diff --git a/lab-2/task.ipynb b/lab-2/task.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..d35c9a1a6dba89a60c833e4b5e33cdc1d27bdd66 --- /dev/null +++ b/lab-2/task.ipynb @@ -0,0 +1,3180 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "collapsed_sections": [ + "vwDYkl7ryBTh", + "QzLmjk4qxRdf", + "B_mnKWXPNJII", + "H5rEvL50i7t1", + "gcmVT76ajBrs", + "IX1oDHsyQqAh", + "BsuvgJyljQsz", + "UoOLJxAOjRA5", + "KFbFPUSQY2jz", + "VLtSyZivsO8D", + "0piosJd6TLAD", + "jgKxU3psRA5q" + ], + "gpuType": "T4" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Суть задания\n", + "\n", + "\n", + "1. Собрать Рё подготовить датасет\n", + "2. Обучить нейронную сеть\n", + "3. Проверить работу нейронной сети\n", + "\n", + "Примерное время выполнения - 8-10 часов.\n", + "\n", + "Дедлайн: 24 октября РІ 23:59\n", + "\n", + "## Оценивание\n", + "\n", + "Задание:\n", + "\n", + "Часть работы | Стоимость РІ баллах\n", + "-------------|------------------\n", + "Датасет СЃ Kaggle/Roboflow + дообучение РґРѕ метрики mAP50>=0.8. **Можно сдать без защиты**. | 5\n", + "Самостоятельно размеченный датасет | 2\n", + "Настроенный трекинг экспериментов | 1\n", + "Предразметка датасета СЃ помощью фундаментальной модели | 2\n", + "Ртого | 10 баллов\n", + "\n", + "Формула оценивания всей работы:\n", + "\n", + "Рћ = Задание * 0.9 + Тест РЅР° лекции * 0.1\n", + "\n" + ], + "metadata": { + "id": "vwDYkl7ryBTh" + } + }, + { + "cell_type": "markdown", + "source": [ + "# 0 Подготовка системы\n" + ], + "metadata": { + "id": "POn5x1ZeRFBe" + } + }, + { + "cell_type": "markdown", + "source": [ + "## OpenCV.\n", + "Достаточно установить через pip модуль opencv-python." + ], + "metadata": { + "id": "QzLmjk4qxRdf" + } + }, + { + "cell_type": "code", + "source": [ + "!python -m pip install opencv-python" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zct7-A-6Nwtr", + "outputId": "04e3cfe2-b307-425f-aca8-66fd0a9b2caf" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: opencv-python in /usr/local/lib/python3.10/dist-packages (4.10.0.84)\n", + "Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.10/dist-packages (from opencv-python) (1.26.4)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Ultralytics\n", + "Ultralytics - компания-разработчик нескольких версий архитектуры YOLO Рё одноимённого модуля РЅР° языке Python, упрощающего работу СЃ моделями данного семейства. Низкоуровневые абстракции глубокого обучения модуль заимствует РёР· PyTorch.\n", + "Установка:" + ], + "metadata": { + "id": "B_mnKWXPNJII" + } + }, + { + "cell_type": "code", + "source": [ + "!python -m pip install ultralytics" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VtdlaBtfNKnY", + "outputId": "a7356279-3f89-4153-d6af-c14323a40501" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting ultralytics\n", + " Downloading ultralytics-8.3.6-py3-none-any.whl.metadata (34 kB)\n", + "Requirement already satisfied: numpy>=1.23.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (1.26.4)\n", + "Requirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (3.7.1)\n", + "Requirement already satisfied: opencv-python>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (4.10.0.84)\n", + "Requirement already satisfied: pillow>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (10.4.0)\n", + "Requirement already satisfied: pyyaml>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (6.0.2)\n", + "Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (2.32.3)\n", + "Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (1.13.1)\n", + "Requirement already satisfied: torch>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (2.4.1+cu121)\n", + "Requirement already satisfied: torchvision>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (0.19.1+cu121)\n", + "Requirement already satisfied: tqdm>=4.64.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (4.66.5)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from ultralytics) (5.9.5)\n", + "Requirement already satisfied: py-cpuinfo in /usr/local/lib/python3.10/dist-packages (from ultralytics) (9.0.0)\n", + "Requirement already satisfied: pandas>=1.1.4 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (2.2.2)\n", + "Requirement already satisfied: seaborn>=0.11.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (0.13.1)\n", + "Collecting ultralytics-thop>=2.0.0 (from ultralytics)\n", + " Downloading ultralytics_thop-2.0.9-py3-none-any.whl.metadata (9.3 kB)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.3.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (4.54.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.4.7)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (24.1)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (3.1.4)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1.4->ultralytics) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1.4->ultralytics) (2024.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics) (2.2.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics) (2024.8.30)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (3.16.1)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (4.12.2)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (1.13.3)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (3.3)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (3.1.4)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (2024.6.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.16.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.8.0->ultralytics) (2.1.5)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.8.0->ultralytics) (1.3.0)\n", + "Downloading ultralytics-8.3.6-py3-none-any.whl (882 kB)\n", + "\u001b[2K \u001b[90mв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓв”Ѓ\u001b[0m \u001b[32m882.0/882.0 kB\u001b[0m \u001b[31m20.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading ultralytics_thop-2.0.9-py3-none-any.whl (26 kB)\n", + "Installing collected packages: ultralytics-thop, ultralytics\n", + "Successfully installed ultralytics-8.3.6 ultralytics-thop-2.0.9\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "РџРѕ моему опыту, установка данного модуля РїРѕ непонятным причинам может поставить модули PyTorch, собранные без поддержки CUDA (фреймворк Nvidia для аппаратного ускорения вычислений), поэтому нужно после установки этого модуля СЏРІРЅРѕ установить пакеты СЃ поддержкой CUDA." + ], + "metadata": { + "id": "oB49R5R_NPWA" + } + }, + { + "cell_type": "code", + "source": [ + "!python -c \"import torch; print(torch.cuda.is_available())\" # Проверка доступности CUDA" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LrV3A_ZDObwJ", + "outputId": "3c080ef2-648f-4012-e76b-df9ea7b7166c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "True\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Если предыдущая команда выдала False:" + ], + "metadata": { + "id": "X67d-HhsO5rN" + } + }, + { + "cell_type": "code", + "source": [ + "!nvcc -V ## проверяем присутствующую РІ системе версию CUDA" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "nhIrpf1DNQJu", + "outputId": "e53570ed-46eb-4f7b-89f2-509c38ccb864" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "nvcc: NVIDIA (R) Cuda compiler driver\n", + "Copyright (c) 2005-2023 NVIDIA Corporation\n", + "Built on Tue_Aug_15_22:02:13_PDT_2023\n", + "Cuda compilation tools, release 12.2, V12.2.140\n", + "Build cuda_12.2.r12.2/compiler.33191640_0\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# цифры РІ конце - версия CUDA без точки\n", + "!pip3 install -U torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu122" + ], + "metadata": { + "id": "aylozNHjPRuE", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2172b099-4478-4631-a902-223e002dff32" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Looking in indexes: https://download.pytorch.org/whl/cu122\n", + "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.4.1+cu121)\n", + "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (0.19.1+cu121)\n", + "Requirement already satisfied: torchaudio in /usr/local/lib/python3.10/dist-packages (2.4.1+cu121)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.16.1)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch) (4.12.2)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch) (1.13.3)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.3)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.4)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch) (2024.6.1)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchvision) (1.26.4)\n", + "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision) (10.4.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.5)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch) (1.3.0)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# 1 Собираем датасет" + ], + "metadata": { + "id": "H5rEvL50i7t1" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1.1 Выбор объекта\n", + "Прежде всего вам нужно выбрать объект, РЅР° который РІС‹ будете обучать СЃРІРѕР№ классификатор. Самый простой вариант - выбрать какой-то двухмерный объект: логотип, вывеску, дорожный знак. Рто хороший вариант, если РІС‹ собираете датасет РёР· РїРѕРёСЃРєРѕРІРѕР№ выдачи РІ Рнтернете. \\\n", + "Если РІС‹ собираете датасет самостоятельно, то выберите какой-РЅРёР±СѓРґСЊ достаточно уникальный объект - РјСЏРіРєСѓСЋ игрушку, сувенирную фигурку, канцелярскую принадлежность Рё С‚.Рї. \\\n", + "Главное требование РїСЂРё выборе объекта - выбирайте класс, которого нет РІ датасете COCO (Common Objects in Context). [РЎРїРёСЃРѕРє 80 классов датасета COCO](https://gist.github.com/AruniRC/7b3dadd004da04c80198557db5da4bda). Р—Р° игнорирование этого требования РїСЂРё проверке будет сниматься 2 балла.\n", + "\n", + "https://cocodataset.org/#explore\n" + ], + "metadata": { + "id": "gcmVT76ajBrs" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1.2 РЎР±РѕСЂ картинок" + ], + "metadata": { + "id": "IX1oDHsyQqAh" + } + }, + { + "cell_type": "markdown", + "source": [ + "Соберите РјРёРЅРёРјСѓРј 300 изображений вашего объекта. Больше - лучше, РЅРѕ изображения должны различаться между СЃРѕР±РѕР№, так что РІСЂСЏРґ ли Сѓ вас получится собрать больше 1000 разнообразных изображений.\n", + "Также используйте следующие рекомендации РїРѕ составлению датасета:\n", + "1. Лучше сделать разные лейблы для подклассов - позже РёС… можно будет объединить РІ РѕРґРёРЅ, Р° РІРѕС‚ для разделения понадобится размечать заново. Если РІС‹ уверены, что РЅРµ захотите позже включить разные подклассы вашего объекта РІ датасет, можете этот РїСѓРЅРєС‚ проигнорировать.\n", + "2. Очерчивающие прямоугольники должны лучше рисовать вплотную Рє границам объекта - РјС‹ же РЅРµ хотим, чтобы вместе СЃ объектом модель запоминала ещё Рё конкретный фон. РќРѕ Рё обрезать кусочки объекта прямоугольник РЅРµ должен.\n", + "3. Отмечать РІСЃРµ экземпляры нужного объекта, присутствующие РЅР° изображении.\n", + "4. Отмечать заслонённые объекты так, как будто РѕРЅРё РІРёРґРЅС‹ полностью.\n", + "5. РќРµ допускайте обрезания очерчивающим прямоугольником частей объектов.\n", + "6. Если РІС‹ размечаете РЅРµ РІ одиночку - делайте чёткие инструкции Рѕ том, как следует разметить данный датасет.\n", + "7. Пользуйтесь хорошим инструментом - важны возможность экспорта Рё импорта разных форматов аннотации, возможность совместной разметки, удобные горячие клавиши для более быстрой разметки.\n", + "8. Для РѕРґРЅРѕРіРѕ класса необходимо РјРёРЅРёРјСѓРј 100 изображений, РЅРѕ для хорошего результата нужно хотя Р±С‹ 300~500.\n", + "9. Датасет должен быть сбалансирован. Объекты разных классов Рё экземпляры РѕРґРЅРѕРіРѕ класса, РЅРѕ РІ разных условиях, должны быть представлены РІ одинаковых пропорциях. Р’ РёРЅРѕРј случае модель РїСЂРё обучении научится лучше работать СЃ теми классами/условиями, которых РІ датасете больше.\n", + "10. Размер изображений РІ датасете желательно иметь схожий СЃ размером РІС…РѕРґРЅРѕРіРѕ тензора нейронной сети (РїРѕ умолчанию 640С…640). Однако, если РІС‹ соберёте датасет РёР· изображений РІ разрешении 4Рљ, это повлияет РЅР° скорость обучения РІ сторону её уменьшения. Отбирайте РІ датасет изображений СЃ разрешением РІ диапазоне РѕС‚ разрешения РІС…РѕРґР° сети РґРѕ РІРґРІРѕРµ большего значения. Р’ случае СЃР±РѕСЂР° датасета самостоятельно выберите разрешение камеры 720СЂ или проведите постобработку изображений перед использованием РёС… для обучения." + ], + "metadata": { + "id": "7_N_dwd0jj0Q" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "### 1.2.1 РЎРїРѕСЃРѕР± СЃР±РѕСЂР° картинок первый: интернет\n" + ], + "metadata": { + "id": "BsuvgJyljQsz" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "Гуглим изобрежния выбранного вами объекта, скачиваем, используя расширение для браузера, скачивающее РІСЃРµ изображения РЅР° странице - например, Fatkun. \\\n", + "РљСЂРѕРјРµ того, РІС‹ можете воспользоваться сервисами Kaggle, Roboflow или любым РґСЂСѓРіРёРј, РіРґРµ найдёте готовый размеченный датасет РїРѕРґ выбранный вами класс." + ], + "metadata": { + "id": "Meibg7SJMiYu" + } + }, + { + "cell_type": "markdown", + "source": [ + "### 1.2.2 РЎРїРѕСЃРѕР± СЃР±РѕСЂР° картинок второй: веб-камера/видео\n", + "\n" + ], + "metadata": { + "id": "UoOLJxAOjRA5" + } + }, + { + "cell_type": "markdown", + "source": [ + "РЎ помощью утилиты [`createData.py`](https://github.com/murtazahassan/OpenCV-Python-Tutorials-and-Projects/blob/master/Intermediate/Custom%20Object%20Detection/createData.py) Рё веб-камеры СЃ кабелем (встроенная РІ ноутбук будет РЅРµ очень СѓРґРѕР±РЅР°) можно нагенерировать СЃРЅРёРјРєРѕРІ объекта.\\\n", + "РљСЂРѕРјРµ того, можно снять видео объекта РЅР° телефон Рё извлечь изображения объекта РёР· видеофайла. Для этого нужно слегка отредактировав РєРѕРґ утилиты Рё заменить ID камеры РЅР° 22 строке РЅР° путь Рє вашему видео." + ], + "metadata": { + "id": "zfjI3baIMlKL" + } + }, + { + "cell_type": "markdown", + "source": [ + "* Почему нужна веб-камера СЃ кабелем: лучше всего делать СЃРЅРёРјРєРё, поставив предмет РЅР° стол Рё РѕСЃРІРѕР±РѕРґРёРІ пространство РІРѕРєСЂСѓРі него Рё располагая камеру СЃ разных сторон предмета Рё РїРѕРґ разными углами. Делать это СЃ помощью ноутбука будет РЅРµ очень СѓРґРѕР±РЅРѕ. \\\n", + "Р’ случае, если достать такую камеру РЅРµ получается, РІС‹ можете снять видео СЃ объектом РЅР° телефон, поместить его РЅР° СЃРІРѕР№ компьютер Рё указать путь Рє видеофайлу РІ РєРѕРґРµ программы. Путь нужно положить РІ переменную cameraNo РІ createData.py. РўРѕРіРґР° вместо изображения СЃ веб-камеры РЅР° РІС…РѕРґ программы Р±СѓРґСѓС‚ поступать кадры РёР· видео СЃ объектов, Р° нам того Рё надо.\n", + "\n", + "**Если Сѓ вас РЅРµ сохранилось РЅРё РѕРґРЅРѕРіРѕ изображения - возможно, изображение СЃ вашей веб-камеры кажется скрипту слишком размытым. Да, РѕРЅ отфильтровывает слишком размытые изображения. Р’С‹ можете скорректировать данный механизм, изменив значение переменной minBlur РЅР° 11 строке РІ РєРѕРґРµ скрипта РЅР° меньшее либо СЃРЅСЏРІ менее размытое видео.**\n" + ], + "metadata": { + "id": "AgmjkOjTjRNj" + } + }, + { + "cell_type": "markdown", + "source": [ + "# 2 Размечаем СЃРІРѕР№ датасет (2 балла)" + ], + "metadata": { + "id": "KFbFPUSQY2jz" + } + }, + { + "cell_type": "markdown", + "source": [ + "РќР° выбор предлагаются различные инструменты для разметки датасетов.\n", + "### LabelImg\n", + "Приложение, устанавливаемое РЅР° ваш компьютер. Примитивное, РЅРѕ как раз РїРѕРґ нашу задачу.\n", + "### LabelStudio\n", + "Веб-приложение, устанавливаемое РЅР° ваш компьютер. Открывается РІ браузере. Немного перегруженное РёР·-Р·Р° универсальности, РЅРѕ РІ целом СѓРґРѕР±РЅРѕРµ.\n", + "### MakeSense.ai\n", + "Онлайновое веб-приложение, РїРѕ функциям близкое Рє LabelImg. Открывается РІ браузере.\n", + "### CVAT.ai\n", + "Ещё РѕРґРёРЅ веб-сервис разметки датасетов для компьютерного зрения.\n", + "### Roboflow\n", + "Платформа для интегрированной разработки моделей компьютерного зрения, РІ том числе включающая инструмент для разметки датасетов.\n", + "\n", + "[Пример размеченного датасета РІ формате YOLOv8](https://drive.google.com/file/d/1KrGmRRpP_rS5uujQletShsmFJhUHvbdb/view?usp=sharing)" + ], + "metadata": { + "id": "Ff9DeEIVisa5" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Формат разметки\n", + "РЈ аннотаций есть разные форматы. РњС‹ обучаем YOLOv8, так что Рё формат нам нужен YOLOv8. Ркспортируйте аннотации РІ нём. Проблема РІ том, что полностью этот формат поддерживает только Roboflow. остальные сервисы Рё приложения обычно поддерживают только старый формат, использовавшийся РґРѕ YOLOv3 включительно.\n", + "[РЎРєСЂРёРїС‚ для конвертации PascalVOC РІ YOLO](https://gist.github.com/Amir22010/a99f18ca19112bc7db0872a36a03a1ec), если РІС‹ захотите разметить РІ формате PascalVOC, Р° потом уже сконвертировать РІ YOLO." + ], + "metadata": { + "id": "VLtSyZivsO8D" + } + }, + { + "cell_type": "markdown", + "source": [ + "Обычный формат разметки YOLO представляет СЃРѕР±РѕР№ .txt файлы СЃ именем, соответствующим имени изображения РёР· датасета. Содержимое файла выглядит РІРѕС‚ так:\n", + "```\n", + "1 0.589869281 0.490361446 0.326797386 0.527710843\n", + "0 0.323529412 0.585542169 0.189542484 0.351807229\n", + "```\n", + "Вам нужно создать РІРѕС‚ такую иерархию файлов Рё папок:\n" + ], + "metadata": { + "id": "PPA9WPYdd8y8" + } + }, + { + "cell_type": "markdown", + "source": [ + "" + ], + "metadata": { + "id": "V_eHbSU6g6gA" + } + }, + { + "cell_type": "markdown", + "source": [ + "Р’ train будет лежать обучающая выборка, РІ val - валидационная. Разделите ваши размеченные файлы РІ отношении 8:2 (80% РІ обучающую, 20% РІ валидационную). Р’ папках images Рё labels лежат изображения Рё разметка соотвественно." + ], + "metadata": { + "id": "v2wZlsvog_MC" + } + }, + { + "cell_type": "markdown", + "source": [ + "Наконец, создайте .yaml файл СЃ описанием датасета (именно этот файл добавили Ultralytics). Его содержимое должно иметь такую структуру:\n", + "```\n", + "train: ../train/images\n", + "val: ../val/images\n", + "\n", + "nc: 2\n", + "names: ['cat','dog']\n", + "```\n", + "* train - путь Рє папке СЃ обучающей выборкой\n", + "* val - путь Рє валидационной выборке\n", + "* nСЃ - количество классов\n", + "* names - имена классов\n", + "\n", + "Положите его РІ корневую папку датасета (data РЅР° приведённом выше изображении)." + ], + "metadata": { + "id": "Zbf9DLVThYx8" + } + }, + { + "cell_type": "markdown", + "source": [ + "Удобнее всего РёР· Google Colab получать доступ Рє датасету, разместив его РЅР° вашем Google Drive. Подключим окружение колаба Рє вашему РґРёСЃРєСѓ:" + ], + "metadata": { + "id": "EdZBv6xFinhr" + } + }, + { + "cell_type": "code", + "source": [ + "from google.colab import drive\n", + "\n", + "drive.mount('/content/gdrive/', force_remount=True)" + ], + "metadata": { + "id": "Jb4QI6AIg0GY" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "# 3 Пример инференса" + ], + "metadata": { + "id": "0piosJd6TLAD" + } + }, + { + "cell_type": "markdown", + "source": [ + "Скачаем тестовое изображение." + ], + "metadata": { + "id": "45GxKf0MPT5n" + } + }, + { + "cell_type": "code", + "source": [ + "!wget https://www.freecodecamp.org/news/content/images/2023/04/cat_dog.jpg ./" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "CaEf1sesT-HD", + "outputId": "1aca094d-8656-4365-a258-1d58b94f2ae1" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2024-10-07 00:08:45-- https://www.freecodecamp.org/news/content/images/2023/04/cat_dog.jpg\n", + "Resolving www.freecodecamp.org (www.freecodecamp.org)... 104.26.2.33, 172.67.70.149, 104.26.3.33, ...\n", + "Connecting to www.freecodecamp.org (www.freecodecamp.org)|104.26.2.33|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 30246 (30K) [image/jpeg]\n", + "Saving to: вЂcat_dog.jpg’\n", + "\n", + "\rcat_dog.jpg 0%[ ] 0 --.-KB/s \rcat_dog.jpg 100%[===================>] 29.54K --.-KB/s in 0.009s \n", + "\n", + "2024-10-07 00:08:45 (3.37 MB/s) - вЂcat_dog.jpg’ saved [30246/30246]\n", + "\n", + "--2024-10-07 00:08:45-- http://./\n", + "Resolving . (.)... failed: No address associated with hostname.\n", + "wget: unable to resolve host address вЂ.’\n", + "FINISHED --2024-10-07 00:08:45--\n", + "Total wall clock time: 0.2s\n", + "Downloaded: 1 files, 30K in 0.009s (3.37 MB/s)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Рмпортируем фреймворк Ultralytics:" + ], + "metadata": { + "id": "g2DK86_YPXF4" + } + }, + { + "cell_type": "code", + "source": [ + "from ultralytics import YOLO" + ], + "metadata": { + "id": "Ii5VZNi4TSo_", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "3b6a95a6-75b8-4737-c237-a47cad9fb0f9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Creating new Ultralytics Settings v0.0.6 file вњ… \n", + "View Ultralytics Settings with 'yolo settings' or at '/root/.config/Ultralytics/settings.json'\n", + "Update Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. For help see https://docs.ultralytics.com/quickstart/#ultralytics-settings.\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Рнициализируем модель YOLOv8 nano Рё РїРѕРїСЂРѕСЃРёРј её сделать предсказания РЅР° нашем тестовом изображении:" + ], + "metadata": { + "id": "A4qsF_kLPqVv" + } + }, + { + "cell_type": "code", + "source": [ + "model = YOLO(\"yolov8n.pt\") # берём модель размера nano\n", + "results = model.predict(\"cat_dog.jpg\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PlioakN5TbRw", + "outputId": "eeb33fb7-45a2-4b17-d15b-5b6c36a7a759" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov8n.pt to 'yolov8n.pt'...\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 6.25M/6.25M [00:00<00:00, 131MB/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "image 1/1 /content/cat_dog.jpg: 448x640 2 dogs, 37.5ms\n", + "Speed: 12.0ms preprocess, 37.5ms inference, 769.5ms postprocess per image at shape (1, 3, 448, 640)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Посмотрим внимательнее РЅР° результаты:" + ], + "metadata": { + "id": "cyS-vK_YQawr" + } + }, + { + "cell_type": "code", + "source": [ + "result = results[0]\n", + "for box in result.boxes:\n", + " cords = box.xyxy[0].tolist()\n", + " class_id = box.cls[0].item()\n", + " conf = box.conf[0].item()\n", + " print(\"РўРёРї объекта:\", result.names[class_id])\n", + " print(\"Координаты:\", cords)\n", + " print(\"Вероятность:\", conf)\n", + " print(\"-----\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1PPtA1s2UJL3", + "outputId": "9b4805b8-e926-4a0f-c040-22ca5eb8b8a7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "РўРёРї объекта: dog\n", + "Координаты: [261.67706298828125, 94.85230255126953, 460.23492431640625, 311.433837890625]\n", + "Вероятность: 0.9177809953689575\n", + "-----\n", + "РўРёРї объекта: dog\n", + "Координаты: [140.64706420898438, 169.28466796875, 254.20408630371094, 316.7077331542969]\n", + "Вероятность: 0.41258516907691956\n", + "-----\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "import cv2\n", + "res_plotted = result.plot() # Функция, которая Р·Р° нас нарисует предсказания модели РЅР° РёСЃС…РѕРґРЅРѕРј изображении. РќСѓ РЅРµ чудо ли?