.40841,     0.40941,     0.41041,     0.41141,     0.41241,     0.41341,     0.41441,     0.41542,     0.41642,     0.41742,     0.41842,     0.41942,     0.42042,     0.42142,     0.42242,     0.42342,     0.42442,     0.42543,     0.42643,     0.42743,     0.42843,     0.42943,     0.43043,     0.43143,\n",
+              "           0.43243,     0.43343,     0.43443,     0.43544,     0.43644,     0.43744,     0.43844,     0.43944,     0.44044,     0.44144,     0.44244,     0.44344,     0.44444,     0.44545,     0.44645,     0.44745,     0.44845,     0.44945,     0.45045,     0.45145,     0.45245,     0.45345,     0.45445,     0.45546,\n",
+              "           0.45646,     0.45746,     0.45846,     0.45946,     0.46046,     0.46146,     0.46246,     0.46346,     0.46446,     0.46547,     0.46647,     0.46747,     0.46847,     0.46947,     0.47047,     0.47147,     0.47247,     0.47347,     0.47447,     0.47548,     0.47648,     0.47748,     0.47848,     0.47948,\n",
+              "           0.48048,     0.48148,     0.48248,     0.48348,     0.48448,     0.48549,     0.48649,     0.48749,     0.48849,     0.48949,     0.49049,     0.49149,     0.49249,     0.49349,     0.49449,      0.4955,      0.4965,      0.4975,      0.4985,      0.4995,      0.5005,      0.5015,      0.5025,      0.5035,\n",
+              "            0.5045,     0.50551,     0.50651,     0.50751,     0.50851,     0.50951,     0.51051,     0.51151,     0.51251,     0.51351,     0.51451,     0.51552,     0.51652,     0.51752,     0.51852,     0.51952,     0.52052,     0.52152,     0.52252,     0.52352,     0.52452,     0.52553,     0.52653,     0.52753,\n",
+              "           0.52853,     0.52953,     0.53053,     0.53153,     0.53253,     0.53353,     0.53453,     0.53554,     0.53654,     0.53754,     0.53854,     0.53954,     0.54054,     0.54154,     0.54254,     0.54354,     0.54454,     0.54555,     0.54655,     0.54755,     0.54855,     0.54955,     0.55055,     0.55155,\n",
+              "           0.55255,     0.55355,     0.55455,     0.55556,     0.55656,     0.55756,     0.55856,     0.55956,     0.56056,     0.56156,     0.56256,     0.56356,     0.56456,     0.56557,     0.56657,     0.56757,     0.56857,     0.56957,     0.57057,     0.57157,     0.57257,     0.57357,     0.57457,     0.57558,\n",
+              "           0.57658,     0.57758,     0.57858,     0.57958,     0.58058,     0.58158,     0.58258,     0.58358,     0.58458,     0.58559,     0.58659,     0.58759,     0.58859,     0.58959,     0.59059,     0.59159,     0.59259,     0.59359,     0.59459,      0.5956,      0.5966,      0.5976,      0.5986,      0.5996,\n",
+              "            0.6006,      0.6016,      0.6026,      0.6036,      0.6046,     0.60561,     0.60661,     0.60761,     0.60861,     0.60961,     0.61061,     0.61161,     0.61261,     0.61361,     0.61461,     0.61562,     0.61662,     0.61762,     0.61862,     0.61962,     0.62062,     0.62162,     0.62262,     0.62362,\n",
+              "           0.62462,     0.62563,     0.62663,     0.62763,     0.62863,     0.62963,     0.63063,     0.63163,     0.63263,     0.63363,     0.63463,     0.63564,     0.63664,     0.63764,     0.63864,     0.63964,     0.64064,     0.64164,     0.64264,     0.64364,     0.64464,     0.64565,     0.64665,     0.64765,\n",
+              "           0.64865,     0.64965,     0.65065,     0.65165,     0.65265,     0.65365,     0.65465,     0.65566,     0.65666,     0.65766,     0.65866,     0.65966,     0.66066,     0.66166,     0.66266,     0.66366,     0.66466,     0.66567,     0.66667,     0.66767,     0.66867,     0.66967,     0.67067,     0.67167,\n",