\n", + "plt.imshow(cv2.cvtColor(res_plotted, cv2.COLOR_BGR2RGB))\n", + "plt.axis('off')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 373 + }, + "id": "TBuWG3jJXoPd", + "outputId": "fdb3c82a-7847-4910-b73b-44284241f5d6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFkCAYAAAC9wjgoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9abCubXYWhl3rvp99ztf99age1K15QrQEkUQiIYEEikFGOBbBYJfBSRWVqoBxmaq4Esflcn7ZTioFseNybOMk5g9U4cRVJg4EzCDCJCFAA0JoRrO61fPc/U3n7Pe+V36s61prPe/e39fnYIh/6Dzd+9tnv8Pz3MMarjXe5u6OZ9ez69n17Hp2PbueXb9qr/Hf9wCeXc+uZ9ez69n17Hp2/fd7PQMDz65n17Pr2fXsenb9Kr+egYFn17Pr2fXsenY9u36VX8/AwLPr2fXsenY9u55dv8qvZ2Dg2fXsenY9u55dz65f5dczMPDsenY9u55dz65n16/y6xkYeHY9u55dz65n17PrV/n1DAw8u55dz65n17Pr2fWr/HoGBp5dz65n17Pr2fXs+lV+HU/6we/8jncCcMwBHDfAg4cDNzcDN8fAHAMGw16Ox48XHr1yi8eXCx492rjshcvlAt+A2cgfwDD4b3fA3bE3cLnd2Nux1sblsrD3hrvBEN8BDGYDcx6Yc2JO4ObYeO65A8+97gYPHww8fDDw3M3EHAMThmMcmOPA8AnAsN3xaC+4aXYbgANwbF8AHGb8e29sX9jYcGw8vlxwe3HsZbhcPMc7BnBjjgc3Aw8Ow8NjYh4OH44xPMZ6MzAPgw0HzAHbwNgYAxgDsGExFl+AOcxixjCDGTDcYDCYHYAP+Db4BjYWtl/gBmw37D3jxw23j2MtfXnsAQyHDRiA+C9gZogdBMyAwwbGGJg2YGZwd/haWO64XDz3CxrbiM+ZGTAs/21msBFztJhIfQ6odbYNID7jtoABkETi+XnPeJ67Y+2F7do3w9Ac+J1pmhv4bIfB89lmDhuATQem8/4ezxzn+bkb9nb+HNj7Bs6/14rfvmNF4QPuhvh6/B7bMEXDbnAfwA66f/ToMeCFynN9bGNO4DgMYy6MecE8Fo4HjjEvOG4cx43hOAbGQNATVqylD96LvOaGtTx5DG6kKQu6sw0bwBgLY+7YM2yMMWJuDvgeMJun9dP6AkiaWBcAmDFHjzXZGLhcNtbeWAvYF8O6GNZlwNfAvnWsFfJjO0jjhuWO7cGH7k65MYJO3HHdO9VsYxwOHDvX0XkPD+LPf+u+AOA24ruwWAcD+c8xDDiO4NtjWKyzG2xpL/00FncDHPD4T/yNeH9OiVvj2hiGS/7tEAkj+D72BfCxYi+mYQzu1xEyZQyHDcOcQbeOBbjjsEl5GWsSfBS8YmPXvo/ij3lsDMqlMUbjG22wka4tx7/WbvN38oxjTMOcxmd5yDts3usAMM8b19aDQiDvt3zA9w2f7fC1sdbG2kHLDsdlOy5743Zv7L2xfOB2PcBlHXh063j5lQteetnxyiPD5fHA48fAo5c31m0Ma9/GXDYWHKSRrT0kvaf+qTXxYIw2D9GUJW1dXw5gU46FuGyycnt+Ku4tGgL25mc4kgGDuUZlMB+U47rFhG3Lsfx/vvfn7h1Pv54YDNh9r3lNBlsKfWPthbXWWWk0xXO+qxZO7wdjSqjH5+3etZWCGGNgjMnfAhyTysgwjwOHHTAf2BenEnmVy4PhvZACCQPYvlMpFPMD7iuE7Bwcj2EOCunhmDPAwBgDwxwGEhwA2wYPsoubmcFje0EExeWJ10FSwDb4NuwNbAfWtoA0blgO7LWxfeD28W2MbQdBxxgmlScIAVCKFI5pA8O0ljEOdwO2YZtji1hRe2QlPfpiFlHz/r37dfwtwIOmQD3pzfO/XHMzrhaBgNWnrqk0QYANKhhPmgnBSFAGJL1JsW4gac8H52axM0Pv82fD4BYKN56HWgsqtyHlaLGO/uryos2EgMWa4nL9BgWFaFE0m7Ai1xUEAe4BHt21XyPWcvAzXNaRCl7Az3JftI/nwfp5C1LRChQVaINonfPr/9ukMz6Fwq/oTN+Xkr9fKvmdV62/6iXgc5W3w0kXvgCnAhvmwJz8HPkuGd/aXpRyCP3gqbySbl3Ezo1v34GHPJC6GSFOAThBQc3ILHh15IikAJoScu5JrrSA7dXfuGZZu1obb+sucBFyBwLPfG1vjVjLvGMSw4G969l2rUD1rCbr8/GUlXbJtXcLAjVOd3s8ZsOwfIQs9IHbW8dlLdw+3nj8aOP20cbtY8O6ONZlJIgH5e+GA6P21GaBkpIZObkcIk5TuY8ez9dG7K8MvS42bWgBm77je2NQ+VvMXcCgxoSrf2+4aT9fQ9C064nBwKtfsYkbgcr6j2SCYZTEv/fSKmjhZbU0JNp+JMzjZ1yBAP3E943vwag4QVR5Ekp1eWOmADeORaF72cC6OPa6FgJC9KOAyRyYI16fAxiT1jO/YB5C2NxT4MEMbiGYQm5MwoJ4f3mw/oABPmiZAu4jQcF2w3YLC4yWvHhxGDBJicNGeBpIicNQwmjE2k2L10OWxdg0B7NQgLIwRd26X8fISGXlMMx6cZwJtSwRWnJ6jovOJHD1/jUIkBpBKn4IBMBOtBVvLXiDWDDQO+NBO/n8AAl7GLYZ9uJ0V6Map0A00nNuaYzNCKYKC10zaVduYVGNwddO9F5W2HYLp8o17Z74jEpZYOD0fMppBD0OlGyzAQKIUG41l7bWdnf83esTVviCY3DMBmHD3ea7T0qq7akRUKci5y+XJ8mSB7uwtlyDs7ypMXjqTGjOxYJxrw04Qb1vgu++QpxH/uhlDysOTvDeQMPOBzVAkIAr/hz8HQI/nuik31p20SwBPQHnCfRof3IJin5iaTz5TR6CtoLtd9/TQblEj9cYcN/5702CkdwcA1yYvq+r/VtDC29vgg4BSkOgs9yc2KBQmgQHbgEEzOMHhr0H1jKsW+DyOLy3t7cbl/RILeooKxKOBS8Z5NrkUtynNdTX5v2Rds/vdz4PQyKNEfJ2UJal0WlOYyHp2zEaMBsEAkZyNAcwgo7kXHBSa4LPJ7j+O4MBeQP2EgCIBRwY8L2E65Hjeo3LKIzNu9AuSycXGOUO7q6WkRBLj4y/wwUE+DLsCz0XVxZKwbyyegEP4LBCsK3mFi6C2aE458CchjEm5hwcU4xtGDAtiLx5f+g5G/BdVu6WwCXDuja+CQMH6KYG9grhs/cBRwic5SAYANalLO0Q8A43ByYCNCWxN0XK38GeMS433SMUUCjN8LwYuSU8pBJcMdCNADsSIvoEgLiPlGXBYi6tp0wQQWvdnAJCys/aXsf3S9HomQIqHQzk/ksSy5oyuWkHH23BZM51MQ+Bz8faBkMwoykIpxwUM26Ee5RCz890VnRIQBGL00JKqPGR9nwDbkb1ZMUjtK7jj84/8h6QV8yAseHbMEbQ00AIV3OjsC8vWK6wNZUmspSAs/7sGHsIubTxi449bDLtWYF8gTW0fat1xbbUp1bSHP0SJfc93qmoUPOymG/Jay+a38AtnHJtYg95JYCp/fNa1wgRGGlDezG4z9fu5JiQ8IG7MzxB5cyPTHpzzIJvtxMwbHEsPQrmdNA49skLL5pRmICfTTrTfozTMtrVmro8GykhQBvOcmrBawOOXYDAapwnOj9dog7ta3vfHO63IbygsOUIvnDwzhZhUAODuQOeYCGEoW8DFrBXGFCxpyNAOkTL8o4KizQ5MvrY9e9ROqcGHGPa3dy8ps16XfJlABki6583lGSWLhyokIF7h9Xi77i/2zUYee3rqcCAIQiR3u94oG8qJIfvDdsizoGIYXUXi1TMazzD9COF75omUuOciKoRrBZSSsNigW/3hu9F17pc9FdgoPgzX6s4cf+Je8Rn48MBBAbmEYDg7NYr95eR6bc7hU6tS7nINSVDokd+JsITAwsO2yNAyiYYuIxwl7ljbWBtpBCT2eI7chgCzY9aOgfoprh3XU0gbEiZUwkjYpYnC1GKvK3BasrEqIWD6YLUTy4zWAgmuxagGtpuSoTqRRAZDpk5ygFIWeekIKv1TKXJWY2dk2UOhZ+Esy0gjESnx6TGF3MeDN0EneyIncEyRhqCpLve28SaskdTjhuGjXIBNKWe+Qfe3itLtOYnvqnn+hj5mXg9ltDNYpKj7pVGGpjjQ0VCewbiTliEVDzDSTG0UA4THjNJr5wLVFjod58O7OTiWI9RXp28xoYlmDrzWvO1prxaAmgEyD3MF3xcjnZYwtD43w7lupfjGCRc8oKRX2XR+daaieVq/ULwd6HsVAKUV05gl94ARDSQ2t9RckcIYpjlv0WjGvuJtKw98+p3ekKarDGX+uFX6ckUvtPijUEg1WRhTo37mrQjuc2chevLU9nJ1JUiW/yZYGJLjCtDYgQgkq3D4T4xxsROGUGIm7JgBzvJSEJY4hlizzUi1c/uje4LWt6V/nkgPIivpoOH6MCdeVvxnTGKbhJ0NSSetm4CNsOuocQ+jJ17tK/p4HNcTwwGLreXcHvPQWGHUPQNQ9a/uYijkmxEGDlwiZFalxI+vKF+A1RkEMiI+L3UuVDoXht+RALXWjs3e2BS2FVC1DZvCYQcFAWF5hCxeLTkp1C020XoxRRzGEME5TaXMgor0UIRJ84LwndT6IBCZJTgc9/hosS+WgzLPViL997MFXDD2pthA0v3pUnbcr3cPeVmKPedKFRubkfFoytmGODnWrk6dzS3uAOufG4TDgbMKWuKX5KwS8IgJYkfxHh8UfE8dwmYsvxzRF6KIdxuDahY7INJGl/RsegAqaNjjYYZY5fIsWvInmDUcz0SfOUahIXn2+mCd+zIPEBPYjSZh8aYIV9Tgleh7HK/yxLVvqW11qy6ExByrfEI61Pywx171brHus58nn7SWlfkWuvYANmmcgjgSl71oLPQZ0GL4dakRDQAttoUGWajl2a4cmSkNLhJO1YToxREhgX4EWt0sR0YNuNeWxTrSYy+qeS3w8eMEJoZLpvua5eiM659AIfKt0jqY9hHdC2+KfoXnYeLnXS0mUNkwZ3yBAUPUaY4qMkG7XKQzpvANaQ8Chrrnph4uJtGavl60U0BKG+MmpxGL64x3ypeE8O3fIKTR6zkBwCstRD5YuJP8kQmIDpsG7ZtKOEwxpwDD3lAweYIEJOAxx3YBPJjiKVxyiWSp3IUADCrz3TlKsOm5qZ3KqOo58wphwRw2GnPDdie71uHCN1Vod0kONsntHGFPJp+ehVMcud6cjDw+BZ2E8zgVDYRt6mFu7bjOhg4ZdzyP67daN6CWA4ypXjMwezfkBXgZ7ZABiJhzlcoz70dl8uGD5Q7lKI58gWAU9JTW7K9u5KJEMPtZeFyu0KI5ye9iGgM2FCOwjlkIcW0wiWRgjXcaa4dT1wpB33qw90FO3P+mRewU6nQ40Gvh/IHQpk7kXaFLsL62fCzqVHCgAS/Xd4LKcpSttcEttEsSAKBsmUFYvSe5sOtYegiY+SydMPFhBMHaqAJXcqSS28AlHleDHEHCICWFSYcYWnS796Aq6eVhPRGWBM+5dp13p8Ge6pLgYIitopbq1KGKYhQhUmvbODQE3DGv1FelA5WqGBL6AQtCTDVXthpr4BQsiFkNHDRjoRt+55XZrVoKNVCKr++Z6RVAeoV8x4cmxIzbZSHLG4nCtJ8gs8mVKlwtvJdQkWWLAoACJH0QFh8PrwrAVY2wZkUWyjcRe+bDwLhadhCSi0MI4DVwxCVdGnk/2vOOcsJ7Zsgg0KS4QKnJ01u5WEEAaxAsMEYgvdbh3Kxs0V+GocB7gvw0SzdK56TPPb6+9q7VTklO3SDwq67PrZ2Weh9PGVYldEhD0HIHeS6BODTewQ2/E6sA4EAAlyMCczhBJeGOSbsMFa+BM2nN8YqBA2zvL/WTMrZapBJ9h10jiH+aAof8RCxdtKHe/CUaxCccwM5HXXIMC4ev9opyq8M4d35xP3XU+cM9GSVfG07lvIFIouN69dDAhSNLgbsAquI1wadjxle4OfsrLiAmQSiMUnga2MU2g/kQjc7BZOve1zQkGsdtOYCVFwumxY4nz7OGaah/Ku8LgnGDCXOOA8SwvYdSiMT1fQ5K+tG6wU0qQbIvyoiC8US1RtRCllK1wyRRGk4lSdhABsr1o/jiDGPE6iLLaBiTQV1D3kxUWjrc95mncqDSqNMoBBSLKdyCcuByL5vngJrexsMWNnNI61ohGDIxCV9/yx0rq1kJYaJIcOYcSYwWwLDqAJwAFLiBSxwD4K/s0S+qShm5hNcJ+WFDNq5diIOfaysdMQmtlBHZHrXkPoc6xltLYBwtybxGWkICYiM+iZyS+KNYQPerFxPT1J7ro8EhE0sNGsdWBKEoilDuUVBYCXLTkKZDxmz5lMjsVwjksKJT8KbwDEz1gofuKyNpWTMBPGj8WTE3TYsw4BHltNyHzQWDyW5N4U2183NaOGWoWE5v7sCPSmCiYvWt2+TD1eA0YnB0BXlrtLVvS0CwdS9oTfeNwCDcgeoZGnxBzgMr2sY/O0ZwyPPL4FuV4IK38kAoXxAD+NJ2TZL2opOKrmQCdWmUmJgmmNhY0LBOA98NIE5HePYmGvjOBzHBPbkcx2wFr2LQMKGAONQfF5jMvJKwklOfVg6pkqX06PkQV/dG2Iu3kACA62V7p+8RPiXdJzEXKGn/HeXceSlHoh+kuspwEAx7ol4dzFtJhDiLl45eQdSGPO+XAAglFIqHevfj88mIekhw1H1zxTuO2JHShpwlSy5Ma7nVITXl2WYQAp2XTb2ZWd8PhP6BhBWl+p9m8XGygJZ5t6kkma+ZA0DSdwhHMLzIgpQ8t/p+0ksIBGEla9cCK0qDBm2mDPGFyg5iGj5BTZGWFoBqVOgL67HUIKNg/FBMkbbvb6NOdSOZJN4kfQRDEZr1R22nevmqRDMQGCIBASKg7kbMGaCr2EroMaVK++snK2NoWjOBSQNKB0vJhxhf2jcrL/zLaadCY2TQRsPSNYJXIbnimmVbnQHi6a80U/zPCUgkNUyGh8aquSNngMUHSRAPcfEcm2033sTJEohjk1eOMeVYcqniBm6Ei/pDvEWeJXXKr1XKQO0pxpzB/4Ss0hPWll+jvLcaAzjBBrk8ejGQe19KERZ/5HSYdiXoHdjvDa8LxMwr3wD3xiIaiIbDp/NE3gVIkllqLCDhwJS4nnwtAClFB7SKEjgx1g49qYoc72RazRGgKoxkf0RDh8Es9Y8PS1HSNqm5agYyiMlOQZjcjZlaRly3B7QKyfZ7CXn9xaglXyKjdnpbfIEbhEK4D139Ldwokh3IBZOrvOi48G/D3PsEUmd8bQNHBvjsnDMhTUd8+DP3sBlRi5vKuGYy1hcM1Q2Ql7kiwTPBkQHDUEtGQ0O2MDCThqXxyCfp33N15o8amDYgABgKJlYxgxO631vLt49IPO1ricHA9tTsIBCN/qbkMHlpu+Tb8K3GESvd21PYYJwgcnJvN2ZHSrhpliUhLbdmbSsEDFRCARtzKCwwt1eAw4oEQVANpTpP3uHwhxUFtEs6JwrMISkgUyQSnc9pCQL1ET+Acv/zOAWZS+ydEctIwoV9vvTJTY2RiMwyVV5AsYYAQSmMslLcAp8pSW39cho/CJP0KuQ3Oe8Yu/tipBL4cPZV8IdcmfmPm8DpiypXcDKvDKBueaDMWaRRukBvwIIbVHdKpGNiN4A+Iz7WyouKwGVEMhSGMSYKfh1d69BZF7L1nqUZwPGBKdhbNQCgkvP8JOqVQogSOU117rG0azN+uyrXca6cQbspLCWsRQu1s8U9zVgmiworm3uo8bied+cr57VVi+vITHfgAAqBp2ufWaUyyMSSxAJzCoxHEqWbTkuYeQG9aYXUeDM+dmNbDRTFntYkFvJgHxvuOHWa19UjlpzxwmYx9xq1soEL9V2n3eg6FNhQyDGuEckZoPhwDHDiDEp74UsjQVXDKzSuhML1GqNeMpAq04wg9nOkGdwHr2sQMrq60v0mMaQwAINx2JuUO5QAadr3VNJull47EwhZ9OXoJUZBhzm8AEs31jD4HNjHgtzL8wNHAu4uQm5bh6NiUxeNeqE2XSSkr2Fu2KoQmox/m0MNnFO5Q3xQJcKYaXeoxw8KX6CY3QxlQwDYOVnHWcwAIzs74DrfbD79+a1ricGA93A6nFXtAGqKY/X0vU7oBhG9xAIiPdjst2CKJR5ylZtzw7Guh6rZxx6K6HFERYBhfA6LVRHt+FJ2Hvjslb87OhNYDvIBbNiilmCNiR4qYyoxVemeRCUULqEB4QbphiYKSOhwICRcbsLzdBQIUJojRmEOTwU+KTFBISsLeBijMu1MAqF3w5JE88jeLJcG4TF2gReX0HHHXIsXNIQrFyn5SNRqIACm5aJwkQ+do4nyqt2fEcJZ5MY3oqRU8p0VNRpgwsYjzPIHerWXNNJM6BFINq0GnsCGgmpUmS1GCUpgiyjvjkQqyzLsC6zVFZeptwvO+2dpxVnp2dVEqUnIDiFrk6gFDkuJSoqDFbdNwt4Jf8y/wRj5OcqGQ2nMaVS2JIGlp93r2Bj8EwPl5Eu0EGPOpcO3rMSMutZuhRdl+fDEjzE9pOOm5XrHiW+4n+QrzpAGTQAohQxxjWiAQXknQMswQHadwOwF7jJ9SrKrJ/0AGnNEq0WeCFjJXDh/DYAozd0eN19ZHJoo9MEBp4yywZBabryleFvIQ9M3gCD+qCUbPa2D1fS38/PDHAvkO8pn20WoAwPrmGwyZEAkDoNGcAwCZJ3Q0Y57AivTiRVR1O2CwGuaGmBLn52CB22I+k65VQZsammGzgFwYczvOAJzAeTg5HGadJogoG2bhRJ6oppJzDAeSZwrbXcMnJRGCVlIdfuaa4n9wyYFBb/dlNVCyccDK4sfcm7jkJr7sWE8PwQ4glE9gkEahGMr5dbUfGoukUHDZtUJ8+AY0CdYuTAqnHFX6og2IttLhdwYelkL98Vs9ooV3wYLAPO5jThfJKi2DVvN0TznQICUuxg98VUhp13yczpXUAoMoxwXQ7uw2zKNtdrOF1+iCQjKjhgZM6Re8wz5PWoZZXS0/YLEIgmQGZsQKFhXOYDejKFsssVYhpAxugVAlGp1DZgbApwZfpw66W4kwAacN/1sfiKcwcakE1llLRYSszEsPzUlmID0gpV1cXdJ+p9KeAeR23Ws0kRk+5tw0fEPEe2paULuHmhdqNxPiGFawKTV5MDjehFb07lCbapFtFtzVOhgNzeQeUzSK8CpYZqXyie12ZL2ZdbPYFuvu75W6CmAM7V8KFmNyRPLv9W/bl5ZuLHcJyhndiP0r2K7wYPLoYDU0HKC0KUn89nxpkzBBCiZrfvCXh5jZserOQrA7Lsl39mmOC0X9fggrX8SaMiLsqZppjUi0LVTK92BR9XFjwkW/i6+0TlyjhkqXfAwx04zdlzdrXkWs+gWco6rpzAt+Zty+DZDdAiMTTdl5bem/AQUH7CMA4mrRIA3CzD5SZ6DACej1jDgMWclzVgO3q0OHar9hHxaY1FX0heLO8Hf0vmKXeAQy5dIzoMOhlA0su1RW+QDov1lq5olFU8LJ032no/4fXEYGAcAxhR1+jDsIfhkTvsEsS83LFt49Y2FhYz9h9gregbvS9AuEbLFV+uYi+FCsdaC5fLwqPbFZnHKAGy9sJhjmmGYxrmUDzIYBOwSaWPKAfsEHK7zjpYuBmTlDhDFLM2fF1iLuvikVi0gvlgUbIXffsr9GDK3nYynRmWDSb5jrSEleUdYGdG9QPKCol1sFzjtAyU4WvlRgOVvZsHg/sFyxa1dXUohDFzNq2r+M5yYPjE8Ci5XIuNlRLNdsEQY1Gv/8uFyXaDrmNbgAHHMSFLy7dFTfeO9qAXFmKfwICH8IxeTEwCpDAL93zs23CCrRmKER7ZwcdQXwc1eXKY3SAdTij5uKV88j9BIVH5TkttUAllOOAIzxIFrcd2wvdIutUcfKt0cDLmOJiQ5AQhhrUt+u97706wgb0xD2CwvzyGww6DHcA4HOMIwTZmxHy3OcY8mrUvq0HP8uwhsLWP7kwQHQmoU1PQEoxV2VmlEkruaHX5ogXDsYGhcIbGkYpjXXkt4t+bnTCHK0u/7hmJYGBLcQl4hzxAmdnvgPsl+pqA1RXs2U6vLAEVoJbPjgGbE1gjzrPYRvkCbPa4d7A6ZzlDDkkoALrXr/JXQFDtxkRg27C5gh4s3p9s7AVyX7B36yHvju0rJXaEiSaGTe4TlSZH4tEVCmPLIg5iHwJbzkQ4Auv6IgfNfTf2LqjqIsDGSCDq8AxMhCrMYBiRykBWkvFH+QpqbJY9NtSEISyH8D4a0kgRIJDXJ5t56fKBdSmg1cOMOvNl8HyXg+8vGF55dMHNHPDDmCNgsIeGm2l45XbjlVcucBvAusFlGfwSY9iXFTiDKHOtAki+dp6Hki2jrSz9+64yAmjwLQd8nsKtDselgce7YKBje2+CTMCg7bWM6Y307jwpJHjyMIEJjWw4Dt4+LAMNcAtw59p4ItSdVio4iUJTpBPOxVOpiIiqbhXJJAAJhGcZxAKtRLBAKHUhJpMFbTtdziGrVT3AvgIuEKDM79qaAdD9X27Rbo06cG4CAcbpcHY3uTggFjbnYyOSHzORD4oF0gXofnq+TaFG4DqxTwkw1de+W/oiTmQN9d5KriyQpr0xsLYXg4ZfeFhc7mFTBYPBVWvtsQtLTJDhH7nHQqjoAJl0PY6yviO/twSew0NQ5n5rGT2tBO2JZJeAQc9DCDLjwTROadbf5NxT8FhjUdfqom5++nzQUzaD2p59IHJttQYW4apIpopwiRoaVRIhUmBrfF7+jgTQOWGSVrdK20Jdvca10Ksc39YhWNA8CIBk1c6Rz1E3uwIUDJ/xedeevVwr1Dgz0GcCZ0hrO++f8wQCx9NShAGXPrWBZSsBp/o5ZL7GZojBy6UdMkpygLTXw04SapyToXnyOA8bMfb+GmD128/k5Wj7Qw+IDKI8QIigo2ZuzCNpiZXM5ZBiDxlZiryUh9eP1XPB+8RHrU3Zz7TU6Fw/8kihzSVpwrXHVPg5ZxSv8bdw6QnAxKwQMoK0Rfmp5wW/r5Jx5L+BKCV0Z/+XGWD7ID3MHYeAqS29ObCVU6G7S57lc+X9rt0D7JQwe7pSz1XIISht5Kf96vfp351WNO/TY+K51cr7egz33f21ryc/qMjODwsZKuIvwXn6THO/lYtEVozlAoELD9D1ckq0SknIn11M0xRyOYQriXHtBcfCnEwNSRhMJSvht6OZ0GUBt5c6NXH7ynmF9WoZfzf+VJMhrYsyaVF85/IAlJBWprFilHKXgVjGOnRszGdbLuTRGmPQvpXg4f9GuvIaQydf03OyLZjCm+BOjw1d5JY4NK1aCW3nEy+a8m59DvbOFrB13zaeRqiiDeMfXVj2g2CUrKmfiomLTtu97JpBzmsa3pXk2ysGlBu9CX4/v593IZ1ulrB6AoEAlFGnjgRCm/QvQVu3PecGhMXTDoxKWoj9q0H7ad76XL12d+5FDMZQVTx/K5HOgcsqEBuJpASm7sh+CKqAkBcCVABKOBSfJ/lJySOtwh5/8uaO1yE93SrPMMsY2CsApM++Z4YshXV5vHbzfIkem1KTBy+FtkItCllwd0z8DqiUNpU4rXopgCK92KM0SK52IEVY5oiwOongp8Bx0OJQflAHi2xZXWupv4UovH5nPlIPZ+lipUXg9KCyrbEwLqfyxFRQUsIxnrMeaJ+/tlCd3C7AAatI24nGASXb9pWzBOgFWrRHxvUccJ78GYAWNsIzihEn4jIMmFVm67w/ooPwFgksFpA1ANWr5XydZE+CKUPJEYLlDsSSIgrwaBntnmcE2LSrNa/3ngYIAE/bjri5JoEzMV9/xoyhg8Z8MeYqq+iKEQgXmieCB5M5UItvFifu8YRCY7//atCiOlZWIrCH/cbOhDiNfFPKJRC47DiSmGAgrLti+HTxjYj7jVNog3clEOgJZUNz1J5LKCZIasQlxcRkOoENZBEPG3aYwcbmMaFxX1Uj5DohgIux0GxvjxPZdhBwdCdc8D2wmNS2XXvBdWVnP6YUxv8iQ6lkzOgax9PLsLcSssBwjbw9lfRyoh8Kr3D1et6z81QI3pHxcx1CNWg9dWF7rQhNZhbXPtkthaY1RRWwR/sDCh59t7sqaxYEgRQea0X4JdzRQLUpZuzPHSrg1zizKiKVAmPMd4C4X62LXhNo6q9dg4R+I4Oy7sEl3w4exGUFXpY+a8CIBFXVzQ/SqWmv+OxsDuZoTVJqQ3XWhebdeQSwDEfHniP1jjL7AbABmqV1jJOhAVYBLR6PrGOcrYXuuD77Wok1pWJ2B5SMAZhClIMVOjOsvvjy+V7KUTBMKP6rtal9DxqtKhK+OXYpHds5lhGJNFCfjvAmVS5VJQDKu8TjhK2UqTwuXV6lcsn10C4JDBS9Z+6MNfryricUBpg551a7m5sqgHcmcz1/oShFD9Ad/PR60ro5xojw8mRZ4eEeHtcBPIDh9jJwccMkvcfZUt68gNXUTTlO6h8BGl5Ww2lrlZtaa6Vch6bSqRVqCgJEfJe7FCSA175OXqx2B7967XNd/9ieAUK7HDbuDKcpPCEqb/H1Bgai81jFmTLjfNN9B0sLKZgvzgIYU/E8TwG+WTKkLE8N+/rEMTUX2hu4XDy6DF4iV0Du7Ji3EvBiglGrH2MeaRXU5GuuYp54YPeKiNd6Nmg8CxX/S9CtPgY7QU9YEZ7WRCBhgZT2m/cJgUmXPYFXnGGwy5Lf+luCUGAmxjpcVtJO0KqQixL/5EbzdI8HdWyuRT8WutalhMgGk4A6TcllmorBCAa7a7RZcInYz+uaD2m0Kc3l1r9LZ+81CGh7WN8nG5BetoDWjlMj47jUHRZsDxt4PQcJkkVvbX5jR+laA+E9X+EO+KF3rEJHOcWrqwRV9d7AyTuUCcHJi7EZQUurSstogQWthZ/XgDxLPXlJ1io/YQy6mjbM2ryGM/O+xbSNI+bn4jyUhe2DHpig48vauDgaIEMe5hUtynFa79xEq/UHyqARjc0ZoHPOyF+Js0iA48ZwHFKADmRL3nZ3kZobjyzXgW56A3zmZjdThkUyYZZKg8o8wiTK2ZEHxZNXvHkt+GBk7lRqMNG8Bip3PPchOxt6ArsYb8vgZdOyTlYZjmN3RIHSmGoTlGkc6NZ+3hI9I70b/FZl+xa9dPAlWTHCeBrDcDPZjn44tkX+zjwcxyUSTuOzumsAZEfxdWyVQYcbSZ4PszD2epa35pYWf/lScXpGvVZQ2Zq8kSDr7/frcyn6pwMCwD+GZ0CXZM3dAbSJnYAAyiJrcXLdLP/O+KohrUii25MLdaqmX0QU1ueGs/XpoutO3bvUDz3GobPT9wYumyWEyxuBcruywQtQlU2mcFZkzkiQ8TkSolE3P9patPVrQjitOuOJcaPi24PjNvf0BAgI+GBG7TAczXIxM0xjpzjRKgm0HxcbqLcj4BhjkmoD/rQFsp7ZUYdsRNpIJE8qJLTbnkPukLzbq1+iq8okl6AtQNBj6UmSpth7bd9dJXimWk+qoWXVmRhd4d/HjkXf8VCe0qnW0EvxdiDPt2eooDO4GumoVGtwP4eRtKyO5E6XZArOysrvybjdrvBckLvjj7kpzyPQgCnE4yiQkAmEzF0hEJbFc2LgXPTRnlOWe7xCChvhbRAdnbHi/RKG25EhmL0CwOvckLU2wzKOvXQ+gUHlwicC0WhM+rjkVwEBC1kz2a+DLvqbB8A8jCeVhqcuwn0Ryqpwg+jYANEBW/VGmIq+O1qOGboabFGt/7KkVsAhkvU8f58aVHXFL69JykgpTyl2KZ+WXKre/wIOJy9BJyaupzU6q8y6TOAsikR7Jvfc2+8Tgm9kMO7j5XsukzqNtQo5MrJccmDzDJmd1ToKd56e13+f6PA89piUrP0COQDS6Lq+Yh3uypN8xSz1iG7nV0/oEy6dfPWu484zPtf1dO2Iu3WyI6U1LW9uZD/2NNe3geDzrmoynjSn44L1XhyBWTsUllO4UFVy5bZJAkxwsmDaHC+42A0MLGbOXy4bt7eLLYers9wpW9simz6sgxDWkwKiPA+yxiqGs6GT8Cpupk50e1eyXaJkVhyo87IEbbnBR3glUgBQaaKUZGZjGwBf1MPS6nG/ze3bCdRKfSRibWsFL+t+a0ENJbwFYjVvR3ocrJ5+ohMAtfenD4hMIoN+SgiPJnhb4lOGmrxoRAL+/BoH2phMtNKPyYYDaghVn7fTPVj9nGOXko+T+UZUUWTey4x9ZiVBLdooEGIhUCIEFspS4kHZ1ZbKn0evooFIxLpk/5GrPRR+iPVH8qdvx7rU9wLEWu7fah4PeNMPMGCwy50x8UotlLdXZYaex+z13IoEUfHv7lHYcLLKQL7qbdzMxYgE38FQQBxyc2mGRHkLxI/kZ01CLAGw+yWgQ5BO/GQVBsgOntNwTHpuxsaYTKzVPZVn0kBfKIdZf3NOwoJrOGx59paQqIyS0xp/hURifsamb9c6QTJCHQRPyaiCiY3v7oY4NM6uUppidEccJQ6OLd0S+nUF3PlM9NwPJeB1OZQSCGqRDn4+Qx8gjzoSgKX3VuQJVgKB3pThGa5UYyUdOmW8Z50pUQmnXTidveNy/Z+PC+pr9WrK+A7e0N/K98gF6P+0k4y9Dxrc/5Qnv576COO0UCjY+gADTQ8odt74PRlSgsAdmQwmYe4eMT59T81xIkwAqOXvmEZU7pgHoC0ZaEwz1Kmay8L/0ADCZQP7srEuaizEsqLMXwimj21giILKaEo5ZXORtvCaJ5DKM87fGblmvqUUQjilu1hrybEONdwZwJkoqSxHrJFyCTK5ycLzYe7MAzjQ3V3yuJy9Nrr3mchkye6UklSC8nR0kKyKgcwTMQJ7b0t0vr8UodZR9lHlBxTImVM5IqcRUvCIUngvCr2iz/P61T8MKSWNmfUn158F6DiNe2Z4ppQUFfUeqZB8SRlWJz65SrO7XoJJQDUgpawtrXT1iBBPCG1L6MY9qRgkSVJud8UMdGt/s6wUVN9byjqTHkUbyt8pgZW9IKTrrWi56IffaTlkuR/ktQV50cJSloUcuQIOa67ZTMpcEtrlgYky5AN1cqPDm0CPg9M68QXPCQgYHHlgkzxNjOErj8OG00uwAgiMyB0Q/2m9yxomUNXatP1OoIPAUhtMeGT4z7WfVhTS91VyM19Psm6eggSX17KKcfpWJZEDE2DQuPsz2vopP0pfEhsFKdiJRsYgsPX2IJY2i9aDVoLojEdXj8Z7buz+qvbIXM/RQikhT9SgSsDCKIP0PX5OCZEOYCsMUF6kfVUp0PlV67SXsm60cMVL59e45icAxrk1fnKtJf9tFi3hY7x8dBpA+Cd6PRUY0ASdAgNp7vMy4ZezokEKEwml8yKfF0y3IoOR+OcxcBwDxwEcN8CcG+MYJ8LXrVygow1cgGAhUN/tJRjvsgyXpaONdxtGKOqJOoQIMxoK+TRggM1hZCki2z54Zwjnmd8exLxd5XJ347SRJOTA3CGEuI7mkQOQMf+pRCaLRCYcVTNMaARvVQ3sbYDcGyswcmf97eo3mjDAWVgUUeT69gY7ooNdX6IsO0FekQdOsX80HZ1+3Pq7hwkyXgtZmTVYB/LQket5gWNryewppPdaNbnOwHTjLweUqBaeAGCvib0iy33T4t4XzwRCV202aXVvuv+zv4NlGeJeUpDBAzosKHvyD4RbXyeDQnva/GgJgip8UyCwXOjxPoU3QzxwhxHQO+eqfY5jdDeG0XqyXLW03s4EU/SRWKGFCnUwGTxKwjaTWFfIbigmrLFvHRrmCsdojVkarBAC1zyT2fbOjRavGAaOg2u3esa45gOG5QxVQUEL3RYUwlH+znmg3AsP+bQoC7ZkFASeQnosftaZ7DsYkjN+X/3GTQCiL3Oj726RCyTm8udGNPm8W1Z7axqUD2r3PoEBUEGRb0P6UxkSaLnyHpwqPYE2Gk2Os7Ei8OgR01c+gZlybvU357G5NgKcxsXpmlcHBpEXVF0SBuHA7W00mVseXuOFWBNvv8/LTLmhI6SL6+LXuOc1XMk+KJQX45JzRd/pXWhHS37uYfc2wesRsufOk19P0Y44CDyF/PZo37hrAl2U16CVNOKllM9DPv0O5SrEZKkI5mEBBm6imUe4y+UiUrKRXF1Gwtd4Qwn73riQAB8/3ow3bqwLY+GMfVtjVmBAByGdSqmUOKj5agZNr0Y6V+HGtDhVi8+EsqXyp+1wc4y940StQwJzlnI3Y1WT0K/Bpp5SWco7azmt7YVJmiMRMQYZtQTyCQjkvm7Kho37pFBzaDTQJ5+NFPUZR9QLze5uSr9G0AEAYVf3iyqxEnfH9drs4FmFobXSuHWopeV/M3bTasZVOeAEAcBahnVhg6GFAAYraA1UwlUlwGevsG7WRQJOTWkU7gihM4bx2QwrjAKSulf1cfAUsNVlD6lEs3lSAsPGLwkYSjGW3CGvQOdEaJEYL7/aN4m6oA9LQIP2W8dfR1c3tqPeC2aT5+s4hLIVYluqjuHc1DBr8QTCOq8ggIXmUvSnsW/MQTE4lIwIKAkvwoJM4sVOOlRfCBiiqkUHBSHAlHnkL7E9B9LTZFpThIJSuGmHV2RbhAsuHsm0OiUxFAKAEaGc8BrKSwRkjoYrd6DySYrcC4BtrbNeGz2vQ3EhL15N46HoZe+o8S/Ppee6CmxF++YS/MMjou9LezlQ4QIdFEd5MSJBb6ecB5qIz+qJBZ2ngPa5EaAhQ0cEWQTnm8nilwtwuQUut1V6muF+hWDV1fKk3Iv2M2ugcE68RppNmeZnz0ACdYpdOSq9v+1KTzMmd1/xKtBkYd/qOl79SSHBUx9hXChImZVWA7oSyOezgKzoJa8GFHQfubVk+WaMnuEBhgZGdsADMCYtgLMF2FHU2s5QQCjdx7fRXXBfNvYldnEgrKy45aDCnTBTZ7SNayX16peYh/Oktkz3bFYzEKHqVMThsGkJvHwPlOcA5YJWYxgLq7SfiKbhlWU4cjwCR2lhSs4m39e4LTecyj2Vwt25lyfAT78DPqhbXTV07gSctCNJbSGM88hUezIkHJcAker+AccFXYjVmLkOXvMDld8JFDmlkFvGKnWnvRFx91ZGGJUE4N/hJag+G/HcqIYIAGFwLIae9gCWMeQ1VD7H38waH4PKIw8yOsd/a25IpRu04ywpLSVahqCkUPBC1/PDoZ6ikHKXEtIKA4hDguQXtvp0jMeh9sDe3MXunlUzIHQcbpgmIVxeoPh8nGgXORhG6z9GWh6vujeJCY0tGhYViqJVOwCFp1RWPJS9LzBArWMjOn7KmlPiJ7Eq96xoRMAr+YM/g4o8WgbvKItG0MrOfCCkwg1AAMo7rxm1hD/RsaGUv2Yvx41veexAwNnAgDyU3Xo7WdkCA2fvbfx4hkt0ZfhASu+OYtM+Fm2CMmMPRHtK3sPkLaHbXMYZU9giKVVGUHqHPD1Iazkut47LxXC59eg4e+Hnkke1LjGpke77vnO8Zmlya2FT08TjTvnVajlE2qDODNChzThLN3OLnFCFXtILXGPE1X1VZVf9JT739Y8RJuC/PeLRygsyKydRDkjWdBs87hBo+zwC0UGobwzYNAq88AYcNxEqmOr4tSMiFKa0rPoYrdxQC8w0vmzsveK8gUv83pcNXw6dhp1eTgqY+J9cjXIdO5zxLuCuIH7V9UuXrJKbNl2edCEj3JaB6OTzomBwEgUk2KuHNpzAvvWJr4daroXm5KSR7gU0KoO7e5MaBRKs5x3jPU/Za8U4fTSnRCd0QODtNT3O4R4dJbeHhRUlWZqPhsIYL2JCmcS4m8s3597BIhUiDiq+AjodUDXVkjOSO9igeLWXJ2DLG4AMFazs70AaN0fU5IWbf2+DLWDP+D4Yh5SSHEM75ADL0owd1mwDzs7aPVLZQUBoJ1lgSFC5u+BL4HwmANWdD97drb5TgtHbYvX3kEjTT0obqRnktm2YE+l9cocb2Gq6eCH7FuSALB9vw9iiWHyKO3M6jQ/Rj0Tx6Chzrt8DsjRFY6WAhnkVFFnLIbIAbuFBsbQSe+fIaqQVh4EVK1jQPYX/buFSVetYo/1a5NS0NcNdrnqd63HK2t/0d12HCPIBev0q1yL5RKAA2f+gX8onGKPA2BwRKhkefFL8bmw7fKZBG+VxESiSByBasBhDBIY9Sh/5jsOJ9mJ7eQL028cLt483bm9H8mwmMxIQdS+ksUtqbyIO8iGp47To93sn25qgcmnR911yxUSv8pbxUfJUmkUTPZNHUDe4km224kF2H+3ffz2dZ8ALtd0hRARuzdjlDuEVHrIB9SJ3b0QrestbeWblGvV7VAwYbG4cEzgOwzwCkMWkAR6oWZ4BueGkiraHsnLnUcsDfjH4cuyLxuF5kMc5VGZM5tFBysol99w0QOWLFXtFf/6JkKjcM9u5iN8M8gkliErwwRCGiGQ7YDsshb0dl8PTB5BClrWQkdw2GqaVkLD2ilTJNcocOf7zZ85XeCn8SiDRErxG0/kOErlmVYQEDZTMo2bxo+ingYG9d1YzWXaeWwmY3KNiRPuhp9dPhSikJME1jeFZfQW0BAGYDVo0IwCdXJ5Lr8vrU+CtVHW1wC7AYgkkzCa2bSwzjM04p9SKhZA330wgDaunH23cXYjloLH2WveaWNuaWhOHc44MyRDIFSV3DumvNTCQ4RcUjvQ6vKs8AnqP9LgNyxR3jiSyu02MBt3qfCItfPBsju2L4JBC22NWoZiFHJzryfDbGOlu7rSbVhhabhKAIoZSfJDh4wHsCd/hGBhueT5HmskJohq/u3guGndheNJmAQKClnOgPGirMEeEweTG57N9G9JJ5xJ/AnRd+DUZn6CrnuV+gRSa+NGozKzJllJ6Dh2lXCE/jZPVK4thLIEwAMeeMU/lBbARW4CQNl4CXBuj+k+4cnrC+3BZG7eXAB57TaR3+0ppKkFY8iEUc6dv8Ulfp37V/bytp5ZBq9O/mTknTUE6uKbSccRlwwC/AgCn8Zud5PuTXE8MBo7jBscxUb3xDXMMHoQTLtSIjW7sSxD+DRYuOxqB7NvNTmYHG2sE0wpG5LGpuMVxqMPgBcNY0jeBYxoe3JC4nbWjN4N7FHW+Sg4J5T8AhgbSEl7Afrwx1wHbwARbDpPworNglA2NOeBjY3l0LjG7MNw+yQ+j8bRHuOFKSEbGbeUNCACEQgvEuRsipaaBzfKG2PAw/cks4aaMNZo4gOG47Nt8djuFAIYod3MnQgaiP8FUrJJ5BxgAQw6WwhOAlHIgwco259/8E4ZygUIlZxgsl9FqBBMPU1tn47q3mCA5xd3iPgRGUWni2PsSANFHHE7lYCl1jNkkSFwMRGVJanPlS6CUk1oHhwUUoaFJrlusykhJeuCU6KO8gLUMr7x8CXpzJhFuT0EU7vENxyWFXJSr3gR2Rhyx6oiE1nUTbncbwNxWJYhjYB5RMjZZdqYOfc6zz83CVRBgyVm9skpgLyuZnyEDz/Mk4nvROfLsHgWfN1hvD4wZNdtjMp4u6NKsTZeis5VVCpFZriOya09UObAd2LZxsY1hIU+kuAwqOTZaBTuIQGfWjpkuY1Or4ZxJyC6XxQEAO/YtEnhnuvvHOEi7iy58gsRLHNI2N3DjFsnEY+FoSXBh1ceBZcuBvQZuHzO3ZC+kVxFLgifXLieKaJFezYY2jiMarvkkKBhB92OoUyIwb8ooCZ4wwHauoY0oCRyTqszCa1qgpOjbzHKscShXV1hx8qqDrCPvEmVD7avAg+GWh7+thThQa1rkbSHW6bJ0wFwo9eEhl8xCktlcLQtrYe0oKI8qmxH7DcP2gcst8Ojxxu3tBY8eD7zyiuGVxwO3txP7YlhrYK0AjcfBE3c98rxCNnug+BNY6GBQyclXYKCHqvifa3DeV/Hqy4jzdZRnE7TgN3XP+FecHHpf98z4UFS94HTW7mtfTxcm8BpIopc7CXeMnTTMNFwJpUK+gEpDzpYXygUk0EHFPEeUE6rW1/ncMcltVvfNwmkttUBvjC6YTspm18aEgjozllCEkqVSNBIEWHvhGulVjF3WSbkt12Wz499O9Kfn5Upa3UkZxekydcCXY9FtvDOjO45PDsEy0vrazS28gTxqWkB/C92btZIah+zmHuuUsi7Aq5Pu8gUqpVDC2tcraoLAAaysgKIloGeRA8Z6dTTPiBAyWEJZhOTCzS6P0Ujr6hxn9qac4jWzAR2sxclSTnJdZ+1z5HtEx0E4K5h1fmgCst7dzXK+aCCowFIw7+bmGC2hyDOI/IaxBVItzzk3E/Shd5DrVlTR9oYWQ7CMCJnEwC9p5KJ47ZboVGfenyo7mqEiuu/nwm+ui0BJaZFaq+tEuyiTLVlSIFVfK5CCIe8SwT8cw+Pwp1ikGmC67vn1kU/QGMr/WaI2iG+7wXYYAtujox1WBBHzFvT0rG0RotwAfIJnH6P8vlrsespJhqQl7lDicV0DVSZcbvvuDaokgRbmSbd40I3vmhuS55SrowkB1c49dwOxyrKeo9+/pf/I+rTumV0Ns3/MXaEEKnfG4uXw2MjtBlC9JCJZMcJEjx24vcTP5WK4XAYuKwDA3rNO58QGsEJmDkXvz7JMILyump8l0Onjr9+GwhPNWsl1sBOF9TXlf8V4o3uAUN+xktTnukWLKpkrCn6t6+mqCXJkjXBzfCorEnHbSQFUNrungo2NRHobQk5V9j5wPskrGg2xVzld82Mq2aceNsxKrp24p0443F7oPOZBZTsGW41G05vsfa85xafhrkM+a3NMFjT02abMZH3x50IviuLo1rKGc90kbPm/YTM8BRSui8mQkfeo9dOosqlmuMKWZ0zbU1lp5MhxZq+ABDESzPqk5WdS8coi8E4XRSfZ0CTXi2Am3Yk4vR+JmqMEGRSXDImwDTAeUrMpSDdbKUvZBnuEGpwHBQqVflSPRInnJrDYFz1uJZCSKg1rytPGGc7kVZ9Z1raUvS5F15jdLQCGAkxKRI1EK4GlgS5URCtZ6WAiCWdpHwWjGdRlTof8qCUEsmSxKXc/ierc/E2hnv0hUlEzZMNtyxbcJqAea6N9zVa4kJVM8JZZ46hMfwHoFJ7xvUxAa/ipyx7vr1GhjWEcI3llOxbd67alCK3ARt7HsOugUyomwifvLmLO0AfGptPW6BlqniJl8kdODxPUVgDGpM1kkycT0m23kJZ2l238t5oQYfXxUCYkn3lYvtzTDcuYfkYp+D0ZXPVcjsMV5Fun5wNIb15Nr8UsTp/t8qGAZRN+ADlxQ4qR+80z3jd/h4gicPYNYOLWHY9ugdtbCzCwwsuyGI5QKEIGkUF9ZeLZycPmcVT2KSmy/p2yPedb/JMGVMpP3VuL3JS9bmZITxaA7HtTlHKl9Hu3K0eNw9p87uKve6+n8AycCTetg1FKbEOWdTTO6AORslgexGiMhcV5G9FNMD5fdcH1WzTiaUl5mvTcKA9GXHKjJxejBsINjrfUVzs2QB6B4ziyu2ABgYjjpjKU5TxK8MedatUz2Q+AGs3kSXarhHTMqlGErE+TQuVaCxjxSdEohjcY+vFcr4G2Y64ErqB8O+1L8I9OmJRyS0VIy702s5i4K//7k7RQ+6d5XCn/WjnRkXP/Rig5eUE8SrXGGBEqcUtDpSzgGmG4aeP3UO3+RpaT7uZV1usVEKdbVkrAgDFmlHqRDodNZMc+1bkzV+bcg51gyMJlrXr0OT33ta9GKmdHdKTTZgrkmRLTOtXIa1LJjQkJ0yqvfB2BJoUFNhcwuyai0yZPLLQCSMpUrnMktGx8duZuKCSATJLNzm5tjUR7oags5chdIdbCaVnqiRa6Z4UBgr+G9lwxc5MLeVe5mTNPaVzNu8zrHKOxK2LQ5OZqjLAqPZSgxrK3Qki0vKm4zjxwTiC7e9npddlj5VnhGuyowjBDGgoKOcbhakFH2/t+GWCTlrbDcJF4PFEurulTPyQ+j7KE2jMA3sBIzY2y82qqMiZ7snmEgMQbClFy910yUXJ4nmUPZcFlDzy+BR5fotz3dkefh+UyADzvo7MJlJlTArJx2CmzvNZQ8yzl7wlOuodGOUjx2b6uDRRxMXzUvfyqMqO+0/8V36vwM9d0+D3fffXrqTwDSsaRYg6hGTH9cjlF57w5gUXFVgzGrk5jh5yHR59zoCHT7nK5WojuechSGMaCT59VvIX3cKDccxPAKksCSG/AGCNjcmPWOQj16NS6iOQeDiUBXhsD42VlJZZXIDaNFkS29AzBdJ38eWqmpBjR6Um0yD2YY1B5bI0nNaWUlIQm6JkgCHDG8VhnfR4D1zyfbCegdTcDnUpYWfcSgld7VKQ82vcQOSUWIirRLgCnN0D8s1fzYqTw688OWros5Od8MWSygcs23BIIbR5oAxj3ICTasOg4OanEHcCR9Gan0kInEMi66Xv30hL4SHhewyMH6B5lfFsuXkpSHb9N1czmV0hFL8HVKwfyBt5ed+UUtPUhLUih5NpLCCvPwwQS68f7XnENBDAzPJMlXLE3ajqs6g+YZ+a8oQ7tyYQuApkC+x7uZPZt2ED2LVC52vYSwJFQNrHUI8XDu5KiPteB9J7rb+zrgBQp2efGgoarH314HYM+Q1YMulFUzuc+cq7Jw/dcsjyR9CwaizVNnnFUDb6XMeEWIY0xlISpcxNoVJmnJpf1zRE2dUi01L0DSY9ixrYW5S7mJOrXOcFaVxzQpC6je8sLF4bhpt/KSGAOA1aMaQMEQ4hEaU7nsgyPLxblvTtCBJddYKCJQxjyPEkUxXdF7ygrvu+TY051USTAzPkWPwHeI1SveckRqLWt5PJr3cK1N32OkYT2ndPiP8H11H0G+s3lghqK424wuYsDMgmOQGJLStHDqkjl56UogiDFIMWcwPn0tlIwPa7Nz28m+jRgISIV8xw3I58zxsA8Jo6p5CG1H5X7CglhzcPCO9fd1rKc1XT9JaEsC32McKmWoPfGpCMNfeVbhHD3Fraj0jIrMGJAdr4QP8p1Tn0eNcEhgG9zraz6HOxKuehABK6/KYg4wzOx1kJcHzT0qtTkubQQA6ZAyVBMW0NZna2n+d6VdxBH68baqyvj48hWCuG9Jy2DjeUjYrprty6BscfOPJQxohxqzvgNygXjeNUad1M4nZqzaKesvZZ0KC/I6aOQq7wW3s7vGRha8zxPJsoEw8arzHE2tuJeWSpgY7Jc0ZTaDu8ECEFHUfbYxpR8sKCSVshUTSVnUNKZeyn97VHVkjkE8k4ATIQicLCNOPK2gF3+AMgufM2iUq5PJCXHfDcANRAaamjjUdK2mEegmLhOUCyjpSu6chlHsx99ZvMZI0oZl8CTI09dTRHIZ5hlIxjdc6DLOF2KjCcF4ZTgUy5JVMmbQYm7vgZ0YJIYSu3atTo+SO+GMM48wkHKR0qB4WRIPfsk9yw/40DFp0SDfex9LsnVESM2eogxQ6FF2GI0wyZythL/AXCbQfdwYPczNcILdrsMtwQDvqOM8HJhAqQNytFdRoqFcQSReIIBGlhngcrPlcGz94AP5Vh4As2UzV5jfzV5WDK0dELmfdz3Fcpk3TfmHw8Kz9297rVXvZ7KM7D3BhYqpt56x6sXtDwEYEyRpAe5yJbTxekaJyfvykJW7FLKmAtFonLJTysAoIS3cEnu6uinuu8GEpwZ2oepvtcwxsQ86pyE7p7X73CTVi/tvQgSEszk/mi0IWxy7TwFa31SCVjMV5jeLFtU0yVTMhyKFh1IlSwLzgBXz3yZ1AI8VFRqu7y2Dkyi65xnvocrV2tORLuRoZjtV0KKgymFV2eko+2TgMqphlfrSqZSPLrnCshSybI5KUAoNkcGNFBgMJFoAIPtYxVS2c1N7qpBvjhPuRtQZj1cCYGRGxDhI+CY1YsiFMluFiDg6tWexC3GLqDXAc8pJ0lKNecGxrqpFbmIkeWMtIa2QPTg5ymvLOlQipBeIFYXSGEtekq0ziG8SiHobzXk6XxXTU1K0OnfAr+R2FkgIEeWwFLKUMTdlPygi3u0A2W4vFHhEQs4EzCIF/yUlye3awnnfeXUuAtegn16wp4qH+Irky52+MhyOKSypRxBeDeiLryA7RjNSOGajCGZoTXUPa4ON6JXq/gplyGey1JQT/ASCsE89lzHhEcJqyc9i4a6ElTOQKxH3yt5WRtY1fpZ0GYo2GtZarnGRhARvMWqi6WBzGyI6AQCCTAkZ9w5Rx1Tza6hzkqCC7D2zOTgtQ0OVtlQ+cehevJIKZk3dynGj/DgViMleTElZWPifU+r/LkDGPEUFytZujhV8E6bLV0SurSDsGs3g6W30AeBtlmW3z/p9VSegTj8hsplzAICVKIjwak05IDjku0dpegh5pfbx8sLcDpgwiTMpPRDeAfCjs3ajMfp/X507G5WT246mIgIKd2eJHh39U7lflbK5AxwT9uYhA8KHrVJ1ZhEKJLaEWpBnsI4CK7qVC2kgnHQIoyZpHDzNKXyuKZaR/3lDZisUKJ76+jXKHsClDPAtQKtrlNyZK4ONFUJ484sZeV7K9eiJaeDeoYswLAIxtBZ4nZaU1CwSqltvivkrY5qqSy2Eru2go0wleO45g6eXmnlEeENdRBO1PMHQDAMTOMZEZR8lW1dMWhLLcPL9Z9SeGZAne6nvaVloizx/KoDjS/kIZALHEtKpR6bJ7zRorswQcDVy58Jl2tzAZtg3xJWKi0cRf+9y6fZIIAv3iqBX7kI+RpnmYJTjwHSjVoVPU4wUEBkoLwEvgp0TglmjwS67QU8CMUSOCoskrF8KrfymBgyLt3mBPEhr2lH8KkSU9O6NyZu8fk0Ogatc/FGrhcVu3ul2fbeC8rTEHA3oztY9fVyIrSQXHQX5Zu07HVsMnxhb4PZbqAfEZo7CbDzGDrA8/45R6f0/I6IMfi77Rs8529Ea8cxsAiCFcMfm30CuB4+NKySDyG7nN69kGPhqg+Pn0qi5REbFimPhgCQ23beJ0rxTrPINej5Ah3cBA2XsOw5bh0cl1oJas8eJpR5db/mIbLECyErWnIjGiUmH5nkewCr0wCe8HrKUwtlSXdBrwF7CfQZtdHdxRdIoVkWBAUGMiliMY6QIsy3keDwdPHtPWAXY4MgY3JOueWUrFQhAq8xTslUKdmBPDt+Xi0w56ROgBXGQFPOIDjoR/EIMYIAVrXVvcGQkiABs8WkMgpX/g4DWUAAjO0VWkx3dtwN23eUmcEwDrm2Ym2KGP0MLHyXa40KAlSSIupKfPErohaT1L3rdxeGgI5QzeOITWteNDRoym1Xy2er+8lFeXr9fCnWbQYm3WyMJRk5IFEr4bDS8iLbE2HEHo1oTuWhSIaUqsf7F/nTdcet9ejtlrs00LrsBEApYLoJG1IZyCLBE+LMe0QPjlKg0VuD90jMYLl27gPrloKPBd3V4lrry7VpMqeqBOIFBz0P3kCX1td2KrGaNmPxbY8DUHM/vQX5aOLOobNHAqBDHokEAtzTo8526B3d9qbVjwJnvqnot0VceZNntyN6kSBKBbdnz4qThjPJqvN2NYZoe9UAomRbWCwEVH3dzvt1L2U7qABj/500mJ54AgHLPZyo6MCoe4DUzsxuHyUzqT1qHkk/2ncpmnNZbg2+KyoptQj32EYq8jqVUgNSlD4WdUywIsaAzbwyDxmquWyoCymVvcKc7hkikHdT2F55bjQHOP9N3TMwbFGG9nnXv3Ov7st3uPNSfK74//oDRgAgYNH0kzw9J+KjHB2odbt+nKNoXbrLHXbHg/Da15OHCbhhpeC5SMUZnBCKSYdhzCiHG1Lwg65efqMn7IztWGuzfE5HIYco38uQSe5AlJcgFFkeWNLa/HalG+NSlQLHhipf7HNKARmfPIOfJqD7osvL0fBjrto+dcMT2gxpMChddDzzZEOb9AhQ+al/fp7PnUwHqLxuM/N+eO3FMCobjqVgCi25zBEoS9n3guLy9fVSQlLweeU4C0lrfvHbqyIje+lHr5gxr7+7gazJPwuYV6PK/sywPv0EgGRtjKxfq54Ip1LIXYlzaq0ce04AyxAEVgikk6L2vvMxZ72itqFBi04FK8Wv9RNwCost3+zZ+nLJ287QkdZmt7GHxUiltCU0o+V2ej920eMuidnqvWN8k963FCrN+i2FoXUoQJCxT8qB7ayegJ36cuj7rgN/jMmaUzF25OsKE4iWBnnDDATBoGBUCMROCZR5jgHd7HnGAV3LppbgjgQTuU/U3kZgqCa0JxptfFc9JRRKomu9A60THZdcOll0blRuCqtahjyUyGgcV9KDU6HeuZrsoeJUuC10+mh7dx5GzGOwYgYJJGvuXemU611VDMOBDCkx3tkVm2vvJ+Aj+gtgI6pp5L2hbDDuH+gRZn1keLwW8wbAMermDEtkYqoDsIGFEMzOioQquu17SzmR4M9OH0kI19fL6BGy4Is7O+FnD1u/4X3e6UzbuP8b6Po3GmfZCfg86fXkYKAlr0nZl1IMiHqKBw+k/1fKdtDlp2loetuEMT2Zeds59lzfIQFQibgDfgGtXKHnUsZCYFK4Oo54nLJjz1e4sc5goq1Ejj2JpAmNlHXklgImaIpZoIoCk96UMXbkL4xaM90/M1o1BCAtr1QkQK4XcQaXKv6hcII34omxapx1lGh/ULoI/drF1+TbfevU9XnmBggcKDGzBFQHBDpy9O7lV78zYNA+4hLF+dmNHfXVHQh4rI3Osle6TSRVFePPwZMrdlnOluRruSaxRyv3Jjk4w2bxY8yLcPeqVukyRkK6A46cc7nkFXfX/Os8BtDq1b4ZzHXyJXKPbVtYyH5lHHJdw2MVikZliNhO97g2trbZCQg0Nue6RKa2paerBCi/fxQxDRAw5XrUwpzLu7geLrmx23yRZmFWLtAroFyRAEchKwa9BZEc3NegBC1ncB7/Sdhqrzky8u1OrRs9JnLo4tME3iXrzNgRk3HXnBPUerp+FCZQRYnoUrQvXjVTcmncLDzjzZBxwBrvJ5hOOSavhMJpmj/lcaHbGi914XZ5w0AYZWee4K1OYeHN/aZHR57ebQxHk1urYkVgTzli4hPdc+RjU2aigFOkzVzrGl3XeqJCdkkjhhMoul/Zx2aNUaGf6+saDAQG8av39L2R+5w6IQng6YAA8BRgYO8diC2JTLGYsMaVYBEKw4niOxAYJNhyx6hJitBNuG3UNrUEdy91MwoAKWx3g9rXVx2tnxY12qaqVNAKDLSkmPPm1v3PgKQWPmORd/AaN84V57uOKSkxMI5ANevxUeUNCFnqfhJ6ChuIoRD4zzxKg4YlMWTGfwpQluoRDcc9eoNyK53cVrsTVgcB/f3KgtXL969JMhXf32maVZggaVnCJgXsNSP031SuYhq+E8aT01vCWHiCgRDQ0ec/QOw0g89Y27GlZETvjPXZFcOeMIgGK4BAz0cDloGP628ACQpJ2GiTRgoa0QHYknmwnI7vS5Bvl5eHyk6Wr1GgprUcNLVlZfbdssgDwA4rGOYM0XG/Z/FmKgHbBKPXViJdwUy0Uavs7hSfQ+1XpdAvXMsJ2BT0PtHm2nWCqHl5Ard4WkpEpYxZyTNyXfK1XWGgu+Aj5gG/iOWu7K0roZu5NaSdHXSZPSjuyGi1caYdlzKiKjnO1VUhD8dgCEu8KZZGAYcC78qaD9k8jOsznCEHz726L1gh8ZihzszDUi4C2toVXRhBY+i+Ss4zZXKqQkBVMJK15BNnJ8ljHOjn2sjDFKBPeyldobDyTvkIKKxiWfCQVRhabwQPnad/Bn0dLCgHoxKn9esuhZxfY/hLMtpLxrzWVRVcp1fbd+3qfg5/SkDwlH0GRAQlIOu1K4WAmP5MNzFYDtUzI6XQgGx/EfzDzOjIDVACi7rQqSQmXYFp7UiR6978uwnoVLTZ9CSow8+0gXu49jwxR2rOEttal4QUwInAlDXskAs6nqnKBgr4AQrh0Jun8q4Uvm2uZhjjiBIhWt36n3GBBQxSYMQocFY80MTusfT5rneglQuR39Sd45nhAj59Jw94R8ZSQ0+18IMBZ49BTTsV42vyjyVyUTpfm5pUKsFIMXmsu9YXmajpvjLJyG1gWmR420lxFxCQQDTrfKF5FD1oaoTBTUVeO/jOfgLfVNZQB0YCFLX7JRDYjJWXoq1EuUzE9HZ3CnHnGLJw3NHArfN0vom+sMFyZxAe49JeK3lMTyhP1qSlVGEqj1CNde+Q6JV8q0oLCAhJEOpgLq9lVynwBlyVHwIzOWf5Js+iu2YTwGs653n1Ke2bSi47b4WiNjq97spIaO10D8kVuexRYEe0ulvoMIpcStZU4iYSoLlFD3+bWtICqzHmkWxTF4HcyTuhtYukPQgAt9CeO7BhMHbzzOZdQ0etUx5DAF4/YaQ5VoABdYtl7sE6jYwrY/QIAGeQssMDHN6qUEDGPdQuN8lQEkzy2kVv4jvmHXg3AHf7tp3W7l6PNsj+ZvndkBPW1hb3X9QF3igrx57A/Po1hRyf7HqKBELF7CbGmAimXCxXAYBowBBNGAzAwvBbHMNwc3jW/M6DzIuB7g3MpB+6laLufWHvwVrv+H1pFgHcadlUPE7I0uQrNIf5ZB0txdBgIwubkUULMKHGGWenm85DYamc7phHkrH8dE5QoINeQhAzZgbD8BsMnv7mO5IJ5zExnImWh1Wjo2GwseKwJFmLPMzF9wFlkVu62qMpCyxyM2wCczrGXIjC5405R5TPXTbi9MiJDTCBLgDSnA6/8ehBZl4lcqh4+Vnx1zoKYJSX5NxvP8Y7y+24gYWNBU/rFtRj28I6L5+1Mnx3/i1XoieAC2Uzxw3mMVhaysOnyCHLVQ8cz1o76PbiIVQBjyQsswwjrctChq20VrCsiRfIKmDGOKCXh0reHjeDm2emwdY9EtDxs1CsnACOVqHKwpYrtAL4clz2BXHIkxTuhE5rSxBiip2C/46xROdFx/LYi+C/kcozvE0H1loYzfKeB5XIZpdOAENJsAp9QfsyUriOMTDTcyPlgRC6rAyYPGBpG3CxjeUbvi/tXpMWvGGMBwV8uD4BNgh4XAdFFd3ppEb12hic7toDbjrwzBFx5KCfaWAVw+CRxfLOuXICy/uZFR8ETh50Fgo6uqwahb/c5vL+7X1LBUoPDz0bW/iHksfhuF2LitW4Bkj8bLtCT550aLAxuVcMh7HrnhtgY+PiF9hWoSrSo6UdgxvUsnobczAWIvTiFlU5cESPCIdjxfy2UyZxGrlmCtTSY+SsJBH1GHAzB/YYeGU5bv02DvDCgQscj33j4iPomMBkLRDdTvhlUoEb5yh2taabDSr/5jakkeYY9Dg7dYQxV8gBZ58N7MhtI4jYLbHx1GXIqIv4nGG1P2cQcL/iLr6KAVpam9xDD0Cnfgz6zinn6Amup2w6ZGmBS0j23AGh87UW1lpZvuYti3qaZQUATcK2BI5sYBEzSkGsRJDTojkgF2jwsRaXdi+tTZegQ4AY77sP3Y9MjPOWpJch7ymrzdCkbN1HjYQIPkZ6LOhW0riaMOgJmZFpL8BDRGsaWR8rYLYCaJhAAhJgGF8wc2wm8igs49Io7dkRIw6XuZJ8TomiueA1iro6JG5/taSm3LJGn+VWB1105775qVjo6Si3ov5TCgUAontit2Isn7m3Vo7uRHdkS9y0wMqbkr6VxrBJC0mjJby1Dt3tF6WJAxgO/oqyLvesXunuXXkSxOCabHm8/Ir+++bIBU5rWq7lGhk/48kr2y2EKRzWOnoGT1Y9ewgZ8pfc6xaeh+FK0BzQaXhJEwlAlEvgOSdTxyS1nM41sADp3DjXfQBANfaIUyEj7CEwQOtWzgQHuw3y31suZJSs2so+LzLVGAX/NBczYNA6DAstvF7pqcgrJrh9p3IIjOzZWrYbjSG7YpDlwSxaFX1aAvHyIDnHqHM34usDq9Mf900nFmo+i6ch6u9B3DZwljdeHyH9oGiA9BygknQTjAvHDLm/7ZQnZt07Qt5JD6njPHcDTNUz2+O0Vde5JaBsHCkfamwbex2lEKWjkl2kWM8e0GMidRIQcrCqJwBJiFTCAHrJulMfeV84MbNJtgT99vLRkonX2qeWvlcnORfL0Wmp1rCP72muJwYDshRVKmOMzcCMCcxsduFhhV4uK5pBbGljSxf/qw80IVtMOmPVUvY4xd1yIU39xr0Yy8OKObnzuFkijhqFn/4WE0kh6lm9CZIsHua4FMNTeCdhOKispcBDaUeZnTodevYY6JaGmM+gGOLOagMz5R4gEq7GBTptcUxaAzYj10NZvXx4JCqauD8a9AyrJNGNtDYLsFzv2Dm+WGKTfzm/I8HbwjjK9i8XOteLgsJQ89cgzFA00J6Y4St4Cv8q4UR+xjIMJXe39rmSJmOPy4XubexAJdCl08bPOSVKFu1uXtsbONUIqymMrHyifjeA9feD3gSDJak6nMdXe65FT+Y0oBSjfq65zBsg0Dgz6TaJOJSw82yHsaPSwqKVuA16+ZhHoEfI+qz22hoU2wSnnGt5FJxcnRZ3jlg7SulIyEemV40x28D6Zhlbl1NlpCQvEkBU/xG9n5R7h6Z7YhsA2SWolNOSU8iaHwKGvK/BtgcwdJzi0/I01jOacdBysZJP2r6e482W+9hhYCa4UgGKhoTDYNG4Z0xLT4qAgvYlO0kuVR0ZwVR4mUR7dtLoISBXGNGARZgg18k984VFG0EWVoDcWIZsHl5DyrvBkvAS5+EW36STmC/7YABNtrC/CbROTAc0sJa/hZFYkbC2yIMeU/G8I45AhuREINHIzqL1f0qUVNi2kso7bd6lvNxljBKV6BSQHUcrM5LeitDJT3M9VZjAPdz3F2UM0zXYM1fcNy4Xx+XiWQNa6E8/9yOgUBwjEVQoFUNvNJEfDfOOrDe4YbGB2rRBl6snMVt5TlTqkrCVgrApobKKieeuJUVCs13IlArJ5eqmwhEarr4GYPctZ1213HucvYSDA+owKG8CLGJ/4VUNAe1zhTtLQGAoYc2Ya0HhReGcvew9lNEYFudEOOKccQnt/C1AIOJ+NUjXXnfldtAyP6FbzyNIAeQYsTtlkMibkPS0jgsYqOx/I0pT04LVaPKx1fCjErOslX0alu/wtmQuCjKfBCbd6Sc6ESi47iUBEKzR2pZ1bYaw1Oi2V5hghk8a2dJX/AVAJVsxDgEmPsM0p81596oRyIiCQBrIO5lwAO1Dihiu2wKWY0zmF2yPQ59M4CCO6B0raGee+hLoVhojn2FW5BMoJ+nKTsMIvt/bsS9ymzsTPpVsTFpYG2rtDSaincBA7rkVbTQgEL0tuFYCKPFHWslKn5AyCBatmGx165My0WmqRcd7gEdOEwxC9wHSqtYyMX/FuRZmbf/JYxFqqn1OY5RgM9dROX5O44xgYGyGZTfC8nYgz4CwkoGSw7VmMc/tkq0C5BU2he0AtJtJs+ll4n6Pcg4P90zsmzm/okMbO4wc0vSYjrE8Q6RA5aJQUmLYArAJGBzyrthpr5FrASt4oHyIvJ+TThlGSw+rD6x1qbVPEA5kTkASdeUXTCvAEd/tcvSuXDV+1q7gvVsk85o+xEkV2MKde73W9eRgwKsPe5ZFzVgQWapzxkBU4iF3o5qxuHoAXB9pWNMuPQIRF3/AlosCnZBwAPvM77AcQGVIYQK56HXIkA/YafE97wfUolvL6JcvQy5+gZ9dw22CZiAbmkAu2dBMsvzHjByIeewABVMVBSFc1JZTolzMJq9C5gyoOmJ6gIB5idr9gUbwMzosTiYd0QuwGRIYAKYEvYTGlgDv0ql2pQ3u7j5SH6SVQyU9EIJIcVrjnlbVDjusjWJuLiySpqlYUuigLPiwUNhnYnXPgOJzOxl2EwjIAqnDo1x5ZhR+oTDzVnyO7RpjgUVZElXiF4LEwgU/BQZ0LgUgNWNskmQ+YDMObbERB/A44/eRWKdKnJh7eW9afFLx7syzAGDhxhfIHGZx9PHpugbpcuN34NTdmyPyegawRowZ5JvGFfU7sdO1cGoAnwosPUl7xsFSS8YFwUACB+1R8Z/Ku9KSVbOhIqIsPwO8+NYUSpM3sClnk/sbkHHRJiT4nsZK9RaQaqKLeFe4JUA5lZ3uD1nElgpzQuvRtphKvkCnnh3/njNknwtoOaDGWJugdwzym7pXGsuv8zmi8e6lNHZ45ZrioEgQH1rtrkUYJZQ54HuwLUAdexw9ZJznRET/D9GpAKwhXhtjYW4AY0cemTl0uHHPU5op8iX/wtsZ1Vug5xSkVRQPm8FB8OkEHiPWngEPYQLmPcX67EvtiWuvGm2nN4aTjv1dXE/kHlZvlb7RQcsDXg2YuDV6yphAvpl0dMcn+ETXU5QWgnmeRDxTzLfhk4oTIPKP+Hy6elOA7LKc7q3DBPm1kCGaK86pLGLRazEvlwvvu5J4y3AddeBPxu5ZC+47lZZJq4DM6YBhM6FMAleCiOjLWq4bwQ82lQUtU+fpe02uILvQDRGnlLtq/XmvLnDUmS/zA3R+ARMRH1grS+zCuIiE4bW0cJSYovMBkjHYuKb0BYW500We9+e83DMJV0LaYJVY6FKwORwoHiorLxnftcqNBCDna3uBSlvZ8E6BlwcukWtM5NcS6/TeILLs7mQ5+IJ+egkd7+dgNn+FyUog80dJa0C6R5VIlnciHcSR3g6gjpqlikfK9+bi7udbaM36/eK5TfhwnMmLJ88XwXpuM//ifUbOgsrRLXIgHNDJfEtndNAbcXNzzdfyfiBWljEW4YIA9QoxGsEAQ1bZF2Bhrx15ArtGbAoNuqcVHtnyXkDgav8gJe1NeecaEvRYrP226JGgTzgGNtfwJKIavTqt3KR5SAUYVDKZwAXFg41i0uBJF7qjx1nyOfHbGubjfHaj2zC9masCKHdjteSyUDaWHTzt5JM2RIx7oAwegTXLQ7rWTnMqlVUCtg1sJjsuyR8n0EFbP4WDrXtFgGE7lP9A5CAYCAYop2KEOAZlhwdtwIwli86EScNxWHY+BeWvgUbAVp6J4+Lh5TaHDroN/2+WqhLwCdtwvxOonZidnyHRD9Fh/3xtR/tSyZW5HAkrdT/SQSZsD2c+mLNjYXv4E1xPDAbWCsoMVRoL5UqC8lhURQuDLyVKxOASyrJ0d2vloAjR1SJSsGryZnK9icm94kMifllzVHgiqnCFkYiEztvq34kxJyJuwlck7mB1hPOQGjHhbgLIkLWsjnoWUaiORxZzxhkGiiXNtGQqBr1RyluKW6BiE/lS6EuY0HowCR3+jmdvCuFg/jk9FfXenRBrXSSk0mOQAqcRSrM4TaAAi3MJVK/oTOhSgp/tgHpQmF9FB8QIWk4p/xhfHDTE8Axqz6SMRRcdCAAUTNgnpTEQoYL0ADVlYqBSX0UflrRpBXTbgmQs3Do9F21JKRaUUlit9o+FLdBJnBANkoR1aqh6GNSYWtdN7v2mZ2CYwa3qrgGLigowUQ4Vr46YbYx9U2gS0SEUS+0LWCraAacUZl1NSe+2N9vgF+ByiQS3deGeLoOvOKUOW/zmhcQToETsuxKc0fbcUw6V0tWabzSTmPQTTYLCDesJHMUEIcpiURzlifK9sfYlgU4qV32nb3WOpClP43zaZ2KT5XlCPq/MjI5MLGL0SUeeCjRtM05Zm78hbxQLa7W/lPcblVezXUmXFkeDqxVwwdKSrZKf/P7eO84LoRcycnCKfiUGqoyQsow0KnNsgInWiFj6HA7XablDK+EEAZYeATPHHB5VVwPsPZOfZlVCHKZ3NKAg+Hl78dxEgc0KYQNKJgmSbkJDe0SEtwgGgg/OytpPZBiyJJLQReO7VXFeAV2BRxjlKZ7qeiowILd5JipxsK4kIUqFzPRNga1JCuYSyZtabXgyI9ucgCSfaxL873kvzySippz0WaFuKPYZbmBbxjIvBHO9Chg4Nxri+7sUu2NnyKRn1mIXIEhTWYo+JfwohWwoQEBGy37pkEAr0CIlCDL2mExEnAMW/j44dHRlrIDOGYiqg7hLMIdhjwU13BkDcOYgnGNYdRlQZx7kWqSNr8XL8cbjmlBIQRxCHdfPSmGHYOR03fJvIeMm7KP0s0JJRTkj98Eb3cQHRs4zAZjoVejBm7IGkFUvO9y9sY5NqV/N5fxerb3W7ZzIWqCha4Fu1Zb1ahRAFEysjrHkra6IaxyDlvewWKegB0txD6sjwgcL6EYKVpTXQaFCUBmaqekik3jLFTtnXxtQHpZWzKQzegL2BvYFuNxurIU6eW7RGluW7m7L3CjxOeVGWsU9vCM5Vet6CgU0QFfvk46sZFLF52XJbiabFp9GOfTOe8ggUWZ7KnMUXXf5kIAAgCoVM1VkoMKPcv+j6MxlgLW8MXGNZGGA71XKfVNOUAkPJmBKh20vg6rAVX3XcwydTgviaN3lWVbpu8dWQdMV/6phltYOlO/hlbK220YgYHJEMwRCyMC1HVLqQz1v6EmdI0oe6QXRsy9rh3FxRP8L85XewFuWuvvm8ck8trx7ewK4j+r1oDnScCuvkDirft/N97OiW4W/pC/9+jwcpExQdZ1d3+5zXE+RQKhYXPxHZTXurIl3x3EEsUHMmZnKd2eqeNn5Mlwj9HhZhB8gQDG5/raEXfb252D33lADH+U9mAU67XvRRzMQPbAHA9xONLK8Tm3U4SdbiViqrnAncQMnkNN1pR7af1slLekMhnPKiKRphC6iOduMQ4kOSyIpEGMJlGTkyr1pTBQEwNh0EOlwYFMJJLA1a4on8U2MyEp1RdzVal2J0l1fcpRQhNYoFKsJpHCKE1QSQHVVZMLnGAfhlZbdKiRzJaw8FY7+zfEInzgiv4Dzc+6dEXAkANDl4TG0xgtFhuWxKWVuOXclsQFIGiy5eQY4p0qKdoVHq96vZ1FEyqC0/tNBCRpNBCCdrbwyD+9q+1xhg6bEEdbPGGyPq/n7LKrm3owBVkHYyejNjaDV4wSueyHOnr+ld4B5AopVYysojFz8sMC5dgDKJHJ0wXuF79t+5cRy2fW1tRY2ZVVVAAQtutEgQXkH8n/mda9WYWAQPcpThjqvAtofNuKCNQIrOaJ5eqezJk9cikhfEFEMKV7Rb5+wAbYaYC+Donhr1L5dXVvGoUCjxFo+ZwRo50FcDsncEZ4JRPmjA/EZR34CPESKcUduQayZwox5/Dn3dbQGbKETwhN93MSpkscNPQO53zHuywIum2WzwwCLk1JvF/XXjqqafQnZYSxp8OVY3gEnE+G1Xjxw76wKzyr7Xhus6ZLYc7WVDroPmc1t9lp7AcCnuZ6qmkAEoo5PIU3BcwSIwkwohjHuLLcC/L7ZmkQZIOR8fjNZKNBQWsoNDBB9+1Q8SYSh425jnCEcg5psRYaqFFfdKxZ5sypBzCXUF603Bi0ACroeQ8ofMYJ8N629cK6HcF35c87JSWcNXNahCB7tsB+xjuV8ql2oQgS1Buk2hABBIgb49LTAQjjJgusCsS0YpEhDyyYRXn22yxGHA7tCHzEOLg8iaSeYXUwZU8skx7SaK95WQquFDajwVW8u6/+kAxxJK5aCVGIQ6OnYZ4BWNO3uOI4DcoSkQ6QBEUmy9CLsUuiF/ms9A/3rmGCve5434Ly/3JLsXUSEUOEKCsBRJzlmzDotr5xcfdfrJa1vZ9ZIjJQAqmBfWIKeoM4yeQTJAwZkLDbCAzsaZak6Q3u5tIR0qksxqMKEslWZ970sOOZpOJdbkQ+1kpI1bRPXXgREsqwZghwxoASSCTxKIdLUzjhLl1wOJqPmOu/cH8+JBKgI/VnKJLZKDDyKhsUDAr2wUJah0wj6g57ilFN6leRpyr2X5wOl3Gn4RZjAm0LTvNrM6NWrVbbQAzp2mYyRYNrkRfY8rVbyzxFVD7Ym4/OhiH3RkBAVm2d11TDADoPZrqTtESHi4wY4DsMx43RMVbJIBozpOOilimEOXG43LrfA7QSbG+lAPGD4hBrqrUAyAICV7pwiBQmdfdKDBQjOHoPc6exr0WBD8IBFrxCDZC89QH6+75NeTwwGBlvlxhWB/LSyaZX7NviQZca+6VCsqcdHmgLI1brvqY3ATowmRYFgUhETqmzulAkvULCRWbRjRPLLqXcACoWN4fnvBDNM4jDrQCDmlaVPzWvhbQ5F4FeWK9Gk1RdO4KQuKfPGbPqSGZnTEiY6CVP01S1YSngKGQI4JvjEWo5mfGnfytWI9l/qTTTKiPdk3ZoYXvOtRMieAQ04socE6cVGKY3e56JD6FrrEKLbLQXWphJeqivPkFUMqFRvva5lDV1wpXRdrsjOzHXJ/dx/p0XMKcYtmX+jRTPlH9AytwF1kCyNhwSqKkOrZbBU2jNxE4ViI253HhpEAKYKgDzuxGo9E3NkjkJNQmWzPgazyhkiwIStE1TKQ4cC0KB+gOKDzPkw8pCqFmItqPrZC2MgPTYlTkqJDYU4qvKhLnkqg0qjb4KhUW3uHcCOJUwWFW8IDFvuT1OEUoAj1WkmCicwhCm0LMlUn4WnpZqhlcFESPOsXspTCYe1ygikkukskgCRlQxKoDbw1L7YpV7qX7LZBApK3W+OWYl6wWdVwUK1ls8WNQRv6XyUuM/UR0laC8B0P1WNGXhi7SKod3qJFgHpjs/peOzJ3ivj8ATFClsNRIfWOTcO9nnJZlgemyVaMzPcbMM6gAcPBi4rcgYWT0e8cE7qbbLWrvbMzIMSNpC807atkwzp9Mfrmmw9sq6SNvI/GyPBAHfSNgTpy0/3ZNeTg4ExM7PeU/k7E2xGklO8HkSS2aINMdVsC+koZHBCl/EGxDJSfCFEilhwdY9o5Ssr6fp+AWIcSCCQ9e0aWbP0ZMkXGGhCx0NQiBPDc7ACDPAzluVdg8RQI9bhTgGoAuF3RXW+4u9hVoKFQm07MHbFlkthtphpziFZE4BKzBCJY450eQUQkhXlbRSOa6BCOZlzG+nCLkntvvgZr/GdKP4u0abSN6lOS920pblOcEvK+xwi2Fu9B0iXrVRQdn48D02ee5HM1fjGrpa0Npj/IQ3X3LUZy+3r7sT33kBWxurH6X4xH3mVLEGwucFNwFPikvxE5R+AuP7WeqZXge8r96AOcDqDrEoU7dvF8bijqi2oLLdjWYTltGLD4z9DGntwxF7PUSmoOnUKjA0KVRmU2eb1KnxjbYDbwgt39tJtKG/IT/N0Of8Qxy+rn/01Hda6qd0rAxv9kxBwU9wdQMasxzBgVxMcOwkwR3kyWiiNyyzS6tshVZkrwDEKWPVP1lyC5ns1w2nsXt62ePaCcpxiDc+nfm6Ng3FR/e+6i2HxmOQHeUCyQ2PL8TVF6cC+OPaFsfwdHqN1ESAo1/ygt1StmtNbPcG+DWEMTnoJspLAqV/sEi2zqXXnDnDx4MGBvWbmsuwFXKZjr53eq3Vx5tLs3CiySOzlKHB016CgvEajtROFx+e3+Js0aSxFH3yWDlMxOM/6ebrrqcBAEKkEVCiKQOFXSkrKp9mLITACtQwwa9TuiWrY1SJVimS+lu7tpGWSpTHTlLEiNAbSv93K4VKWf41CLrZBCZRzYbzSG5MqTmZiEFP0UKrKohjJANMJgV7PlmfFzcuFJlh0bTUD2bBIr+geYmAQqAVzWX5d2bwpr9zZwCMEUIazCfKqF43+0bvKnRzJvMQAcnNaCjuuENINb1LaIzjFar365dT81hgj5XIqfDGR5kUFuvVhF4DmHiLzC0IPiIaRSaA6vS5L1Ro5SlVNiz4R2J5nCXTat7aHadn6md5UoterEgwhuPJkl1ZWqzpDh4CAqEChhI0OiAUTOhWlWBZpyPSEus5LMDtfq+Kvfo+iBX0jxup+4foaz/rgIxhKHD7YX6IUQAAK9vBviiiyxeNAqFiq8BhkunjfFylCA1P9BAyKR8B5aW5xP5RnEyW/zjO9jz6l3Oz8HQH+kVzMpQniVGa7tW3tAKOSsrVJ3D1vB+y4nb/cRlZ5KdUi9y5nMQvfNSzX8MLYcH1jQ8mNlby2zvczhWtkNHQlx/4YqdzDM1B0o5WN/c8kwvQA0kuDyXM0WMbog2ci7PKGasypF8Kzq8ZrQU+er1cI7bw2UXqt8IO8zI5jAg8eTNw8Ao7puBzAvN1YBlx8M4lZHifxgraCc8rSy/IDna8y6O5ynGg2eDrFA11M+ckMO2tZvN/mc15PcWohcLmEa8zMMSetGKGusQF2faJTA7drYi3D2iH4RNKDXZNcGk2/zDHHxMiWpnr2Rj+AocrjIvN5WGf0ER39xuQYgcq8pKC2HZ12EMpbGbVKaot4LjeC3DFsojuWNxtdwBzrsrDoylmx73A4pjues6bOlNy24/CgvTcuG5jbuY4lXNNdOzTnmevk27AvAwsRmomyQjsJtuo5I0tOiNGqKQfvNcywBqLF9Ii51vnlsT6xIwMYN4XAgRDkCYY0fL7JpJmxxfR9UysBVQ1WEuiZQRXeGTmg4MZqQMePoEVKg3ClMmCgvdxxRK5t7jVpTtaAGQFV1k7z/qvRWwLQUO4Hxxb9+JW34QlsJOaCvjerD0DwQ9uQsYO9N8YMWp03AlCLzzoYnxWTk2b3JZX9GIMVKcCD4Th0HLapKifOH7AR97p4xDMXY/EKnRjRlEGNYqwqaMwKzCJ6uE/SZbXLDet7HBHiWGsRpjB728h3Opgq1yMds3HzGfO6mRP7cYR9wGfFvjuVU8mNvtfjCI9cHDIT/QlqvxMxwrGQR2jvCbPJM0Eom7hnqnbSWkqE+0IBwcgqJQ1sqAnMoDLCWNi2cPgRcoSKScYDRItgwrM8RTDsVSe2btK+mrqlrGq5QVqXMWShW8XNySsD/LeFETzN8cBndcWkzCtbXx6CyUY8YN6EkBZBgOSNO3wtILugesqxvS4BRObIKhIZjQOGCxyXzNcCotb0IfaOI51v98a6BO2URSyl77Ex6bF1jAMYtlMgukWQxGEBTg0w1jnvtTO8eFkXrBV077hEQ6ThuDnYpOxCjwD3YO/F5FcH/DbktRq7FJSj/i5eyusEkEqHR65QjR8O7DXJ4wYsJv6qidxUDk7k3zzN9VRHGLchApBbq7kfGzpMBdEINz5FxaQQgLUYK4ZcBu1ZIGOp02EBARsUyLtiUcMmxlTsKKyevQeUfMgtYQFKbZR2qtyX2gglbxmGzdoqKSkSWDARhRtRWyJ5Ki8liZUyq43vsfBTpQSCWHWOQa11INCUrFbj1h/1X9qIJFwpVzktd30C1LcthCEwEgyWoGxYCHjEnHQ4SpBt7Mf2a7rJKSKBACwFb3biM0W9PJlVzD4Q+QwbIcjWRs4N7rRwQtDFHomWjEKOGbiisZPrsvaq1gypuOt+ref5iVbLa5WVBKL6ZgjUSld8OhMibVMxqzNK31+uD62uDBsNdsk3Kl89h16fAWDt3QBK0bCmEMDCkQmHgcdqXbjPAEu0COCMIK6HSGK8mnDJiAgT7fpciYAkZ3OCq+3AHNFIpiWzip6LT4N+IseE1qwDyzyt3UU6K9e1ZFEDsQTJ16KnbVoK7NrY8xxjkgKF5CyDTBBE9z2uu8xx+RK9PBDLtVYeyX3bmKBcORYpLmRgnOSWaK+HjtSiXeehBP9EPT0DXy7KLF7Wf69UFHKjlcOlfSyi52tXi9nkU1/wSnqsR3Sgs30QGE8kDbnCfHZ+Rq5/PDA9kujyp+gpX9/xrUwYd5TFn7kJCkc45hBwk7DhWllJ3mpsVRrnZBSRHjIsZ9QbjZVgYKVAzTX3ucePxKvWP3sfMd9/PUUHwpUusXJtdmKji9hrwDvdmeerlzvpcpezE6dJpJtnGI/5Dct/TlplZkzsk9KcOI74HBAlIpH5z9KlfV7UBLX9N6j8Tp8pge/Wv4jcxCzh8tp0JwiI88fFzNEOeMgVphiea63FuJUQGafcxQcyDKIQiskrgiJMeBEYGeIO2JAAb3uYgsv9tLdqUmO+o5XyBC2LECQXjwNjFhxg0l7MnQySoZgzMHBnwyRZfRRgkycu5poqKZTLPijYA+5RKOV4o12pswQzadiNzU7YY18gEJVnAO5HyncAVe3hXO+2bilwo0ZBtmOR92BopytfO/+g9qjITvtLeuR+OMNOAgJp9aHmnnHemnrUvjchLrltbTpjDN43lEdXvgKegQHqFNIunGL5KmQHBH2Ei7ZaxlY5F5/LFyORNpSfmWEK9WVzM6vxJK/Ke+VQY5sILdiJhp0PNCKd6IYYdLdJw0nvbd20iJb/QxO419fVazKWNGrybJEPvRV3FBRSIdkKN333gJzA0LUi1KNJp1k+mfsasm0MwKZ4pm0z2p6L317z6p+5Bkn3LY/2T0H0YGiHn8I5+kJW1aiaQuuQn21PtKLFBLz5PD4n17ENi2taNMRkRSYtJlChHhqjmhb1BFGtbeUISVxZ8rS7Y+2qdKmuoXWfMyiqtbhezPvzy/KLaYhd69pXu57KM+Cu/vUUuHkgThFB5RVYWuJO4eFAEmchcCpUbwqDclP3HxaW/jENc6pWdGTVwGZHuGjkMzDmZDYx4zlr4LL8RBfpdrxnMe99xQYbfZgGG++QAFIJQPemPtmdeA0+2FRD5ZnM8t1SOXfCIaVYpHT8ZE6JWNVAA5AHQKcD1joXaCirQm/F/dKC8iI2KddMrBkeezHkRgWi3S8yedSY5FZEy2fk0unwl53jSuXjElyj1te0NmdhmDtEYaf8lMRWDAGMYWxHHUjf5jmZ8C4FSFG3tUdbo6STLgDLL2dZfTPopixwViAnfsoakYKk0uj3FthBWdlmkTGc4MAMbiPpT/gvE+fQAB7C8zKyHJeCTgIOM09ky4smVlYpyFPl7ELnAwuX3I8QnBNzGuZcsLHOTavkceP5uVGBlCl2ib2CaPo6B22UlVzlXmBDsOGAGozJUK71HBiI6gdHhM7Sy6jl1mPB+DGBUN6sCeeKszdiOvFsfMhwydBCfhENVJEPVZkF4JTvUr0ompKrzWm0NwsEDEMmcCLVbt1j8DPibymthKjjdO/zJc1Vcvs0fwF8yaDM3B+ofBgJoHMVltZBRLyZI7DZA+CcCCp5RtnZ8q0ECJsIjPtA3jp+LiuOGBZljkL8xOvGc3iOCSyGyuYYWMMxZ4QMIgfDsqrpRLp6msJVIjSShLpcnr0potpxuknu751L381FfxUZd/d6Cs8AEa1EoJ0HVN0Jz2JSgmaz1WlZQ2RWL7qBqxkOBdRg7GuA3oAAAjc3Azc3gwdOgDE/CaCq548SlRAQEwIMgOLXihHrsgQzoCUmZchFBaBzW80sGRUUJp0I47FxmptKGeHIZhbKc7Nt2FYnWeneHTTFy4rfMh1vR3xzNxeqtwY+4PNNrqsGvAJtjzQ8UymmMqo1SYZL4R6uxTmZiMMy08HPDcS/M820J1zj7CnyvUuOWExRPcRLYRXgklIspSaliFbyZeEVoKUZeYpOQBDzm0Md/GLtAdIob2o2KjkJUteiS8txQHvEsMFgWUoAk9kAgVHY7XaPM/+kYgs8E3FoqcWTcFC4aOQadFeleznilSNxHaoxC0EGIOPGeU5Gs3QK9HapY6zYQYJDebeit7t4l81djgMzLSi/8gpEHFZEnmV8rGqRUVCqvCnSVJxhvcGAoXyPXKmIOorfTIrLmL3EUmkZBzGl8gL1TIEuG+Lt8EndveR1kQs7BL+JV+AJcsXLOX/JpS1A4IEvEwRU6/XuVfLcW4V5SsYqZBChpQ15lnpyHXIvJWNGwxoLmfB78pCdSCppoxham+fSSRBV8oFNS0q+0jCAQadQVh7PboCoDiireZ+BUfZY0XrJTb8dC96anRFsEYCpTDyqFQxrG7A82SDoWvrIMG8GDoQ8nh4yxTe7n+aaJCHDwORjIMPegBNYd0OhXxunw/XUO+bO57ytc8nafyqeAZDw7gsPcJo5JkCgnsoS5893hKto2Sa7dKt4jM32kQICwIOH5wMn8t4kRudz/RKmqmKqSfmulqrW5NzIccvSlyIVCCqLnASUVnwooyA3bkQuHDJRq4CwaqBJPKmgY6VkrYWFHjdx3wQUtcm9badvo6uVc3B9tsabIFygo8cggWLOHfeLhKVGyAbMwyLRarCPhAP9aNXa41BaJ7ecxoY2Dp1sRkYL0GyRbS+lzw+nxyXn6KmorfQzYJF4OIbBNrBNveXjA9viDPYEDx75BGbhubkunxx2stE5pv5K3QtgDJZJfJH46aeuY+XxaN9HrVUK8nssMtP3adGOFOxGcBoDdO759h1VE03xhNs+wktzeuvf7qeKlZubnHHNNW4cYx9leezNfVCOoDHsMAfmQYV0EnQiiAaORgACKcdx0/aaCkQhm8Xqgy3U6Sq9Eq02ugDB3nlXoaTJLnNCNteNKkMcbawEpG4ZvgFqrGi6tIBsJBYGNqzkVa1peYeojFbIhqHOpkDJCY1Gk0s3GEoJm+iMy0k6UXjA8rTUcHdLtlWsPVFCyue7V9/La1rR69Y+YvX79CPQFc9yXwSDAmvN2+dS3sCrjamWSLyc2dTQGTXpkpdHbgPK54omZYa9dvZxMA++gek8hI1jAMeMxNy5gLkMGB6dNz3yWHz4eZWM+Wxdf8ozozHfCUENVqzt+gj/8eqKvta+08xrXU/lGZgz0GFkT1J4QEdxCoXVWOSi6XW3lVfQmIivTTOYDunhkZNzDhyHYx6Gm8Pw4GF4BUKICV0V4wHVAKgaB+nZSOQ9JzN0RVzYpxr5GPKopCqgWmokkCERy13uYHyTtaQpUIpH3YHFHq6RkU0XPBFz75iVyL1beJtnfw8pDn6Glr7WfzCBSmPMf2os3Y3llSjjTHzsHoGwJEZaEzEnxqA5hmx40hPERAp8TqDl+k7At5H7l85DR4Q45IXxculJVgeNSNBLSSn0gwQEywy2Vq7TSK9nCOnNB/siYwkosRV1go3RQQEzKxMIxDgrxyMeJk8B3OipaJ4Dq7wWWcVuTIbjuilEJtpNobs9cyhkXRisCbU8MoyCXJUvpK9ZoZcotSIIyAZBQJbJQfcezTrr/KvxBei+OUYKzDiNcyXwkODX18aUJcwgmXmjHMdkno31NdDGX5qsoRU0UPu7NpPluNdu9dwSGPHtqRbqqZcc8kwoJyawJJUTQJDHLG8vWZRzNGAco1ngo3ItTuwR/KYmOuqFEUpstjkCaqTU480nGQDuzUAaMwFKnQlvhnkwvKcERpPhMvIZCuk6gym9n36KNWMIRlsiYynFxpWiN6vKKO6XCe46gPTSbMDnHU+I5NQ1GEhDjVa5/s7SYIvcEzWkU2WZr3ww70mDqoU73S3CuEtgd2TOTIRKB+baOExhA49qi70xGXLpqYyae290l2X5Y5ZOKUKsvYfBfdZfRHie1pEnH5zB2ZNfT+kZ0OazP/P2cAFy4yumpcmckw3vJrl11BJSedgBNe4ZY+OYAzcHMA/gOICbY4ZXYITwmenWtFygtcIanJRstmJ9dcAKmktfZYSywqq/NX9GE7gkxN3ayOrKHtVOF34exdViwW0tI65Zh8OkABlUQAYqi1DQarGq8+1DtrdxnOKJdGfZVRe2xC+Kx2nPkC1G08houQs5f6OLTkyEypWIeQG97vV6zj3hxbxlxNPKNd4vqUPyypBrJPkigDIHymogA8sauzSb5gQGMGic7RJmXnOPsrF4Qzos81FyYkL3O3+r3GeMkbFuy4XXHJD7k3Pif5Xcqu9UNzqCCBfY8hIEomN+P13tSn8WiBoR9ppzRLnVrPJQsxBk1w2tvD1b7bYDz8mzoDgTgQsc45jkB1nB7NRn5cUBWnwUVAAMSZiOz+Znav+LluCATwCkIU10W1hnhuJtRudOnf2g+4WGR/cKev0jS/z0d7nlt1gur8rliMRm3BN2yUOh2rfi3jJg9HsgjoAf2vSkrQ6MCrCfFYea2oQCXgkqx3SMwzDlIRgO53kECj2lAvNwp/cjs4veuufSG82Inu8qIZVsjqHMvwYE8jO4+m4DywlIrr0C7ZmSsybRWzJOwAlJG6jPA3CfrDpj6JhhGnc1xSp6FW3OaThsw4dhmWOP8ASAOSZx1oI1v0Sn42sPe/z2xvf9qhND+k8BpN6Rtuy4f0pgQG7fHtdIpa7M0CRukBHVTYyKhJJXg0wxKCEMC+uIkx1jYB4Dxw3BgPpKH+FaicQkw5xsiGSxkXPHYSf+CGnNSLkmim1IFwfgeyhfmoYDmZtC1EY1TMmMISYCGpUr/SMRdwxJCsOC6or7pod0kYWZWpqL3RmqYl1ghrC8DPFZIJtPuNiC6ygLKO9mqU/BzyGZYpyYrAiqgTV+Dqol7oNIRd8Fgvb5nCtgOZr47BQA8AoT5DK3Hz1Gchymu7AWmwx/cWT9dp7Eto1u6JjTzs4jFLagZca1s72z50vYFcqKZ79NYzLtAOmjBGRa8Vb7aihhZKDFSwAMIGKYOnXEtaceLX8dTI4Ehk/YtIwlL4aKAmB60TrrjdVkBe6ZBT1neNnSq9a8UbFb4XuPk0qD7hxaewn9pqFHuEVVhqu3bCgnQQiz0tjgyHapboc4J2ncgOhJz38nP2mwm9CR/n/JJT+Mx62zde2OgTsErjkUAXD9O40VKv8GhjMfRZ4dAQJONIEmCKgmMr9G5Zfx/iT/KGG2ADjQ4+MFQNT1tUKnNABOMsIS5ABxnoJbJQ1GDxPLcJJTaVXb4dizjWCCAJZKyGxKRTJBTzUxTvvbrH2umD7bkKOs4nqPa+ql3AIokAfYy0SXoXpo1GgKxJlXF0vdn7Gg/EzXAwINm/luMX8ZGDFB5Zv0dhXTNm4mZeFB+cXvXpgTtpKf/aw7cjJeOsBKnPcr6f8EgNr7ua53ve1Pcz1FB0Ii06t4B4DzQ1sSncqU5H4/D14bUtbsRjCO4rlzRgXBmMae0iOrCMYczCOYOI6ZC7KX43IJpp6TnQ9nUWwhQccp+1vx6iYkQkCSeOUCPCUoEVBEgDp1e0VFNmtSxwmlFRTSzklxaH2uqIHfEtEilV2ha1mVQonRTMRYkigFKvVLnvW6d/KSa4r8JLuMVNLhwPJNoFfFdCFzrRrZyMvQmbs9TqBLrvcAX20NHHeERoU9rKw2KzCg+Y/hVCTxpagw5JkFkNHe9nIHuodEvJe/wwlOlJ8yDZV9PkvwG49GDd7wjGOfKIXPfPDCG/Dcp98K85mfkQFawJE81JMFY7CoI6prYQxgEmdY7WH5UUDAAdaXYwB2DOxpcBvkTX5vIP8d3iJVNNyX+3HenLSoGf8UXtgKd90jl8Z5d7kfhOR8Tu2EYTx0vO49n4U93EwGZZihNbk/QK8DFhYTaIfgTXMxOAksXOLiEUujxJjvohBo6F6NOPjVCLgLBEY+zWBIbYwdwE05SAL27NhXbnBr/DLQS36VHCogIE+D5GYpdIjJYWzSZvqfofIFhqfXxm3n90NfqW0zj2beyiEpz4nVP7gHCm8VTVwnrBaNtH9ZhRW8meixBt7uc00jV3/f++/+N+UXUrA1tpRnNBYvkrJnemh6o6c8gpXCLIyCAAThpVJLukg6nHvgsoMdBlsob6hVvdz98lDslInx/7M+QPO+3J2z6GC314RAzhz2ua6nAgNBjNeuLg1AQsNzgSUc+9GS/crYj+QIQqgqaU3JLTO9APybv8NLMHluesXPxGhm4TWQ8JICjOdeoIWVPGx2S9VtK05uBtjMpDVkYo0QdTBqWmYCFYZzLWpQTFN8CR1rKdFcvVn5QJc/+SaRq35avoBZxAUjYCqvSTBDeidSGCnhpntLBNCE5jlmfi4a/4S1LD+OWzsgaCsfg0k0J69BjVG2oDUiN/f6pDfK8hK4lmtUwCosHuRZE9kPXu4++Yu1qvKimzPdIp47BThmfM9QSlVWts6+KDAAxoxjH8cY9MoILGrtAdsDb3jfF+LNv/Bl+P/3Jfj7lI3JcLzuBs+//Q24PLrg5U+8iH25L4v+1a/5YOL5d7wRjz7zCh599pXX/Ozr3/Y8HrzxIfbtxksffwGXVy7ne/0vfxYPv+wFevlYqWODig2wpuCE4bcxB2hQ0ZvxpFXSI13XtssDIu/ERLYXrJwBC+HrphMlmVRrgNmI/va2AsjBU8h7njSkEKJmJUJu/SGu3PEpQ+iJCqZTaEIg0ICx2WODlStAA5Oenw3gW4dU+V60iMMrkCHdBsh0L7A0UZbo3h7eIZQMOityCljphlY228sJAVQJ9kkW6R7tjhKkeTVFadI1Z4+knhI6x5rsA6RUw5OsXBbPxMIEqxS45uEpPNh4aAI4MDANuF0DtyvI6rIk3xy2dzj0aMSlQcZ8hcGKO3nQz/BJ9KLXaBq040PjfrEv1Sr7ya+n8wykhVs1/gUCXuU791nGzaNw+jHQHRoIek4wTGA4jggRzBmhgzmB4xi4uZlwnW2aiGpn6d0Y1o7HYo1/Hhca43HuQIIB3kZJQWFRBbJXPM5dffa4KXIlGj1nXJuo32bLWAGC0yZ5+zmvD64+Jhdi1dsqpnf6elpiyci0YqaBFnDE/i0JvKNlMrdtdNee4sS+JVC1oiQ+uqUWv78Xz2lI6ZCjg+q2Q6nuBAYdFNx/BSise6Y9igpFWNLcnLXW2w0gUFB8du0L51lAxVBWmjXpZux1Pkx7SqCY1prn3qa7NPM94vaRnzJg+9URuw3Du77+i3A8d+D9P/jLT614/0le4xj40t/yVfja3/MNeP7tb8C+bHzkJz6IH/5TfxcvfOgzn/sGBrzjq9+Fb/hffAve/EVvwbpd+Nm//JP4yT/7I9iP70KSL/nWr8C3/OvfjuP1DwAHPvpTH8L3/J++G48+/XJ+xh+N0wMKGCp/oI45D+VF4DYYQpFibz9SR45r3uuhUPI3LJ+307uAfH6e0khPkxjRLDohooHvXo4dJX+DHCAhIeWmrpMV1gFQc+9lgpkLQOVhBqOHMkG+lzWpxN+l7nstR6DLabviyzQwUCG2c0qE9T8any4+Pz5zb78AANe+8gIEBP5+3qfrK8NLet8t51ohCUowLpXk6B0DK8c6oMObwljcsGMimmUa9jSMZZhrYF6Ay2JumzmwDMtCBt1uT3llZqygKYDjd4xtgQHJRw2qVaVB+UJdGdyjlF/jemIwAJRgTQUhEX5yYwB5+AXO8a50g4gJr8EAGHtFEOoxB44xcAw2HBqGmznSU3BzDBxzRgmIT2zFdnxUTTGsuQmpuBDrmtYCy5msKa/eT1t8mc3shoX700EEPpIxwisAKKZ3nfTTZY0B0QjHgxBGc2XxQYkc9Y1M+MsmGcUoymmQO9SZTHkWIrKotX8Sg2iMcEbjsr52uuPjGVHVMJJZpPzz4A7FdYs0YFLWqffbfN1y3cQoJ3p2oB+eA7Bqg5n4eYgN4/tTnp0ZYGCOcPtturGHDVwoKJYBcyEb1UTcuYEEZpVXjkBfVyVrFcA0KRc4FCeO2722ch83E1/2W38Nnnvzc/jwj34Ajy+PXvPz/zSvL/ymL8O3/m++Ax/6kffhp/7sj+D5d74JX/f7vxHjZuDv/Md/HY9feO2xfd5XvAPf9cd/Hz760x/Cj/6XP4C3ffU78U1/6Nvwpi98C77/P/9bWI9o9RvwVf/s1+Jb/shvxU/9+R/HJ3/hoxjHwNf8C9+A3/XHfz/+/L/+/8Sjz8ijQEuIoZGgR64vgnbTGyVA3jx29dooeaSeAU3JnKxR8XK8EwrcpCyjfl+3Tre8/ueypNUcDcnP8e9RgKJ5BvT9nFczGCy/TBocyvegZ1Vk2/MetHppzDh0FDVQbvHkUwKaXmHDAfP9Wl+YQHbwh1egvI2jZEm/pHjD8G0GUftvisAMRaixFhUqx9DuGvrHPPOP4ArTcMb8rtdmZ1t05XIoSbdurXlFmMWcVWkwGhcMFzIkMy6giC1DAwAe7404MVSDMeTZJqeQsfFbLcyoGXBB8t0Q/HwraMdLyD7R9cRgYN4MgEknsnTHmJmVjzx1jM1oRnetRM21Ev064lT70O07kOqOs6bnzQ0rByL2PcGDNXxEhcEMlwyWw9jkYS9gXwzDB27Ggb13HCQBx7RIjNqM3GyWmx3DsqQriGvVwnJD3A22IwYoHTonETWKKF00aUEk8JizkJ6vqAYYA5gHD+K5BcaesBmbGAcgbSqNUEhq5LTWJvBBtnrOkpglUML5+MC28KQ4QmGt7eUeTQTJvdh+ShrS3GE8rDUAcQqdLZS62tgQStcRmbnh8tvACmEZ3SEtc2ii5XDLes+xN8uBZVZZFyyvsTmTeGLRt5MZjTkqIwDddsdlXzAHE4OMHhUCRxsH4HGYUoRrAwzMcSTYQlpxltUrlRjWBFgXTN4O4zI5Csnwr4HYzQIQzAfzafj4n/j1/DvegG/+I78VP/OXfhx//098H9ZtWPK/8v2/hH/uP/qX8Gu/69fjx/6rv/+q33/d25/Hv/gn/wB+8L/42/iH/+UPhKD9yz+Jn/4LP47f8X/83fjsBz6FH/8zPwxfjs/7infg6/6Vb8QP/hffi5/5iz+ZgPyX/ubP4vf+yT+Ab/1f/3b8zf/DX4pDh3hJSCuWHseHA44j8ndG1OqNaTKi4uSWocgu8y7Mo7Rxq8+J4ssCHAIEAoe6rH7k0seiI2AwsTiesZkAZ732F8wNUJLcsvBchbWU9DakeEzN1Ph0Q8hfA8asxLEYjvib0zh9L8a6Xcov5MO+7JTfZhZH0zN3JlqGcwxD9zMAk2Bm51oC0dXS2WTrbFjwxEGCnO4V6NVqBY7Kaq/xD4SwRBmQ3E/ld02syN2AZX6NSqe1jmst+F7slhpjmz64Lht+cfganFqElEcCJK3BwAWbDeMcc28ce2Ntw16G2wtw3AKPRxyW9uhxHJx1YzPkFXtJqEuk0wgedEtHxdUBd2DtWyDXi0mPYGJ7/AtK0jdYGKnKAXpCOfIU1QRCvSLUcUJd+bkEsK8u8OJ+8Z1eO+sIBTHoCTjmESekTcOcm9b6YKxaz0ad4rUm4zyeIGRgM2YoSzZiOYqoJfo2EUsfe+eiQuYKA4go0vPBOlNzj+x164zTqwn63Y2Pl7ZDWLpZo85ffv63AEGuvZdqd+dxNUbsOJyuf6cQqXvV+PS73PBGUCFiwxKyr71VwdjeLKFx/TAU4Qbbdc6AKgbyUA8Kq8orIHTaXp0r+Z4xVAHzu7I5hTO7yzUrytisKf7N4Q/PQ3zi5EZkzoE61AwCCHc1EDKuoZ/3Feer4qGWn3mt6/Vvex5v/Yp3YN5MfOb9n3zVz80HE+/42nfjeHDghY98Fp9+7yfSmjk9fxre+mVvwxs+/014/OIjfOynP4zjdTd4/OJj7Nsnyxh4y5e9Dc+9+fX4pb/1swkEAOBTv/RxvPfv/Dx+3e/5Bvzk/+tHTu/16wu+/ouxLxu/8Df+0WmML37ks/j4z30U73jPu3A8vMHtS4+xHl/wC3/9H+H9P/S+k8v48viCD/3or+DNX/x5GA8m9sstCbgpiXPc2dhJrmLbmSCYCYD6NIFmM2KH6Bdo6L5ZrU2zCuhJ3pVXgZ8RdnH1JDgD8OTnLfnAuciqBarXRnoakYqeWD3vGUNRIqi8a1K6GmcP6da/1fDnemwx5S7rSnZ7hrskM7zNUzfx0/tO13aL9OU92kziO/VyAi7VSJgMCW5BhO4o3+Q14b1SErjhctlYe7F9NUNKea8QDrtXdBgVLQTmKU+I426mVOjOVsZzAZuHFor23CN/YAw1kkLoT5/AAszjgLLK/2j0CZx07clboTb7NELKCz3T+Pgc4ievJwcD6Jmto9RocWR7qIRg+35jorPrXIsVhKLEr2hlGp6BwYOJIoFrJFMHfTn2suwYFdmfZEiWwUVc+pIMhhH5CNfZqmOMU7OKU/yw6V0Q8ysxyc2ixaTzkc1FGc2BFEoRU3Wwwc/qNQkjNejR2jQlqxKy7F+eQS+yG+PiYTE54JuMEm4ohXV6Ek48c0KlmDG8iuRrcHcTg1AMDiJw3c/BcBFSiPZa5RQI122UjdUSbE08LBqBnIGM1WJRIEtQZsw4XcJnRhJoODwwf8h0z2fEEFWuiByvBI3crjEeWmyfw/1/vmoN3/xFb8G3/Vu/A2/5ks/Dviw8euER9tp44UOfPn3j4Ztfh2/8Q9+KL/6WL8fx4MDLn3oJ//BP/wB+4a//ozt5BV/7e38Dft3v/QaMm4njwYEP/P334oUPfxY/91d/Ep/4+Y890Qjf+uVvw3p0wYsffeE8cnd84uc/iq/53V+Pm+cfYH3q5Xu//6YvfAte/tRLePkTL55evzy+4OVPv4wv/y1fhZvXP8DtS4/xmQ98Gj/15/4hbl98fJ7zGx/i3b/hS/ALf/2nM6QQdLXFaI0vFKLy9jfyO0DQe2JqKXBo667j10rkE71YS+xCU1JB4AlQxLvNPRzAHVBYrm5QitdEylI4aMmBTFi0zDtSnoBkqGRKeB/q+Gp5+xpPd4WveX4OZZFyMOWX+L41BUIYU+er+pyIF/t5F329r+VtilC3tP7P4671iaq1neGSPIab3heHXOlRMbAuwOKRyImoDFhLSeWE8+mOVD4JgUB27AyPeYiuMH72NvgEtk+MiXD7j8gDuF2O47LjrAPwPI9U5nFtO9OAN/oSID17U0QHpV9iPdmwbDfd8jmup/AMVHtVbWwRAmDbXuU7Bh3YoliPlNDZcgYiFrOZ/KXqBaE+nhSluAgTwtyR3bvCQyACK1zoSlgbxjpaB0a5seKSktTCgmOssXU5oKS3oCVa4g44Kxt65rGy9kVAmVyUdztfhausBInrwAxkl7Jkpm2ZIm6mjHodQcyMX4pBG9UmOOObpuOGcSVk7c640EBKvg7P8IIcdykcjbEr0oq1Hgx1dsRdYlWSUMuDKm8InAlRcifGk43SWHaB4sfR2ZJo3sMVbD5wQTCAW4CYYYqbhlTZOzoUZhdQlew1D0vllLQ9zRI55FgifgzSRbz6xi98C77rP/19eP/ffy9++E/+HaxHF3zxt30lvv3f/k78+H/9w7kWr3/b8/jWf/M78Nybn8P3/LHvxn58wed95TvwzX/k2/HwTa/DT/yZ+KwNwzf94W/D1/zur8ff+Y//Oj79vk/iwRse4rf8W78Dv/a7Pg8f/7mPPDEYeNuveSc++UsfxyufvqvsP/KTH8Tl5Vu88d1vxiuvAgY+9jMfxvPveAM+7yvfiQ//2Pvz9YfPP8TbvuLteO7Nz2XvBF+75QTU9Y1/8Fvx3Juew4//1/8gvQsRDmRDJPCkzKWDiu4m1sqdeqZlJXCFgjD3E0W7t9Q3KgJ0lgVO5eLmkfsTXrDmKZHs2LHv8fWBa3qP71d1UpATW6irzwmrWXoScignR/cUIK2WEW7wlI3rroFzj+yRz7TNLsd799OrvS9AUJ88ezMtk/HzPXRwLsBd+UKZfKs2oZpzWyMgQsCh/OinHA7DJIbneriFYlbegAPbdUJm7M1lqUNk94DLt8C1H6ySG6GsZyOE4dHqPM6jiVHe7BCZeyHK5EeENrcF3fkWLXMtLMI1Ee/fUSY6OgAQjlUeAecIY5ULd8RCxmn6T3I9RQfC2sh6TQyFsp70Zir5IqwOIgCcOtsFIYQLeDJZUKUWeRhNu/leBiXmuB9UkruNR8TDppoGHlqSgWDoyNMkdlOt6Xn15C6Ht6MnEUfTRklbb4LhiIw1IxAAwm0vZuzz8PpOsxLqkI0CXGFxGIEACHrib+PxzBrrsMjkVzwVALLpjgN7yaVY6y+Ly3d7JnACBwYnrV6hdOPa53tINBsfHae5pfW9jXXaRL9aGzHu8HBFjphnAIigsm0SBlKufqIPkWrVlmuexTBmiC6FDpjyCHIf2VrYdsgiVJgiM8dTKCvDebVJnCio7A0ObN5M/M4/+i/gwz/+AXzPH/0rad1/8pc+gTe+8834vF/zdty8/gaXV27x1f+TX4/Xv+0N+Bv//n+Lz7z/UwCAD/3o+/HSx1/Ed/z7vwsf+oe/go//7EfwFb/9Pfj1//I34s/+wT+NT/zCR/NZf+Xf/m/wr/w3fxhv+sK33FFqr3Y9fP45zGPcZXoA6/HCgzc8iLyGV7ne/4O/jPf/4C/j2/63/yy+7z/8q/jMBz6FB88/xJf/tq/GV/z29+ADP/Re7Mv9IQYbhi/+TV+Br/odX4u/9u/9hZN3wT1yX6KFcdTzRC//hbUidUZAWd3zBFND6AuYllU70ZRUG8fp3954FH42ttzSG+A+4GtjePu+jzjA6XTnMkIy0U+WHg2gsJkIBjJHRXk7+lsJlXEvR5UGyiuQp1YKM3TWPcmijnbqdfGMZw5BvoNMk03N30GENW8BGdxRewAm17pT1zPhmDJA4L1pvRxz8Z9hmozI8pgcowxPl3xckfsUsq/3EZAyleemDFcBk2wsNlE9G8wQlR7aQ4VCo7eF8hiOOXA744C3Ywwsi8qSSAsrc4GkFFfrFe8MS2g9jQaNDKyeq1Yl5JEfNfo9P8f15GCAwni40a0WCXtBh9rEKs8L4TlRCEsLXK4ytdmVoA5C9yzniyNVw6U/ZEESzUnZ+I6EwfASRMc5J/FYunhGkpJi3D48QwKxjnb6fX2VwqRCgOXhJ5k0ZsaNo5IDs3fTNS7Q0doE33HhWJSfCWULLHoofd+R87DYgU7Z6imsPBSlEpEySG7GTexZ04bqHomkGnkytEdINBpr3VdIgAfZT73mY0Xi/QuxhilGAJf7VCnfxvMXiHqXPAAWDKblrmqIK/dlCr2yPLpVNNgqOk+0S2FDebXl/nfsTDLQPfvsJJj0/e4G5l5qDa7I6vVvfx5vePeb8cN/8u+d3Py+N25fucVn3vdJ3L50i/nwwDu/9l34+M9+BC9+rLnsHfjwj30Aj198jHd/wxfhEz//Ubzza96NT/3yJwIwtCVftwsvffQFfOYD59df63r5Uy/i5vm3YsyBddWZ4MEbHuLy8i1uX7p91e/vtfHd/86fw2/8134Lftu/91347Ic+jTd8/hvx8idexs/9lZ/Evl2nhMBcsWn4ot/45fimf/Xb8MN/6u/h/T/43tP7aznG0h5HnHctx9osj6N8EHCWRXo/XweDhaI2lA3o7RPWPgmkQgJgaUXrw5bE1y1kELSfXAzpEYuE4WqrLAklSHuVZ6S5mIBAoz+60S6XcHd3QKQRoxljuSSpyPWGZix+aqGXO2WxkZhdc+5rUStV69QApmcqIZX/yO9w5qi/zneacPQmTOlFZt7AzU0BBzhzRxd1UirXHd1KN/ctw6a1TrlG1mRQ/jsAaZ8dEF7Li28abRPwI8CBhSdhUk9a6tI2M/ZxkAGT69iM0NS5krtKoMqBWH7lHkfuq15PHiagG6zivd7qMHcmbWwRq0d5Vh7+g+KVpEEgkdewgWoxHCedxeEajmMasi0wrSu5ADNZSMibiLHShhyRoRG9/Q2DCZwHmXBgrZUo+tVXznOhSyAYs9ljbbZbNrcRa00MVF/te8BHwAqkRencQLGJl8t9750dsbJrGSRoJD60PxRuVOrG+xdcM3RwpoQ/rW0yspRp+55zLFrl2NeJGnXu+GnOpRxL+JQbt17rlruqNgPXNE9HWvv1VBM9nUZSv7TeWv85uG+Icy50iuNmAFdVPqNrc/77bFF14NFlXYWeEtghwgUP3vgc3B2fvcoNuL7GGHj4xufwiZ/7WJzC2a7blx7j5U+8iOff+UaMOfDwjQ/xwgc/9apJfU9zfexnPoIv+c1fiefe+nrcvnwe4+f/undjHBMvfPgzr3mPyyu3+IH/2/fil77n5/D293w+Hn3qZXz4Jz+I3/iHfwte+dRLWI/ujvMLv/FL8Zv/jX8GP/3nfww/9Wf/IcvU6trbEggHv1jKAjh44lzIHr2eJXJXSEj7tX1Dp2SC/43cF6kqfj8NhlF8YeJhunwpz7ydX5L8K28fk+xUSRPJxwOGdaWII8Apg6I8q/XvPKI8n38+T6BCVvfPP0upCSbsRNsln/XvnWdfRAVYl8VdXsVY6nvwgljloTvL2lfzyoI9UcJTxyZ0Y+A4BuYRxtmcjjk2YOy+Oru8iEqjvQ03NwOXZXjwCHj0eOHxY8e6EEwm6CkANdhwLOUSPTWw8BrC1WyKko0VTBQkVHoRTsmjvx3RfnwznOwsOx1FZ/IlSgzbKAMyPbBNTqfm0vcHWtLhk1kAT5FAWEo4B5TuJ8ZrDWxqA0iryZ27sWmRpfgM8mwNF6Khy8ScE0e6Y3a2HpYlcGeCPPBnmhZP8X1HNiTyiTEce6+IN4+Z1rGI/NXWTIyn2uZy+spKpXdjWBKTGhJ1L0DvsX2dWMPFO1klIApMdCjmOq299qWUtsCAY8D3gM2GrFvyolmBO3kvKsGvfQbtczDIxbq1xs1ssZwT/z5p6CaUPSwKs/bcIrYUvOF95f2Y5Sshm4DDDZHN25YuaVXjRwEcKN/DWDkQISBgq+dj7c+ZEmKP0ltAT0WCGMtnXp/0lkCAz3/xoy/CEMrvIz/xQVxfsv7W4ws+9b5P4q1f+XYcr7/B489Wbf/z73wD3vJlb8MP/Ynvw7osfOp9n8TX/8++EQ/f+PDeWP6reb3uuz71y5+ADcPzb38DPvuBAgM2DG/5srfjk7/8cdy+9Pg17hCfvbxyiw/88HvxwR95H3w7nv/8N+Lhm5/Dh3/8A3dAy+d/3Rfgd/4H/yK+/4//TfzUn/tRXF6563lwCnUpOcWW5ZXae2OtzT4RVLQJeFk42JQgQAWn/YsPhjwQOMiE6VJglYlU+rsM8LOcS75Rno/Aa3Z0dcgrZjbTC+owLLkUvPJlMl9J8QLSfuZM5LL2/W5y+Q4ZKNPn6isnWVQehUoYvAa+kk8qUW58wETAZi3koyI86/UGugxhqTqiVfA0dZ0dUXo+DWPuaEKnMMFwmC12sJ1Qu/LFXgBrDTzW8c22cWsrOgXugcWQkzs9iBxoGCPsHzAFCoCxK2RgYOk21JnVgT0ipMX4vVHWuvSNK/TrKZOUg5bUldsQwChPVOR6OeWzw2noUs5Y+94TXE+RMyBLVNni1aTCiF7V5crkKk9lG4xbfaBjcStMoJ9AQGNMdnjbTBwcPD65JpcLksqU4yRnMnpGpcgfDwLYsEC1zXWsS9mulURSPxFTHoiGvJUEKReXdPYmowcaLDd0VxA9RBHjJ+GlwuLvHvBxtT+VUm9M5kUYYbkMZGz/dI+wAACcMoz7eeH3C5Em1DBo25Sg0sfyn/lxrh9JO9bKEclHSiYUrm2NONqN3Kw88BL8TsGtMh2zqK2VMhYHucJUmodKD4tuBO0qF8CzhNLynjGXnmpW1ln9XXQtJdW+K7+jGV755Iv4xb/1s/iq7/xa/Nxf/Sm8+NEX4Nvx3Ftfj7d91dujouZm4vELj/HBf/A+fOO/+m1459e+Gx/8B6FU583Ee77rf4DHLzzCB37kfYAD7/u7v4Cv+/3fiC//9q/Cz373T2M9XhjHwFu+9G14y5e+Da9/+/N40uuTv/AxfPaDn8ZX//O/Hp967yfw+IVHsGH4/F/3BfiS3/wV+P7/7G9meOONX/BmvPsbvggO4Jf+1s/i9sXHGDcDv+nf+G340I/8Cn75b/889mXheHjgS77ly/HGd70pwIEU9jB8wf/wS/C7/vPfj+/9Y9+Nn/4LPxZx94NKXOXCAG7VS8QmxDMhTM8JhCdgvxUawwkMZBnficbBOv0oFQu54fQiRu+HYWzjm/q1aEvAt8pKxf/Bk2r6A0PkCLinxQubiDbHBToULpNy2u4wtU9envJPrZnvlDe2eSVT5dfKyr9mvArn6n5nI+b6GSk7GkA4X4nG228+2yQTHHnAC+VGnA4Yn53GZnNzYB4TD9mLRt1odY6N2QLsNkPOSpDeO0JCe42o/beBgQsGHGM5cBmwJW+HBwCBmpdZuPgHPYrM1zimMwQQdKgS8TJUaPg4FylFpre1YjVWhr/D2+ACFNE1LVbMLRORU54IVLAJURiljstAjeMJricGA3vvUHibA2WYwBqxRJY+iWhYxLhZrqeyvZ6wdtdQoaK1yXwBw5jVTKJE94ikvU2x3nGCFhqA2nhm4xwyzPaF272pKM7xZCXeRPJdNA3SY4315sNGxc6HwTz6l0d/fkc1YOLGpQu53HpV8C4LXeDmvHHWFKSAh8HZQasxc/9e9iwQyECjh9cKhfCZVwBLewOziBna4meYXJjZzDF+z/WszNxT5j38nr1v3hwtOAhCgXC5DSVNBtmPoXX1ssqaEK75DFSv7lFr4AZDCHjFbceIe83JCgln29k0Z+5fu0xWyv0mMGiYL9B65Vx8zx/9K/hN/6t/Bv/c//lfwi9/z8/i5U+/gq/+zq/B29/zLvzE//sf4PLoArjj5//aT+O5t74ev+3f/S78o//2x3F56THe8TXvwlu+9PPwZ//Qn852vR//2Y/gz/1r/w/8rv/09+GLf9NX4sM/9n68+Us+D+/5XV+Hlz7+wp0ywde6Xvn0y/h7/9nfxLf/734nvuN//z/Fr/zAL+H1b3seX/kd78HP/KWfwC/+rZ+JOU3DF/6PvgS/8Y/8j/Hyx1/AZ973SXz4xz6AfbvxgR/6ZfzWf+d34su//dfgoz/9YbzjPZ+Pd33DF+OH/sTfLm+IGb7wm74U//z/5V/GJ37uI3jd296A3/AHvqWoYm18/Gc+jA/88Ptw+9Jj7FcMeGnCJxveJBhg2djtVddOM1b4NOMhXbi0ZjcaPSM2Ld+nPId0VHQfHXYEGM5EMhTIhuShhWUIkCfPYGAMwOdgf5IN2MIeamssOU9uGFZOPDWUGRyU+il4yNj9avzdng0D7GYBh2RQj4V33jl//bocO96gVUqFd8p8j2QzzmKfuNtRibhxrkdcyheL3KxoNmcWRuHNceDm5gbHcYOHNw/w4OYILwEPrJtjYIwF4FE2CEvXPcHAZTmOAQxbmJg4xsTj240xbnF7Cbi/L5F0Ho2LJsaIBnWT1QQxpmh+J9e/b2CxG+Uehj0ce07sHXogQavCkaKvjfB4oWhJJBV058JwUKw9wwQwwCMEDubHbB4wdafS83NcT+4ZWJtCsdz0ka9CapFbaND9MgbGDCXVkbiAQd63EVdXzDoUSQkhhd7JBT6Srk8pLVQ2yMzvnd0Qt0eS0fLY7M3Vuj4r/L7LaBFXZzC2WvZIqgRGJLoR6RsFjS+NeScIirlynG1mhIVXDGjM1UA136F1q6pphykplV9SDgJw1yuQVJVr3haurfH1AgTRYajFNOBb3hXPW9wXMpi5vkiPhojc080epJ/kwLFGCQ4xpmLBA5C7DASmXYjFr261SIrWOstbZVCuQ6vCyI95ZGuiu5UJQHOa3p47Eign4GVegul7+8Dx6AGAoMEf+L9/L97zgU/hi7/5y2Fj4H3f/4v4u//J38Dty7d5SI8vx0/8mX+AFz/yWfya7/xaPHj9Q3zm/Z/C9/9fvwefft8nT9v06fd+An/x3/wz+Ib/+W/EF3/zV+D2lVt873/wV/GNf/Bb7+7p57g+8pMfxPf8se/GV/62X4t3ff0XYj264Ef/qx/Cz/zFH68DhBz44I++Hz/6p78fL37sRbz4kQIc7/07v4i/95/8DXzhN30p3v0NX4RXPvMyvu8/+v/il7/v5/MzYxhunrvBe7/vFzAfTrzr677gNAZfG/vxBR/5iQ8GGPjpd8Df/5Y8+yP2Fylfhve9ahZH8ps+2/5O3xDy/S3FBqCJqKTjSNCt/Jait2Y5A8l/Ln5s9AqgnSvgCFTC7xrOrMtHiG8WUN15+YkIg7z65e2/MADv+Czsaz4Ie8PL7RMdCFj+Lrf0FSA4hcPa3AU82usujZn8qRyB4qEOBMYIz8DNjGTtY048PG7w4MFDHMcDPLx5iJvjJsLKx4F5TEwbmGPD8JC8ueFGWT+iTfqcwGFx4uDEws244PZmYTwCHt8C0xy35ln6fNDDcIwRR4Bnybvj5pgsaaR3Zm2swfyASdnswLwlKJIu3MifLIPdzu6D1va6y5MCWbmJWmZveRhGe/ROcvprX+b3Qr2712/6urdeDQSnPivaY7UdHnPiuHkADMMYkQcQvQOqJbEU/nEcsZkz0N3DhwcePDwwpjMeZBUewwAw4WtkmVmKczJ8/N5E3ztak9rC3re4rFssv+D2csHaG2tvXG5vcXt7i8tl4fb28cmDkYcMmcFmua4Oj3kMZ5x+R/nQouLYCLTnK5TOtQCqtr9nxlIpUb6kY1qVGe3I2uF+z4w/AVCPc4DMpfjYQLkY7Rr1F6FmrOwEEIRAw/pYeyXDu2pt24++Oc1w2FHlUAkGQpyFBXVBtS/dSdxhMYR70KyBTB4YpPG7C/x165/i3aIVaO9tEeMOOjLccH13O2ERuUd7nV9f7nTVkrYM2QjmDHIrVmogoNvAw1/8fLzxJ74c4/YmPzuOgYdveg5jDrz8qZdfs0vgc29+HWwaLq9cXjNmf/P8Azx4/QNcHl3wli/+PHznH/s9+Gv/7l/A+3/ol1/1O692jQcTD9/wEPuy8fiFR/d2PQRwElj1InDzugc4notug/flAYxj4Ob1DzDmXRDqANYrt7h95RavqemeXU9/PbzF+OZfwPjmn4c9eAVSyt04UiVYN+akzDoY64C5vHV+fp//6yDj/Kz6W63r5wBe93BgmuHmuMGDm+fw8MHrcHM8xIPjIea8oW6ZmGNG3hkc2LcYtuG4ANjYtqBDkpYb9h5YF8fjx47L7cKjywUvvPQCHl9u8eiVR3j06JYhY0/dNQ8waVGeTscxq8R8YDJMNbCW4dFj4OWXNl58eeOFF2/xmRce4cWXFl58aeOVV4BHrwD7cgPfURGjNvTZ4dRo+PkZrF4zQgEMT6DlFp3ihUG/7wc/9DnJ4SnCBEp0oaPHmwUlpOOga2bAXGfD97ucLW+54Oo9wZwQoNGJM84/yJ7dbLWb54hD/aeFsLlYzeWl5iYYjukbWMAypxRfWLajl7U5xpg5zsrejUXVO5nx6Uosir8HY4bC59FwhyEEPzNLP39asUsgAIRdC0WZBb0sB34yHXRwSKz3aOPXDaQ5B1ucxuZcx0v1vUimsvp6avmh4MAJDAjsq8wv7hPqtocIMpMYlYAI5zHTctvmM6Xo2z44s6WH1zgaE/CTzeIIcFRJNSO9NjjlEkye81E0CB1T286HjoDTIjkxxJBgZGrQzfpBeAaMQG2PBALObPK1N1761GdrH07br72Ke738wou1Y8c5UUg09pYveRte+tiLePnTL8Js4Ku+8z14+YUX8clf+Rh8rDMK7J6QTgftxb03Xv70bb0+Tzbm1Z3Kg6Lr8aNX8PjRK/HKvP4OsHxjv3g+qvjOdR3tuu86G7bX0zh97DWvez9wz83/SVynW/53Qzud21/z8qBDPLoBXn4AcgxBbRgk6UnRa6lsrOj75BXo3gPl7Bgigbt5DTJkp/UMfjOGR8ap2Vz8fvjgAeaYeDAf4MGD5/DwwfO4OZ7DzfEQcxzMMRt5TokZ4LcGxyJNsrLB4hjTacA0AofhuMyFeVlYe2HcToaIBi6XC9yj782YI07NPaJvwJiGSGqUkTLDzzgB3wN73sCwcbldOG6jB8LAhXkisYYpV3K5yc9uSIcpQm7M5EuHeuiEHG3zo6dbXkg4rhrcvfb1xGDg8pijyzKLcp9WPHxGYo9NuA2sdSkrnT/uOrBIlpoGuwGfOGyEq+/iEZvzAbOb5MUxjkgyPKicXJ3squZUz+r/3i7lPTBs42Y8wOP1CH5xDJ9xvK8Be8Tcli+WzvBgJgzADwDsWqWDmjCjz4FbJhXCo8TpAsOtDhvijjsZac5ZiA49c9kw500pWzYvMjOGNgxrV2JkomxIMQMSC9sj4QXGeCP/PXLX64jiADkCEapIoNJM7MB4rDGhc0t1duU72oEeQajDytMCjGyCMnlM8t4XLL9g0W0Gr9giYNEp8AiGdONaOUubCGi2T7jH2RQKpap7pTHfZdDSCQtihkr3CGOMm+Pkbt7sHzRHPGfZ5pgdpiOxdVwtCMaU88F6b4wGiAmibZb0//Sv+zmsd75wcu/mYU5k4uEXmK2IiRIkvuENb8Lzr3se73rr2/H2N70Zzw1guuMTL76I93/i4/iCr/tyvOurfhNe+NSn8OZ3fj7s4cSf+1P/IT7+Tb+C7Rccc+DBwwPmG3NeMGfwypwDY9ZhNPIzcfjZpuLyeGGtaC2bTX5I+8uZMzKKBoYZDhhP8zTm28ZZolHdM2Bj4OHxADc8OAobeOWVxxjjwGU5bm8X7LjBsInLZUE40rbTm+TAdthU6TCtK7pzs+TYHWuH2zgrcmzEgWOte+Hekf+jbocu8D1CvRzHoMfK80yzgtV1ENDyQX4tpYpgoUiOZh6kQZnwlFnkgTmuGzuJ5vlZeaW45jBgrUd0EXuNS3xujvHJNwF/4Rtj/eZmsuoNerdDlXIDC44NLOUsDGBMhixp/Ki/A407o3GmhD2kfBg8udHKs5bNgi6RHHjD+PwcuHnwAA9vnsODeYOHx+twc/McbsYDzPEQN8fr8PDmOcx5QC3Bi2ZX+AP8lrS5YfYgLXgZNjfjgPvA7e0F4/Ettg0cj28x7RXM+RIeP36cYe2R+zX4Y2FUMZRg3hIJZ4AT9wPHEVogWsdPHOMGNwggf/MQWIcDfiBK3FlyCoEaGcYEGzJsJWecVXDYOPd4iTk3G+mJrqfqQCjMkWLC+gD4OY6VpALrP4UlAhmZ5XuhK6P0b6+BbQEcDFH5BbqP3AZGi/PCgOPg6V1jZAwumEYAxKNdskcNuVl4MKYd2MpeHcAeG4Ox6BBVisEIsaEI20NxD8iVZhg4Mj4cjpQQVOkpaN6B+2pqJeDW6jkWSmLSmeZBGMl4mACVKsCs5BYmyFamzdVuJLSRgqaBCklQjamM4nj+HjmekAUOGe/3VWBEsiFQ7sYQSO7A3pekq/gZUM2GbiqLQ+cG9GTRbokq9gaPO0hfOwIkZv+LYUxGpCUxDGPO05oq5JXzQp2oiS4gHchYcM5DJTYUxKkoKjSW1xsvuLzlxVMXTFk5yyMJ6OF0+HoZGws3z78Ob3rTm/HFX/ROfNWXfSVeN2/w2Y98DDeXC56/OfC2r3w7vvTmnXj/x96PT35iwm+exy++90P4oe//y/jUCx+DvZV8MQz2YMa85gX74DkWE6EQaJW10vtYX0ckOt3qVDfAl+dJlZE3s6kwSA9UznMYXnr0Mtwdzz//ehw3B9blguGO524e4PUPH+C5mwPv/vx34/Pe/BZ84uOfwMc+8Um88NIjfOozL2C98gjjuMF88Docbnj86BaKQVto79gv9o53te6V0DYmPu/gcWQFQnh/iCWwFloLX5702b1xUjpHeCclm4fJFgaASBRc27F2AwMuXmLS3DT4gQozzVLGgtkrlZfGUHKt5xv4GEwVcsAWP6NsdMltgo48Bjz9mhw3QQbvaZqvMxfMJzAmnPlaAaTic4vJmcXPwLldcWgDnbQ4p0f4cgI2FhVtWNaTZ9HEQXU3eHjzejy4eR0e3Lwe0x7gmA9xM5/DnDcwm2CgFmncmCGIuTEyJAsmeXLSmBtwjyQ/fwiYPULF3wf2vpCPVfVRDfTkHVe9mjg9FOABQ8zhwc2B1///mPuzoNu2LL8P+o0551q7+ZrTn9vfzJtZldWpSrakkGTJQgTC2GqwTRPY8AAvEBDwxBMB4TBPvNjBEzzAG+EXIgQmDOEgwAJB2IFLZVlVUvVSZWVmZd683bmn/5q995oND2OMudb+zrmZ5wqXxMo89+v3Xs2cY/zHf/zHGKtErRuGkFilkVqC9cIQRJIKUrstXTLdFhT09DrMtIEzqUuWhRufzzbopx1fAwwsnf6Msn/S0VPJbfE5qMiueRcm/VnQl9UOY6FZQwZzo6ESUSXnHBGbV6ORYuqGVmt3DXGYgERrj22591PWvFQp5gTEI1hNF7jz9etw/+gua7mNPF8UxFkCfYgKBIy0OcqnHd9TEWuLbAtQo6djYU4fVdxRdn8U+MJY5vk896ZlKjrK1YdA9XnbYU4nHAsoZ6Fjp0ww01E9fzjnEV24cvN1OpCyc9LXFTz3iKmJb8JGvWNmcAz0NkPBnV3sT2N+rtUHLHRvrtdcSpmvtwlNIg2NRrWHRZx/1ujTC30GfRWtW9cBUJNGlQSOWq3Whg9WAliOkTX20qjQOdILpmXQORJ1vo7WyLkSkqgquTRSCty/c4+Pvvkt7t9/my8+/5Iffe8HXD15yr2TE9ZDJG5G1rfOuP/Ou9T8Jb/zu7/K73/3DxW65AxGd1ZgOhSdxR6iAU5vxQ2auzxeZ80iXRXFig0HszVsOU0XZepyFFs7xlYNkZIhhcgwJNqU4TCxXa15eHqbX/zZn+d0c4KUyma15p2TO7RvJz559CXf/+EP+fzLJzx7ecHFi+ektFLzaw5JeppNn7/06gChq+RDoLXCIjhffH8ZPC0NqoNwd3xLM/uTbd98zL8363x0/yGNUtTKhIClCA1gGvVbu+BuISz28tc8a1a8GqdJIyavUTdw0a+u9mBuPhbtxJoFDkhPbc0VSZEYB2gJWrR1qqBYdVIWiR7lhT3ymz9fdgp0OyQhWHmga8u0WkD/jaxWJwYItsQwEmTFGEd0sL2lE4yFdGMdJOt+Nm2SeQ0Ec6pEUki6H1sCEtHEiGq3KvHQyFmfgd8xDaCUYZY2Ty3sUyYNaOjcg8A4BDZrvQdp1cjTQJlW0JSJDDIQQiKGhHdi1cDBnjOvCbD8rpodbUfP1EFePxnedK3+Y4CB2l//TRHHTzqOLrDZREabyifS9HEbHesUuHQwEIiiqYPZ0XlOvFkUVmmx4HQ4CFKC0pPBS8kadVE2iARTsQudwWhBVaRiKQN/OM4M+AIxlqBWWzJhbi3sKYLWGlippX5du1FqgM+wbuhmccSYjRKV5vcBbZNTW8+Ji71n8Hy4OECyTRgFH3jiKQRBOqUr3ajr7ZLuqO09F0LDZlFTO5rZIBY9Lf5GHO2ag7XxxE2URg/BnasAsYOevka05gbF4IuFvTA81c4H3xpNB4Z4n6rWsGEw+nwlWAmrBITUnzvQ006tN6MJuo4cBNQb2g2Zt+AyMNJ7YXdQFgbWjiCBENICCJibqSZELY1dyUg+cPf0Nu88eJuHdx7y93/9N/ny0RNqqWyHgUfPXzAG2J5tqS9f8vLiig+++RHf+cY3qVPmu3/0A6bSNAc6RCCZgDVQQ7KqGosgzaK9src7+JO5Vrpi7Wl9PwQNq5d/a7dpKpk4JsY0QKu0KXNnfca33/uQb73/IbFCfnbFF599ztPHT0jrkXi25du/9Iucn57yq7/2n3J9ec2wHnlxcUUaxh6PdSxgz10xyHKtHF+MR1iuXVn4WFtSc6R1JIZrBvKC/bzj11du1ms+dzZMv1JK+Bg491pz6KxXWUg8bDv3YMHPUdDXdf2qV88E8fd3IOF9So7iWHOmevEqwNNyupkljGpjZQWMeA+TUidqKxQKuRVybSgboMxGWNwXsXMJwUfRY59j/wJREikMxDCQjAFIUVMCQzphSFtSHAkMpLBCU7Y9+2mGouj5SqFJJEg2rlHDsq5BC4kQBnXurdLapEJjNICiTUQp5ERvQqTN7RQMCUrpOLuqj6V1P6Dpx8iYImxUGL8uQi0rWh6RNiAhEsNAiIkoBkzMdnY72hmC0JdcX1Vuh/nP5vhafQaOkOmbnIIsNg1wvDFskVqfaFeEq2NuSK14qVYtjeKAoNEfRpCoosAwLHJwi/yR0W+1FmTQqCxIosSJnLPmtOKMXr0xhQSsFEXP1fOerh1QlWs00UgyVsA+mswwihrOFKpFMXovPJqs5tidcp8rA3TYin+97Do2JFhGwg4wXIU/o8fYjYyzJUrNSQcDCgzCK8hTc13HLEHXEuBgofXzr3U5xtT+YoFIHYR5pObNfDyy01tvFFmwWkFRh+PXJohqJ3AfvFx7M1JuuCOv2vOh6kdByykcCAQx0VFMBpRSp+E8NaCRoCChIqb0rfY9rRBp85o1FiqapsEvwa89uMCyuth1PnyQUnVnsHBGlUadJrYhcf/OfTZpw+c//pTLZ5d8/tkjDvuDgp5pz4fvvk0NgdVq5NmXT7m6uOZnf+EX+BPf+Xn2uz2ffv6I59cXSu9bD5MQoqakyvycNGLVklyYuz3qmhMDVf51D7E1reCslbfZ1VcAtAPpsIqMRFIL3Ln7gG/cf5d3zu/y/JNHPPr0C4LAtJ94/PhLwjCQR+Hx06f8zM/9An/6T/5Jfv0f/CZ/+P0/Ynt6ymFSeh8cm7gDdGDjpVxmuxY257gp0Uy5vi626YJXYyEJ9SdEQTcjNG58Pu9d3wtS9HMp857uf9WWTKidqkd9OBPaukPXpWQahrCMKltfj0GAGMn+KiEQU+i592ABj0S1ZWJOKsqKGDcEGcGEs/u8p9RMjhMhTIhMaD+ZQiPrXveaZ3Gb46I7r9TCNALJKgMMBKSRFEZS3Cz+rdXWy0hg1BsS6WWe6pcqtU0IlSCRRkT8au0/muZICANBBojKdOYCQbJS++OISCEWoeRs+ffB/o0IAzCoJsIYEQf9IMSYaMNAqQNjHch1oNVEqwPS9O+VFRzMfymz3J+uB1SG+RxYLSt2VN8ypxj/fz3eGAzAbIgdcDZ+wr7wQxYG3gxFX9wWcSnqsd8DpQB6QxGhBfsoMkciFoVr9O1NisKiO5SeZKOaAQ6kGHRhVAUG3q3M73iyqLeUhkZPes2eQ43ecEiCqlEJRGMFFChERXdNFevJcGJ7xdD7xl8CgxtRrjnYZZ9xWVy3/p1PJSvkvCzZmh2ObrwlPTeDgWRCzteVEy0duH9un7EsMfKPyznlN7UQy3PS11A9xgwGoLVCI9q6cgA5R2i+Lrqi+cZRmwK41qNcF5WKTZVUYSsSkBiQoPnGECMSIuL3AqPC/Xm5TkCRIslSCx2E+XlKsyoQz7nb8nYwYLSXLMoPNdepLagDM+2tly+ElIg07p2f8uG7H5CI/MZv/Q6ffPqIy+sD42rDyfkWofJiNzHlC042K7abDSKZH/3hD7j78D6//HM/z+7qmv1hz74VYtMGJ7XBlCtSp17x4RSu2FrxM3UxkOeRMWDkj6pHr84cStO0mwHREAOrGAkFtsOK9x+8zTaMfP8Pvs/zR09IIZJr4emz51xcXjCsV4wna7548ozN+oxf+VN/im9/8yMeP37G5e6g54oSwPRItxnbok6hp5aOgheZWY0j0VX/aYcHCvrVeaj/9mj+5upbsEQ0XWevgFb/lVff08F16Hev9e/PgMzSL8aGedrLu7SGbveaAtiwAABB924IOveFIeG1GzEK4zAwjPacJGhfkKB5bJFIDCtSWBPjlhAGhEQDYr5iqgdyngjhQAgHctavc/F+Mougj3K0vrRk3Gx3SMSo4sAY1woE0oaURkTWhDAS4oogKzQqH25UcxW8s08g2ue2CY0lsvBIn7IMSFgRYgKphNYgHwjGTrQ4IhRiCGS36bImsEJYG0sy0EQrg/TetXlXhwFkoLSByki1VERrI1IHDVBMcK+6h8g82E/XSGfpoHe0tYWBC8x7avTm4WCir+qffrwxGEgpqbjPhG8zTTHnTY83iedowEO65v2+7boEsedXzUh7hF6RVgjE7mi0V4FHvQYEQiRFX0zBuk8FgqvH6G9OaJEi7kx1U48j9joHZHLWwagr62HtopQgYmDCAYFGk1EGWyjGDtjD1TbEmm6YnZvdB/Saexwhs7NtKBNSm48gxRCJggHN46kDUTBTKKUwTcHUz2Wm+QGn/mKwIVBJG2dIdBZl1hh4lJriMLMBR8BgjktuAgIvw+mA0a5p1hWYEbboxXO5tYo1kPHozB2+rZfeXctEWAjeisDvi8ILB1DzU5/BTFQnbKCg4QBAn2FKg7W79usMqiJvTadbBr9Wu27mKgjP00KzPhT6li7URAKRSqBSS6PFecuJpytYMj3690mEcRhZrwY+eO8DTjenPPr0cz79+DMudweqDOQm5BpZrze0OkEMlBq4vDqQ9oUyFdbrNbfOzvn5b32bWgqfP31KawoEd7sDcRWtLbDY/nKn4vtZ5nN1p2TiySiL9Be6R8bRqc7W1fEiOrq17g5s12c8OL/L9ctrHj/+guliDzWQa+Plbsejy0sOtSD7a+T6ipPtlsdfPuZ73/0e737wAd/6xjf57d/7fdIwQEgcrFWxxGSOrxg74NGyqeIXQAtcRKb7XZ+4AtQQMGNugUFdVBMsxKEe1cZg2idHGL4sxVal4QNnA24CbP0DZzCwMlXfQ9CFCvb7XqnjlQg+ttdTgEhBojldcSbQmU1jcNIMSGOMrMaRcRxNrW6Mp9kyjVzXpLAmDRsC6tQqjTAEprznIHtt9iPCZNG5iAZT1QJAd2ghKlgJVtUTTbwbY9LUQNgwxrUKBuOKFDbEMEIbaDVCTMSwIoRxbsYGQKJRNKhoWQEDaPAngqpd1cLos0uIJLqw0Wl6Mq0pIxLjmhAqwwCqlVgRZENgRZA1IiMSV3ilUgy+X9RPNBmobaCSqCRgoLVEaMn82AIIWJrU7ZZvPfcPx+34bU0x26Wbh97vOQB7k+ONwcAwDEyTU9LHlNos1pnRiC95zcnSgcH8fRd9oJs5uDVUGk6paquubBqZiUXaHqUE5gUVYyAlU4iKiSoazOM11UlqNKNNiGIE79Y3C+EasQZyUXCh9LtebwpOqxs7EC1V0azEUFT8EmTQiNNzF7LY+LBwkI2bTTc8mulK54Vj77llb71aFAiUoCKZWivZfu7PpaGlO33Kl9XL6rANoxoXgkPpYOB1hstp9FcBgSpv6+I+ytHvqUGcr681KGWiNS1BnQ1goEnBm7Lre1h6wVubLoBlp287oJjRsEb6sX8eJCIhgSQkDCpUipEhjcRk6RGUPq+xLug4vy4rN2vVgLGCAZ1FYU2HpPVoWNN8QqAoGMiVHKPHziZenKdnLsd7I4HNuOZsPfD2w7e5vt7xxeePmHJjygJDIIaRFgeKKGi+2E2wToxRyIeJk+2WJIHrFxe8decuV++/z246cDFN7PcHVuOKPB2IN4PVptfhKarQc5lmXCziC/2Z2rM25yMGhnrpUKukJkiNnK9OGCXx+Sef8+LJC+7dug8hcr3fsSMyjWsOdWLKB9puz5QbuX2OxBUP336Pt956h48/+ZynF5fK5jRNqvvUU6wkuLeqXjjheY2HeR91cGdMW/OAQR1H8dItzPbhSn9rX21On/5edPCha9EFXq4et6SGzIygBzK9RLuv5xmELTuyhqjdXfVz/ThP6QNSJsiyDM4avqFgogxzw6uUIpvNltV6dlAKAjQVKyFpDj+u1TmKluNVNJoOVk7h9tzBVyoaTJWScY/tDeD69cRIiiagiwMpjgxhw5i2jGmj+9KYAB9NTZxZC5AZK7U5GFCGUHeeagQsr968zfxMyfdOgM3XhUVKjMQw9t/X4lhjBVgjsupgQKxdcTR/VbH0jsQOBBoDYL5CBv1dDyZFzxOzJUFLNwwM6FqI5tidHHK3UHNR+7P4nmfnexO0N0QDbwwGNIci5OyGzjvQ1b5o4dip+EyB1330z2E2OmC1zha/JVG0G8XyWYjeI4fRRZ+bl2OJReuuHq1t7nc/k3/WOqhZyUiE2AYG25QpB0o5EINFrVUVs4JVOAgGQixV4O8rA0FGUhwVEFhOehi1C+OxWp9+vX5+PaI1I7J0tBgAUp1D7UAg50zOWQ0fA6XozAAHA3qBarQUBDggUDDgytmjLoviIOxVMOBYrUPWpqxDbdUchiyMpf6e2DN1INGOgJf00h3jRChez0zpm9sNeLN70FMqBi58sS+FURWxMk87X89/2nNJw8oYgUgaV0fMQN9EzuK0WUBWaqVkewZVxUlewx5SoncPgx5hh5qROunvxoT3DUxhIMSBFmxSWkiLKDuyiSP3zm9z7/Zdvvv7v8fnjx4ThxVSIlMTyJWpCKkEag00Bi72lTEFTlYDh1y4ePGSIQi1TLz74AGX19f8w+//AKmNISQOeSKOwxwpmyGTnicXM3bBnAWWp3ZNge+70H/f9/eczS8MrXF+uuJsfc71y2suL66pLXJowlQq1w2uQ+A6RHY1cyiN6XriuhVeXO653GUevP0eP/9Lv8jdux/z7OKKlgtCYND6NKCp/sOvRPGJRcgwDKNFxxYRNj+70inXajn8OdwRc+cFL/eDSi4TTbsTQKvUkmltWSpr20SstLXqXrxZD+4fnFI/bm8NMY7m9O2+djZABQeuk0qDRo8SKjHp70RT56eUSOJReCBvtt08rIYNpyd32Ww2eEcoF0TTo2vL54dV34dVKqEVmvff6GWCjZSEnJOlLw/zfpVCGujvEUK0pkEKBFJaMQ4bayikTYVEooq5RagSFKjaqlK76Jxi6yBbn1nQc7M0j49bDtH0Q8HE1z1l1kAiEgeN061aQc9xRMS1AiuCjAQZEVmRho0hX62Qq7WqvhTttdMYaJJoJHU2Ek334KLMZZrAUhh4gOMyUhdHzz/yj220irvlkmoKDJPN1XkNcfDa443BwHa7ZZomShk0Wg7FVJYOCmZaWR23R4e2IRbRb3c8zBSjO0VFWNYHOoYu1FM1dlN63dSdVbT5yTRlavU6cVPLugHHo9OgN3TBxYpo1yiJen6lBkqAUgIxKztQ6kStBbzeFB+1nPTcfJOQSGlti1rLYkKMjKuV1iMvnO3ycBGeswEa9erPZjCAqWZ1seWiaqNq1H4LWs/qIkcdn+1Uk4rf1GBEAwNoJ62ULKry8/M0xLIAqZtWNQILYKUleBqFpRR6GmkJYuZOY0twoQZ1rvnV5xacZnXlfvP7oNRbbZqDDrgQcT4E6f3GlrxVAxsMYvSduIpYxUrDoINPotH36jiiOf8bYABIFUpUZqDUASeRsRkY7oAcICBaxRCq0KRS5o5PDClRh1Fr30OkLZ53EhXb3dqeEkPk8eOnfPbll0hcEVYrWm4cClxe7aHqJDfiwPP9FXG/J6VTcmlcXl4xREEu4MF65P23HvLxjz+lxcjLiwu2pycWxStVLs0p8BkkxhgVkFtKzunY4AYtDOZoBk3VRdPnGNgPVDYtc2ezRlpilw+sVieMY6LGFdeHHdcZJiISR316GYZt4OrpC4I0pmcv+d3f/y7f+s7P8/bb7/Hl42dcT5kkgsSkGvbWGActK+v33pxlCMHAgDc9ix1Mllbw0jgFvNY8yaNNaWrnbF2qWC2r+zEgUMtEmSZK0b3cjEnQyFnZFPEFyQxU5Eag5KV5vi/GcbAUAPi8lxC8hE5p9zSIdsezlrkxJduTiSEN+jFY6VxI7Dervg2HYcPZdsV6e6L7ptFDzLmroFVRWVmdAvSCMJBEqwdKEWvTK5QUKXWilEzO40Lkpueq1xfmlGqw3gHDSIprhrgihdECrGCNi/TmzWHjvL/9Y7eVHNscT9s05nuO0IdGVW9CFQLCoM6/BYI1OFIwYBUAMlgKJSFhZFyddvvVatXZBFY23SRBSPZRAQASicPIcVo52flaSWhnOed/czr++HhdikBvMK+IlX/a8cZgYL1ek1Ii52h0mT7sZj36u9jOBWkYjbWIPH1gTVzk9/WC2oxgTQSo/7zspHUE3lqlZLSpiKHulJJu2OqULcyMw3zTavVoH6WPxcrGOr2lrEMQiFhZWasUJcWA4hI+UggqwIsKCmJItvm0ZWaKIyFF0pDAtQw9epoPj/LdiSognMFM/5nUDmQcPwawexSIMlCKUfXRN5wLwpRhUWYgqsGI8pXMwDL37qyER/W5OgvEMYBprl+oHRTMrMwMFnvLTfQZV7vWEAqxaTMUjcIMcHgOVXQmONgUsDKzC36a0g14owUx5xzopSbdquomDdbUJIaxo2i/F6+U+/kNiUJK2kJ3OZ9BL82YMm+qYXRwJJCqUquHRQfCGBMxjXr9pfR7KcDQAts0cr4958XTF7y8uOTF5SVhbMT1gAxupAJ5QstxQ+DQIm2aONRGWq9YbQbdC6Xw8ulTHrz7Lj/3s9/mN37nd9mMI9GEskiz7JvLGkUV3sFnhox6vnEWqmlazIRfUVXRw2Cpl5g0h90a0jKbekU87Lm4uIYKJydnHLJwdajsp8Yh63sPcUUaVqzjhoNc8/zJJethIA5rnj5/ycXljo8++haPvnzMs+cvyA0kJSbrFDgOAuagxJjFFCMxGRgQzxf35uLm6JtrRKm12TquphnQuLMaCNJ7daCh3YlqCeRJY2mfdhmKaZ2qgVOJ1NyOwIDbfQdefs7S1w8MaejXESzn7oAgRC2pTgPWKjf2r0MIDGlkNYwMw4oUB5JR/mE9m/0U1qzTyDBsaSycR3MQPH9Lt5r0NapCQi1Vjb1CBXIRak09jTmnPzA9l1H4ONsUexlhtP0YZES6e5rBRBOLhF2v4idrn1VN+vRzXQICzLq0BWPcRXg0CNjaGIiyNiHjRvUBaI8FV/0HC1JjWuGNUFREPfc66LYmavDhXZaCddLUYGjAS9KPRp7PZ7u4968/vgoQtK/6wVccbwwGzs/PjZY+qLFvqhp1DYFvoh5PNq3tDDIb2D58wqdMRael9HvDMFjfABtFKVb/6umICq1kEKHWSEUoMXYl+yzI0Tvki1kXQzVRnn5PUa5SMa1qh6dG1Q3VBmt7W435KApEoNPnYnnKGCIxJWIYGYaR1bhiHFcMaUVIaVG+FjXXZyGBGFStzgxYPrHVppfaXJh3IOfcN5bfy5S00VJKmmvMORNj7DoDP0fNGTqVGDql2NXIrwUDc/lKp+JRIBWLgOlA/BybepMuZvR0htbA6j3ExI+9jrqh7aq1/gi8K5o5fnestTajWWXxLJvl9Dl67hrZ2Xq0dRREHdmQRksLJM019zWZbFCWOgdfp19VstMsMipWxeGTKPRxKkPQr8P+PrZMbJkaKj4RGxTEyjCwHPHthnbVIrdOz3lw5x4/+OF39Z4iHHJmqJVhTKxWW1ZxIJQMpXDIjZpGqIVdrjSJrDdbUtMBXU8ff8nprVt884MP+N4Pf8TUAvsiFDS1FiyVNI6RmCLr1cryukmjNkurDGNUu4YyYymMxpAlVsNKAULwfhsZyoF4+SXPnn7Bl09fklanrLcn5KuJtj/QiFQr32oVhqSdLq+yEMYtLQX2BaYqPHr8lPc/+IB333kXJHLI2qY4W0F+GoJG7a0azS7d1szlc9r+ld5eewZ8pTZyaZSs2oNi60ABqj/vylSv9OtSaDVRUqCk2EHwlNU55Iau/RBtgul8yAIMHKeWFmskjov0ALNWICkdr+kAExMaG6NBVWRMI+Ow0uDE+/iTKKsAXOnaDCMpnhJkjffZmAG2s2P+UfeqOmEVZYOmxnrZqQipCq1W7d5YlYr3INHZotYrxkxvZamCYFqeGGKvCpjZt8W/G3uzVxEZ69hTVM5IMwOBUlSHFLpCX5i1PpEQVLg4pDNi2CoYaJrbD54yczEmCW+5G4lA0a0fRB1/GCBpOlCDkICkZO+jg9JmbdMykncYYHNQwvJn8/FVAsLX2a6fdrwxGLh7+x7TdCAX7cBWyqRK0sOeUrLd4GqULhrJlwM+/EfpQ10ULmpJ0YZFSLAZ1alHez014I/RUKCq8LUioIZKzYXD/kCIgVJKBxxLcV6/PUbBK26ThcH26ghFhjShxUKsiVKy1qtae2TEF7ZTqR55KN08DAoKxsHAgD14LaNRJL/MS7s2YFm3f7g+qJNsymC0ljVNEBJQSFHUycVqEU2lyaS9GRb8uYioSjhCimooU4pzlBH8PswsgVhkWM0p+canCaWCFEf1WNMhc9iiMxNUwxB7C1YFUVaSxQwsWtOJYSo8SxyxAKFCrbQWCcHB5swEHOspzHiJpRJqUVDa11AkJdcHDEqhRtvMxuyEaHW+To1H7R7RTJW+JO1oymaEqoNNWIABPQ8Wxsquu05IPaCdIGePEKOuj7kKxOjABgPC+dkJd+/d5rd/90KfRxrIFcY4ahfFEEjDwGpI1HxgN2UkBkKK7HZ7rq/3lLMt0gr73YEnzx6zPtnywdkJ3/nWN/j9732fs+0tSo06EyNF0jgyjolhTKzXa3X+aWAYVsRhbRoLpasjug497xskkdJoURNQMzXvYSpc58zjp895/uKS+2/fZrU95VAPrFoiy0BpwmF3oNRCOVSmnMlTZbs9Y7/b8ez5M863az75+GO++eEH3Lp1j2cvd4TDnjAmStH7OYxB+1VY1ZOnwyQEA5ZzCZeuYX9uxiy2Ri51BrRWrtasmU5Fxce5WqvaVmm1qA3MmZoLOdvgG594afngIQ64igWgBd1JTfT5O1OgQa3+3nq97sLAEOh6AAkNnSnRiKEoWJBgJXu61sc0Mo4bVuOGFFdoWWAgpYZwZRF2AhlVWMvCBoin+OgAyJnZZtdUWyGSbH9om2IXUrfQSL0sOuC6rrm3CgYIBLx7a083eUWD2l1pi7JzY4itzSReHrok1TWVYcEH1hDNUg21aotkrxqaBaWCEIloA6AYV8S0tmqGNXQw4CyvrpvsGpPW+rPrrd4lIMlsTErGDgQdXudlhcGFmw5SPRAze9cGs0Nhvv5ukaAVDbqP7o8nS/+40gQnqzPqShf+ZEBgKhPTaON/jSJ2VWaQxrS7BGv44HnIFBJDUoo9GkjQnKSRx2lYPKCAtzpVBXNQFsYAhNRAmSq1aflIiT5UYgYBy4/9+0FU8ONIt5aek/FlUSSRYqOmZvWskdwOmm8KAybXJSStVR+HxHa7YRw2phsYlQI2xXiIRo1HbcfqzfN6VLsQBoYwME0T7XCAWglNKaZymDobsER+pVbiqqgDXjpJWwsuFoyDldElBTA++EbZDroBcsaGDgR086qSnv5MsK9ba0yTRvkhJkqqXbAz15B4TWyd73XQzVrr0POLOWetyV3QjBo5699EY3Q6YWSGQFXhIM1UxnjkEbRmOaxUjBUjkgIyiIVTyRxrhCCENJAGTf1I8LzbDHocHlRbM771Oh7pWoM5z9fagNQVNRRi2gN73XzjGhkr0X5X/N60xsmYGE4ChQMlVJ68eMnhUKlh4PLqwP2Tu5ydnbOKwGFHyxNRModDZj0k7t+6QwyRq6s9D26fUKaJ6+sdT558yenjM95+eIf9/iFXO8h1TZVAiyNxtWZcjQxDZDXYYJVxzbjaEscTwjBQYkFCZmyZQbQMskmiyUAhISlR854xFjZDo7Dn0ctnPL3YEcYTxs0ZpYReGnlx/ZLrfaYJrE62lFrIlxNhSOTLPS0LJ+Oa/eVz9tdPuXj5glv3PuT2PXixe4mkqqC5JLTisM5pSGfigJgGcxhh4ZIhZ3PExk7pPsxdJNpappI1ZAja3ru1jbbj7cDBnH8pTIfDnK5a9DEJ1sa3H1ZtwoIZWB5NGnGMhMV+jSnqsCzRctXGAZGss1aiEFLQKDQmVeenNSltSclV+UIIc08SCUlFqSl22zlHobMDctbSe6DARKtatYC4/TRNQNNAIfRcv9sAlCFp+jqeitHA7TggUXszUe1nDeugWfe0FKhJCDLguX9l5oKWmDYtP8QaEPVulK3STDgeeipZ79sQR5JsCNZ/IIW1plVMhOlMhlhZsja8E7NLBlCq6MyK1jTFEbSfSUiDnlfU6gxNUYceiDQTNrs+Q9rcF0NsHfj9azSr7FU7k6Iw91Rwo734HnTm66cdb15NMIzGvldSHUgpMpSJKU4c0kTJlakUZQZEECrjEJGWDeEoDRPFFrbl3DW/GPESt+rUTQOvMVe2wW+Gf9RFEBpMhwMhHDMDnno4LtuzSNSjVRv4oV4k2APwGxf6AvAsvao+nRXw2vwluvTSQ4s+Qpij0U7JSxf7HZcTzhPccq5EQ/4pmuI1VFNBY4Zrth7F8mTFjJiL33TRa7lXjNEEhJr3TSFqgyanyDpFCJpPnalTdW7SNzF4ZYHSqp4TjBVqbL2EqlbvNbHsN1C6w1MmSKOqXCamKRLjpCmnAjFqlOVzG2iNZh0jvVW0MzpzvtvSCZhAjEAMA3EYCMNo4C0pS2M5ce8NHqIQ06DPJy51Hk4xNkqDUhtSPf2h+hiP5oTal9Bs4E1oNmWGoeJgYBxXpDXa0rVkWi0aVaCzCDanG568eMqz58/IuXCYMjJqfr7a/UwxImOkHCqrQcVWh6trdgHqeIaX2B2mA0Il769h2nH/7ITy8C7Pr4RdXVOsTJGkQsGUhHWKDCGormIYCINOkfH+FINEBipJAi2MFBkIcaXrKgmr2gh5x35/xdXFBbvdxGazVjHisCIlCFL09VPmME1MUwWBYVhxvVOnKjVoFVGtTPsrdtdXvLM9Y3tWqGNEhqymLI8MQyPEas819BbmfZ3gzyZ0gzlCZyGVzFLWp5ZCLhP0FEHWclIK2DpuizJgTfcVyir3/WdGU1dImXtkOAumrJI1ozJUGVxQEFBx8yCkFHXPxmD17C5qPgCZGFSsGJKABNpRE59k+hJtgxYXfQYU8aajFO6SPj8SYoemGghxcWRCmbFopd+aJnDHJG22UxarqqkVvdPSWRdj0ASj6o0JrgFQzdbCH/bfxRljtwOLQ3plhDMWYbFTtcJgfj5YwKd6AaXu5yZlDStJJ3R/0Lr9TnizIw0GTCPRgoEFZWvEP1og2xugEbVc0gStfq94BRDYhbWmejkW/uw/o+PNmYHtSaekSynkOpCLd5vK5NyYsqULmm6/YajQFGHjNC9NKwVCYEhJWz8mQ6NBTIsheHfAnHXhtE45uYM6NryvO7xB0vJfCAGqTyTU3+sLVhY9wIzGar5YFjSOCz+0UcVgilBXgs4NkWKIpGFUTUEX6+nGFlx57nSlDsMR0fnXYrlpmra29Gu5WZVghBJNsHTNnK/vVJNgYCCYstpyisNgDuwYDLSOLH2jtdmQSui0fS21o/sYxsX3DTS0+ZnP1P4c/ToYyHlimg4cUiLniZIjpWjlRIy5Cyu7k8XB7mIjGOOjN0WMqVeGQCQRhgGJStOFlBhiIgUTrdq/aPlxrQaxdIrRlnovRRkw03jUIzZJrdU8IdJqvgnQNLrMyZkBPcZxZFwHcpnI2eZliFbTDLFxcnLCy+fPefL0WS8jXW8iQmM6HLi6vCC1FSdJ2K7XvLi8ZpTI2b273N6u2KwTITRqy5yfbdldnnA4XPH80Wekb77Pw/Mz1qcbLjmlhJUOLRJtvxNaYZVgEK2fjilq+XVEGbGYSDRSEKOFR2oYIYxIhJGRuG9cX37JxbPnTLs9gwTGZKV/uVL2E7vra6bdnjopA0dpTLmwPxyUJYuCRK2nzmViOhw4TAfG1chmu6UNEMYMLdHKSEqNGLwiwstdZ5sxb3p3KHPab7YbLujNlDrZ7xVKncj5QCmTpQg8tbMAzZbqW2gA8fTSdJjBw+zA9BedsZQeZNjXUbruIVnfAN2bRRtNtQmYECszDNHHSJtaPVjfE9HyQG2ms9w2MleFiNfghx5N+r7tFVrizECAmvq90emF2qXVBXUzI7K4D4v9qj3mZqFuwwdlWQ8GUfGppuNsX8tsN28KHBcvzkykH39fu5jaKXqKSOE3ErRcUOl8rRxAdICQT+XsJIc4Y229cKwMUNoixRqCgYDYgwvthRF6E7QQgv6egw33Rgsw4Da+36eFH3xdhdo/7vHGYODs7JxmCupSMocpknOiDCa0yYWpFK3BbsogxKi5tmqhXrO8eABb2Imhi3ssFRBcRa/13KBlK4VC14gAdHFf05zvwlHe1Aq8UtIYvIbWGpbY6x3RLL7BAc9r9UoJ22gzEHDxx4yoXbWcbAJXjDZq04BQjwjERDJStQIDIY0rpBSQoLS7RcbRhW++AGQ2Ny7e84hmbnWs16XCODE6LhFjYlyN/f7MaNu2UfNoWF/fc/1I6MLBUqqp4Buxz1qQY4PXmtHfTelW7+zXKqtRy1RznnqusMQDJQpTEWopCgbKIuUg6uiV6J0NuBYMGB1YRcFnfx4BGTQvWkVL0ZLRqF1AuNB9pDQwrMaZugyx35ZYK7kWG91r5yX2LPvn2qZa/yxQ20TJe4Q8p2CAmCLDGAgl4j3dQSluoRCC0rqHg3YmCCKshoEWVO3fSqPmQhxXrMcTTrfn7PYH9tcvqTlw6+Sct++fc7qOlP0ldX/GF5++4MVnn3B4+iUP3/mA9XiPJ+GMIgMZYaqN0jKhZCITgzSGEIiDgltiJI4rFXhJIIYEYYQ4UGWEoB0X17Kn5gteXL7k4sljXnz5iN3LS1bjmnLYE8eBMQQ2aaSuG0kmJlvnQQ6UPLHdbAghcogTF/klEoRxvWa13RKGkXG9hpUQhqL7uYwkq3V3gO4e2XgyNwj0oTBIN7QOeL1MrFluWgK0psBgmvbkvKdMk9mgea8sGSFnZj1V0BpMKVMLdJHr0sAG/UNNTy1sWQpIDFaplFRQTQUKtR6gTdR2IGCsUoCpls6OBRnM1iV0nksiSO5v21X9bt+6Q5pd0LEtNfEfWkOvDF3Eha8xJLCgQDzSXfiqwOy89ONsp3r5nGgFWeuVAXEROFkQ1Pp/mO2uvYODPHP+9GsM/W/ndtQmYgwJCSttIhRWhLjWMldJpqdQVgAJ2j8gOAOc5vtlMzlCbYY7HdxZWjvMrLKKO5RZVjAwCwiNu9ATtYVU+3pSQ+RsTWvH9/f4+Hog4Y3BwOnprU7pTtPBygwPllNziroobVz0MdZ2mE+8eV5UL1RT7l5K6MyAzVVvCiByqEb/N3IO5Fy6Gl2dm5VksHRo80cX+R3R+tYAqFnXPh2E04z6q70rmY8M7rMQmhPeBgyw3A/at1qVydYly3M/EqzxzTKdIHbODV+k9ChXO9GlNOB1/zHNc66X5z+3h8XAU2ZZ5+9RqgITbixKiwCSj99coEuZExCKA2ZA0DtrNekRkLMApRT/AzydUItGME6peuVBta9TiOhYWWVVggRKjOQYdEBIqaRSjpiBEJL+rukB+nWKCmkUDPia0zQBhJ63q1o/RBpWjMPIOAyMphMIMaoAdBwZVyu912acQfsVxNYYUOaqLSoO1K5ZOZvYPbfos7VAiUKQqfczAEhxYL0ZFNSWtVXp6DoMdeJ6f2B7csY4jKxWmc1qRZkmzk7usDk94XR7wulq4HQVSdLI08QmBFbbE862idu3znjw4C5nm0isp2zTxFivePL5Z1w9+oxwfpvzs3fJw5Y9iUOF2LTChZoJ7cAoMEa9XzGNhDQq2yWDGtA4QlxBUFGjtEKs16zLgevDJfXiGeHqBakeOF1H7p5u2AyR2jKDVIYgnJ1sOD8/gxA5HA48f/GcadqxXg/ENHBxuKDRCCmxPtmy2mwZxpH1iZBkRRyK7sc62l5HiyMXIl2TjdlWE3wqn+D6jznq0hyzqcLFHVSmlAPjsNHhPPmAdGZgjtakLZTfBpjVLlZimJ3YnK4wRkvUeWM6FRGhSSANqY/2DVGsfDbTaqbWA60eqPWAtIwEjaybTNah053dgIvq1OQvQDSRGOcyvj7iV7yyZdG9wwJ+d7ZBtKLLRb4i2iBOPzem58YRFw59juyavZ+L/bSHjPZ3EU2V0rqtndkKZ3QW12N/L33vL9Ox2mekpz3w9IE2FIpxjcQN0da6xNHYgkSTYKmEuTpOJCoT1hkOoxzEy4stfSwRnwrr1WTdzi5mSHQ73JZgwO4Pc3D6SrnzVx5/TGBgO24VDNTCISXSkMjZaN2SWc6pb03z+Ye8ow+MYaae9eIaSWZl+zwmdnYcQSoxJqPPJ0KIs6Mj9KhNLO+7FMDcTA0c/6whcbDIV8uDasu0VozeLvigJPqGavP3mm8sb8IRjo3JK49ipoAwhzrTkovcFboZUwxUiQiL2nOZc0QzyHGUXKBCCKq+Jc6OaBnxL4GEUpCpw8peuWEsQo+YeqrARP6t49bF8/Ya2zmXVZv14m+5CzRrq7RcrCSvmGGz624DASGLqfozlOgCwuYBBCmqYQvebrQ73AwtqxEUj9i8m6ECH0mD0n0pMaSVquSt5HBIAyFFhnFlJaJrEwBpdKm56xlYHjEfeCdG+9yfui0fkUSqiSB7hmUr2HHNdrPqfTFa0SqdUiakTFxd73h47z6r1YbNVFkNA88uLnjrnQ8YYiCJsLL5BbEVhipa1hwam3Xi9OSE8/Mzbp0kTobGRg6cp8bHLdN2l1w8fsTdt36G83HksgpS1YkqxQyhZVIQhhhJw4owrPHSryBxBgJptNaqkMo1srsk7q9IV88Zd884Cwceng2Uu6e8+8HbnJzf5XrfeH41EWOgBAVqu31mf31JQNMaMgpTrkx5orSinSKHFRUVfErAKiAKtIiUla2HuYlWM8o6WvDhljc4oEbw1JUHAr4oTZpqIG0ysZ0LxmbNgOtjlPUUE5wpWMxTVoF1KQzJI1S6o+iVLUFLW3uDQls8cbQumVaWrKVxB2o5kPOOWvZIHWh1QkSrC5IMVNH9p7F/MieflKI+YtQCKY59/6v42xxlUFHkkm9Xm+PsgKU7e6dJZxjs3vWQdbaEKcaZfemRPRr6ypyO0H79BRHVaPR0DM3GPxdlkztBehzQzIDAbGwPHqIFSWEO7CydInGlmpdoPTzCSAuDNSNyOy3dLjhrIJ6yFtW3NVFR+jFjgQGEhfr/ptq/q8rh+PbNNvqmL/jJxx8TGEjDilIz0gqSNO99mJS+0qhUc8jeNrGiGxWZh3/MuR4VVEXxxj/gQjYV6KgQRwedFEKsIKkry/XGzOUqMa7wUsTXVRPcBAQiQhwitWo0TfRSyQOC1sQrM2AO3zY2VlpYCZQg5GwPNmpKpORKlkIMhTq0uX+A1j3ZApK+/jsubqbKR0A0WkaCXn8zxb1FLNqEyVXS2iRFFcLRnJGjYb1HPU1gDEprTaMmUd2DO9PefVCwPtivLqRWtbzQV2utjWZRQYrHuaxaCzU0WkvUOpnBLFQJSAm0GmzDmOgoQLMe6729b8kE8TSTbizNbQZSH1jlgChrDrXmLuSqVtqVhsVUwjgShsGqPYbeLTINI8NoJXQpKZPg6N8eWWh+n4KmRRy925NM9lSXJqA2izCjih/DkhlIA6v1CUrv6uvkadJy3T3QKqv1xgR9idPTE758+oJpv2dIa2qeuHjxnG0814ZSovd0d31FzcLL5wPXd9fc2pwzpIHzsxNkf8Lbb92nXl9D2SPTFauyo4YRSQMHbGJb0LRWsvG2hBHSGvHmQyHS4kiLo0Y+0ohtz9hgjJXri8dcPvoRw/4FJ+w5X8P2wS3ef+cOw+aMQ03cOcDzqwNPX1zx5PkF19cvORwuCaFx9/YZshp48fJKqzvSwK3bdykNVpstlUQcBkiVEPYa3cmo+1Y83PB9ogK9mKwPvKn4RRa5Zaf7FyKuSutAtrRJy12lWJSm4LfRkHpMcwfNK2j0GjISMrFo6+RGXDRiM5tgQuQGSj8vwUAaDCwoPK+1EONILRNBBmoYKOVAqXsNYqRYyZoCFmUmwAmIFuZrnO1oUlsji6DF5mWEEDvYcYbM97jgVEfojJgEbdc2zwMAulNG2SP7XQ0arVqoD5cTZWhbUaeLEKwKoM06YtXXBNWxCA5SFv+6gl4sWjexXtcsaS4/pRXDsCGljU5FDMp4BdEqI8EF5J5iNtBhlSohBBOFzs/N11a1+xRbc5llFznPdtdYoQ5qOqmwtLyL4NGfm9u9r2YHfipxcON4YzAQhwGqUIvnwzVaziFY9J4pUnoEVwXiYC1eHQwEp2fmlIEGo371jVpNYR6q0l5BgUaIN/LQ4g1iknar6tHAsWBQ3/9YSxCC1mLXGqlVI9RJgtWnF0S8SU4iBnVUSsHPkX2rjZKrgQch50AIB3UUUVMoylwckClYLtBpLYtAMCPSH97c/W/Oy2kefh5z7HR/7PcRo0RDL9uTG/cBBRneQEUEIeoib9IXsEctYnMGhMWCRWm2aGDAmzg1V1E3j6LqYoF6BKEdHLvS2NIIToE1YxSc4sWdbNMpYro+DMiIlaOG4Qj0qYKy0YLoWjSGQBoMweR9vceFD0YZOiDQWnrtERGtJljLSDW/1xXe+JpyxkSvG+ZNLOJ0rg4d8aixlyT5ngo6I0HQ6hExjQJAroUwWOWDaOXN2w8fcpgq15eXrFdbwmrF7uqSiwCsR9pkLFc90Cp8+cUXnIyNzdBgH9kO2t52vVnz8vqK6/01jz79mHbVGG49YDy5Q1ptqWlFFWVgYhoIcYSwQoY1Ma1s8mWgxoFm7ZWlHpBcCPWatnvK4dlnXD/5hHi44CRVtu/eZ/PgLifbyLANxPGUZxcHnl+9JE9XTIdLQqhstgO1Rs7OTgibFUji0eopTQLjeovEgfPbdwlpZJCREItG1y0hdW3iMKVru65GMMcRZ7rGovD+RC1VJ91R6g6pUo3FSuqQPLXYgxLR9GbXGXjFkq6LmAoilVgLfWxt8J4jsacyXJymvQfcIc8VUf6+UQotDASZgGDtra81SKkTOrFPbbNQaG1ScbKBgUUssjiMLV3YTI3MVQTbG3A1dUrNGg8Fb1fsAW0wShyX0zq7sgQRwS7NgsMqZm/nQMLTG3pOSbs8AlXc3rkT1H9LdqAjd1Ew6JMAXdhNjT19EGWw7plaoaMQccEYWB/aWXhqbFLwa5hZUzxFaf8WeIsqtj78DBeeX3o6wdafX0b/yv3DIh25ODyFe/M4mlz7hsebTy0c10idaFXLSSQHKgUJ2g1Qo/Q5co/i1Be4in5Z4tdzcdAfMDRqPljFQqXG2lkHX6R9klqP8r0kRB+wpxyWjrAL/5ZKfBFzYtkoqrnNZmtQozpZBQuqCC/LJd5mmnw5QTBLJoTDUfMjrIuepo8qVWIvDVu2AG03UweLTSQiJjCza+6NU5x2t5yai1A6C2HCSJmHuUjw3uwuojoWP2LRy3KaYQhWUtNrpb32Xg3gdDhovhvrSBg07UMrWmvbmgKCqKU6UQp1mvzWM8v9fKoZ+vdGQ/pciZnlcT+tpkeqrgMVLkVCKgQC2YVVEaS3Y7bqAevdHi0PrikD7UUQLCJThsadSJg3c7M2tU3LZhXPtsVT8+fbtFWwWrO+J8B6PwSbXhbtKUigjZCCUPOOWquO672+5v69e6zXJ/yj7/2IljObYSTlzO76mlh0He+ud0z5mhQrFy8rg2RunQzkTeRpOzBdv+SLH3/C7vqCW7cKqX1MvJo4KYVt0HTAkE6QYaS0qM8urglpi6Q1Egat5Q9QgtH1gJTGWCcOF1/y5Hu/x+XH/5CLp5+RDi85XY+cn21YbwdSqiSp1Lbn8vIZX37xKV88ecl+ajRJxBhYrUZOTk9gHPjyy+dcXlxxfn6be/cf8vCd97l19wFxPIGQjDkMSItIXdnatCYtHQi7IY+zkV5Y1aXyv0eSWOMy0ZhOUwnRmJ5qL29pMUwkaNoDNVQ6k0Ej7Ko705rOeJ9/ZwWQ+T0JYo5YzzH09tWtpx5anSgO/jH2ycZQUwMNK4dsmtpUvxn6NR25Dgs0TF1xZHfUfs1OsP9JtdetCnp8/pLrrDRHrq/j9lQzxHOK15li9bNtBhy2B3pTtp6LV3B1nC7ltUfr7EJT3VdzXZaxIA5eJKFthgdaDVSj8IPrP7zc3dZSkLSUW1oYYEDG2G5njHpULGpP+3n1+2xrtH/t/77Kib8+zJfw+ooKWfz3TY83BwOrNVKiNespqrClUIIclfA5GACjuCyq6lTXYoM2qzFtdRbhqKOsxKBAQHUC88OvRVeWiJfBaLOGYwBwnBq4WU0A7v9rHxep9r32hg9aR6tdxkpw5zsLhnxzdlV90FKkXASZZkQ/R4WaG2wMSIDsuXCjYzGqHNsq/aEagvbzcaN2XDEhFOvn4PWvXaFai0Yb/jqYCM9ylcgSQNHPpTGDJi2LiWgntUHXPqq3WHZOlKp5RinFyu4U7NQ2IK1aVGF52hD6fmnFN4dRk24UpSGStW+BaDWKg7u5W6BAC5o+CdoTPUij2nYVaaTQIGhr5uXwFrEBRdFKXLVzW0KSK+eDPh/rGeGksjBvwBkMdIvXwQD+MQw9klqCgRCTRSzmfGhW7hS0IUnT9MXtW7d5/uQJMQTOT085OzkhBRiHyEpO2F+/VDCaK5e7aw77S8bYOEjm6SZx8fI+q7jhxx//gJcvnpB3V7z9zgPuvPceZ3feYjy5T9ucUlcCQanmlAKbYWUjfYUQq4GvxmCpnNx9WEXKHqZLvvz0+/zwD3+b+uRjuL6k7XdcTxPPPv4xd0vj7v3IIQeupkseP3rGkydP+fyzxxDX1gdiZHui415TGnj69BmHaeJnPvoGm80ZQ9qQxhPiuAFJhFB0LbdEbKNWspiqu+tgCJpl8mcm0HP3DkKbu64FGMArZFRg3Fow0aB3xVsED9YRz9+khqpuz6pKGqJsU7dTUc/bQbdoxNpnpRBootMK9f2aRfjZ9nHVKgoBHxylKcFmZY+B3tTAr9QDkKOZLc5oKCvpRIU6Xb1ZzjToxvfXYibwHJRUd6CWOujaI1Hbip3TIiALQu/02ZbMWu+BEmg9YMvWp+AYtLxyGLPaFfjMQZcEsdkvMNfKWv8BYxM78FCEb3q3BVNqayQAuU0LlsKAi7+nsVKLepXjo3cqfd1Pb3zvJ2CE14GitnhWb3q8eZpgXEEOlBigFUqA1IomUkueL0l8S2lZnDiFHWa6PqZgjMLcrMM3nYgQaqOEooa4RhWi2caUaExCL9WIRqtxBATAIq8bjYfAH6Z+Rv9cxYpe6aBCnUCtiZIndBKaD+HxSgTfYDbFrmQc+R4OO4sgxSLdYCVKFYmFXKxdbygmgow2IlkX51IA6Mjce9gvW6qq6tg0B06BWhTbJBghoNFtsG5o2h5TSw1ZMDZL5kY3pEUtIRilqjlBPSvr7y2VWtHOfj3fCdRZgKhIW2cbkIQoKGIPBWroI0q9+sI7bjWaaTetksEBg7MsVn0CEJuQWtQ0gVijEqlaimVMQ4o63S/ZACmJ0foIhH5fPVIP0TuIRescZkDM8pdiqmZnCdwpICg4YLnebHMk7VvQ91ScOx2CAsRcCjVXzSvHxMnZGe998AGffvJjVuOKlEbunJ9zyKpFkQZjHKj5wJQzh1qYipbylnbg8uUVj798wrQbef7yiu3pOe/9wnf46Gc+4uzuXVbrM8J4RolbDmHDQTa0NBKGwGoItAwlH2i1kEJjiBtNnbXMVHWuQZMC5ZI2vSDvX7BeRU7eeYtNfMD+8pKrq2teXjzl6uMf8/jpJXcevM/69D5XV3seff4lh33Tpp5AkoCEERi4vNhRK7z77gecnt/mBz/8mDtvv8V6cwpxpMlAi8YkEYltpIRC6Gk+M4aia85z10Yu93Usxggei4b9Mx/MZsLfFnDR8YwuutfBgwTMmYNVFxgAmJk9MWfpOXu1leYNLSRofb0ryLF9ISiblAaERmkTUqPupQpzxGkNc3ppr1fZLFnZZRt5PW9vVDXfC9cGdBrPXmcWOFcgdOG3MRsdENDz54Cl32ZAIAQD1AaonM0xcDX3+Zh7lixu+PHhYEUcpNn9cNbO14QxGM0if1VAaGrFo3ytLtNJqW7HccCDUKmUOtHTAw3EGiS1r6AtZnbgTY7XswFvcojMy/JNjzcXEI4r7XteAq1mFUSRqVP1PQA0611vDgxHvaHTzhLMCNowmFKzCQONlkN7i0uJBCnkoq2Nvee8dg40saDl31JMs+FdfLwJBGbjbNSZn2fTWxFjIhqSq02NTK2Lc6daPlooZcLNSm2F2sSqKixaDHoOwfN3JmattWiJm+fqW1Rj1FRcFkBzm9iG9E1T50YqmvvUZqSlKWhWAaLH4qY8FrRBjPX6drYsxEG7EQ6e+zJ1tYUFs0hzmXeVGdHjgEENhg/3ac3QdTc2apxqsxyjBBMwzSU6LURE8hyViUVppokIAKFYrvGYEhPzsl5fHYnWLkJL3KRp3rGUuTtaDDpeN1hfCx2RbV0IYzJQkzoYUBbFu9kJ1Gw0qTEfzRG4WLTYl4Xe14j2pMDq8o8EhInVeoPY+u59GlB2YIgDJyenvP3222w3G26dn7M9OeP5iyuudxka7HY7TsZEqZHSjGmKCWmNJIlWGs+fvSAfBu49fMhHP/NNvvGdj9jcOkFMBNtCJa4T62FNihtq0FG/VE395N2O/dWBlFacnt4it8yUD+QwEMaRNASkXBHKjof3bvFw87NsBgX95ZDZXVzy9POP+ezjP+LR518y1TX35JSLl9c8/vIFw/aWMk4yEqJOi8tFePrsOduTEx7cfo9p2pFL48NvfIv15oR9URW4Bq8RsaE5WtZlTpVjQN2CMzssoiY167Pt8ABh3htQbLomeGlthRn9WRVBaeBDu9yQzwyW5qAJsy5H9QY2vlZM8W7RtJgDc1WKn64DbDChYpjbLjdmB9Dt25FDsL252EQKBppF5R7dLgXEBgbcunSdgFVitdk5zxqaV72QO+ewsM8uWNSZBaYvkuWz6Dt98e+VV77xe/NHt7/V2Tzo6YfaAnNtv2oLQtBJqn4fWim9kkAsKBEWTYuapmiaGIvQUMamKdDwkN1hVZPlOb7pMdvS1x1fVVHQ2lf/7KuOr1FNkGzNasvTlK3zXKfRfAl5SYXvFctZkzoF5M4Jw76aZ9IcrCSllJR6LDSigoNatAVs1d/z5j0hBMZhOLpwj8h9M8sySrMNH51CtG57DZ1q1kSIrRLLoCl1sZazTYjVxXwQQrP8kPqFWrQtsG4QXXRBIsX6gE9BN7iKIavloaOVyFnUUCsEz56DsyxgqQwwgGOb3xDADPYbHmb6ptWoQx0czVT63kEuxRkM9LSDaxPoi7nfV6cxF8bO7UoIiVozQRJV2tGf6hXO6nsX5uiQDj/nYK9a7OWtvWc3RNKNokd2S6bHAU0DQq2qvxBtY1vbhPcQUzJEiHYt3q65TyILmieP3kc8BgUHIdCiWKMfV1LXHjX2G1FdoEkHwV4C1dpNZmBgtTkhiE6nrK1pS++GDdhppDSwXq8JAVbrkdu3b3H7zl3Wh8LFi5dcXV3AuCLFBDufQTEyirBJA5vNQAhw9+4dfvY73+b9j95ndX7K5dUlVWC9OSUMK5oEG8u8p7VCaIM2lNpdMz17wuXTC2KLhLPb7PeXXB/2hM2Wzfk54eyEFLVZ0K2758jtNUw76nQgna9Z3YOzB3e5dX5G+0ff4/J64rPPv+DFiwt0BHNGkgl3m1BKY3d9jRC5d+c+d27f5uLyBd/5uV/gT/zyP8vLix1pfaa9pTCtiI0krk2Nf/Cy0qZUfW8fC8ekbVMw4Su1O1CxdRXUYamP8kZlwcRztgdqVYcgokxpVabIFoExTapVaeIpuznl1yntrnqfFf0w5+2bVI3+KbYXEyLFnJoBItcIMEfiXS+ABzpLB6opEIKVXfp4REuNzTZcFuVyah9Kc5GeBoTBbO5ccruwAVYzqT5gDiTMehgbUenCt7YU5B0fr4rmHMws3k8cxGAciycs6PddUwQDrUUclHQH3lDgVKt1Qmzmo5QZ0rJlr55biAOdpW5mo3D7Jxac+Lk3C0L97/3cZtbD1+nyTn294+tRA28MBiiNFBItJlqLlJgIaUQOCYk74jSR245cD4qo2oLWatZkp0VCi0xTNocawGbYu2Guuqo0rRCLUszNxoGWSUvGWuk0W4iqeJ6pI3OgIr2V7BwduPOstJLRNt6K+AVgGChFF3QSoU2RljNCZAiNQCFI1Q5pJffmOe6Rq0/0M0p/miZC2+kEM+vAONRGTFUXY9D8doxCi5kQEsRCY+pRuLjiWCzV4ACmWt17E7U/OZuDBGxueRStqw+ipVm6x7UlbLLZ54iVEnZaTqyOV7NmuOCoKefQetTieUZTy1ehiwtbNJZNZgrWgFKpGqnrzwO0hMhIE6U7lX0tqABK3yM3H4cqxDiqYRIHO6b0Fx8equAuhmppkEbLaH/70mi5QqoQKpJ0pHAKBu6qllClpGIhccV3DNo/HMBG9YYgYOOtveGTt3F2cBLjQApadldbJTTdM37EYUVIK2UUIoRUGcaqZY9BONkOrDcn7A7XFDLPXj7mzr173Lp7i+nJCxhHTu/e4vmLx2xXIxKFISTCUJFyoNWJ9Wrknbfv8Cu/8h3u3r/NkIR8ecWQEgwDLW6Ywhof0pMoSJuI+QLynlgPBHnOOlzw2fc/4VFuXFw9Z1/3vP3hB5yMHzCuzxHRnH9La5A10s4I5UDLeyg7wmbkzvvv8XOrLT/80Rf84Ief8/zFU05ORtLqREf9hsadsxOudpfUrOmau3fv8/57b/ODH+x58NYHbM7uE0okW+tydWILwa0kM/TOavnep7ePPoogRRYAejbsWN641i7JpQNTS1N2nVOzvLiVWIq1Lff0oL9PtWixdqZR37t58NIriGYn2Uz02KrqYGano3skyEgMhUGKpsao1LajtqygwdetBXIxJSTMLbGRpqlXV+4Hb8ub8MqAECuNianutceBtlGkNk39zTKxuecGYC3Wmz0L1w8Uuxazgc1Sg2YvtEmKsSsGtusyzdH1ZXXWqoVg4KL1ENybxQnNqtiqRfNme/CyYR1MJGFAxrX6K9M2BR8oJL4qimqXmlb7tNpoRW1wZwHjElR4msT6otSGtKqVcjGYTDRat9SsEgYDia2/ZztasV/r6IDrzUDBG4OBYC1ZFa9FfaiuajeqF6v7r8VRneHRLsAxkQli9ekYBPOL9TIQd0K2+Yx1Cf55m8Ugrnjpyn1/DSyS7aUi/k0BKQRUG4AIUis1QDTk24BYGzViubSgzjdVQkfl2p+8tmpd4xTtNugTuaTpmGUkE0qwiYTGNATLP4uxIItcfPOaXicI7LznMrrF5eBmah7CoTk4q6u1KMS7mjm1KNYeWTFAwIVsDZCgTtipNem4VY7ecT6ZGf/qJl4IjvzuN3+NYIYvGIBwFG70q4X+Xqc8jzx1IZJQA9bcQw3oLFSa4x+sCkGBpnETTasbas1EK2Gdz9PunDEM3QUsUiO6r0KPbpBgzZ70fVQQaufv7XCtL3kUNJ8d56ZDno5orRAYdNqebRJpjRAGDvtsW6Dx5MtH3LvzkMDIrbNzdteZHIWrqx37q0tSGCn5wNXVC05Wwv237vDRR+/y4QcP2Gy0JFCvWUFyTCMMK6qNcNYq0ILUTONAaBO0KyI7Qrlk9+IL9hc7Hj/5nBoy771zzlruI7LqNG+LKzWwAkQ1/hAhA2ng9O4d3gsrDi3y6OlLrr54wp31qZZYpoE87Sh5YrVe8+DBQ0JK7HfXnJxuODs7tzSQgi5dSmLiu2ok30zvL9lAwffyq8cyRdVbEHebcdOQzukC6euGOeb09bNMTbpzXG6fxc6ZX/p156f7WdOjoWtowPeIB1Q2i0A0YPMIR1lXp+dN0Lx4V++/oP0MLIjoQ40U3CsrC8jUd5hquGbWgkWkP+sTSt/jGBCI4aC2ttV5HzXvETMPSDsaiLZIRegNqMgSAC5uqv/aksFsxhzMhIilr8OgDYbiaGL32H/mqabXUu1iQkMsGEPMjDig8/fwh657urVCi/YcPR1ooNMU+WpxfX28uR9/9RT7ab/5C7y5gDAmpd/wdrfmbL1MJg7UWKBEqmhr2o6o7SnUosM0KiAFXWyutmeudfV8hywQu4CpxWd67lj0tqw/ncHBsieBft9qT3v3KjPeNVunw4yPS/YouHg/famUkNXgZ6HUQGiFUvz9my4UtFNfadqmuYkgNRNqIlQVGXqTColCbRGhErVVE13k05Z1BV9xOCDuDmumvDt74v+sgiCGpHqLXnLp0ZHRqHHhgG0XVbtPrS3hFiBGvh1FN8vTa7YeeW6H9wABAABJREFUlxvaN7g3U5orMxz5B8s/1r6JxZ6dAspK04oEjzrE15n0+4s/2yDGPGQoByiJkCKxRbwvQ8DLvdSJm9LDzt3pZVszthbnw37bIriulbH7PgwDIQhFijV08j3l+VK9P8NgtGAtrFLi7p1bpDixGTecbU559NlnvHz2jM32HiercwLPWIWRi+eXXF+94PzkjDplqAe221u8/c5bvPPu29y+fcZ6u1FBr3jHtTQDk1agCIim4UqdkDohok2cQmwKJKSS24Hrqxcc8jVlf03ZXzGULdlSekMY1Y7GCGEgMIIU8v4KkcCw2XJvdUauiU8+fcSnn33J7uqSYaPjzS8vL0mrDXfv3WcYB7YnW7abNVdXF+TpQN7vGE/vkpt0GyF4Iy2zH76vFzaitdZtwKt7aPl9B7b054LMNqz//IjG1oh4KVKb6eAZzM/fec1xZPjndezfXwILbXTj+pIZ0CvAS9C0Nh/E0hdzD4HGcQOb4OWk4xqtUhqIonMM3IIrC5qR4lom0xUtUiVLWHPUidbKajWVXKlhQgnhZu3kWeyXZXBgQ8+qsy8LO8CNdu6LvD+9UsAYzA4Gjn1Bw/uNzEPKZgDhnRX1et1+zcnOtrCDth46wFMxplaBtH4/1MmrTQ9h0ODIquk66DE92bzKUBbpHxMQfN3jzZmBZM0flgsT6QrsFio1RpoptPW2mDKTRvPufaq6MNGcC65sQ4lok5a+ruabrLRcNSq6LhCgvt4SReprhoVfskhRZgeJiwttAYaSNC1RElImNZoIRRIlGMVN7mClWf69Ngcp3mxHaSkXN3bg3HNR8+IU0VRKsFHKqjewVsct+K7ojn2+Nmwx2T99EraCjo3gMkJxUWUw4VwvYwqBJdL2HKBSn3auTfDaZZPLMFcG6/su77djo5vW79WOWQuVMzN4aNVf39ZZN6Yu1vGoxKt+6RvL1StmOzSAbzZHQXa0JEgOSEo2OMkMEuYG+n1biox801cTlC6Mqokda21IFAX6CzDgn7fe5c1vma3FShcXiqCDmWpDWuCwPzDEyHtvvU293nE6rokExpgYTZTYpsbh6sAVF5yebHj7wTt868O3+Oij97h3/zbD2BgGnbUQY4I06DnXBtMees7Y22pnpE4g1sSmVYYxcHZ7y2oQDpdnPH58ST1ccfXiKWenW2oakbSyznjJRK42u4BG2pxR5Jp80LbiJ6cnPHzrAQ8/fcQXXz5ndzgQhgO7HHjwzvucbE7JbeLsdMM0XfP08ZecnN3CWX2pBtrEQEBriEdrtg9eBwhee7gDAVtPwizcsopyWUa8tjtsf3pDmR6INM8xL1gxf9YCLk5croOl459dgTkbuw4VBc82rJkIWdWzQUtiJWl5bWhQahdCH9kD0zEBSIikYU1KG8CqW2zmip+BVuamxTwHXd+1vbrBnb4Hv1/zBFrtF5BRil5tXuwNwWadUbGKrVI8Veg9PfzeRBvnoHZSBckWBJhdmPextXCKAZ9ngETT8gzaprxXc8T++jMI0PssDVpYPPuq7auXIYHYmmi0XrDRFoLMXlrdjBmwaxNLo7fYoJXFeYiHNf9EjjdnBlJSNJxBE7sBsdacWjPbTHRXqEkVqyr2q0Z/1E6NNHFXw4y6A3QkLR6BSXekSsFbnq63gtWN18RnI/hwDembVxdA7JGBiEAMtLiInmmaK6uFEHROd+aAINZESB2154ZmgyDWLrgRY+nIU/en5uRVExDnf2meB6/VFfO59jyYLbpZ1rQAEq3Rp/K5oLLX9DNHOeaZhdnYHDdfMqGSfZwFN05KzqjWc4E6j6FYvt6d93y8QqmZsWz2+RIp3zxk8VENq28G1wSE2aBL1dbAdr1tEdn5LLhmhtM/Ly1bOWfRZ58CUgZCLYtKK73ToVkesANOQY7O0H/XDb5FG17XbWs2LEBcrW2Rs7ZXCJEYElW0nZX2ckjKoNXKZrNmungJtfDw3l3y5UuGlpGaYX/NOjSudztGgbPNipPTLe++95Cf+eYHvPPwDvfu3eb8fEuKRQGMX0/UqgumbOeRQcae6w5Ufc41I1Ry2SFSOL99SlmNcH2HafeUMTbK/grKpNFVaDbNb9AUYtd+BmRzQkwD9eUVtRS25yf8zM98BBV+9e/8Op9+8YzMnkNJvP3eh4zjwOlqRSgTn/zoB+x3V9y9c4thSEw5E+JqBrNu932fiAu1jmnerzSqr4AF/81Gu/HM9NuL3hJtIfzy98T9d+vEQt8oHkzeOJv+OwtG4cbu6o4/YDZQnKNT0Kql0ZWaVlqlJIVg59/ZQiDEWTMQQiImayrVIgHTKLVge17z5L0rqY07pgmVbLZV020qPHbh2yJY6QUM1cq2sVkm0417riDftVjz0LXFvejP25ljp9wtAGgoOBAtC15G/Aoq3PYmE1IPWulh0we7bsPSkWLC7D6zQhTwNGuR7qlrf24eqGY/b/HnE4xxNjbSGhS1GufeBhZUEDsZwU2T+sd5fA1mYNC6ZlfN+h2QGZVJ8HkBiRarUo2OuhcoslkvPy+jASPlWz0qoNC1P0esTnO1YB2rxF9rvmOaI9OFNYOBypIiFHtvvP4XoEcVxjL0UlNFsc1mGNCgxrZAv05Fqev2UiKtH9e61RAiw2CjcpOK0gien8L+vqpgj0pwtOiGxhZ/MWGm/qx2MKBU+3xxzlwoxe/OcuHE+kaKuILZPzYDZ8qwW4jeH51HJvRN07GvRZVL4zsj+Vedf/PI6QaDocY04plNK5RkZjAEmt0jA5p9/pVdn/cSBxVrVTRlk03oF3IkFpupUWov61uEh/PyRno69FWSWfqbv1LNcuNai7dsPooIrdSw0iM+aBC0pn99uiXlgfUovP/OPU5T4fLlNS9fXkMWtqPw4tlLxtQ4Pznn4bsP+Oa3PuT+7XOCFA7TNRK2bDba8rgVjRYpdq1F156q4CstarOfJhk11BMpqrAzUdmcjGRpbE9WnG/X3D0/QcagYLlmkEZoBeqkGoEguBAUaRAH0npNO+wJCe7cvc03vvEBX3zxmOvdxOW+Ekvi7GTDmALSMrurPUka7739FiebNYf9nvXpPXKec7sidY6jmq/Nm+Dt5ue88v1+/xWagTNNXkfGAhi0hmtSdKFagCM3U0iWuuiv/LpUhT2DGYP4fxziH68x2y+1R7/GOrSIMBBZEWqk+MAuUZGwm+2Udvi+1IqEFTGsAW197T8LzcW+Hm1H69lf7DTKYs/r1WlX0mw9V+br8IurLRidKrQyAaqJOY4P2pENm6/bg5vYbYVXjXV7ZHoksRTAkLwyKPT5LgBN5pJr79sylwnrm0kTvBWyGn4/Sbe9EIOluBu4ZkxapTQPDq1XSQeralOlOxhfV2EGRtVK0f9JIgG+BhjQUq3aDVhrldwq2ss/kLv1jCAZRMvatMPgYtQnjRQ1Z+u5vaXIpr9Mj2DdcfmJ6M0TjJp3NGj31hcSVsbnUbj/qY+erB2tGQWkTxFp0g20OhoV/hURQhrUzbRKqMnee6b8g8xqUl1kVoEQ41zDbo0uYkj0tsIeqS/O8wjMFJl3S9N8XSvHYKC2Oj8juwciVn4pMwCY62xbpx2tV9rcl11m/bR4yU9xzD/T717mJxKYw2t7LY6n+y13e9dwVI10oqWXail9gEn/Z8KwINHJNjwl4vF6vzXGFHmZlo9cLq2RayVXm48+7WEfQDbEpBUqrTRItdOTWDSNdZJbGmsViXEThfSfOTj2o/bo0QGUHtE6HMYFAANooRAlQ6xIKKxGYTMObOUceXCHjz9+zIvLiet4QOolm7Fxejbw9sNb3L11wnYzsE4DJ5sVQ1TSMcSgIqZpMsbO9lyrmgIMjXrItDigQVKjtay0P0rBj2Mg5Mj52QnpvXdYr0ZYr5By0NTDdEBCpJY9VSaCV6x08VuwyoxImyZyzYQkfPDh+4Q08snnT/nk82dsV1FnHbRMInO6Gbl991zPw/QIsQaq6HRPDSmWor+vd/TWt68wV3Mg0/dZbTMNzWy3xIDADGr7isARfW0eNc9rRcf2huO/WXzq8zxcP2Mt+NCUnxfMqp1FLApnpIUIoXqwratONC0a4np+q5CIaUMIa3AdUROtRqjT3MPEr1us4Zl1FGzkGey1Sq1T1xi0LhL0brE+LtrLl7t77PtdcHCxYPssQpbF/dbL0aDLqfxa6HYuRp1IOgyj2V21sd6PhQ4ogu2D+cYvBZA9AMVZPwOBor1US560F0HQW1C9G2SzMkxRJscNhW5165vSrJ8N5utoVlavyQHVNrwaXPxxHW8MBjS3adQLAI1aMkjSRUdWlB4UlVELITV1WgiaXzD0bKOH1TbO6LaZgV1ujmOK1pHy7DCqIbSlA5nR/TIXSEeZOm4WZsGbRaHNWQJvotPwttgNbyk8/wssDYca3GhCPe0/ruNke08Em1zYmBmUOTpeaBqOomtnIWTx9ZwioC1AQ3QhTeuLqE/Z8q9lzqs1M1L9ltnXdPZA71FvJoQJlnxN+Ov5a7D4e46vwc8T/2kINKM8iZFqWgYJQSOP1uaN26wnuQha62tMksyv75GEP8faPABuJuTUr2trSM4wTYSwZ0gH8njAJ1hKyUiYiFWbDjWTzXbleAevjcUe7z/zr482cGdBwivGrIPB/jqaTovGKpUyUeuB2q6hXDOkgXcenlE+fcxnnz/hsHvC7dsj77x7nwf3zlkPsBqE083A6XZFkkqZMjEMUDMlF7uPCoRbrdR9oIWDRu4bNZytFr3qKZOkGXnUSFEYT0/YJpmhzbSHYQWHa23hTIEwIBQjaKp1yNTnHWKgyUBajaxPt3zwzQ+49/AtTr/3MTn/IUMsSNmxXkdWmzUxwNnJhmHQniLkjIQ1Xq6mTaZcxOdr8M2Pm/vNI2Nfz72DX6VHjjpdcCHwXT7u1xjvHuffSJG9+qvHP9dphsqCztMMrSOojSwGnYzn5xVBHXFtr7ye2oRx8XXUlEsY52ChVig6oVTTW6aHMeemOpp5uquapwaiM1qqldzqYCfvyaGpht7DhGO7VKtH5dIDNn2+fnMdVHVDNYN0YvcB6lhV+6DtxYdZFBzSAqib7fI4q6HXbV/4ADjP6/v3GirIVPzo820iwYxobdmAgD1N95cNvMNkbTo3pVlFVS8ZN4qk0SxAXVjbfwJ44M3TBDG5e7Uej3P7XppOg2tNqXFdqI02Bc2HWlTg4ouYkirbF85P//kwneXmBJxGA6Nz/OE0AwTzwKBlNcHc2eo42vaHr3Wfdq4uajTwUcWalYS5t/jstDXqX9KGLhaLcW6qFAKksBiqlKJFIfZ1H+QUFo7iNYBgvhG9m1/teavX5TVl8TG85uvF6y5+2p+vRcFdILi0j0GRMjYApJkRoAb75XkjqH7hNTlXv2ciOtLYAJr3DPCe3toOtKF9GxbrRJ+kNjcyOtMj91qx5jlNG0FVoWZhqkKuaJe40pBcmcLEYdoxTmty2ROq9sGoLekAK9MOeFWFZQj10qpFCM2V06b3WNzNDtLCzGQsj4Z2z/RvN6cMa6G0PTVnSjlwfXVBKy8I0yUvn+0QRlLMnGwC9++esD5Zcefubc5OBk7WiXWC0LKVwQpl2jPVPa1Omu4yNkYFTfYcI32uPc2AS7P1YBtIxHz9ZkNq2oyllQyHPcSd1k8nCGmjF1QqrU46eExEg4Sk/2QcGDjlpEVe1AvGFdx/cJcPXr4kSCZxzen6nDt3z6l3brM6u0NNa8RBmCzXdlvAz6Nalzc4lnujHX+/GVDo+XJHeuakwvHzXDzYV99FUB3Ka/b37Hxec3z19sHZFlfTa95bx3vXaj1a+sksKgjiMRgQWfU5Gc2Kx+uyxr+2/rshYFSDUKwzaPO/q6YxqJmG9WGppQcgtQYWftJeU32JpxR1TVpXUGadwhJ19VQungaemVDv9ugtnkMc9L6IaGrAq6aWbDQKnrKlnt3oOTOge9wADhkRLZkMuF1a2IVmLeubhiwhQGNuTa1pxzmIEwcZzQM+eXUp/hM6vgYYUMdVAWojAa0UcmtUKYgJ7WpL+CyW1gKh6ijiVguu9va8ugUoncbWBetKSj3mrfqajWc3bJ5xMOfy9Rk2Q50uoolWPmi9352+bY1Q57G6/TlYX/ulRsKVvMHV+KDUm3g3u9in0YUgDAGt5TU2RDx35x+J3ZEZru0I0s/FAU7vA15aTxN0MOCd0hbK9zkI8fN/ze3zXxLP0UvfIyIsXkO/0fxZhDYbKhEd1LKI0I8e0FcdN8Bg/549bZ10WHtlAXju09GcgcFiz81o11IauTRy8fHKUIqQq2pBijRyrohMpMOenPc6QTFN1DQSWqbVrCVCVYwd0bWpgEBBjoKiGQh4Gkya9DJYCe14Rd9gBkJK3X1Va6zUaJQC+0NF4sDV9TXPn3zK+QCUzDRdUUtijJW7d865ff8WaYhQJ+q0p8VKSAMpVIbQqAErgZ2gTL0RSldKpzUpRvJhz+XVNeNmw+rWVtdWrrSpEGrWyNScTw2JqRxg0ugvhCuqZFabUQF7LdTDgTLtqS2T1mvCaM5cBMIAw0hcA5c7asjcun3Kh+8/5PmT58h0SWBFCiAhsh4Sh6Bor5S88G1uOXXV9PX5xpGU2x1HvB6hHf8GBlY9QtbOhMt9tSg963/bFj9fFKK9wtTdAANLdG5fHDEKnS1Vx6nVS02Di1ZpFG0U1GA5lMgrqlJaLV5L21d7TxenyIvnvc1BKmhASzhRMFTqZM7Y+rN4kII71aIlibi6PtDK4uKWg3oaIEHLGkUHe2ktf1zcB7WZtZqT7Y+p4No1T/162WAIAz6ufVkZpHZ8vjcqOsydVe1cTkPbzddMa5MGCTYJVWkFZ/bEzq30FuyIkAhIVcHzDDLseTdlV0KtVmm0sMkL4/v/d2mCkJQZiABSkRa1uUUvA4mUWsypaEohDIMuxmrqSdrC+Ju/C9YX3yOnHmHSFyY4GLAcWxMrz6gWoToQmOtSZ7RYCaHYxvDcovbyavU4ilBqzTdfsQebu3BPaWtD4Zoj0HuzqOWfKwe0S120aY2aP03z9Xfxoj3osDAsla5j8cWhLFa1FIEhVReCWQSjhuarFs/ScB1zAYBF+LYGNSTU3/TXM3pe23A2cwzCLNwpPe3gz058v7/hMV9DM6fhzrb1/gNdLxCwTmbgvR1cw1GqDvwpRZ9ZrWLd0nRtVSur90mTpUzkeiDWgVgOlGIpHWc/WrCqlaZGpSU6pVer9pJYlFRpxFBVSFal90N47TOxNIuLk2pVsFdK4HpX2IY1w7Dl6cU141rYDHoNJR8Yh8TJrS237t2htsyLZy+4vnjBSk5Yb9esUyRK02gezefmaYfQqJMZurBGilB2hacvrnn64pLb9+7wwfoDBRBTph4OxKpzIL0sKrfAVBplf6AVGGNEBu2X0Q47aq7UfEAoDFEIeW8G1BZ3HHTmwzAwrNdcXl0RIpyerMiXjf3VE65fBC7HgRZGWhyRzfCae7hcz4vI6ivW109YfV/xXS+DA23WpCvN9TnLY8YAMzDwjyDIYubHzfM5Th/M+ht1osf7th1tX73mYEp07QQjnc2xaKf/jkbON5mBZCDGVe4zNS4hEAmEFO1uNIrZ4RQHWss6wM475Pjf9c1fLACzK8sGlgTw8b92XVp+W+y+urjR/UCw/SqE4KWKjRasg6oBhRC9fNrYBdEujtrYKJq5NLvb31pTckaKqS3sJtB9V1aWy1gP1a0Zy0tUBlFmX+STdKtUYkVTNpZ2ERdAG3CqLASFro9rrQOMIxHlH+Px5u2IO5XdzIlrnjfVZNHYZFRKU7Bgi6hJQ8JCfCF9/S5AgczsQMGi3WNFaY8YxcrbbEV5zspZAS1Z0aOZk9QmHUYrOxqvC6V+o5fSaamfG/lCLplSs0bjC3ACfv6e/5cOBLxiIBo48FG7MaRZEW/X3tX50He5U3UGJDs70Jyuqq6VUGYAgbigATuVPkPnV46GGwurovBIo83r0X9PuyS2hUmSxU/9gS4N2nHE9JMPF5ZyhMqdnnaNBLaOSpnH0XrFQcBy0rjQqln6b452qkX43uGwVbF2qYVSJwUEeSKEiUogGkNQazTwGelWzIPRRfmT55VpUKm994SEoHStzHd5cenUYhu9abVIKYWcMxISLy8vGVfCw7feIz/5GK6f8OL5Sw6HSlqd8e6773J+9y6X047Hjx9x2O+QXOBkzXa7YkhBHXKbmPZX7K8vydNO2y+7cR9XPHv6jI8/+ZInz6/I6DCph5f3GFNj2h8ouwOpab+L2BKkEYmJfGjs9gdqLKTNhk2K1Hxgf7Hn+uoKamazGVhtVmj7XE9xiTY8koEarN9Dq8TQ2K4jt957yNXFBddTo+SsjXenibSuWks/JKZX1tm88r4KELyZQZ3ZgV5uKDd5SbE9EV//Cg6kec3H1xj2+eubOYFGr2joavOl7sf2RWdVrdIrzsLmJTsYJFrjsbR4B6++qT0IaGLC6+ZlhmL0flQHVhUWxJh6Sq1VA9t277X5TrGeAeo8aUKZ3LIpDd+vT+h5flpTzyRuw+0+WH69Nk/pzpNTBb8XLOyrRQ0483gcEHXBtniPivnZ+f3ouXy/P62gvRLMY4j23wnW98HtVbBeBuCpbAMC1e2ap0Ys5U21boStB3Ve3fDHDwP0eHMBoQkncDFRNUebEolKyoM5KBP3CYhRWLPS3LqAeZ8BE9m5gw729B2ltiqUNgtO5o+zoxH1jMYSzMILsOg+CLUEsPRa8R71XUigi7Eh+jtRxWLaUliNcy2WfmhzffF8Nhp5iTEA2lVOh9PEEEhpOGIOev54RkRHd7lRaQ6emhKBvXSwVkJRRydtCU68NcXSqOi1afmTlb84AIAufupX0pwlaUeLz9azbrIG/ldH5ZygkRKaK1OdlRZ9HkMB31geuSxSGf1aytHr6h4381EaxVkDz4z4GsCFjP7sHWAEzV06vW+3oCI6J6Fle86ZnA8EUXW/9pVQ4ye1KY3Xqt3bYq/j68c3d5uvshYrGy4Lp9H8qvQICu4ED6IKLRdqLgzjihdXEyfSuP/2B7SLz/j8+1c8fvZj7ty562PYmXLh6uWOmiFKADIxCqt1QgJM19cEDky7S2reEwTiasNqs4U4UsrA519+n1//rd/j8jpz+/5DTu/e5eWLF9w9H2HawbRTQxcGrb0e1pRRmK6vuZ6ukALUgRBP2O0LT15c8/TpMyRfc/fWlvO8Zn1+TpCB1oqORJ72SjlLYkiBIUDZ7ci7S07Oz6htzf7ymjQ0pCiDc8iFWgKVRBGtz9YIqxk4jJ3h+knH60R8x98T/+bCYWC2ZV7DN1d3hyJfgYO/Coy80t/gFfzs6+Z4zxWwgUzmMEQZLB9B3E2c2YbeX8SbHy3OW/PeBsJDAIk6wdU6DVZR+1qtmqGJVsOUqinSumhaRpPeWbYWnUzraZCcfeSvA2gvUwzUGGfxndnHFpo2sRLpjEeo8zPu5XzMfkQ666BgQ9mZOEf71ofChcAqgrZ70ksPg+57aaZrVH1NxUg8e0YSVCDvPUR6dZl3VxRoUqlSKejI8dRm4ICxKK1WWmzmAYqVUwcclN5cFD8txALm6rA3PN48TYCBAISWbWxj8pGxiTCMCuamQG88aDd3jogamBAs2BS/gE8ftJxUnG9oqZWWJ2tjHMwZazvLIQble1tlFCFXc3wWbZeqJY/UTN6r5wghEnOmRFmo0RfVC0XFZh4RePTdsqLYUBvSVJijTs8eSVFKK4ZIDI0YGmkQ7SsQB+aNuMyR29fMZU2OP2MI5JLRelQItdFyIXi3PAMjIQotRFU2h9iNjY7vnYgNpEAIK2KDlrUZRohCis3GdaKiQF/4aHmMGwjdLzpUQwJQdUyzUuQW7YaoJTUhUkOllMrk+cJWiVb7q4DNIpyKUui5UYteZwpQqhqPWqFmnRsvzLqQYRiotXEoWnEQXX8SwOerz/l72zRiMZeIVa/Mz2+qhd10IOyu2TYhitYmt/3Onq6WI0lR4Sshk5lmpGLoQicmznGWl5qql9f7o+zjDHZq2SMc7DqbgtnSkFI4HDJx2CJjJW0rbdjwxfPn1BTZ1Ynz8zOup2sunxRaTVxfFC5fvOTD9+/x0UfvMw6BVnaksTJdX1LLJZvNhrg9g/GMKZzQ4prryz11dZftvQ/5wT/8Ll9cfc6+Nd56cMqd8ZR13bE7XBBkTTw9ZyoDErYctlvKPjO2wHqIpHibwhkvS+FpLXx68Yw//N3f5S/8qZ/n1u0TrkvuvTbqfiJOV/hc+DVwGho/fvqYw/4AwGazIayvILxklc6Yph3r8ZR9PKGNZ2QJpDYx1AOhBhorCoPdX3cwcvTxdc2u1Nbk/rXbhE5fzr9o9kd/3noznOWLdQ/16s9A2RFp9Fr3nhM+Hm29PEo7Ti103RAViWKlhEGdUXMAszh/+ztTN2lEvzw/i9WCDDrjoVUIgVq12yrBZrEEoZYDdcrUUHW6bK7afTYmHfBWdZ+Lab9C0y6urVSm6UCpB0rZ0ygmTMwa6NRGSolhWBMNODQLYkJLJJJVBQg1o+JuGxjWrB9LtQDThY85XxGCtWJmRC2rzl/wO+IaMYd1zTQXPQW89A9oEFsp2jPEnsMwGJvaRZYWMDW96WkIhDEQkje5CwiRWlC7F5WVqWTGGGlRQYm3y6mi1zSQeP2qmoHBMaR8hYf8qceb9xnwXgHeVXD59jKL6og6pCcEpVRmqoXZAToT0CPm2J2lo77aGlWqDg0159ww9Kf4Fdeq9xE9Tft16wI3NWgVdW5VbDiSTyJzVKabxj/6eXiKwlmBVguhgbfqvfkIvEISc65+vZjjZwkA/HNcN6B/p2KfQJXM7Mr0amURAVnIa+9e0XyYgwtQFb5FUaEQa1G622plFe1aXCN6Bz1YLyK9TOlmNILdf5qi5WUfAc3NefmlAgfxnDn0Srzeq7za/W2uQm4dZGDrbCnKa5YGmrLrN/Qca7VqglIscl+kGjzQag3vJe8RQc8Ptra4X5lWsk6ALBlyoYbSh7y0TsfO79LTXv3e+I1afmxd+zA3LkGvsRx0SmRRPcQ8n6OoAHUcqG3PlAvjas3Z5p5O7qyVdthzfX3N5cWey8srbp+P3Do7pdXC9dUe6p4xFGIcGdfQwsguJ0pccV1GHj3eEWogr+6yur3n/MGBPF0zjGudcVAyARjCQGmBViKVDXF7lySBYX8g1KoVM5IoGT5/9JQ//NGnfPHFI37w6TMe/PARb7/7Hrfv3aaFhAwjq2FD2WfqNBHGNUEa4zgwBGE/7Sn7RA6FlndcvLzkdJu4c/8jNg/uU9YnHMKgEZ1FiTY2DY9KWT53p/p/wnEzd7/8m6No3tY+QGjxCNj5wz7+fX9NWwMSOtuwzAO/Wl2wSPnRjn7me65XSgW1ECwAxlxieXwqX+UcFDvY2ta+u/SJsqJ2VPU5rVdj+63wiDyI9flvaR7ehpieLJOLpuKmvFNKXsBZNTFNS+sliZ4+cGGipfoW02/FqhhUy6Q8Sa2BUguhTIjYILJm5e9NUwF+vv1xYs8GHf9dRbSvS/F0hrGqQYWW0gbrsYAFHxaYiZgPWAR8PmzO0xVLfNmUoYnu+3rZOf2M9JHe6EFx86Eufv/oc09pfo3ja4CB2h9KN96W//CbUcW77wVa1FHFel6vX/ivlhZ6Iw3M8YXOIrgeoNnXNC37m535fCfckfjh7juEQiv60MIiP9dL+8BKrqSj916uWCoqWm+9TKRZZKOtb11TYTmqPnrYaSds8UpfHE0UpXdbYRukGQ03C5Bm/9+FjM3Fc/rHvtmDentqaWSKim1CUTqrWWQiivYVUQnQ8Pa9Wi1ir9n78DsYmw2kFhMsnmsIvXa2r4EQelqlwbypvVlSUXFRLcXAplNtpkr23xWss1kle8Ri95QGpWUClWiONATpaRvEFb6hCy8xas6jPAzs1VooeaLEA2Ua8MFFzUoY9W2jUqLiRuW4rK2nwPoTEZNleDpr3ralFo2YipZLRBeY9rLVTKsByRNjSpyenLIKE/vra/I0cZj2PH92yZPHz2i1cGt7j2m34/LFS0KAEBpxjKSw5VAEiVueXQvf//4n/Pb3P+MP/uhzri72rIY169WG9ZB46947fPjebe7dvkeddjRrUlNlQ4mn1HBG3NxjiIFydUXOB6TuVHOxu+Dpk0f8oz/4R3z26Anbk/ucv/Udnh02pOvAyaAd8hqRGpPdHYX0aRwYUyDWA2OJbFpjtV1xsdNqj1YnHfUtUEsmDElTXSIW3S2i7Z/i/JfH0hbdtFM/SbglYWb1+tGOv55z/P4N2/c3XvcnaRnmAWuzPXJAsAQtnZ6WRQHs4mWDv/+RR1oSIH6e7uml76/5emY2Y34dMWYjUFu0DoNqf1yFn/OBadpT6oFpmrT6IYjV6utrtX5tGmx64x5tgGRTPJsVywrKELdAJSDN2hprtKhO1sap1+qatXYUsEm/5vkClZ2xUeSuf+sAvVnjpEgJOq+iFbUnygpaejioXfeuhoLOPBAXGmJixqB9D4LpJCTavBD1pjPAk68f4f/jHm8MBlxRr9GNDZGwXL13xPNNuHT4btD9+75gl/+Wudb+UbzLW+wPrFp3JkJQZxR8AIwqYk0+hiICqyDABWXVyoE8givHER0OPG7S93QnVescVXo5ieeSNJ8kluuxGm6xvmhW9tIw0IBqUMHq7HvUqQjXN6Kj1maUdvHPW3U5i0blHtZXRe5zrkuouVBCgFBMHtEIUshoR7TgQzNEVe/VwInOQVcKrJfFyGzYbpoEfy4KtuZ7Sa00MYduNF6pmVYqtWRyzrRc9Hk58BIMtFR6OYKg57goAV1MtCIEVKcRo35MgWi7v7VsEQrkUvsUShG0d3vTyoyaCyVN5BzJedB7EFVNHmhagSBNN63QS0qd6TnG53SmRgxwuHhoPmZdimE4okQIjRQD+8PEYZ+RdeTWnbvsbt/l+sUT6vSS66srrnd7Lp6/4PriGSebNdtBiG3icHWlIC8IeRoYxxVhdYdPHr/kN7/7Y/72r/0Ov/pbP+bFta6iMY6crkZ+4dvv8/DeHdbjlt3LK6ZtJQ0Qxy3j+gFtdY8s57C+p45i/YI4XSO7icPhml3bkex5xdUpOxL/8W99zG9+9zP+2V98j1/82Xe5ff8EgjBsTggS2F9eaPmtNCKFtrsk12uanHJycpdhNTLtI3l/TSkTKUVS8A4KwfbfLMPS/TKv0JuC35vPpz+J1wCIm1MOZ9YArVe/aaPbnPKb/+boHV95X2+tO4sAbxwSWJ72TWbgJovRWsNnEBwvx9BtxM0Td5FcB/xu59sMAJb/liQMPt+lRbQpnYLuUjO5Tkx5z2TVOqVqc6+AgDtLB1+9vLMZMM86AodmthSKTf1zdtaBhw5tsudf0bRRG3t1mfUi7VLMjnEcRIru8WbAXe0xFrQ5yGogCQkKWIoxDbVoYy1NAWi7ZrFIHwk63KnZP2wapP1ODIOVQA4QkoUQ87CkXsa8EG9/nWPJyr/J8cZgYJpUv+tgwEvbmtFAZZq6qnqZt+0ivF7rP5ffHW8aHzHqKlBZpODmtEKLkVaK0jkiSAzEqn3m+7AYfUGrMfeGRGXRG16pYTl6/WBMXujz7I+Nh7IFPb0BfZKeV096x7zWmIHB4mHYaHFA+sJ0LT/QAYALVJzxrLiIUEFA/9p2e22VkicbPGeiE3uxUjIhBwTtAFkrhENDknXmiqHnOKrf/2RtSUPEe4AFBG097RG7CZRq1cmcNGrN6lAn6/lfioriilZA5KlQp2w/n7SpTj5oj/KFU8bqcr3TpbbutHMwurJYV0alKHX405gCQwrEFBmipSpo0BKlQZbGRGWizZMBs75RC4XSJjKRUIRMQqogVQijiWcDWidtolckKsVq5bEL3tHW1fz4NdUDs5jWP284d6VNTbCmS4UYMxJUgBiTzqo/XO/ZXe05XF1TpgOjFG6dDty9teVkDbvL51y8fEkLiTiObE/P2LLi5fML/sO/81v8B//xb/Jbf/iSyzByeu8h3/joF9hf7/itv/urXF19l3ubwLfur5lONuxjYxw3xJN7cPIA0h3icJ+wussEpO0lUg/Utmd/uOLqck+tB+7cucPv/uC7/O4/+phnF5X99Y7vvL/mb/yVP8V/+V/5a3zwwXu0XJnqnhgyoWby4ZJY9tTrC54+uWa6fMlV2bO+fZf16pQhgXY01DHopYGPrAUrIUXTi5Zvmu0VXw8ILAOZm2mG49eTeXt3Hys/9W/m93YQSbd96mX7j02/83r24CZ78QqT8QpYkZvEwOt/7+aftdn++O97wzCtY6r9fWur5JKZ8sQ0Hawaa+p/q5FwIJkPmN9brCEQ1FbIRf+mlIyMNhenz1gJ/V7rvjE4I2or1D5hFQ6m43GH6tfvnVn7+5vdDKEzFq7DarUYi2uApbWOq2KoxsLNvWc0QNAx4dppQNmBSAIZtFIpRELS1ArWLMqbgEkXHEtnYenB4tc5XpW4/qTjjcGAq+mpDZ8q5aVZeVLD7vnXTumbI87ZIkBbrMMw2Iz3GUk7OBA83zKPMn5lQ4tSN05h+zwA/Tt6Xrb37i+FXLOJbOz2NKeLl2zBjZy+LDduACsNVPvTXfgCQWvZlOClP/Tae0F6y1RXPQiqBl5G2/25Ix0FO1Kv1E6fN2cJxCL3IkRv9yp6PVFUZFlLQVrmye8/4sk/fKJo2loXS5Ced+zn2sWIs5bCr1Ws30CbewX3Nerdt3wEaatF2QpUF6DNkvxnqjRuNdNFBJgqHwUGDiKbb/raOp3Y+0kE3aQlCTkt+jqI38cZMCkrUbqhaA1EMjHuiCETwzUxXhJiIqWnfcTpeLLiW3/jG6Tb1oa1aSQjTWs0lp0rlaRxpkvv3dympR7ZXaEhQXPfrTT/DoBGwbGxXSfK7pLHn3zCJz/6MVdPv+T65QudJBgaY6xsxoHzkwFpBy5evuD55Z6pCoVEWm0YN+f8wQ9+zO9//xE/+uLAvgmrsy3Prg98/lu/x+lmSwmJwyHz8cef8MPvrzjnHtsP73O6uovcuksbz5k4JZzcoa3vQKmkk2uiHMj1Cq5esJ8uePbkCV8++pI/+O6PePwyc373Q8J6xydPX/J//Pd/jesy8K//1/8a7759i3z9jE2qtP0Fcv2CTaqsx8Szl5n9rpCfvaRI4PThCdvtSIiFNu2U9rUhW60Z+2T12n4Xl3bjqwCBHzfZg5uRtv/O8evNmpSbx+ycfc+8qkHwSXrzPvNObTC/sEcEP9mkv1YTsXCyc1QFx1VH9KBLz8fL/BzYLn6veXVC63/nou5aYz+PWhslF/KkNt/HEPu1xzQSoweEbv9Vt9SnyuId/xRkhNKIJNVpNPCOfw11lDGpULF3FzT7W+1faKKj4t3CHm1Cd7JeFdEIKWp3WrsPtaieCGul3Ax4aiWDTmJ0INDbKIumBLzRkbSk7IlEQtBJiZoWjPT21Z726pUEYi2of+Lj/+pjYf/e5HhjMJAPNgO7aSRTtXDSIjkXfKnYpJaZ8nUw4MyCb4xSCjFGSimmEK9Wj2+nVC133klAu74QwNpEhhBUnVxLZxygUoNPKdRFlfNkzICVx7RKs/GZuricHfAJVh5xhg4KfJEFjIK3AT6u4NX3yR1I1FK1XWcFH0QUHHWKughQgU2PMlAsV0qvU+io3NkMi8Ht3K07X2vm+LMCFgkmmjc0XzPTrvCj/+f3+Phv/9EbL45/2sd4tuLsrXMOlwcuH72k5tcouF8Rcb3+EF9Lr+yNBuzt33FUuDwe/PItNucjiOf0kz7BNg8iWUYey889njkCo/bzGEQ1A+ZsSlECXGJhtQps1gPPP/mYH/3RH/Hoi8+4fPwFeX/N6cmK9XZkXA+s15HNKnF9/ZInT57y9GJPboH9JFzsM4ci1LDmL/zFP0c4/y7//v/rd9ntLjjImsvdNbRJqc+cefTFl3z848Qvffs+aXtKWJ9R05oaN9ThDNanyHACUZC2J7AjlkuG60vCyyu+/8OP+bv/6fd49vSK89tvcaiQW+LWnds8eXTB//U/+E/48N17/Mt//S+xYcfhyRekskcOB8aQ2Z5s2R8ahMRhf+Dys0+ICKsH7zO2PZRrhGLGddb2mJvWvcyxE/f8+k09wE9bL32FOBiv877TX5pfdwmaZ8dvjqtZGfXCss97fumc1THNDrcdfW8JSG6mXI9ZgeW12WJs/r7+H7/OuReK/qUxjtWB7XwP+khhb5ojXrYL3pykVpsF0rQleKlNe3uIMq5RolWPLfVeSxbF78fM7kyT2mydj6N2OiJARJL6C9dnVfS9tetoIwQVKPb9bwyfiCzYgblfRLCKObzSyoG/BMQq1FQblrQUUgShzmPWg7WZb9r1kOppGw+yUm8+1xCKgRV3/nMIoc/J09I316Y/0p+2jr/O8ebMwKKZDzaeEe/n37/vEbn+bLl49cf6uacOYoxHJWMhBC3fs4Xi5RWOEMEdnL2upw66ow0amS/unqtZvSGSisS0i1SpS9QaO6Dwz8Ni0QZJxJD1AaP5sVZL38deN4FBhhJMoihaqqOzG5KlQ2xR3mQmmHt805tTNM1B+OaYpfh0sVRrCNovW6kCZRw8WdFqpk6NephLqG4eIQW+8c9/m3Io/OjXfqAg75/SEcfIz/2NX+aX/xt/ivFsQyuVT3/jR/yd//X/m8tHF1/79c7eu81/7n/yX+Lv/zu/xo//09eDIQnCz/7VX+Kbf+ln+P/8L/8fr7xP2e1p9aDrwehWaTaG+qjsxzlGNXLunKSnA5b7QWvuS55oDULTfKsa2YnAirhekQ97vvziMx59/hnXTx9xfrIhxjXjkNisEqtV0DLOGFifnXJvc8qwOaPKyLMXV7y42nN2fp/33n+bf25zxuOLiV/7nT9gf33NyZBgeo6Uifu3Ez/7zVu8/dZ9zu/cZX3rLrK9RYkb8rClbc4ow5oQRpoEatrSVufIdIewvWQ823N66z6077FKjdUAFy+ec7WrjBI5PT/l7bdvcfHiBZ99/w9596xyeP4JTNesxhVj2HB26xaHNvDicsdhf8nLl48gZ2699QF3HnwEbdJgQPMp0GwGvDmx4AwNvNb2+Oc3BXw3xYPL7/vfLAGBeonagxJ75Mdr6ogFMOvwSpQ/Bxqtf+0emP7RmcDXvf7yc2UNpb9Sf52FpmU5BVaZWHdw4DXhlVkoTpuvv7XWK4OCHN9nrbf3lIJXZGlVghhb1zU2BGYmdmZROLpHGqyVUnQ/1WXwVqkBlF7XIA6JWiatSVwDFhplBwcLDU05BKxrI93fdJ/S4bs68xAaXv5ZvA29aFljFlQP5Kxf0I6H4u9v2jEWbLOSNQpOQtPqqll3EDoc6P/rbZuPHr7dt68GA18vSfA1BYS6mBfodYFM9SKqdfObF49H7yIyI0v7udPAvsFSSkipvTlP6xP35r8JVctcfGIfsECZ9N/rjrKqA61ZqZ5SMlM5UNsMEFrjhvOP1g0rdtTcLDckzPmc5sn9WrXlbFORX9afEmrpJSPaIL5oIwVNMqELWV9rFhBNHfAsAZXUpuVnzcsMawcCugkPGnnUAiXNlRZG/ynd/tVRdFwlvvmXv8N0ueeTX/8h+Z8SGJAofOev/Qn+zH/3L/IH/7ff5Qf/0R9w68O7/LP/7T/Pn/sf/WX+o3/7bzFdHt749dJ64F/53/w3ufPRfX7v3/sHr/2dYTPwC//qn+Rf+rf/a/zo175vKZTjo7WizIs1IwrNEz5VI1XmKE4Pfw0TZ6Lgdkn5tlLYX19TalaKM0bbwEIlQ9F+B8+ePOaP/uh7fPFH3+N0DNy/c0qQRkyCpERuSsuGYcX5/btsTm9xduseTRJPn73k2dPnQOD6xZd88+23+Zf/hT/Hai08vtiTGTnsJurLJ3zrwTl//pd/lp//6F0evP8Bw6234Ow+7eQ+dbhNG0+RuKLGiNRISxuq3KJtDshpZlsiP/cn/jR/8KMnXOx/l4vDS1atEIbAOox859sf8Df+i3+e9+9EHv34YzjJhN1TyHu22xM2p8KwOWOVt7TdDlohlMyLp4949OmPOPngOeODqkpvZofjbPrrmZ9jp+lf33SkN8WC83N/1QF353Xjdb7e8SZ/Z7b2axh1jxpnZCIW3c6NiJaHN9QJ0SN7BQLaFttSeh78MV+/EHQQldnxnD2t12jVHb1GwQB9fkL3GebEzT6Jl0iKNSNimQ4VsCjf75tmgo2ODwkJA0FGYhxJNq0wxhEJA2KDpgByybQMISZCrYSkzZVCjGqbsQjf0lDz4zUtkw+hi5lalIWlejWUs9hzZZlO51VfVlF5VsN82RGTU/t91h48BnDF/oB2Y6399PzBHx8Y6BT4TOsI9AhVWjNGahbZSZXuTF1HcFNLsKw0wF5VdQCxgwFtO1k7GLC7ae0b69E96Qi2alMaV4N6/WotWVXsZbLSF73poZeDaHOiFrX/vLNqrWVasTIX650daRCrLqIWLICfAUIoGRlSL1EjVW3Ms0CqwRefVRmoQM+6NhVLw5RKK0Xz/8uOixhl2VRoVClU0dnm1fQAgYjmV+srhm15KI1l3cneyFD98Ry3P7zLr/zrf4Zf/9/9Kr/z7/4GrTQ+/Y2P+fy3PuFv/K/+NX7ur/8Jfvtv/vobvVYYIn/2f/CXuP3hXS6/eHlUbro8fuG/8s/wc3/jl/ntv/n32Dw4fa1DaTXTygFCNOdeiE17vCscs/6pmLPodKxHasup5np418PailZytEmFjU0YxkiUQCuFcUycn255PkZiqhymK3KJVLbknDlcqWJ7fbrl7ukDHr73AWfnt8kZYnrGEEaePXnMtLvgyx/9IWMY+Rf+7C+ya4knzy9VP3H1gjurgZ/71jd49913OL/3DmzvUbcPaOu7kM4IwxmEjRq6CMiGZgY6tcR2POGbsubPPXlJDIknT1+wmwohRB4+uM+v/OLP8qd/6Vus2jXXzzKbuGdzfsb15TNVnO/2bNKak5PE2XXkcgd1SOynA7urF5TdhQIEZ8Z8G9hdbmERBHAc4fvxus9vgoP+zBf75ebvvCLW+6nHEij6iyz+fg6PmfefM6CL6PsNaGE5AjYWlbbFOSzvgdtbWYqv6eXZnhbobEg/v3qUAp7ygZyL2UBRICAjKVSqZGXJQoNibIoIWnIndLW8NAtYmv9fmYFamXPxWpIX44hPJhQZiWFFDA4GNqzGEyQMxGSsAcrLeQq2gnZYtAoQ8fsmWgKIKBgIYFolnUsRWtWSwJi1MiJFE07rcDOW/kzM7gfTY2nhFla3oH5JnWj3pVBV5+Bn2WJ/vWNB62vW09Ei+KnL5JXja1UT+IaIYiSKnVgzhBj0rEkh0mLryVJ30EsmwDUCPkvAAUJpeuG1NQMDerP8b2I3BE7Ka74m1wWF1yNmu1nGIqhZbnMufWFNGtCsTIVmva69/exSmW8/kwRVKoLNshYvyzFHHguhJkIrhiQjUpON1/SSEZmrIiynRu/D7d0PS+/E16wrobf6bItNWpqWyRXRentE6WwJQPBNvWAGBM7fv8PDn3+bEAOPv/foKxdQ2gx88Oc/IqTAsx884ckfPuJ4GpoecYw8/MV3OHv3Frtn13z6Gz9iOFmxe35Nnd4gty9w91v3kSB88vd+aKI6PZ59/zEf/yc/4Bf/1T/J7/6f/v5X6AeOX+vbf+Xn+OV/7c/wH/5b/wF/6r/zz33lrz77wWP+1v/03+Mbf+ln+Jl/8Rdf+zsqjJwIdSAUnRZXxZtkadlSiB6BOJvln3s5qI821cPnXrRaTM+qeySEyGq1ZTWMpPXI+9/8Bn/6T/8zxP1TnnzxIyqZFiCkRC6N5y8vyaURTkaGkwec3XmX1XpL3GdunQ+sCMRpQg6PeH7xHCGwHlZEAuM6cHpyRpwGTlYj7z64z9mte4T1XaZ4iyy3IdxC4hkxnWhL4QqaGBNq2mjVSRhYDVtukfjFX/oV1gmuXjxlHIRbZ6fcOtlw99YZZXrOMETufvhNhghpO7B5+ogXT7/g8uVT1i2z3QTON5U6Qtpu2LSR7XqwaajKwqgWJqGtclUgVnGRGAsWc7EkvsJ5L/PufrwqGFz+nmsFjv/+px++Hl73/dd9fZwueFNB5CuVUOY7erh1AxCJty8+ftf+Ve0pgiXrWsl54jAd2B/25Dypo60KBGIcTGjeLJ1mFTkx08V+PaWj+8WHI+kkVz9vS7V52V6M5vBXhDgiMrMAKa6IccUwrIjDaHX8lgJw7i7MgJ2+VmRmGLoI0GaSME9k1USLpbFrpDZtRFRroYbJRIZatRXw8sTYG7Fhzd6W97gXPHZBuokf7R5pjxKBOIs0//HZqJ98vDEY2O12PeKPVkoVjZJS1bjnz/RmN1GJVWF20tHHIBuiTCkdlR36oY659uY6MIsRq0X8fRoilSElHWjS1ed2w6qWkLki36d1exMJvbG6U3TBeTOMua+0o3Ol7VUzUAWkYIABpSutLKTUQCyVGguSM7FaTWmMtOgqUl9wixRLcIQu/dwolZonBQO1ULJee8VH89YjUVqVeWSvVH39ClADJZejFqoPf/4d/vK/8VfZ3N1S9lry12j8+O/+8OhZbB+c8pf/Z/8SD37uLUKKHC73/N3/7X/Ed//W7x05a4mBP/Pf++f5zl/9JWptrE5GPvutT3j2/cf83v/lH/D0+49/6hoTEe586z77l3uun1wdr4nWePT7n/Htv/LzjAYwftJx91v3+bP//b/Eb/w7f4cf/90/+olg4Ie/+j1dLz8BaPuc9lomu68qTNIxxSz+dlY0i6cImtZEFyt19cOjqlYmoBEMCA9p4OzklNPTM2h7Ugw8fHifB2/dZ3f1SNNdNWvr5tK4uDqw32fufXjO+Z13GU8eIBJIUjiJazYCsrumXDwnrAd2OfPi8gk1V27dus1bp3dYpRNON6fcOb+NxA2ZNW24Q023qXJGq2vSZGk8yYhUqvhkuA1xTESJhN0l9+8/pFy8zbPhGsmX3Dk5sJEd6fIlMa44ObnP5uwOYVhDDAx3t7TrzNWTJ6z2V5ytM5uw4zDC1NYQG7fPzxg2o6ZxazHSzxwUdMdxkzx9neG8KSb09bX8OD/3Y3agiwFDm+3Mf2bHq70q4JjufVPBWG03a9OlA6Qj5kDm62o3GICb19Y1E0aL7w979vs9+8NedVmtqG2MiRhWFFvTrRqjSlFhc/+fFw/P5+csgdhIdoDYAjENXc8Vg7YVDjbuWEuLB0IYiWlFstK9zlCHGXh4wNqaVqHFGDWV2yvSjMm19/ZyRg12NY0BynRXkrIBJc/3tRrwYU5xiPc7sUBvFsX78/Y1WPu5idkNfT/voPjHy9i+MRjY7y66wK7GaGUY0Zy/RuI+CIPUTMCmTh3RPD8ydxOUkPDJgMU60bWqAx2k0ZWSSwWv/6teu960kYugPffLQvCi0XLRenbrf9Cs4UZzAU1nWqR/LQZyVCmuBkeHdWBMRdMcUbCH1go9c4E69hyC9uWugcrY+yOQINaqzZKoEKw0LYTeNa+iA0C0cNorMyZjXyzV0e9JmdkN0e5/WltbDZkKtEKV4w5/b/3Ke/xL/9Z/ld/5d3+DP/i//w4tV771L/4Cf+Xf/Ot89g9+3G/HrQ/v8l/4N/8aF5+94P/8P/zf00rj4S+9w1/8H/8VVre2/Pbf/HvQtMvdf/7f+Ku89Sfe42//z/99Xnz6nNXZin/hf/Gv8I2/8G1+/Ot/9EZgABHufHSfpz94zP5i/8qPP//NH1MOmdO3z38iGBi2I7/y3/qzPP/kOb/9f/h7rM43P/l9f3r6zapjqgr1qvV3r9rQyLJRzK2KMUNneW1nmaq3WbXXLIVpv6NVbYCVJDAMA6thYLMaSOsB2b+kHS5JklkPjShwuT/w4uqadHVA4sjVAS6uMwynhO0d9nWAUolEYoscmo4TX2+3fP7FJ1xfXnHr/JxcK7Huub2GO3dvE8Zb1HTCrm1ZDXdZnTykDLeoDORDZSpX1MM1qwRpFIgraqxE61lR00A6OeeU++wv7nP19Ac8/eJTyvPMne2KzXrNw/d/hrQeaS3ArQeqDh+2lPQFF4fGWibk9sB2HZmGyOXUKMOK4fScsD2BGKjOnNmceu81EKzd9tyS+KdF4WZwv8LZHjnedsw2lIVQWTAg6Y1rXnm/mV431v/YAfb38vM5BgA0r2+fz8XTn6+7slnQt7jatkwPLF9bLZeO5vW8t56khGbThNtsg2u1wGKiTBMlH6hZU69InZ0tgSSRItEqPwzAhaDMalfPd5iiDluCvq8UK1AQ1QO4Sh8BrEyvt2HXOv4Qh17bX5rulWbMh0RNu9lUGpP7mcLfav3nVMTMWOj5ytyy2SL7ENT2BvN91Yjw5v7QU7midvg43d96eqQ/JH8+BuL0ETpgqBx3t7T71ZZrqC3AsH08qrT56ccbg4Hry8cMw0hKIyUYDTSM1hI0Mg4jEoNO0gqQ/r+8/VmsLlmW34f91t474pvOfOccKsfqrq4eWM0WRVKCQBESbUoQLQi2IQkwZMPQsw3DhgHrQTZgGIYBCzb8YtgQDD3aMiDAFiVQFjWRkshmt7qb7OrqrnnIysw7n/EbImIPflhrR3zn3ptVWVTbkTh5zj3nG+KL2HsN//Vf/+V1SpTL2rKUk1a1dUF4vC+UpGQ4lxT+r0Mmck76+LGsUIgpEoeOnHrl83u9CLlk0q52DEQqQzsOPf3QEcsATgOBmBkDhmILUpX2atRYhSNVIsIbwcXb31NRsZsMOOM71Ky+3u29PIIigRDmWrvyniZEfAgqlOR0nGjwHofXLohi8r0DjCI89h3JCJFSVKAnW39+XSIOJbU5tJUw5aTn6YKeX1JJzzAP/JX/9V/je//Bt/jdf/M/H0/4W//P3+feLz1k9eAQ33jIha//C99ge7Hlb/8bf5PduWbqV5+cM6w7/pv/23+Bz3/vJ7z47lO+9td+g/f/ia/yf/8X/03WT68BuAb+o//lX+e//W/991meHdy2iV9wCEr4+6ISQE6ZdjVD/M/w3CJ89a9+nY//6a/xN/7n/w7b8w2L0xWIEU0NEv3SO8SOZMqF4jPOpJ/GDoGi0WCMRYmkCLg0soMdYut7QPIwfZ4YKSlV8VEdzFV6urBhGDaUzkG+IXcXpO1LVk1mGYSd84ibcdMV5qsFuTlgVzJDWNBJQ0dgNm+13bXPDO2cbWi5FkGWK9Ku4/mzFxyuVtx/64x3375L71Y83Xjc8gx38A4Hdz9GZkc0oUFiz/rqJSn13FxfkIeek5NjZvMFeM/q6Ag/n9HlyGJ5QMpHHD54i7vrd1i/+Allt6GPmdbN6XIitK069uwgzHA+cHjnEc9/d4PMB45XDafLA8pwSYmZ9s4p7b134OguJXhra9YBTQXB+4bGDUjuSYlRGrwa4ApvT6vsNlyv2f7ezbaH7olf7n1XUxuccUD2EYX6Hu4LFnuyV6mw49gvXx37XqA4vpfcTlrMWZd9ftJeQKO/GUZ7pKXH+hLF/E2/9z6RlDvAG08gmUx4IscI1