+              "           0.67267,     0.67367,     0.67467,     0.67568,     0.67668,     0.67768,     0.67868,     0.67968,     0.68068,     0.68168,     0.68268,     0.68368,     0.68468,     0.68569,     0.68669,     0.68769,     0.68869,     0.68969,     0.69069,     0.69169,     0.69269,     0.69369,     0.69469,      0.6957,\n",
+              "            0.6967,      0.6977,      0.6987,      0.6997,      0.7007,      0.7017,      0.7027,      0.7037,      0.7047,     0.70571,     0.70671,     0.70771,     0.70871,     0.70971,     0.71071,     0.71171,     0.71271,     0.71371,     0.71471,     0.71572,     0.71672,     0.71772,     0.71872,     0.71972,\n",
+              "           0.72072,     0.72172,     0.72272,     0.72372,     0.72472,     0.72573,     0.72673,     0.72773,     0.72873,     0.72973,     0.73073,     0.73173,     0.73273,     0.73373,     0.73473,     0.73574,     0.73674,     0.73774,     0.73874,     0.73974,     0.74074,     0.74174,     0.74274,     0.74374,\n",
+              "           0.74474,     0.74575,     0.74675,     0.74775,     0.74875,     0.74975,     0.75075,     0.75175,     0.75275,     0.75375,     0.75475,     0.75576,     0.75676,     0.75776,     0.75876,     0.75976,     0.76076,     0.76176,     0.76276,     0.76376,     0.76476,     0.76577,     0.76677,     0.76777,\n",
+              "           0.76877,     0.76977,     0.77077,     0.77177,     0.77277,     0.77377,     0.77477,     0.77578,     0.77678,     0.77778,     0.77878,     0.77978,     0.78078,     0.78178,     0.78278,     0.78378,     0.78478,     0.78579,     0.78679,     0.78779,     0.78879,     0.78979,     0.79079,     0.79179,\n",
+              "           0.79279,     0.79379,     0.79479,      0.7958,      0.7968,      0.7978,      0.7988,      0.7998,      0.8008,      0.8018,      0.8028,      0.8038,      0.8048,     0.80581,     0.80681,     0.80781,     0.80881,     0.80981,     0.81081,     0.81181,     0.81281,     0.81381,     0.81481,     0.81582,\n",
+              "           0.81682,     0.81782,     0.81882,     0.81982,     0.82082,     0.82182,     0.82282,     0.82382,     0.82482,     0.82583,     0.82683,     0.82783,     0.82883,     0.82983,     0.83083,     0.83183,     0.83283,     0.83383,     0.83483,     0.83584,     0.83684,     0.83784,     0.83884,     0.83984,\n",
+              "           0.84084,     0.84184,     0.84284,     0.84384,     0.84484,     0.84585,     0.84685,     0.84785,     0.84885,     0.84985,     0.85085,     0.85185,     0.85285,     0.85385,     0.85485,     0.85586,     0.85686,     0.85786,     0.85886,     0.85986,     0.86086,     0.86186,     0.86286,     0.86386,\n",
+              "           0.86486,     0.86587,     0.86687,     0.86787,     0.86887,     0.86987,     0.87087,     0.87187,     0.87287,     0.87387,     0.87487,     0.87588,     0.87688,     0.87788,     0.87888,     0.87988,     0.88088,     0.88188,     0.88288,     0.88388,     0.88488,     0.88589,     0.88689,     0.88789,\n",
+              "           0.88889,     0.88989,     0.89089,     0.89189,     0.89289,     0.89389,     0.89489,      0.8959,      0.8969,      0.8979,      0.8989,      0.8999,      0.9009,      0.9019,      0.9029,      0.9039,      0.9049,     0.90591,     0.90691,     0.90791,     0.90891,     0.90991,     0.91091,     0.91191,\n",
+              "           0.91291,     0.91391,     0.91491,     0.91592,     0.91692,     0.91792,     0.91892,     0.91992,     0.92092,     0.92192,     0.92292,     0.92392,     0.92492,     0.92593,     0.92693,     0.92793,     0.92893,     0.92993,     0.93093,     0.93193,     0.93293,     0.93393,     0.93493,     0.93594,\n",
+              "           0.93694,     0.93794,     0.93894,     0.93994,     0.94094,     0.94194,     0.94294,     0.94394,     0.94494,     0.94595,     0.94695,     0.94795,     0.94895,     0.94995,     0.95095,     0.95195,     0.95295,     0.95395,     0.95495,     0.95596,     0.95696,     0.95796,     0.95896,     0.95996,\n",
+              "           0.96096,     0.96196,     0.96296,     0.96396,     0.96496,     0.96597,     0.96697,     0.96797,     0.96897,     0.96997,     0.97097,     0.97197,     0.97297,     0.97397,     0.97497,     0.97598,     0.97698,     0.97798,     0.97898,     0.97998,     0.98098,     0.98198,     0.98298,     0.98398,\n",
+              "           0.98498,     0.98599,     0.98699,     0.98799,     0.98899,     0.98999,     0.99099,     0.99199,     0.99299,     0.99399,     0.99499,       0.996,       0.997,       0.998,       0.999,           1]), array([[          1,           1,           1, ...,           0,           0,           0],\n",
+              "       [     0.9918,      0.9918,      0.9918, ...,           0,           0,           0]]), 'Confidence', 'Recall']]\n",
+              "fitness: np.float64(0.8033924789666338)\n",
+              "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']\n",
+              "maps: array([     0.7087,     0.89085])\n",
+              "names: {0: 'kettle', 1: 'teapot'}\n",
+              "plot: True\n",
+              "results_dict: {'metrics/precision(B)': np.float64(0.8055972010864378), 'metrics/recall(B)': np.float64(0.8617328954841008), 'metrics/mAP50(B)': np.float64(0.8359362210577036), 'metrics/mAP50-95(B)': np.float64(0.7997765076231815), 'fitness': np.float64(0.8033924789666338)}\n",
+              "save_dir: WindowsPath('c:/Users/maxch/Desktop/aimm/runs/detect/train')\n",
+              "speed: {'preprocess': 0.3013267791528496, 'inference': 4.441570034987635, 'loss': 0.0, 'postprocess': 1.9155354808560379}\n",
+              "task: 'detect'"
+            ]
+          },
+          "execution_count": 7,
+          "metadata": {},
+          "output_type": "execute_result"
+        }
+      ],
+      "source": [
+        "model.train(data=f\"{HOME}/dataset/data.yaml\", device=\"cuda\", batch=16, epochs=50)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 16,
+      "metadata": {},
+      "outputs": [
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "\n",
+            "image 1/1 c:\\Users\\maxch\\Desktop\\aimm\\lab-2\\dataset\\train\\0002.jpg: 640x640 1 teapot, 37.9ms\n",
+            "Speed: 4.0ms preprocess, 37.9ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n"
+          ]
+        },
+        {
+          "data": {
+            "text/plain": [
+              "<Figure size 640x480 with 1 Axes>"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "from ultralytics import YOLO\n",
+        "import matplotlib.pyplot as plt\n",
+        "import cv2\n",
+        "model_path = f\"{HOME}/../runs/detect/train/weights/best.pt\"\n",
+        "dataset_dir = f\"{HOME}/dataset/\" # путь к папке с вашим датасетом\n",
+        "model = YOLO(model_path)\n",
+        "results = model.predict(dataset_dir+\"train/0002.jpg\")\n",
+        "result = results[0]\n",
+        "res_plotted = result.plot()\n",
+        "plt.imshow(cv2.cvtColor(res_plotted, cv2.COLOR_BGR2RGB))\n",
+        "plt.axis('off')\n",
+        "plt.show()"
       ]
     }
   ],
@@ -1253,7 +3156,8 @@
       "provenance": []
     },
     "kernelspec": {
-      "display_name": "Python 3",
+      "display_name": ".venv",
+      "language": "python",
       "name": "python3"
     },
     "language_info": {
@@ -1266,7 +3170,7 @@
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
-      "version": "3.12.7"
+      "version": "3.10.11"
     },
     "widgets": {
       "application/vnd.jupyter.widget-state+json": {
-- 
GitLab