vaaogrLpTQQh4HUbxm6rQadI9Gu8jYyqSQc0DiP85Czp5RECFCF6UoxTRATItLXyAa71vKAEEI73QVxONcgBLyVBXRIXEOQgMMRS6ENStorwVF8Y0Q+DVJEvD7WyICVB4QEHXJX9tGjYpNsJ2esfsqDJILNWUjOMYDOgylpvL+aXLrRr1D0Otf2zSwZ8UZKHOFoN5Yo9GHFFs+0rkVUhG1CuDA/sRfM3lq3P//4BZCBjWbZrQ4+ATTaMkh9DFSo7PZi5DW0FkPGlwrNm+OUgmpOmvY0qjwFmnXVdV7K1Oaitdesf0cJdjmrYU1poORETB1x6IjZugasXltEnSqljDUcZ+QZJx6HI1idKVggUGPEMTJGRrb/2L98KxjYi+lLJCXBu0T2jpJafBpwXrXZvReKb2zssXYYeGrrTi1vVGdjk75I6JS1hLLY9XbXIT1Uo2T3Q4MG1QovJXHw4JD2aMEnf/eHryUIqU9cfXJB6hPNquXswzs8/gef0V/fztKf/tFj+puOB7/2Fuc/eM79X32Lp9/6nO2L9a3HlVJYP7/h5tn1l3K+hcL25Zr2YIbz7jWeweJUJ+UNN1/cTXD/aw/5S//aX+X68ysefeNdHv762yzvHXL01glf/Wd+lcO3jvns937Cs289/vkndOswZMYElZwTMpVsZGJMonyTgmjmWkZgUtdLirdadFNWg5vGtZWZzVraWUPbCpSeEjc4BmaNYzmfMZvNaLsMLrDpIle7C86v1qyO73B4coaEloyni5kyRFIfSTEzPzzheLhP8J7TozMkZQ5XB5yeLSnNnPPrgd4dc3R8j/b0EfPDO/RavaDb7Rh2O66vX3J5cU4aIrGPzOcLMrDddtx9+JDF8pCcdkh7QLM45fTuu9zce5cnP7ikaxwHYUaYrwjLA2S2gjAH12hW165AZqw3G7qh0O8i3jfM54KfL3Bto1YtJ6T0eCI5a1lO53tFVeuTCV5+0zGqy71SHviiY8wRZf93k9u+zTUo0zdrB7v9+mKZqTHk987jzRukvl55w2PK3r/zK5/4djCyF/ZMJc/pN2YT3fib8XkF6yww3Zj6PUUjurLX3VQ5U/p+ThSB9Qa5V3Kn8xo4jDbX+bFEqmJjir5pUGBZuITxg4gFA4jH+xnBaUDgfKtfrrX6enXGzjq6dK4AMqEJdX4AFdGu8cZ+GQk3iQIZclNwlrCLal3sPbbe9/EavopQjZ0ZWrooznQGxs6YihjI2JJY0L/Xe/6mFSP1wpf93/1ix5dHBrZb6wSA0GhJwKfGLq6vXhtQEkkRuXVxq5b2/lH/PU6/w5yXOOpUvTRCVFWv2kaU5kIpZlyzydzGgVyUoZ36TiUtMbW7qmynM4ERskalXrSNUOzLae1ToSHbIKail7X4C6LBzriR7bPu9+JmChSH+DK2KIY0EJJugOA9Pni8Hwgh4IJGhkbGpTJ4C2m8rlMWGg12MzhojAZr+2Aal0Kyc465kEukWR5QUmZzfttxv3o47wizQH+949VxrcO2Z3ezY36yQLyjWTasn12pgfivcZQML773jK/9td9gfrzgZjfc+vujb7xDjonNiy/QGhA4/egOn/7OjwnLhnf/4gcAzA7mzE8WPPi1t/CN5/KTc57xiwUDmWjtqAGXItmJRuKm5QDFJiNaPFaDwqoqVorOct+TI65Dk3IeGOJAzpH5LHCwmrOYBUrcUTZrpGTmR4ec3bvPvfNLor/ik6dXvLh5Sbs8xoUZd+7f4+DoyNp4a/dOJiWFtFOCg+O73Dm9Q8iF0ms5ruvXPHm+5eUw4/DRKQend/AHh8Sc6PqebrfjxfMn3Fxd8fTpYy4vL4j9QNs+p53NWR4e8Ch7ZouOnAOzNjBrj0nNDavjR7zzwa8z9y27zQv8fKWaBTngsiJiYjrtNDNwDRcXG65vVvhB5zQ0i5ZmMSN4QXIPZUfLQCwdQ84M0Wmg65XU6+TNJnDi58hrv/+FYSL4uc/Zr72Pdq/Wk2z2iFDLSBMS8NrLGlxcRktf18+e9ohUsipmPKb9/0Yewq1/iuqT1H+Nec1tEaM6sH2ycZWrpF+jTFoV0BElS+uQIMxhauLlvY4J974ZZzyUfVQ4R5t6aDav+mmpQnAB8YEQFjRhThPmBPtyrtHuLgsanGtsBoDyW7CWP2elBRFNwmSUsq+tj3rtbg+jmuD+iiYV57RUbcPFBEHyhDyNhHWYJq1a+UBfTGfvjAVGkTEQEAsCsoktIRZK1nU03ra6rsp47+r5/iLHl1cgHDq8gxg83geKwc4KvOiXlHHJaO3axfGcpNZH9k+0KKKWs/VfFiE4heOVHWwQeYlWm42U3CuRS5JBWh2SInHoSUmDgZwGnZ1tzM6xX3VMGqaalPMBH6Ax4mBwOn2PolCN9s3quUqqm1GJSxMZzOgipYxlDQ0+nMLKEgjBk9JASoo8pBDwyTNrGhwNFCWyQDbxLztvqaOLK6qhRJxCQqyt0kmxr2wSl3uwZ8nWQgmFxM3ja1xwvPPn3uf5nzwZ72/NfsRaRfpNz9Xnl9z92gPCornV23/87imn793h8R9qDf/F957xG//Sb9Eezumvd3urxhbwF/Rwv3aUwuUn57jgWNxZcvPkavyT846zD+/x7DtPGLZ7QUI15maXfvAffZsf/+3v39IKOH3/jL/6b/x3+Hv/5/+MH/2t791+/pc8ConMQLaSjqsDU3Ics7w6RGmcKmkZgLNaZ53nML1opus3xKRr1zmhmTkOT5bMD+bIbqecgq6jQWjaGc18QcyXLJYrHh7dYXV8nyHD4fEp3jeUVLTVq4sM3Y4ce0rOBAmEpiFLpkuJbbdhfb2mj73W6s/ucvLwfZZHd+h9YL1ZM/SRT37yY77/ve9y+fKcp0+f0e12LA8OWS0Padod5dklz55f8/Jyx6N33+bRg3vMjo+h2TKUC+bH7/Le189YX39Gzj3SHrHpPW6bab3QmlhMkcBydczNU+F6PVD6zNlyzmy+YDab4XKkbC/BrXBhRiieUhYkAsnY18pSNzKwq9X7yaG9aR1O9+MNzn20Wb/gWqlQ/iuZuIrfFT0nywCrBPhtw72f+1nGPL0i00wLxlLVXub1htd55ef9X5vi36ut3XXqaClCGTVY9rufKhIKuZJvx9fwo5NX5LQKuXm8BIJvTAtAk66CM9RNbVXKlecVbchZddLquJ2x/ptmQWgWhLAg+AUuzHDSanLqRUcqhwbn9wMPpwnsCLlr4KAGvopHTeTGn4cgORFNDHBWMq8CeZXnkcd1UGXys/FDRMRa2C2ZsCTUCgDUfjltbVSye3bOTrMYmjNGJ+wv1n8YruGXH2FcenIRSmk0+xSt7ag6k1IyMAhdF0aeauqy37ozXVypgYDTQEAXnv7sLCrUFqYBGCj0FHoygxJY0kBOA2XYKhqQDdckUiSCs3kJ3gIpP3K81Uk7h/eF4IqJYmScL0YeFEoGV0v2xVj+yFjzGTe6fbZstTJtQ8uU4shpwDtPyp6UAykHU0psCCVoIID+TPE4PwKJjEqDthmcBQlZIlJbdczxO9EBLiLY90omsesoihjsztd89298iw/+8i/xyd/9IVefnlNy4eT9M+79ykMuf/IS5x3DpufT3/0J3/jv/aO89We/oq1+uTA7nPEb//Kf4/m3n4xQ+w//k+/wtX/u1/nlf/brfPf/8ycMm54wDzz8jbc5fe+M2fH8Sy/I53/ymO3LNb/y136D7csNu4sNvg28+xc+4OE33uE//Nf+X2Nb452v3uPtP/c+w7bn+3/zT+ivO4bt8Jqzn58syENid7Vjd/GzuxC+cP27SJHBMtmA8jd0WlpOKCpg+z1P+96gz7pGDNkZDzPyJZLzQMqF9fqC508/R/ols9KxW19z8+wFw/ULrl484en5JQnPyZ1TOlr6khmy4+D0jHaxpOt71uuem+sN3a7DSaZt4ex4QZcTN9sNxEyQA9xiSb/dscsDp3feY3b0gF0JdEPixcUF589f8vu/93v84DvfY329ZrfrCaElXGzw/gXL1ZLD42PEN5yfX+FnCxbzFavVgnZxws4dse0uOVy0HL59BKVniMJ2cAw0lKFAKMyCDnB59M77xM1Lko90ucfPD2lXC3xoKLsN8fw5dB6/8LhFQ+M8GU8RTzJGuO4F44eMJRqAqdNpvKeWnLxm6G/74l8oINgvGdQ5IvX34762IBlDkvZLGyNCsHcKTHk3txABKmw82VXZfw1xhhrA1G6oPJbxo4oYXG8OuagYWimVmOkpuQZZE9H5VidUdaoIVZURqcRojw8NwSvzfx5mVKKeM93+etZqQyv3y0qiklWAq2bqrsonN7ig7YRtu6RtFjg/00QVQbwYArvfeVB1VKYZAhWuR2pgpXtV9gKkiXv5ilJlARUoMh/oZAwI6hOlQB3ZXlvwi1RgQKXMxXl1p5LHtTD6TLtfhUCRGjbkMXurOhRuL9H+hwkE4BeRI3aRIh5EHXP9KiWMUZZerFq7nsgO+zrU1YnWtiDn9ntYdf0VMWEfSSCDBgPm3LP0JDoKA7n0pNIRy4ZcejLRNnxWAleO40au0ZrDKSzjCuKyDbZJqpcttphNW8Bla9HxZjiSbuqUC67W0Mr+DVBjnyVS0DGXMRaS95rJEMgE5VmgJJgoLeJbXGlsDKiQXRVUmuB/3fR6/cRlJJveQUWbpC5Ig6z2EgWH2QX73X/xf/iP+Ef+1X+cv/yv/7M8/aPPGbYDX/kL77M4XfK9//CPSYN2f3z3b/wRzaLln/if/RV+8nd/QI6Zu1+9T06Zv/4/+n8wbBQtePn9Z/x7/+N/m7/yv/nnefcvfMjLHz7n+N1T3vlH3ufmyRXb89ttgj/r2LxY8/f+L3+bf/x/8k/xT/2v/jmefOszDu4f8fDPvM3v/d/+Sz7/g58C4ILjwa+/zZ/9H/5jvPzeM57/8WOe7SEdt9Zun7j86fnPVS7srnZcf3ZJjq9rIsRNpL/pIHiK9ySXiT7jfcQ5FSNKWYPFMdtyQlg0lJm1F1bRKDsKOlZbOYeZvtvy+MklN1cveHa44MHJkoUkrjcd1xfXdNuImx1yPHNEacjJsVyeEOYHHJ7dQ3xDjInr6y3n51cMQ2KxmuPbOec3A60XVU0rQuPmdES20jAE8AcPiM0huy6xS4knT5/wu7/zO3zz9/6Am4srchJS0ixuiJF+6Glaz8NHj/hA4OTePQqFF+fnLBYt988OmJ0+4Ob6kq70BBFcSIQm0LSOHIUhO+gjbaujXN95/2PKcE13+RTp15RmSfYNuQh91xPzFS7NEDnAz07xYUkToKCM8OIdvpjSXUUIRGHwyYjvZ3qVUPell+eXPl7XLNASZcl5soUyrZWJ+PUmSz4FGMI0jGmqE9eAQB8xvYQhBhU9G53cq9D35NiVCKmoAM6pmuB42cwmGdIqTs+/Phcw8uQUJHjf0oRJFbBt5kqOLzW42BMFSpUTZXwpyRRDiOswJZ1f4xDf4CTgfENolooQ+Na0AjSpVHJisC4Ey/TxhlQ481t+vAX7JbwJ/ajlAxl/PwZ4oqRA1YxRbApBOwryFBAUa3EnKX9tEtPLNSa0dnWT4R/LEXZdTWa53gLVw5nuKeY/pyCgUIq7td6/zPGlgwGcDsFBEkUiWQayDOrgKmRu8KheE4eT1mbSY86qkvHyqPxXDEbJRpYTUYJcQce3ild2fMkdSAduIOcdKXd6Hq4jy4biK+mE0aGXnMd1rIvTyhqC1hjrPhmHdOjzC1n5AjW7KKiGdMymj63tjZLzKGCUS1FRmZxIEsmSSdaLXJwj40g0SBkATyLjiAzFgpbk8SXoqXhbLNXZo+eZLfKm1BpVGUkm3jlqcF6kZhwAmeILqSsMN7qIUxf5/X/r73D5k5c8+s13CbPAH/7bv8fzbz+hu96RehOCSoVv/Tu/z+Un53z4l3+Jdtnyk7/zA779733zNR2Aix+/5G/+6/8uX/vnfp3V3UPWT2/4z//3f5Pf+lf/sV9gOerx5A8/5W/97/4D3vnzH3D81jGbFzf8nf/Tf8pP/svvjzMTSi588ts/JO0imxc33Dy+/sLXWz+75u/8H/9jzn/0xe2NJRd++ts/5Pl3nrC72r329x/9v9d8/rd2OLnSGeV7iFc1shX+Gw2HE46+suLj/9ZXWD5cTIGyHbW+V0e1dt2WzfaGzc0VebOgzcfM7pxxcvchToRrN0OajSJ0vuV0fsDq7AF+fghhQbLOnvVmx+XNmqaZ44ZCWnds1le0bdD6ZhF2mwsavyCsTji895D58UO6HBiK0A071psN3/mTb/GTH/+A1rdcXq4Radn2kSH2NI1HXOFmc8Xzl0+5XF8yW824vrkitMJq1XBweMzyzn3izUtuui1tGygS6CJImOHFEdNAGjIigbA44OE7HzGcnBA3FwQfkQZcY4SxAmXoids1br7B+UPE6dQ47z14m9ppiMuYCbsaSr8O+b4J/i1lImnVfVhv2+QIbj/v1UBDqu7s3t9dKZqIAhPRbHLMY1vi3obZH8k+JjYVEXDTS0h1BqLa+hPBcR8REKqWST2UN+XGEkrtisiV9+WgzlYY1VyNezVp7Vfn5O1a28Mrn0xMLtgF8w9V7bXKvpt6Z1BumCaM9p2iGi5WbnROO8AwJULnGlMjbAwZ8FOm75jQh4q+VDSg7GVHVVOgBk3cvgmvClJNf3DjI53zxuzQRK3YtRyJl6mqE9rvRJGqMXkoTrkSmGNHRkVYkWL+yNaYK/qaUizYscfI3kfas0Nf9vjSwYC4BD6C6y0oiJqd49URGrGuoAx9VWirKv0GfVToRbDsuyCkvYhQ0+9CDQYi4jOSFKLN0oPbkd2OXHYkBsQNkDrEJ6aBDrZYLWJC5PbFkgJuCk4m0oVF79jUqVJ7TK0/WKzskPKUnZc6ijdRULGhQjS+Q0G8bqosgrikGg0+UHxW6Idk5DQbfoSQnEoT106HmuVU0pFGsWXMJkSMb+CE4oxroctOg5IBnv1O5vr704Lu1z3f+ff/iB/8J99BRDkC+yJC9ahO8skffoqIkIY4BguvHuc/eM7v/F//Nr4NpCHx1jfehVR+YWi+pMKzbz3mxXeejq2GsRtuGdeSC9efXvLtTy/5eVBu7CKP/8GnP/d9b55ec/P0zUHFxR9HIFKnG37Zw7eOYZv41f/Bh/jlK2QugZIz/dCz2+3Y7XZ0XUcSYS2Zm5uWchY4uXuHxeIQ/IL+6RMa5wizBWFxgJ8v8YsD/PwQJw3rmy2XNzdcXF6zXj9nFyOzWaDrtogUgngOlseU4rh/74R3HrzLw/c+YnVyh80QiTmx3XZ0u57ddsfz589pfODp05e4ZkFMRZUYzXAv5jOevfiMnz7+hM+ffsqf/Uf/PGd3jxjyQ5CGsDrk+vqcfj0wGzy7bstuiBwdndDOZuy2OxZtAPEUPAfHd5DDFXF7AsMNQQZErKU3Cn3ugS3hsMfV+SQCfpSSzRac2QW2b3UP12Oq5e91N+0HCUxB+D6Te/zrhMzvOZF94yu3/i5FuT2vYrhmnizYf/0QpuCk9ilNSYJY4oP5OxmTBreXydZAANT5v+ojamlxtJV5T5RtLyHROKGWtlAbWsQGd00ocOXLTAOQpuw2m3ojroyBiLgajJhTtMxWy7FCdsFaAMW6D1Dk2TlDAowYiDAq/o28qboSavpv2Xu9+BVd2btGP8uYvNqNUZ/rKtKQNRrKuVgSa0J52STl0eumGamzRDJDSqRKGrdr56lzHVRXQ6xbpiLXpeSpyjEiYYYO/eyP8cbjyyMDIeoglZDIMpCkI0sgGVAiFgTo9VaFLlXBsnnOAtNUJtB5A/bBnZHknDK2i4tkNyhC4HuKH8ipI/uOnDuK21HYKUpQBmgGbM4W4uz7eEmEOo5y/FLrgIpkWM0dg20ss9BWPWcBsX1PEXLBeRVLqjLH2tycNUhIEUkJl2y6etkLhFxBggYixWeySxoUOFVzw9WZ2kYgMWtUI+Ma7NTNqZ9OrLSikWK2yD/LSOU0aehM7nWFuCV6HmQSSvJ0q7p49JW91fsKVvMqg34eD2HxitFDF+PZ+/fYPN8Qu4FmNeNr//yvc3NxwebminC8301ym/UqNch57cjAgAtCO9f3KqNhFsb66d5rMf44bex9Bnl57e+v/nz73xX6u/17ecMjGQ29oK2c/VUk9Zk8ZNNGsFrY3tkUROe/Rw00vWvwIrTtguXymNnqhNnRPebHD0huwS460tDTzmb42RLCAt8smC+OiDFzfvmU8+trHr94yR/90bc5v77i+OSEg8MlOSVm7YKH94QmLCjNDR+uTlke3WHIjs02MqRMt1ORq7tnd9hsbths1lyvOzI3iPc0swB9gjTQddcKgz79lMdPP+X03im/9ed+E1xmO/S4tmWdMjEWfvt3/x7b7ZYPPvqIH/7kp7RNw2/95m+QSiI4j2/muCB4ZrjQIHGBlI48dOS+MxLsDKSluIbkvGoK1BGx+0bw1pqoa3QicN7KoOyx+453JH2w/zr7AcEXH2+CZ6szGmVqGeOY8Xzf5Ir2+VZT899EL7v1HreeOH3u/UOTiP2wo/771YBnOscyOqk8PQd1WM6DR0mzNXpyTuf+lQpvWwJWgOwEb85QvINgyY4Fc2pvswZv3lq5pQUTuBMj0In4PZTGzsiSJDFkZtr3Nl30ViBWkyklbY9owa3rt/fYeu3GI48xobbSawCQc5VvNp5A1mRRlenSiIyoKSiQi7W9M87tYQxmMo335j2yFbn1pogpIVau3vQ1ne8bPsjPPL48MhAiJXiD5nuyeGIJRhisAix+dHqY0qCThMJExcgbr7TEGLENG9CTGEj0FOkNbh8o0ut7lp7sO0rpyaL/hoRIonY1IMWGp+h1GGsvpmA1mo09VECfm6A4G6ChZQGwqNdCyRLV6UvWL5c1Yit7311ONlQo63rJusl0wRcbWmgwv8sQyjTsSKrOehgFKPSWO3XyMG6qMRoEbcN0QraeXT1d6+ywckVlvAK89S/3zD8ajNtQrLpSURBl+96785C7dx4iJXBxfs35+RWbuCa1g0kqW0SOR8VDAh98/de59+B94q5ncXjALt7wh3/3b/P2/3RFKXPrH+7BEJ3gI94lZj4RQiZ48FXFbCSQZnJxxBgoac4QG+IgtLOGLl0hbsNskclpowFZVuKTCjipAwihGmBHLp6YHDl5SvFjsIoNdBJDhRwqRuJtroR33rLPAKX2PfspIxCHd61Bn4GbTzv+1v/iW+RYjMz0WlII4mjbhtlsrh0AwwDFsWhbTk/ucnr2iGZxwlDm+BBoju5zcKdjd31utr4B14KfEcWz3u30a7vjs8dP+PGnn3Gz2fL5s+eExnP//n3u333I9bbnYLXi5M4DZgeHrHdbbjY7tt2ACy2uCIvFknfffofVYsnLl88U4SqR4qEvBS+F2TzQb7cMXWS+aGhbx2wWaBpP3w/kVDiczyjS8t0ffEJo52zOL/h3//pfB+DXvv4rnB4v+PjD9wgB8EFnNYggsgTvkDxDpCPIgJs5Zu0hZXUHaVcQWrJTNM2VgqR8i2B9+1rbfp5+sXcb9G+K/skI8098IMvL9/7++ntM+9yepCauvh4yOevJPE3nUSZ3fPtVxQKFyVmPrayAEv7yGFCUyk675RxecYKvBKTqpPQxY+dV0WThTTLF9XM6ESOA19pAvvW2mqzv23qZWv+8R4LHhcY4A5V9H+zzlDED1smDFvTtkRf3WflUxKMm/zUwF9kj7E2B33SBaxTzCrKzF0eWvUs2EUKnB+nfKy/IZsdkqKPop1k4el2dOZ5xrVhgUDvRyCqqV5y+RnF5XIO1g08/G68d5dYq+pJdXHZ8+amF0iNFiBW+sVbWXBKNV9p9JmgfaQlUUkPBKUKQdbBJjaYwKCkZqaoK6mR6CwgGa+XqSdJrUOB6HQjhNRgoZUBI6mRtN8neoqhQgODGyFOkUj5kRAk0cK1tkkbMG5GBibjhJNlnyUieOANjYFCUMUrOSMrab1rTAIHgNBBwruDEyhpezA+VcRMXq3Eq7C9GqJQqcWCOoJYfKuIk4JM+RwSVZtJOhOwzxQVAxaKauz3tW52iKhQVz0AllF1JnB0fced0zv2zJfNmxZ2bJc+fBp5uIuesiSSwOh3F+neJPF5/k3S1ZbE44PLyx3zy6bfoDzvCsQ7zkCqW5BK4AScD3g9K4AyZ4IteI0k40pjJxaRtmJSGJh3g3IL5smW9jfRpw/xQ1dFKikjStiGH13xACk1wxqMQ7epIjpQ9lIBIAsJomKVOCTNykeqeB9NF1x5niqO2/QgKXTpMH13CpJg2+gVRielXYGJnbYdNo+Qq1XAXmnaBuIY+OnbRweAIeIpfsTy+jxNP6jtF4Nolxc8YknBxs2YbB262Oz598oTzq2u6GNl2PXfvnnC13uDbaw6O7nL34JA7Dx7Qzlq22w3X12v6WAhNYtjuiN3AwWrFo0cPefrisSr+ORtP5IS+GyipsFrMOFi0hNBwdnbC137pq8zalt1ux3I+Ixdhtjjg6OSUb//RJ/z0s8+5ubnhs59+Quy3fPDBWwxDR9O05oANNg4NZXCUNCC0eJ80AF0cw+KU1B5Qwpxi98MG1e9tkP1jz7KP23Ev47by5jR7QNSIj458cur7bPI3BR1j9ig18akPtXZlXs3Ba9259gTIrZfdf6+RfL0nRaxTTmvGOD6JyRHsZ4vmvG4VJGqHA+P38fe1jDIGJHtJiH0p1cCZQ1SnX/voxboR9knNYs7f+YD4Rh2985QxGNPkrLbkCUyEP5Fb9r1OYhRnRrBSAdx07TRQePVW1Wshe/fI7/391Qz79r/H1tGCnXdVVJzayym1b2QKpqS2GSb1QXpeflyLU2Bo3Izailz2ggCpwcArbcp/CseXDgb62JmDSbjcEpIOSWlDIoVMIhFcg3eOUBoywfQ1PJC0Jh418hlrWwVTdKvQSlJ9gKJtgqn0pGKBgfQUiYZMaIeBEg2zTlGsa8SxFyXqptD+VH1QDQI0gdAbUDdSXYSABQFGRBrVodTha5Rr/a+lIN4iwGxytSmDLxNHyOQ6legE6hd0UzufkbAX3RZnr20fyrkJBgNAOyB0N5hBk1SRMIpo328SFVkqUsa5EPUoLoIMuL02N5ujiCtCIzAXR5MKJfawixw2c4bDA653L+j6HTlHYg6QHU07h+KIu46ffPr7OCc2c0Lb78hBtQ6IwIAwIGUgu17vY066tkoxGDHivU2jTJmchOBbZu0ph6t3aGaHNHPPZ487rl8+oV/fIGVHI4EaCugkPdE6rbcbXCFSp/dWqJ9fha5UTU1/U119HT+qipqGPEm2NtuiSIClHlK03bO84vT3HcCrEJ5ueIVW23bOwjlOT+5wdHxMu1jhmiXSrjSYK575QaYMAyV0qscRZvQ4+iEzJJ36ud5u2e56tl3PetfRzmekAi8uLgntkqOTM9565yusjo5JOdmwmR0pCmnIbG9uuLm8IaXERx9/xGfPPuWz508U3SwZH4LyZOLAarli0XqWq0P+7J/7R/noww+hwNBH2qNjut3AYnHAECMvXrzk+9/9HtvNDauDFWdnx+w2G1KKQIs4TxJFdLzzSJghPoxIHBIgrCh+AWFOloZsvdmuGk1qI97rWdHk7G0fWOauLfFTILCf+dd6P3t/q9nd67ZYXnn+9JpqyMdVZfbGcrw3pXjj61ViX80O7bn1KaaBUheuJlr7qMD+j29yILdJrTUIqAGDmB0dWwqrxPZIMsASLnNR1VFinAGnJTLnxYTWtMVQXECcsv+pg4Es2zaMYnR6zjoERGQqt4npeVgwUKsMOtdgLxBgvBW6N9/k4G2A0Gu/v3VMwdGb2R2YxkgZxem0VGDKsbaGMybDLNqtNnE9nI6RriWbgpYQrPtETVgNCt58hv91jy8vR5yubfM1uNyQ3FZJfGVOLHOSzAm+JZRAQnWivQQkabWDLMqWtNHFlWhSqOxR3cIJhf8THUkGkmzJslNUoHRkt6PQU0SDAY2wZFr/Fj0q29dN0ZSm/3sR7nRjC9anOV5d86oWedZlOU0FLDZAKE+by7AklzPFJVwxRi6iUsuijkmjZG/BgMp0KlJtTAfL6muZIDlH1aDOWdtXUpVJNgjMORVpqkRZBGNQGCHSYYtMjyQDyUe8MyKKg1wiLre0JXC3aTgYEn7dMZu1uKalrCO+K6zcjG1eE8uO6CGSmbuFDu8pHpedoXw6OCoXT5FGo2ciSI/kAXERTySWDo89ViAVaMg0ruCSI/UOVxYctGccrR7Q7wJNmNEYtN9H7ajQORJ631unHIviPOKFzDQmu5hRGO+/THmR/mwTxwymVAKUPr6yhYsoabbYv+vV1lZYjxP9LPXQR9Y57bdbC6vsdAiBo6MjDlYr7t97wP0791nMVhAWSFDiXkwFkQXJzZHGQY7EXOhjR58HNbZOs7TFcgE+sOt33HlwzMX1FR9+8CEffvhVlqsD1psbum5H3w/0XYfkTOMDTmDwgvOFzXbNo7cecXbnjE+fP7EyGdxsrmwIUubi6ppr4De/8gH/jX/6n+Hk4IQ0JKQU5rM5F9s17azl5mbLEBMxFT77/Aknxyt+9etf4/D4cNqzoMGfKTO2XsAHvYLZAS24GcXNKVhLc7F5Is5RS2MVgRx3854zFDEfti/MVXGhfWRgKtCrOSjTNq9u/PVs0+050n0CW63y13eaHJ6+5l6QMDr80aBNr1NTZzuRMmaKVlIrltrUNrfx/TD9pCkR2j9qIAVMNJw8gtF7SIAbA4Fcg579C10w1KwiCk5F3ar4T2hxvgHCpAY4zvJQZ3j7xfSEtPOgBm6qTitokiNg/oQpIBB0/9dzr0bfShEVBXodLyhjQLJ30ait79P9r9/LiIjULgxyxpVCKjaa3HQTKJFUVWNLpkFLu5WnUANTZ0JPowsqajmCOOOOWVcZE/dk/4oJZW+dTS2RX+b48mWC/JIcPTF7a+UIDLnB5zltWTKwoG2W+LBASsBFx3I214VXZWqrQ0poi5715VdopZTCEHXYQgmmJJg2RDb0ec3AhiwdWXbKKygJJI3im05k7Fv1dcnXlsaxlGDKfV7fx9V+Vuq4zTRON1SFR7uspdBLJHuLV33dyDrEZtwXZUIavN1RK1Qo/ImouJGRbETQrotazgCKfaZ61KEVlSjl9kQpamZTnMkr13afCvHJeFrjkX0m+d4CJk9yENOWZht5dHCH1c0Ny2vh6N4dosvM5y3Lk7twnpg7T1zv+OnuCf7+jMvdBV2zpklCMziaEvDFk4HkYMiBmBooGVci4nrEKzNfWseuu8H5QhLHro/MnWfpGsqQkegJwwEr/5DZ5oz1y4G33n4XLw27bk3jZkhzwCbuaH3BSyII9C7TmLnOxY3a5tpaatmDEzKBRGWy1xKS3t+UBg3i0Nl4OpBbNNIXEDFyZck4KSqXaxkQXnB7qKOWndLIr5nuawI8TRPIObPdbrm8utLhK2HFwdGcWSta/XEtEgJDdJTlGZvNBV13RY6DGqIs5N2Obr3j8PCAo6NDfIDFynNxfcXp6R2GCI8fP2XoMr/2aw1SeiQnht1A3G0ZYjQjlunjDa7RxPP99z7i4mrNT3/6U3zW9tqDgzld35PwfPjxx/yVv/rPc3R0l24zcP/efXxGRzM7uNltaGZLfvLjz3j+/IKnz8+ZLRbE4pitjulSoo+JuXc0YqSooaNmh6WoSFeWAsUjxROkVSVIE5FJFHNQ7LXXv5pDlXEd7B8TNc/QOHO6VUjs1mEv6V41suNbZY1o2f/Sd2m8WKBckdAy2cQiiNktMY9WSjX4ZXqPshe0Vslek6Itlk75ESat/Ch1uKq3kCDdilQ1i63QdtL5G+SJ5yAZk2sPlJxIuc7kSMrvKM4+hrZMj6Uz3+KdzQuQFoqWw0ZFQu9MKMrhbFjP6GyzEaPJYxDgRi2Yis7UUu/+OHi7Ts5B8eZUazAwqTEgtQVxQhC0nVGDt9oW+Kaj+gSKWKf3Xmm4mE8hk3Ikpp6YOnLUAXMCqhbtQYqjJHSok9cWQf18NkvBOs+ceIoPmlSLtzCrnrubOkfqp5MRKNpbfz//+PJyxGWDFEfGU3KHSCCVhlB6SD3F9RQ34OlwTgV0RDZTpLWXiY9ZOnUATxmjqwo1laJDi4ayJZYdiQ2ZrRIHpaMQyV7Jh3XMZK0VCGimjMK4I1tWakSYqUOL0n5kTbaWwzI6d5Ui1owj+TSBaqPAjMWapf5sGYA9XwMQc+Iyrj+LT6dIvxIEk2itf5xapXcZisOLs8dUtGAKCmyWIsaGGF9fxJGqtLMdSRLRDQjF4Hsh+cR85ljN56Rn1+x2BR9uyATCbMbB4oDDbUfrA81XWq5/tOFyfc1i5knDFp1RpsplrmifcyqZAUf23vgVAw6NkimJ3S6y69ZK8GPOTBypFLodDINnFQ44aB7AdgVuyYdvf5Uwm1N8oi9rYt+T+kGvoxcdK2v3xm4zpRR82KvDClb2UT7G2PZkK6BOi8xUXYrpytZ5GWIIk75cNbz1imcreUzXO5epvegWTivaXlVKnaWuWX1MGVygma2YLQ5Vr6M4fQ2XIcwovlUp05wYdjvW1xteXlxy/vKcxgeWqwWlCEOfcAwcrI54/vzFyA/5/PPPef7iGU2zYLeLOpM+D3TdlvX6mq7bUnKk77eIK9y/cwdy1kFCuy1NEzg8WPLue+/zq1//Dd556x0EoXFey3al8PTxY47unPDppz/h6fNnNO2cq+sNuTja2YLTs7s4HCkVUp8YfKIMPaQBKRFn967Q6sQNp05onCRq5bt6XyZp372M+Ash+H0jaXjtvtPdWy9fdLz+pzJmo1M2KdSgIFsweKuHvtRs1D6P5DFyn6rOTOhEDQjGk9iDLarPIxs64MYnSkUtXknm6xlKTci4vUZHDsQoIldLBKZSSDbAtfIWbC6ADyYD3OJDqwmkVz5NVSbEecvq/egMp0zZ0Fh7fWdy8RMxsH58Cwj2dT9q0VP2eRj7/UoyfrZ9NOhVkuRrd/e1Gkt57eda2qh+r85biDlBHrQEVpwGXFXxsdSgxyYrjsEcVvbFEB9ncW5lI79hccreb788KAD8IsEAnd7wohfalQaX9mv3kVx6gp8h0igDPu73VU/ogNRoVzSyHXstC2ac1aTGPOgEwtIR2RFLR6E3/YJkz1eHL1SMXI23lIy4MNXeDSZS45H1+YYKiKUToyJcUTZohYIpWsxIhiCMmxNswRkBqUws3/pVZ2hXWL92AGBGoEga7+DowEnIrTtZoS5nZssb43ovGsYidHsvwFo7hSyFQjO+WiIyMKhRyo6UhUTHbGgZYmLoE3QDTRTEaRtX9C3N4ggpji4OvHXwELYD55drmoVT5f6U6AtjMBJz1NKAQi5IiTaVscLj4HzSLDslEoU+ZhqZcTJ/m5ZjdpeBe0f3effBVxFm+NCSfA+xkIYdDDtCiDgLzpJdk2Q3wCF7nVSyFzHrplOWfDEOQCKP9sCgYNG1lPechYF0U5ZYIUqLAEcFNTsq8iX5dn1W5bCDlrvG7K0QY2boIykVNaC+JWfBJYeTQklbQmiJvmUYIv2Q2W47hl67ak6Oj7lzesas0a4UL44XL5+Tk+rzf/e73+Ppk6fcv3OP+fyQdr4kkxi6Hecvn/PyxTNms8CLl8+5uLwg9VvOTg+ZzT2XV1fcXF1x9+yMe/cfcHZ2j5kXtlcXlMMjGnfA0G0Jsxnb7ZaDowOePX7C4ydPWO92ZIFm1nLv/n3u3r3LMESGbqDzTgcN5aQ9HS6w6zskiiqAeg++UeU5F5RLU03vCJlPO6+W7SdImL1rXx9Xxv365gxqYm6/fuy3Ley3d71ae56cSBpFymwSYA0G6v4uAiWZuaqG3zNZhuqY7buTCc4XxvcuFiDoZ7cABbNwr6IdRX8vuaK09auuYSuZyQTJ6yTCTLKeeqf/Uztc0Kw2qKpk08wIoaUJjXbl+GB8Hp0W6Iwc6L2VDvasZyrF7EXZCwZuD7wbbd+ePQQZO0P3g8Faan3139NjpiDhVcc/dRHc/s4ryNGYlNpdo2i7YUpJy2xkkIaUEzGpnXeYGFhth5RJYAlxrw3fGsMAue0l9v/+D3N8+WDAdRoVGoyh+v+OUhpKVuGfXHakPLOpf1i//CtwmdQs3BimRhyrDheRcX5zylEJhMW+02vQMc5GmJi+48sbCFFEjftYYqOMEFYhkVM0dUSt8dTz8rip7sjUq5+kUCTp34wwppsZ6gjjurFHYyS5ihuO8UiNVUvK9Y6aDoZQUMhZz7u85riq2VBkoN4LffEBbCzoVHcrKGM9lUJkmg8wEKH0FsQ1WoPKmRgjfT9QEGIWYvFAQ84elwTcjBx7+qvMom857GakYc6m35FbSFIYSh5FP1JUTkDxqrIoRWWWxClk6bypVCZh6JUk2IYFK7nLcLGg74QPvvI17p+9R2FBM1uSJTLkjpj1HkpOzMQcbo2ei9NODlE+hMtTuGxJ/NTrjWbziVpz1uvsRNtLC2WEK3X1+NFM6zFRlb2z9icpt4IBipJlBeGW6bCaaUIYUiZmzYhyEboh0/WRONQAw9YBDvEtbbskDh1D1yM0tLMDzsICH1pmiwNOjo5YzWcED4vFgr7v8K5liJHLyyuevzjn3/8bf4NnL8754IMPOFgukJy4evGUzdUFi7NjQok0JeLLQOrWbK4uuH75kt12y9oXVm3D2eqAtm1pyYQS6TZX5Dxw6I6QkvmTb36T3/k7v81nn37Cp08f0ywWtMOO9z/6kIdvPcR5x83NDaSO3kEjmVlweOfockJCS3AtjV/gmgW+XSDtnCxe71WpfA00WzV0ZcyQyl5OWDO/W9aydg69ftS68OvHvvMo7L+gmmfHiM0ZSVf9ahlRopwn9KhC3o5iyYNMr1yUq2RRz5hEICjMbDazIpNiqFQx26jk5WyorgUDe58pl0KKCXzaG1FsMzRy7Y6agi0l8elcgVxqAjbZYa17B3xo8CHgqxRxaDT7F23frZlunVGgswPCeBUBgvFAajl1FCaqdnd86MS3mNDU6edXA4J9Z7+vLvhq4v/zAoKpprH3uzE4wT6j3ytDMHY/p5yRlLScbTo7I6nd0A1N+6YAoZ6vTB/8T/X48rMJSFShg2RZtC+CZtjqXJLrcKlRONsID2NNy15ljMZdMS5B5Q5oRq+wiMGtRafzpZI0GMjZWsQyStbCFlahEmmKGWpVD6zQXKLWgwGKFJJE26FKL3MWYCRzy9qrrkGBIjn6nDwaHutztVp/weHGQRO2mYuyQ2uGYmCznp+JI71ae3TYXIbXjJYYgmF5RC0V1FeXyibw0+cEpGiEnViNrxSLkTGJNu2w1c1mmxcyXV/wfUIixCj4pqVpArPGcz/AxXef0lw7PnzwHj9++SmXcQdBHb1vG1rvEBJ96ujyTok1SQ1v3bguaPdJieBKYLU65sgdsHtRyJeZr374MWfHX8GHE0JY4mYNfdqyS9d0Q2IYon5iccRctHOl1Cq/M2gdoug12jMV6pgLOgLb1jTFU4fHZNLYdYCtCmdGWW/DxEmpsKxGGao0NqqN2VEMbRrrjUDKhZiMzd/1xJgIoaFtZ8xmM5rQUorozIOi3Q4pqXSvC63qsTeR+dLTzo/wZJp2Rpcyq+WKo6MVfAZehK4bcG1gt9syW8zJ6w3f/OY3+ezTT/nlr36VX//6r3B2dMj586c8/fxTfjh05DzoVMPtluv1DVfrG7a7Dgdc9T2bZy9JV2sePnyLpwfHxM2Gr/7S1xgoXObE9WbNf/nbf5ff+e3f5vBwRcwDq4MlIom333mHO3fuUoYdUhIlZYao+52k8HEKDS6saGZH+MUhYbbCzQ4Qr8HAONysEr3EnCz7kHElizLdr1tGvoz76o3HG/8mCunu/bu+Vs3ybZcDNRBkDAByngKCmnYU58z4RbyDKndcclYBMbNH1fHUPn+Nbwzqxoqd2dDXUsyWqI3UJOY2apVyoh92yosxmXgNCqyEm6OWpwy51fd1FB9wqRkRC3G1a2siDUoINE1LsNZZlQqeSgM4j5NGOxXs95Q9joPUhEYdoCY/btyj0/6zgGTM/PZ3uj3sDeWiV4OCek/fKD2895zxZ/0FZTqb0bbVLjbvnI1QTlq2lGQCRYbcloJkK/nWc1fm4GhrxAiFI6pMDQjedIJfeOo/9/jyBMKCQkmjQEf9ru2GmYjPES8DGQ0GdIzsvmOrwUC2uu6EGlhIoIx9y8QqM1dbudRQTDXCPRiXYiJBlXOg71VrQBNCYbaATCyRqWdTWyPr5Lm6lWtdnjHMSLZAX3Hs4/ug0S51UGlSpzLWoiaYuE4VvJ1XaJHDmYhS/dv4PdV2Hw046iSxyoh31hdfyxU1dFBmRZzeowxkOlJJ6sMMBE+lgARigYzDNwvC8gDmK2jmZJfo08ByccDZwR1efvYJza7h7cN3mcUtNwFS27BYrTiYzWgQdkPHTddRUiYPAyWmkZjjvcc3Db4IM2lY+obd+Q35JvHOg494eP99FotTfHtEs1gRcyaHQrd2bPrMbtBuhYYZOtXSMpVifcvmsHOpIZNYBqNOWYMk6wYYpVNLfcC49vSupHEN6ZCVZGutoKS2Yix4AGUTM/5r4sTsczdyiipDvN2x23WkVJjPlswXSw4OjpgvVvimRcRasIpOcUsxahjpGtrZiuAX6jRix6LvSbsdx0eH3LtzF8ePyTGThszJ8YK2aWjbVgf/DJGbqyt+9L3v0KbI/dNjXBxouo6bq3O67QZxhaZkVinRtC1lPiOnzLyZ0e8GNs+e8pOLS5pUOL13j8uXL+gKPL+85PJ6zfn5BR6h7zqaWUuOA2+99ZAHD+5y5+yMl88ec7g4ppWCJG05bby2huZmhsyOCItjwuIAF7SlsDglU6m9rDB2XdvVdtRasm2/amvGbL/urNqu9WYr+mbOgbYyvkpE1LUxPnGcXulqQl/Kra9caieKoVClopFmMyriZbX+8SOUMjpe9n43WtMRGbDnyWRNpjRhWoP90OGNBFfJcDo5sL54lV6fbAqIamOUmn6JEgP9HvHNSlwhtIQQTEpYpwfWnxUtkCmYqPsQq53b51GUb8JW33RPeOXTvXrv9lGA1+9bueVgX0MB3vD4LwoU63uJzU/wIemE2gI5OeIw2DKcEsd63hoQlPom4+v5igwUJh2FMTS4/fUPGw98eTlii3h1RCO1k0UXnRSLYJNFcF6hKu8ZZ2+bca1OcSRh1TqrOe/s8lirH41oDZQK5mzzGC3ZzGPdQLVmON7UihJkRhnbolK9WqFWRyiVQzAGEPpp64TDmslX+uB+L+10CzKU2spo6uBlz4lIzRcsW7DrUIARfgMoiViU3DeyQut3N0Wy1b7VjaMGKuNJGoyY0SsJkrV11iPlSCkDuahWhOSEF8+QMlfXN4Q+cnRwl/nqkEE8611H7NfMvIPUcXlzzrZPzMKSq6cb3v+VX2ZZIjciuNWK2WyBL3AQZkjTsE3KnditN+Shp20CQxxUh4DMLARcTFw9f86Pv/cJX/3gl3jrra/gQkszn0M7oysZaRtCI7i85OblwM02gcxwvsXlnUKbxWawF0e26V6jIeV2u1cu2UpT1o5Vkv2pIhjCKGRja8Vl7W92FMtAoeTIEKHxoOQwT0x7wVdODHEwFdIpGBhiZLuL9HFgiBGKY7aYc+fOXQ4Pj2naOU2rHJyCzspwJapgkgScb2lmOuciRh2edXh4zJALB6tD3nrrLebzP9TJnJLpdlslu5v08XK5oiXTCLx88jnNds07d+7wq1/7Ffr1DdcX53T9jm2/o0uRXezZxQFcYDFb4LKjDBnvAw8Pj1jMl/yt/+Q/ZvCe8+s1WRwffPAhOQZenL/g+YvHfPjhBzx6cI9Hjx7RhMDZ6SmBopoXySHF451QxNMujnGLE0UDmhWEGbiWVByxZLNBUz96Na2TCp/ud72n+6WAuqkmmH4K2PftXX16hZ6nv2XSGHRTH2P2TDP2fX5ITQRuZ6POVU7pZKfyOAnV1m1tky71PKvD01KUKzUgKKN4W6Y6G6gZqqCJAiKm62C2ICWGfqf2N6axZbqeb4WlXX3/8So7q5CJOipXZwwYEdD5cWKg4EcnXwcUuaoIu8fzYC/5Gn9fkVYRGAO8qTQ3OespWx45adwOAH5Wxv9Ff98PKG4TDesb1RKJIRfOAUEl9bMmht55CC0J0ZQsKWk+FStR+4mcWUsCY2hTYaV6haTSIUeMwJZuDfxeWY+/wPGlgwFnztEZnFE12LDofD+qGm/t3rUte//bN8j6/4l0N23Kcut5lbGqjzLFuKnwyxQXV8ZpvYh5jMr15bX+nyx61hy4UIOB6cKrua/OuMJ143mVqjFQN6iMC6W6fYdG9a5G6TKC+uq4RkOiV1hfxmBmy2JevW7FXrOSg1zx44bRViVvtW59XkZFe/YXei6ZkqyNrMwoaFDQxYGbtKF7esWjX/qIxXLF1a4jHK0ILnB1c4l3O04ODlj6R8jQ8e0//hY/+s6n/Ppf/MfZucDLmx3DZWY1W7BIM2LvOJovCThO54nB7UhpILtIl3as15dkMjeXV/zgT77Po+P7fPD2ewTvEQ/bbqtB1mypLaOtp1kuwLck8eTSELPeP9krJBZFR/V+5L11V7i1Vqd0S/bWkGX4pZJDK9lLoekKp1ZERvuIJ1a1x+uUsnq9cyamHpe1NbEefd8x3HT0XWS364mx4EPg+PgF7eKUg+aIUGp8Ug29uRYREyIyUZeSwDXMZi2zLrI6LLz91js8uHfGetex63ouzs+5czdw9+yMF5wz7Dqcg9VizrINnCwXvHV6xq+99xG7ywuuV8dsN2t2/Y6Bwib2XO+2+KZlPluyaFp8ccxmc+48ekRzeszf+4P/iudXl1xtdyxWh3jgxbNnDHS8fPGCP/Prv8LHH33Ag3t36bsdh6tDYr/TyZ022ts5UX2B2YrSzMHNKdKCaykSlCuQUbSwTGqVzkbqAjowRqZYYCL5mTGxDEPjhDzaiWpQdIY8416GMR2yR6TRbo3rqNTkYUoYKkG6Yp+1PDAFIlYizZjHxRDKauydfb9twwSxWQ22t00XP5WEDpCzroQiahMwqXKEOGzHOCXnOAUDKSrRLRniuk9kG5PVPa0GJlKfBD86+yLmHUZHz2jLbhP9MAfGeKPKrf1ZyZF7xCt7jXoSXwSXv9Y+umf/vrjDhC98zKudB/snXwuQdbIiFO2QEJ0z4yRoK3rSZDeEZnqNev0q8XsvMZTx2lAvnpVp6mWVvfuxF8wW9p745Y8vHQx4AirzItQqeanwQNYT1D73PdYne1F1qRurLvK9m1OjeaWyYbk/7G02KbUL3y5+jRRHup/cWrAIt5ijFc6qrTxV2ER5AjVyz2MwOsZddk1zHUe8/x7V2tTzKjUSrXXDGjDtmRULUOzl9TUNXRFRQ4BULsXtQ0sURmIEI2CawSgCVo+S8TxlDMhuRb2ljERLKRBzJqZCcULTzlkeJrz3dLst10PPMOw4bLXn/uBwSeML/U4oocXNDvj08xcsvvUj7j96n3iTuHh5TXM2Q9zAdb/DL3rIkePVClLk2bMnpDJwfHpAf7kmDhsunz/j8Y9+xK/9k38J0oAPuqFz7hh6oGS8tEpOlcxiNWdxsORmfcVu6FW7QdyIWOEYgwDz0tpuapDpWKaxrLA4yzCLSgtNa01v39i+VjSbQxQWHSFbPDEPCI5cEjHa+kINfkwDLkJMw3gbdrstCxwp6aCioc8jf6Dre5q+x4XeMmXHqNKIohMZFHbF4Qi4MMcFmC1WHLrA22+/w1c//ohPPvucu3fust7sdH3kyKwNOkcjdmy2a8q6cOZb3P3M6eKA4Fquc2BYHBNzJDnHNkdudjuKc8yaGYvQ0uBo5zNOHz7EnRzx6M49NjlD25AQnjz5nPOXz7n36IxZEA7mM37tl3+Jk4MV6/Wa4APJGOX4YrL1HvENMWgQUAhkAt60ZsVZNhoLw9CT86AG0ldUwBZADQ7t/k38mjxaMApUrZOaVKhxdSahWzNV3YClOi5EA/fRxlkQgLbmKby/J7Ve0qhCR5r2OCna+1eOSza2vgUBOVNBTYE92VtMD8XQ05zH1kCd+moBhQW0Uiq5ttDtpvHjOfb0uxtSzKMabF3THiGEgHhPviUIpIerAze8JmDOTxB/taAWDmlVf7RB9XvtLKvt37WsLEwDhGpQUe0lUwJ1axjR3vGFEP6f8iFmg2tgZIHB6NArGuK9Gg2XdNZJ60b74XyYfCSM92tCdMa32ruqjEhnoRjoVVv2azy8T3L+cseXDgZa2Y/qrGI+RnvFYBKsl746633eKnoBptT7Npog9cPqyvdM0Wd19mMEaU/W7Ft4JQicAIO9SLqw3ypYN1JFAurP9QOpgRDn9s5heutpTe/foj3hkjEAEkbRo/o2exvBHjQ9zQzVa8cYT2XjVex9LilUdYG90IsKH01OX/ZezhnxLjDUwRgh0PiW0MyYrzJ/8Id/wBAeM3v3bdJ6TicbVosFeetIq4Zuu+F8s+Hl+oZv/dG3+fZ3PuPXfv23uHP6kO124LPLjvl8xlASkcRyPmf97AVHhyu2V9e8uHjOdn3Iy4un3Fy94PLFU1aLJTcXF7TzOe3RETOnAzsohWHYMpSOUjxduiQNaxpfaIJKH1OyqTiinQRUxUCmFnI31ZfzrUWTa7xWd9n0byz7qv9VmLdYi5MoYbEad8meXIQ4xOlOl0RMHRK5BdHu+h3DVc/l1Q27bY9zgYODA+aLlnY2tYLWYKZCf1mguErQdRYQCM1sqXLYfgCnY4I/+PBDYkqsNzs+/ugjUoGXz16qcuDlFV3vkRyJXU80NnnAsfBz2tXp2PKZvGOXIutFjzhH6wMz8fhSCE3DYbtAFgt+6aMP2QRotmsuLm8Y4sD9+/dYLjzvv/OAD7/yNnfPTkh9ryWXrGWYPGZKnuQ9hIbsGkSCfU5ltoglAt7rjBSx2nyRrIqft+ra+7yb/RayvL/zRgcLFWq1XTKS2fZtX93r0fa323ufGghY0JZ1PHsuVcgnmriPPQ4lmmYLFHQCYwIXDNJ3t9YhQMnRSgsqDDS2AOZaXs2k3GvCUOpb6aLRc8p02/X4ejEOGhy4aOZPba1zQhnFusRsvLNg2q5P7Z5xzkYR14mplqg5MUXA+gHK3pf9Xqp1fTWTvZVKjs7ilsywfEEwwBfHAr/o43/eMSEc+75A0+WKrOQMTnQ+jHMZ553FDzIGVDXRfJURUQrGh4P9zH+sftXAZ88nINah9iZf8jOOLx0MNBYE1u6O6jfrNnCW3erdS+NWHOvktWY+xgJ1QUw3Yj8erK9cs7ERrrO5A/tQ0uShy3SR6oXBiHGwZyhs3HL1EuPPNYpnhITGv9d0k4K8GgTUcHXsDXBjbWf8yKWM9ev9AGDqXq9ZzO3Imvq3vas5XZ29SHF08aYOtvcY/0rPgi+CZCGlDMkRQoC2IWdhvdvithvmqzkHq2PCwQK3nNP0gTCoSlxxkc8/fcw/+NYfMgwD77z/Hi4GLp4+4+bZFbgAIeDnjbZzlsJX3nmHZy9eIg8fQM5sbm7Y7m6YL1SY5Opqw9v37vLk6UtWp3e4vrgCaVgeeJpg8GNJuJx4efGMy+efsVu/pJSNDjuyGnLdCHqfpsBQe7SYEIGaudQ1IcUe6yiScGNt1r7EWl7HhL8GkJVIanXMkilZDBnQI6XIrttC1ky2Hrvdlt35OZeXN6RY8L6lbV/y/MULju+8w3w5acJXiEp5O15V5Kr+tH0PswWUDgkNpQjtbM77739AzplvfetbXLx8ya98/ev8I9/4TT755Kc8e/6cTx5/ysXLFzS7HoJjNwyklFjMD/A05Ji0NVWgKZkmRJw4WnHMEXwpuMazbOakZsbx0SGr1ZLZnRM+/HgFRYjbHU+f/oh3fuWrfO3jD1mEQOx3zJqGfrfT8wWFl8VTnGkJGLkMExeaAHPZg7Bt2IcNg1EWfN0r1emCDtCxW1TLdnVZmAZ8XQ/VwKsOhJ9g6fHLUE9LeKo9GktKJetY59pCmCdUoORiRGAlCuaURpQyW2qXXBxr68Lk9Ip1qqSc7XNWjZZa59eANaZOg4FcKFmmCespk1Ki225Gq5PiQL+9QULVETBWv3jt3LLuB73eUIVxxvynLk1LAjU+ktH+OREDV8wHCIxy4KMwUv23MGW05mSo6/y2I/8yUP//P45bnIRKerc1J/uoEsqpkCqVXhHJMXjcU66oficX9Xel6iGoj3J27SYPoDy4ujzHiNb9YtfoyyMD/nYwUOvwY9AyRnjWm29ylmNEV0/dMrT6MfSCQiUaFooBeJPJrtFoHTc9IlZ1QVQnMNaMYXKxbwj5xGR796JUUCi2VBZtqc5dDe34OsXIM1KNkmMKZmzinVSGhVibCDWBGOOK/dtUE9LKoHgtELBf6ds4yp5YcT0vZ62G9Wsv6jJ1wwnmE7yKR2UNFLKMsxrBCevdmvsnDyhhzne+912eXLzktLnD3eUZi9mM+cmSJAnftiyPDjlZHbGSFeefn/P5p49Z73bIco5btfTdQCsNbz98yM3NNRcXc0SEEBb8/h/+Pnfv3+HocMnx8QOgpWkPaJsVw27g4vk5u+ue+eqQ+WpFswhsr665fvE564unpHSNhC24Ht1KwQI13Uil+mddkHrtR6hkn3ami2iEmOtrVGyhBmkFU6Q0UtfIaK+RvZJISxJizOPSGoaB7XZN7hNdN5UJrm+u2Fyec321RUlVAylmjo5/wp0H77E6fECTBjxBp1uacfbeEavSUapdE0reKjkzXx5otiuFDz/4iKOjQw5WS/7B3/9Dri7O+fCDD/jlX/4qH338EV/vN1xcX7B98pyrH33KxdUlT5894+huw2GYIWmS2xYRgtOMuclCixAoeAKNKdR95e13CPfv0N49Zbvt+cmPfsJPf/hD7t455Te+/jEP755pjT9nZk1L1/d4pzB0ESWeeR/ANwqX78mtUhj3U0rGwncOKQ4dFhqtZ0uFvMYyptmTSWxnP2MSUtpDfEYTUXXiyy1UQEug2SKT/cxIzC7uT7CLFgwoGlBSpsRIThFNPBI5xpG5P71/1RBR8SUZlfcyOUZSikoCNlVLJQRPZc7ayaKXIpMSpFSIMZFSYrfbjFYvRlWdbJ2lDAIVhXVOP1suaUwwqq0pI7JmQfHYaosFsDqWWAMD9gLayXK9ycm/9po1sJf6e9l7zD98Rv/qsZ+U/iLHhChN5PJS9luQa8BgfqMIMcbx96Bt74gFiu7VyzSVgcbfiwYGYx+HTP5pDGZrpPsLHF8eGZA6OUrfpOqAv2pQa89rKQLOM9bza+Y7hpF2sqLPK2IQbvV95vnHzFmUramznUEVCGvUXyMU0BsyVfGk2PMqPGz+P/jqHPcXWA1IamfAlKWPGIdFeaMedJHp4lPRADd+vL28n8l174mCWAY7FlCKQK7tgmV8z4oo1FEs41U3p+RkisaVXzEd2j44rTAnQuNanTufYJd0hvxiseDu6hHt7pDvffPHPHv+XZ5v13z+8gVv332ft77xFykl851vfwcOHAfLI07OTuh3PT99/BlHsyMOT485/+yG1K1ZHDSkktn1PYjQzhf0MdHHyNHJCQ/uv8VPH3/Kj3605p1HD4hd4Rvf+HPcuXeHrt+yvtmxPn9Ju9hxdGfH6nTG44sfc3H1KYlr2lkmokauUD+zGQ4rCWTY6yPfi1xrbFcfXzRj0Qvtxus6YUnKY3FgaMc+4VD/kpOoproZ33rEFNl0keQiuyGDqUHerNfqIMjaFuoYhbhS7Om7DcG3NK3DlZa6qL3zqAZcXfKV8KiB6Gp1SPCB0ATCqeP4+Jij1RF379znxz/+EZ9/9invvfc+Ke84XC14560HzD78JT5ZfYtn3/kRMU/lvZSyoQO2LJ2jKdCmgs+6uLJLxGGAXHjw6BEnR3NepoHf+73f5/rmkg8//ICHdw959OgM7xtSSjbm1oZTDf04VMqFBrF5EippPgXede9QhJR0xogGeLq/q9OVMnUFlRrUVUno8Z5ZUAemTVCd8YQ81OBQYXMb0GMZmheF+UWjbd3P2fajjVOeSgIaoKSUKLm3Lhr9e0wDKQ1ThpinwAugDTN1ynbzUxzIqSdGfZ52BEXLBvWaOueMH6XXKUXtNklRyxSp341rs+RI7Dva2QzxXrN2VxX/9tq/LfOv6efYrii6LzwYQVozeUUQateA/ltcJdS5iUw9ZXYa3AlMeMFkr0ZbNu5j++kLPLjc+tvtpO+LjtcTR9n7/97rjEGlnkd9nzp9F5u7c+tp++8z8pMtjaj9p0xlzP3nKgk6Gx9UyCZKh13rYuhUcZWpZsHNF8xW+KLjSwcDy3CiDkoKWRKJaLr2lS1br00ZXegYmQi2OBzTGMlMkiopXA+BWDe+tsME36izF0AiSKS4QSEs7LsJkIzjPC17c5Yx6bkIE4dBRmeuCMcUwHiZUWtZpXIMshEI9YWoxI7qwJ1l1ON/pS4sDZ6m3nLLSu17secKmm25qrJh7ZJ1ToGedaJOuavXTJwQvH7OquUNWp/yqEY8CNkLYS860IDFQwmEZtD2Mj/nqD1i3pzg5odkXrK7fs6wvuAwOJrW4w4aDo+O+dpbp3z6+DMIsAgrNn3PZ09f8N2bTzk+OqU9ucPl9TXLNCNIoJk33Gx77j54yIuXL3jx8jm/dPeUr33tazgPL54/JcbEfDXjcrPmcHfI5mbN2el9SvGcX1/y7Pw54eyEm/Kci/Qpu3KNFyH2mZBXNCGQ06DX1tcMrWjwWDRLHMs2Br9qG5hFn7hpfRTBBe2HpjiylYJEbKJkMSTGaWiAdRiknEm9Gt6+MwgfYUg9692O5BK7zlGDga7vWF9f4l2j5yeFRGLb3bDdXMHQMWw3kITFsiXmQjubMQxbPN4QHYWZpSSrHDiGIeJDw8HqhBQHDg8Cwc1YLg+4f/8+NzfXdN1ah6d0mYPVIW/fvc/hRwM/HYRu6PFNICcta3jnWTQtJfXg4TjMaHZJRaTE0VHYpYQXmB8dcB7XZCl87Ve+SnzvXU6XB5wcH+ueLxHxQnSO9dCpHLRJcktJuMGcfC7ITHdXVSilFCb1R+OIxEIcBvq+JyfVkZSaJVMdtkHyOVKV+mynqLkog0HtVaSsBgSeJrWKpDlPMIldcUYE3QvAC5qFa3ApWttHs3htF0ykodOgIOs9SzlqmcDEfeq/J14KSDs3x5Z1LHgcSFEfG+Ng43Ft6JqVlAqOVAOLVEsReYxLUppKVXoZ1b4473Beg4pCNFjbUC/R/gkvNWvXa5THwEVlr5UQFwBrIRSP+GDsesH7dgx0KlEOxHQ+KgFvqqnf5lvZD2Zfv7hV0Oz2G/z+LSd96/dTYCI1+2T6Lob6TBMiVfNmSJq1l5woqU4q3CsNiXFSkiJA2g3gR6JzSah2SBkQVLsBtDyY7W9iZV0RLTGJJPOJbirNiLPHVERLu8Z+Fq/i1eNLBwOLZoVNDEBDAU9kgKKEFvYg+jGXriUCg2Q1indT8FCPfeTHaiSqBmUSleIQXwxqKhSn07L0BhbdXAjFZG5LbTHKbsz6xjta39CcPdXBs5flw224haKOWtzYdyx7uIHD2XMZfztSl2pgQbF1P31yGZ9fv5wJe0yBQrHeihp1V8MjlD00wF7N+AbaAjqdZ6lojB1aUvD6O5doRFiEBfNmyaxd8p0ffYcHj96j7DrWP1xzfHrG17/xZ/DzGbPlktAG3gmeH/zoB3zyybdJueB8w5Nnn/Dk+QXvvfcBH3zwMbtdT7PyrBYLmiZws74BFK7dbDecnZ7y1qOHzFrPy5fP2e06Hj9VXfy3Ht3l5OwY7xe0qxnrdIFrYD1c05UtUTqktChU7yi51uYqi9tEosZam0bVDrFNrQtjmh8+ZddQu02gloqyOFMLUyKqL9Y+NSYLQt/1DEMmDdANHlgAEGPkZrOlLzu2uznC0fj7bJmslEoG0wFdN1eX3FxdcnpnSRM8jTmheTtDSAzRHEMeiDGRU0GcwwcN8ryr5MIGhxDaxMHhMc475os519cXXN9ckVLiJ88+o1m0vP+rH7Pdrnnx/U95tr5g2cHd5RGNrftZM+NqfUMf4yg5myn0aaCLHaVbs24bosu08xmr1ZIQC4ezBU1oiSkRcw+iJKra7FFMgKwG7VJ750ezcDs3E9DpkNjGGR2TimdpUKfXMttQLFWF2HMkNsFPa+w9uUTddbfKg0oArE4tDoOK6Thn0tMVkavKdXaOos4gpURKeo9KTsR+o4p+Vvev6n6V25BLJuXBEA4twe66wXgN9TUHogUY01ecMkqn5YEkecooLVvNWVuI+34vASvq2HIRcnbWnqkJUs4ZZ/qsxVm3gXEAVGdA9tACNzq6sWceQwRMfriKCk35vUw2cu93sn/Pyxdn/190VEzotUSfn/Na8sp3Cwom7okFQmVK0YrpQuRSg4AMpFHSuf4uW+tnSRYA1PNwhZwMAbfkpVQVTSU5UXA4G3GvAk2GAlmSUizZrlyNqfNjT7vgSxxfOhiYN3NrbYrEEm/VZiticEuwZ088QjMqa6cwg/3mmyJGerAFJJqdifOIK4gXEE9xgSKJUrz6fFFnXTlk5Bph2gaVeoenyGCPXG+QILYuq2utJA8NErKJibDnlI0zavyDqS5fn1ucKOvbImskU/ZuzGR2KrQvuiqSXieVOC6KfIhuEGe3TaSYw9esxRXlAUyBib6mwMj6rUclCaVsNSc8UgIlOYZBCWPPz8/pUmF1dIqfL2nnC7xvuL664tmL5+y6jpcXL7m5uia0M7brDUdHR8znB/Rdz/HRIY3vePb0MccHC1Lquby8YD5r8Q6dODj03LlzytnZCT/+YaCUzGw24/nFC0KbcCFwenKP2aIhlzlD2rLdbrXG622GhCEvmqFohpPJpGIZlySCC7o+rfdctGqty6JONKmOHctCxUaOmlHT++5xGSs7uIm9bhnXru+JQyb10PeeMgYDibzt2KYdQ+emKREyWR2FZ63zIPaExrM8WDKbNYjoBMhawdB9pIY1FZ1yGKO2LekS13XqRRCvv3O+JbSJtiSWFW9yQucT3eaGJ8M1J+4ud776FW6ur/n97/0Rv/H2B6ySEksbHE0TCHFgJz3u6Ih23rDZrLnoN7jQMF+03PQb8jzQNoHFfE6THa1vaZsZoRRSbshFNTG1jm/7zgiDzjeID4ivQ2tuJ3hSL9teoiF+Mnje6U4sBcvIjcW0V8tX48yIBMTUMymFWjuYjsihSlHrwBg/DtZpQkC8CspUzfyqTZKMFDjEnhQ7YhoUKUg75RGUbAFBGoNOsdp8TnGULCYX4kg003JADTBq9lmDg1FiWCCaUiXUEqR6jJwzORa6PWCgkMyWOgssnLkh3TvqxFEehtNAmizgrOPLboXs2849jkV1ULXdfHzCK1ZQfbfZvYo22GOnUvPt42c59jdyxX7Oc77QZ1pAMjL3rVukZL0nY4kqpVFzpKJBFaHUQKBMPxvXwIEFWPraORsCVsoeLyNb9xvjNcU4b9lKespj2bvu4iyR3tNF+DnHL8AZaDWKFq+wax1e4cz5jZupLgqH9gY48/F1oZTppltUODpIAaW0qVSlJ4Dz+iFdGZEFcfbaYpwEl/E2NhcgG8xXLPu/VUGvmboZ3/1FVp1zzR4qWamUiWiHufz9cKAOF/EjgdAWj+i+qdWLOmlwfL+i12V03mOknM35mLCQcTSc6CJ0dv1E2GMdT8IVRfYELJDRgNXDGUkrlwEk4KXByZySPf2QCE3LTz77AQ2JoTh2u8jnT15w917gkx/9iO1uO7YThRB48fwZoZnx6OFDDg6O2WwHLi8v6XYDL14+5713H3FwsOTy8iVDv6PbrXn5/AnLRcvh4YqT42PW15qlnp6e8vLiMY+fPSYDscBytSKHzM3NDcMQDaExwNhl8IlUIt4wK9V9jKMoTSpTv3KydjFXqkKFHcUgfxwUTzAhI5U2rv3T6kRcBstB1cCmQs5CjAMxFWKCGCejk2Ki2/ZsYgd9MwYD3gea4C3TFBtqlYmxR5yO79WacMKlSMyFXe+IORJNgEgb8xOuAhy5WA1dTIZbP5pvArEEfG5o8oJ5yWQnDMOa+fEB277nB08+4d3T+7z7ax/zk2HLnzz+MS+bBR/ef8idg2POr1/y8vqCXeNxbstiWGhL6r1D2nvHpLlHUmB5sKJdLvESFH+ygN57hy+BlAdtf8uaBaVoRUGnbWkZk/vVK6z7oMKzt9gw1tLsvc7VSJFcdPyxvrYilwrjRlNezOZY0d+XovB8daZFtLZNNIOre1ITBkc2Ml+J2n/vXRhH60oRK5smUoo6cXXoiWnQ7J1+bC9M5iz2lUELFiCkmvGbLHC2ElQlDlowEVPcCwYmKeximaPbh9bR0mNJQsxTnR5TXy3ZUbJX2XCznzkly/aDPV3UNLkCWRUxy62WHbP9svfz+H3/q9q/262KoyaCVI6XG8s6b3bhNbm8fYzDq95w/Exk4NW/WXJQqkyztYgqmpMMaYkTImDD0/a5InXwk9oI5RWUPU5BsSS2JEVzfElkp4JStXm+wo+3kHZz+FMwUJEBC4zNpgDmL3/+8eVFhyQwEdcaireBMxbFWYwznqzW+gSdJFajroncIFRGajHN6XpxGhBvaEBj5BOoNUIx5ntdWFKE4LwleDJmRcUALuB2Nm41FleJquagK1dW4LZQT2VJ4si5ZoiV3Kjn4CVoFjaGFlNbYnJawzeAaYKwxISa2M/i1QgiTuccYHCQeEYATaDKOo8Tv/B48VNHgShrVWrUXVvQ7HAS8CHoyzqHc0vm/phZc0DwM/x8jp8vuLm8oE/C/UcPud7sOP/e91lfXTGbtXTbLcMw4IPn6OCQg8Nj1psdF+fnvPveB2y3KmYTU8/F1Qvee/8tlquWzc0aSmK9vtape31Dimq8u64j5UQ7a5kvVR55vd3QzGdI4+j6gVIE5wOI1j6DoS8xVUGepINdUHlszZDieP1UJhrAG5JUDUAloVr7DhmMpjeygcVTkpBTDRIn6DVnJTLGAYYB+sGPFqwfBtbXN3R5RxsX057yQjtrzOA6bQ6Imb7vePb8KScnn3H/XuDoZEGYBXLUQLpQM2KPD4GQGWcs+JHLMBnQIg4JDa0TQhNomkYzyJRY5AGXMoMkNtc3fOflOaezBV/59V/i2Xd/yJPHz7l5+kNW5y3bzYZUMrOzEw6XC9rDFkKDLBqYw+B0kmnTNhNp1+tezjVY9bqfc846eTIrGiY+4H2DC61NuGv0fhVFYqSMd+jWIeLxPo2ZZ9d1lLSzOu1gvf7RoN6p9UtyVSbF6vtTcKAXzU1ZmBktwU0GF28Zr43jrfbC7FsukRQHYuot8InktKWUmkmaBgFxDy3NY6CQkgazw9ArGlB/Z7B0SsoZmHgGlkC4YnX/CiJNwYwgOg9gkrDTfcKgKGtRZKCOWRYRi4/VKY0wOVn3VYZiyaGeV6CM9D/ssf4LHfN4vPbnMqXp5XUfPd17daavH26PLPqG135T+QAYS4X2GoJYtl4HNek9KDmNJciU+jEYKCblXIOBUgqkvZJRjJRcrDvHSH9ZqM4nF00cxCXzGY5Kcq0lAzDwD5lImNRgwI3IgHOe0lgi/KeNDDjLtAVvfqWMkQkG15ayX5/Q6AY74drfPZ1Xbc+q0Z0FFFL7MeuHs2DAvHQRzYR18VofrplI/Vk/fK664XXRS/1u5+RfgbTQntgR3TBYZgoInDmKqfxR4X2PsxGktSatt8g4yoYoTMJANSDYq/bbyFyxBLY6oYpA6PVD9L3S+HzNcJ2rNMS96LtKiIqMCmHjvXQe7706UhocK5qywqWWVAqzxZKjszusb9ac3L9DMz/kycUl6+trDuYzXrw8V9KaQNu2HJ+csNttqWIwlxcX/Mqv/hpHpy958eIxl9cXCit6YbNds91t2W42nBwfMXQ7lvM5s7Zlt9vhnWM2XyFB2HQJf71jeZBZHczwvsVJq4S7XIi5AykEESsN3Gb447QGl0fI1JmTd6Qq0jH+r5KidJ5GqkSdelfFCIYJbeczqC/FYtAtDH1mGDJDn+n7dlx/KeqExVz5CXY0jeox6BoQRAopDfR9x/MXLzg6espyeYd20eGaHTHpum1nM1KSmuyRbF6Cx2lQajXbOtEv56lfvBSDJUOgbWac5sh213F+3bHtNgxDR97tSMuOo3fvIavA9YuXXOeB5dmhZuEHRyzu36FZrNhud6zp8CmQ+8LQeMrQM5RC62fIrNG8vijn3ImWDFPW8kbOGd80IAHxrZYIbKjNaLUrSlAYr5VzyhNRWpsze1PLAGU0vjlFbd8bx4KbtqmhRdUxl1LUOWcbLTy2l06opeDGCXu1Fl5LBFM3gEHDJZKzMv5V9jtScgckY50belGS7Rsj6pnj0Kw/su039lkGCwaqFspUjsjWyuYs7vfGlSrWAeHqDACzL85P17ZQGNJAKI0GAhb0uKKZrJrEhBRvqIo3CXSHa/b65TEOhj0O0Q4f3TDaDq0W6hXIv9QOgvrvsW40BQFfGEvcRlqnlzB23muh4xcHFvVajK9c9v5lDj6PTj+PqGMutZ21kgYVSRgDNFtTNeHJOVNinso6DpSzoRwutTUBJxWlVOXR2ghd1VHHsrGIXsDqN6tfcmFM1P/0gwGpvf5aTct2I7xT/Ttld+ol1f8bGWW80HV0rf19RJNqj7aM96+WD+oHrP/UNVKMKGRQDJUTrNlVdnoxkr16llozxKCV+tLaPjY52xo5q4UV1DioIRJDEHw9wRHad/ZVOQOarTMhJqIs8WzOJu+9H1jiDwYbWA3fgoD9XaAkZ/2cvpJ1nLU81fOgfq8chooMyG3OgAVAuRQ8LcQZ3i1pwpKSPQcHR3RnPZeXN/Qx8eQnn3Jxs2E+azhYrliulnRdhwDz+QJKoet67ty5gwszrm62zBdzPvr4Q/7T/+w/5KBv6WPPi5fPibHHOdhs1jx7+hSAk+0GBNp5y1fef58ff/ZTfBMIHq5vOo42A82i4XB1xunxXZ7vNkjWTgrcQM699qnbQBSsPar4AqICzm5vM01rtBqzKVPSe2Bjsc0pjEFW0RHJkv0Y4cdBpYdzhr7PDEOi22a67YRfVRi0BmH1kLFUpfckZyXG5azowGa7pU/RTk0IraIIbdsSo5WQCjYR0hjLokGFM4c67iULzhWmBCeeNrSkzZo8FJqYabPgZzNySTy9vmBYrfCrBt+cajA/a9mlSHJQ+huuUQEi3zQ2dlfnIwwx4gs00qijsBZCVxSNyNngTwlac8EDddIklrzZ+ha9JvV+5JhUttgFJmegDi80DeSWPvUMMaoKZO3FN0jdUXBOZRsKGgjEWBGDWvapwj55hKvFgbOsWqwEqgHB1NaYUu0K6I0P0Bu5r9ble3SgWl0BU5eRxCpSVAMBfa3Ndr3HFahDjIqVIkw+2HrVvddSDFRuA+O6ztn0EuqamDBKAFIZjOGeVK9CMiXprAMnDh8CCQ0EPCqjm7JKxHlX4exovmBc4crQN75LAXKuNljArGE2NJTq5IpAmoKGcU7D3uepqMDk3MsrP+8lc3vHz+QMjCi0BQYaOZuAlAXUKY/3SXUk4titgfEI8jjwKWlbrsmNF0MEUpxKOuI0gXLOWZjkcRLN13iktq1a23NGkDJiw+NwpIoGiNOyNX6whO22H/5Zx5cOBoppAiiLv1iMp6Hj1MqgLUKgzmyUGLXfINUY7zl87JqXfS6BaVlbyiyWzdes10mwDdBQiqOhOl4NTKITJXrFTCTbxSsjKuAqCYv917WzHMVD7DEja8tuWK5nX+vxEzQzSlCiN9CZ48510de/2dtW0S2ZbAKjtLNdF81xrcBgQbMydisPw6J90W1YIceKQEgNvfc/Yw0cXKCRJa2ccTx7wIE/pWxhs71hvduxGRLn59dcXF/Tx4HlcsHxyQlN8FxenJNT4u6dOxyfHNO0M168fEkXE4fHB3zy2afcf/AQ33h++vlnPH/5kmcvXnCwWOKDV9a7CJvthl3fqdiG15aobTewDAsePHjA9cUVjZ8z9IXZcs69O2+xO79md3NOlB0imVwG4xDomlS0yjI8yXjv1RntGROKBon7sLBFu0DWOmmpNUsLCEoxoqU67BjVkSibX7UFUiz0MdINMnIDxvDYnNv+fZjNgt7npNPktITTsDw45PDkhMPDIw6PTjg4PKGZLYBCP2wRMIKgI/tA8ZGUxQi9Wr8sopX2VLJ1IukaFu9J2VEslWxDYD5fEIOwyz0xZUpwXA0dJJ26KU4ocUvOmYXzagRLom1Vz6AEITQNTdvquHOUwKigmhqtXLL1x6uBRITgG5pmjvNB2/Yq2lgiLmgQKxWds15rKEQLhis5LYQWRyFYvTzlogNhKKTYk2JPjJ4Se1Lq6IfOIPhICNrulnMNDtJ4jtpN4Mb3qV+C6q4UsMBwyuaTcQRi2mmXgo1fzwzKfbLrue8Ua2CS4mATPdXh9MPWAo2qBGi2rmR1MAbpO3NkU2uZ6PrNdaScboBcJkVWtb1FR3kX7XjIxekcGglIiZDt+jptsRRxFBcIZGIGoYGsQWnKMs4DUfutPAsldKoN9uLNaU/2XI2+TQetfK/qI159LNa6aVFjBXNfd/63/11ufWZeO/Q2TEXD2m4u1nWSrX0w27pIFgyQk2lFJCVeZhOGioOqRUYNBGIcxmBg5NsBzgkpyVhqqsR5Vzl31exL7WKwPVUJxVKTvb21WcW6QoeMBNeff3zpYCC7RBYlpySykrIq214UGncy1Ulvt7PZDaQ6WqGyifV49WSVYFGsl1OzYXRTEsaAIhMQl2hwOCtRJBF8LmQndC4Cyo4XawcZC4+VyFANfQ2WKxJQMILLRCJKyNjKVDUf9g+pzE0RCypqJ61Co04mvfwRjSil+nM1EBSDzWq7VbEsv0xtPfY+IzJRQGG5WqOr5kUjTayOPp4nCtk7aVm4Qw7nDzhtH5K3npfnL/ne977P+nrLNiZmy0PuzBbgCkeHK+VAUGjaGdvthquba3BwfHzKg4cPud5sWe962nnD1faG7BxPn73gm3/8J7x8/oJ3HjzE4fCh4eXFOaFtePnyJevthtXRIS+uzlkeHnDn7B5379wj94nNesuMgJ/POD57wFV3zs32nG3swPXgelWgM+cesX5fjDPgGutusVJVEdOGKbY2oFgZSIwtPPU3G1xpzyEnSqyqbgr/q6BLoRsKwwBDtCl0rxxim7YePjh2/c42vyeEwPLwkPv33+KDj77O+x98jYcP32G5OkJ8MKU8gyBzhBxxJTP3jtC29Oh44mjZLRYIOhSSJ2fEKXLUJK/BwLwFloQm0wyOklucCdoEM/LO6fAgE66gbWe0YUbTzvBNiw8tvmlwodFpk8k2R3Wu6J4XcaQhsus6cs40zYxm3tCEVrkPXkfe5oKOfC5QvCPU0Nu5cW+kpDCqsxp+CIHioG0DPnicBLq+o+92dEPHbrtjt7kmpU777HOH9xC8p49bKus7pWzG2zK6IVmNV/dcCBq0qPEWq99rkDMMJgSUB+26St34cyHjXAFf9y6j8xZDc1JOxNQThxoMGPTM5ECqs2fc49WxaMGEUvBZQLTbBdRMJzKSIz5Xcquef8qJPu4o0Y9D5nwZkGJcCNEhdTlFy1qVaJhzi08ZVyJFohJ5KaheQcaTLdtRZMg5jxSd6KnEb71v2B4bE7AxWdz3C9ZtMPqa1/fW607fjZ/9Nmrw5kMd7ETmlNopVGQiDZaq7WCaAiUpGTYqOhAtaEhDtN8Nt39OiujouqmotiIDYmXdKmHsCDUb1s+kPc2aNFspTLUUajJ6OxjAO5xvlNPi/5SDgehM4pJClkgyvYGqx3yrdmM3Vev39qwxEzfVpTIpLY03GTV2FSKv8WGNCqXUgADN8H3A50IoUyujErGUEZukB0kIieyiumE3yU4UO0tBHerk9i3SLpUkyBiRqYKhOfT6kc27l5qZm3NHtEY9aQUoLlCRD31IJUkBWRAy4nTOdR4DgT1ipiE0rhoUu6aMNS599dpRUDWOJtWs6XAIrVuw8EeU3YzL59c8e/yC9XpDLrqYijiC96Tcq3Htd4Sgtenr9Q0//em5ZrQucHhywudPn3C93fH2V97no6/9Mg/feYdut+Wb3/oTtus1i9mCe2dnoFeEISe++/3vIcHx/uGK8+srhiFyc3PNsF3TiKdpPMvFyojPgbk/YxHOiGlDscA0Fp3hnt1UjxOr7yarCReT0gXlZ2RrEVLClFNdiqLdBFkyZDcGvMXaMEmOkowAZ05jGCwY6BIxov/esz51rVQF4XqE4FmuVlqPzUKK4H1DCDPaZobzM4oEFOmuWvQ68CbFgRx7PNpW21qQO2gUqyMUagnECTnamF+yQuQWWJbGU2hwfs48NTRkcsyQIjNRR+zEODbOUXyFMh2haQlNwIeWEDSgKTGjXU4FnBLgShHmM6EJLcHbehKhCcGyd2NmGMpW67FxKJBt2obzY0o3MdDt+hqvqHZRuDCnWYALM9p2TjtrWS7n7JZzbq7PubnRdr8+DqgGQTX8hWyyvTFGk/CNxEHRn1I0KAqhEgZrMJAYhkGRhqzBgM4oqN+VcFa1UmoQL860QrySR8cSQbQyQaraF4ZgVWftynQNLHnRLLpmjWUKHC0qzZa9JJ+IKUBRImtKkS4O5KiBlcs2j6G4Mav04slZp4JqMBBGdbtCAynvEbILwVnAnS1xzQVth/bkbEO9rOw6ahaw11UwZlnG69i725WPNWVv6OfGMuXxoYaL7gUJZW/9vPEoeXwsWawFkFtCQrV8U1I03kciDlVcKpNT1GBu6PR3MRkyNYz3RN9f96kDXLLsvejn81Rumrf3L1Ciopl2T5MFON75sbNAyawWZDnBNa0GCH/awcAgg133QhUeyjXbljLdiCqFW/YiPKms7RreMdYxKsSlAheCbs3aRpRNmpRR1EcrE1WHQPuKQyw4FHYulkUnKbROEFTZKaFwu9bwxWZA1Fq/jJdfkPH9KqQrRc8mGQFpWnQW+Vq2X8RIlq76bP1HsYCg1AU6Ln99DbH3EMte6y/qZMhKOxNf/yZWJmB6/B4hKo2MXle5nnu67GiWUoTGt8zCklZW7K4Tzz8/59nnz+h2AzFmXr7YsN2qql/OO7zH4ChYzGfkvmfbdZRc+PFPfsBXPniPIrDebvndP/iv+Ht/8Ae88/Y7/Oaf+TX+/u//AU+ePOPi6oaH9x8i3nPn7Ixd14F3vP/xhwx54Fvf/iPu37/LD773PT69c5+Pv/IRJ0dnLFcLhphw84ZFc8rx8hE5D/TZ02eBfEmSXjdsSUxjoQ3mI+OzwZYGvdUplpX8NKoRZ1F2fk72QCsPWTRYopCK8gPikOhjIsZC30ViFIaIRo3VMIngvBjLey9IECz43av5mZrmthu42ew47iOzGSNPhJTp+p6h25L6LZJ1yqCpmdI4vetDKfQljQZNlRaV+CS5GLSr2bYET5CZrhgRrdemRFMcwYLvKIq24e13RZ2Y90GDAueRAkPf61p2YmJKgk5x1N8752iCxxflTzin3UDeVbuRweqtajpUgdAZglPNyMSI3zfsQsGDa/CN4P0MSmQ2m7Fx8PnjT7m+Omd9c05OWxCVBZ6ExtTwxmgGNym7e+gVAUqpTAFLDTCLOvFh6BTez4OuJcmIq2PSLWmqgbyriIbZGq+ly2IqlsXaCkvd/HlyZM45ivfjedTPLWMgYFLNUgydKqA9NroOsyPGllEQKw/s+o7U6Ot55/HZI96PeiSNNBRXJtXN0ih6VkSHLknWsqxD145ULod2HDjRdjohG6phQYXTxG8ffS237mftirmd1r+JJzBxKfR6YIS8+rcvI1wk1k2g2iGiipIZCzRMJCpqd0rKJimdMnGIWrLJSlqNQ0ccOtWDiJEYexWKsjJBnSsgVkoeHbb1oCcTaVJUopYpouliTCJGpRR8aIz/psFVXVc4hxt6awH3P+eT6/HlkQHqgJWqQziMNVlXrAVi3LCV7Wi3sVjva6U9OGzlVGOtCyGTJyNQyxBkvUhSn2OZnWjGEESBcC9+XEhiqbZ3FgBYAALRMni7eHsuU3sZVFksCBoZU6xNBIqYHnQ1SKpyY/9UtMG5mqqX6qlrc5ptSYVoXysV1I2UK3aor1qvSu2WGNlmYyDAiA5USokBTwZHFZKdaxWtgMrtKAQXcCUgKbC96Xn+5AWPP3/KzeaCGDPPX2wYhsJyPkekY9dvWG+3HK4OODs9ZjWfc/f+PQ5WB6y3G/78X/iLfPrkMd//6RMOj0/YDZHPnjzmt5o/y5//8/8Y6+s1MWacDyxXB/Qxcnx6wtvvvE2zaPnWn3yLP/r2t/hX/pV/ifXNM3weiGnD06c7RDzLoxNS71kcnXBKJOaBLnqG2EL0lHLBkCHHyuaua8j45s6opibGVIoqEmgfp96HkjUrECnTdUtqZKQIJRYjmBXiYGWCIRNToY+JHHVGgfWG2lpVtniVrK5HAW3zKw4pAd/OWS0PWa0OWRlXYLE6IDQzShKV3O07hm5Ht9nQba4oMdLYuYW2pWmVka9tq8XuNXjvSNFao5Jm/phiXyNBCcLmqERAXKbxDd45236ZwT6Dj+BjJhUoRT+vTgS3OQZRmeMpZ20LDZ6+3xGHgaZplUjpgqJupSiBCtG9ZolCYwHOPgJXarlvvH9lL1O0rVk8qRSGIbLbbtlurlivr9iuz7m6vqHrOrqhZ+g3iAw0jSeOw8mM95EU6ckZUtTgYBii/s5qvqobYKTgnBXet+4FlfLNpo2SNBMuCuPXa+wcKv8rE39gtJg10SiKYJVxkBLm5MstMuq+hog6G5BqrygmFKdJm6Q6KOcU0Pbcrl8TvQaG3mnbcQgeVZn0KtglmnC54qz0pnbem5jaeArVBwsqnGP7yjnl4ahkrpaoVOxME6Ya3FRfrsmkdv7su/Hbtf/y2vdSqg2sfuVNf3/zsR8MZEP/VC3QRLpilYyOijainSrRuoVKVlRgCgYiJQ4qPmUogRJIlZck5v98hfeLpaZGVK7lyZwTOfa29jKxmHBWKWPARg2qDBko4lRS3U2txj/v+NLBAKWM/dsJFXnJaERIQRnW1hGQpNaz7AZUJyqV1OYmIlWZamFitRAnKtEKmWKLT8lQ1lhhF8055QrUwKBqCFQXnY3FvM8WF8lq3OprlKnu7ovQOI+3gl6h9q5rQFFbjrNl46NOAmL/VudeVQCdvYbHq643qiXvpIzKYGLoArbRdf26kSgFIGNbDhbE1Ms5XsSxNjZdedtMJUEJ6vTGeymU7EhRZ23Hkthuei4urnj+/AXZRXABaVQ/ISFs1xs222uads7du/d59523OVwuWCzmnBwf8YMf/pDnL56zXl9rf3fcEaRwvb7i+9/5Hv/Sf/df5A9+578yB1po2yW73ZqPP/qQu/dP+Z3f+22G/pLHP33C9cVT1utr3nrwDm+98w5PPz/nerslhxnt0TErOYK5Y9d1zOIC5A6zeMgsPmXX37BhTR+3pNJpvzeRIpmcGHkYerVUpVADWYvMs2jmLOC0FUWdUFInlKuoUMoMMRPNWcSkQEKuRnssRmFOwb7292UpOKeQLgKhaVmujjk8PGMxP8KHGc4102YOCrNubnr6bsduuyXtdriSkCK07Yz5YkmzWCBNQ3DOVoGtnVy0FzolShogRzyi9WGxvuXi1Im4zKxdqACPs2DTSJ6uDEiKep1SQXk5ytrvdz1D15NLoYmD6hIsFxoQWRDbBE/TNgTfgtfe9GTImDokZUWXPuo63ksCFKBRuyAo4jVJASi60sqEaKSU6IaeA3/Gw0f3uVm/4MnnP+Snn224vrlEukITVPJcJ/xpV0AaCjnqvZlKB3nkEhRDn5ydT05Re86TthGq81MksgpfJQy+tWDAewzyrzYQLcW4Sr4uBIIiOobmKCoheG+t1eK1uyJb8FSSvnC1JyiSqyUxTWxynDLFlCNd2uKi2lPvPUECWYJ2DkigONXQ9VmVGaUEhmz7yCXIrc6Nq9CNVBRDnYMrGYqSvl0QtDTjNBHxtQ02UGcD7OUt+nqvBAA/MyBAEbCpdbT6mL3n7mkT7L+VWPKp4JSpCmaoSoI6PnqaN5GLlgui6UnkmIhxq0JTFRmwoVIxKaFwbCnUN9SSnTn06pNq15IGArq+hqHTIMU6GlLVzEDTxsqpGbvUnLOZEG4kJ/6848srECZHCkJPVsZxHvAITfamGRiU2OOF5EWj7RRJBlN6bxs8a7uWK9qu4wWwXlklcwl5SERJ4CK+aQih1bYryXgJaFVF8FmNF9KY6dWWQydCKwEXHC4FIh7HoIpsroArI+PZFYcvorVRsFGs2g0QS2Ygk0tPHWSii0r5/VVZ0DtP61o1WlmhHY+2+VSGQmXXjgt2LIMkDXxEh2Bk8STnNYon43LUxVu0jKIQli38fanJXGOePJEFRc+lvms9ShbIDb7MWc4OSevEbrdjNptzfHqX8/VLYobDszts1wOPP/+MPOw4OTphMVvQ+Bn9LvF0fc5qNePk5IS/9Jf/Sb75zb/Po0f3+PO/+cvEnPjmN79Jul7z5CefMPeBD77yPuubDWcnd7m8OOfD9+9zfLRiORfODoW7pydIfMhBK1w83/CrX3sHaY948O4pF5drhmLkpeiYN8ecLYRtfwbScTB7xFF8xsZfcplesEnn7NI1UTb0ZU3MOyKd1smdkrXEZbwXYlKxH8nOWqcaYl+QHHFZkFSQnJECMTuG5EeVwSFCTG4MNLx3Wk5pKkpk115qOW0PoSEz5KSteM5xtFzx9rsf8P77v8Lp3feYr+7gfGAYemqvc2FApNC2DWU+o88DeRggaSkq5R4ZFDFzoRlh9tQr2dAnZdfnoaOkyJCFlJ0N4fEMUVvMZrM5UURZ0aXgG4+PmcXcs4uaCITaFmWw+TAM5EFLNYcnxyDC1dU1guh8Cm/toCamI+Is80RRE+/AB1P5c4RFO6nUiVMHabVz76DyZ/J4oW0gV1LOxHw+p2laVqsVu+6aZy9+yne/931++sl36IcrvBvIZcANDTk6JSWa80hDJg21b7wY4pGtPpzoTMgoOAiu4FIkDTtIPUF0oE/bBtrgGWJms9kRs8fPZrgQ8T6xmDkWjaYIfd8Rs7Zv9hLoDEkIecBnRZect3qwaDk1JytFiLP6e0Kyo0/DWCKrLdQFMU5FNhlyPYaiLZChgM+QxZNzIKeAl6A1/txAHsii4mZSGlzRtsNCoKSBwkApM7xTdUnvBrxriEOL960FeIGYdACS9zr0yZkCqvoJK9g6YWR6V/EeJmf+8yB/KZBTbzFJbR9WFGtfpEjLQooAYAlosWBg1KywBxVUGTRV7YgUydnkpoeeGDtT01SC6hB3pNSTowYDeRxilKjaEs5gr1xRaisTUoKWKbK2YtYunJzzOIAqVVVEkVG/YCKXKmcuNLP/3yADGqiWkTGJKBN3FgILaZn7lowwAJs0kHq9kFKJV1IQ8VYN2RfpqfC2xjdaatVNryXaQswZ760OPkZW6omVPGNDRsSyYhHLuKseg8OXKuRTiS9WFqAGAjpOw9t5pZKUVFgqxdDIk/ZVufuIMf25vUAnNkKteNUFru9OqeUAFQCpVbOa4Yi9bmXd1rGspWpbj0jHhBDcattkYhq7Uq/x+O7oRMgWEU/fR27W11zdXHKzuWHX93QxkdaR3UYV0I6PDnnw8D6LdkGKkfVmg0hhs7nh8uqSjz/+kOVySdu0PHjwgCdPHjNrWh7cP4AS+cNv/gOOTo44Pj7l5M4dTs7OOD5acHhyzIuXn9H3mdINzNsD/uSPv8/dO49YLY/54z/+Hl/5yvs8ePgWXR+1xSopa3weVtZmmSn+kFU5oZuvOZyfc719wWY4p8tXXG+fs0vXdOmGXCxiz3mUyK6+ROfL9ww5E2jxRVUKpSIHtiZrW8++cbJcaO/uv2n/3P5tzoV+uyPGQtsEnHitv/sZlUcgtoKSQZCp6xR9EIcPLfPlEkmNmk6vqp3eBzUSyaR2s7KYUxqIfU/sO1LcWnajYj8lZ2KnK5tS2O62SjCdtXinXQBD3zNznm6303q/ODbbnRIBvScNg/pq5+iHgXY2Y3Ww0hUpluF0HXiPb1qto8aexfIQvPaui0Gb4AxilClYqGUeaiY4lQjsDcb2YYysK2ItnUCJCVIidh3bzSVOes3eSyBHsQ4Ffck4qLiMSq9rd0Year95ovT63KbxLFtPGxRRKDkybzzLWcvhwZLGB3bbDVcpklzLQCGlDi+Z42bB8WpOyYnLoeOq79kOkTRrKaGhBE8ucW83q6VRcTI/ZuKSjblfu5/KnmNQUYm9zgPjjVCxw0yx95iiV7N4xQhvuWilQ2x9WGALGVdq106xPaR2P3u9Vs7p9cquQdyg52YdC4EGV1oLzAMY0iFFZ9GMdrJMBE/Y33d88ZHyiAjU51O09ZzxdxYMVIdfBr0iuXJBqv6EogAqAd2ZLLSpSsZOOQFR508km0eRS69+qQz2VctKGVAyYIExENCgpQYkaQxcFBDSsnwRRXeSoT0VZUg2mK2S6LXbAMqg7Zp/6sFA8QqXZyNGBR+YNQ1LH1iFhmXbAp4+ge8FyZkhCZGBVJSspMpIJuMpRqIzVq2WIbTWMRrajA53KFkb5hx2MQGJYPJHxeRms6s5gkMk6YhXAUlGlioehxsXrhSn5CuRkTWtLH3ddg6vJQuLUrWl0vpyp6KFtmjtBTX7P4tU52zOfi9Q0Q+kLF2x9yvOBFrE6qHOGT9BBwsVGwGRGasLhqIqmmB9hsrRqM6LqX4GFhFbIJVTZrvdcXV5wcXFOVdXlzy/ekEsUMqMOBSa4Dk5O+H45JjYR66vN6y3G9omKAR20dEPPXfOThkiPHj4Dr/xjd/in/hLf5nPPn/G7/39b/G3/ov/gkcPH/FnfuMbHJ4c0Xcdvl3Qzg9p56d8+PGfZXUw4+Llcy6vtmx2md/5e7/L8fEZ2+2W3W6Hc0FrdH1PDOpcgnh8aCiuITOnaY6ZzU5YLu6y7l+yi5fMmmM2/Tnr/pw+XtHHDeQNxJ1uVDP6lKww4AAhHBoCpJG6FG3V0lpdnVQ2ialUjYwxo3mNsWxrZO8+ZCPDBud0kI9v6XeRF89f4sIh7fwYWqhy3zlDnxKbzQ5yVBa3eKvvap+/84FSRBX+YtLBUynhPKRhINVgoA7PKQmfAedNj0Cd4na7JQQdOOS9p+sHNusNjQ+UlOm6gZ2hFQMKW4sIoWnxAkOMuLbh4OiQlBI3mw0lqvbBbD5nsfK0rSILOdfsVtsfa/KgPA+5dT1r6+5+djgVyyqibCUPBOcK3jkWbcu902Oujo+4XLT0lz1xuKaQENeShkwcTO5axEpGWh7I1j5ayXHOwTJHGlc49DPOVjNWbSD3DgbPsm1YzVsOVktmbUMaFmxPlgwZujiw6xzCwOHhnJPDA1LJvMiJ53jOU+KqOGIye1tQVFC0dJjdWBEfORc1IKocBu9szZSiXSC5WiTlyJQcRvl1tbM6tVCNlSI31an4rHbSZXX4qejQtmL3xjntlAhA9uBzJrmEyxEvEecbYmnxYtLyZUCctxkVLc4PiOiAKi8B8Y1xC+o8FUuiytRWV30De/d7/xAKOcbRBk/iRLK3/9xoB1VEN5NTR23jzDXxsg6eOmI6pc50BQbIyfQrNBgga6koJRObyslshZaOqEREKp/D2sJrMFB9WfFTMJCxwnw/3r9MGdtVsTICxpWogU/O6DlRyZw///jSwUASFddV0l5LcMKiaVi1gYPWswgKVcWkIiYz13LDDZ2IkitQDf9RJAGsHSUDwVquCk6svm0fMKei0WdlTJYaJ2cy1hkwxr1icw4qocLbAq9+MlAlODw1+3aGVhj1bmxZsFskSV/H9AoGZUwwbUFTvqPAWJf39vOrN2F6lkUGjGJFKMzsJKuaG1NLoohO2SspWqxhHghtP6Fk/dxaGFbDWop2TmSg3L7N0wQsbSEqJpcZ/7+s/dmTJFuS3on99Cxm5ktERi53qaqurm50VQEzAw5BPlBkSMEDRSjkn0yKkOAThTMvXAQymMEyKPRSdddcI8Ldzewsygc9x9yzGoO+RYFfiZuRGREe7raco/rpt6REzolxjBymHTk5np9nk4NF3zTJiTAOpJw4L3NjLsP/8K//Hf/lf/FPkI+PzGvGx4kv3rxB5RNLqrz78IFcKr/57T/Gj55//Ff/hMNuT1oTP/74gcs88Bd/+U/44gvlX/7L/w//r//3/4Nh3HE8vuByOuPfOD58+MirVy8paWU+2RzOeRinkSqOrANx2DOFe4bwmml8w1qe2A9fcF7fc5p/5Ly+5zx/5DJ/4FI+sKRP5jTZzp+0UYvqhUpE6oAFtASors1+7YZU0Wu+Ee5m8bpFgfpBb4vS7T1VlPNpwbvIfjew2x15eHjN61dfsNvtb1Af6wS1uZIRRkQDLkR8g6qjsLGGbeZpMrU1J2M6zwmtK5oXak6U1MJzakaDbpu5l0BOK/PpmThE8n7CCUZavJy5hMA4RM6PjyzLwt3xjnVdyaVwd3dProVxmmzmXu1eEME201oRFxpLvzbEv1uaty5GO5LV76Nb5Ot6H6l+hgvY923EZSvOnLDxfwoVnxPHILzaDdTDQE0jwYELA/OaWWY7dt4FvAuoKnk1nwFUiMPAbtqxHwaGuhB1ZT9GHo57DqNHl5lyOSF5wdVK1JlJlbgPuLs7Ss0ge9I6siwXQnAcB0HCjp8NAx/uM98tib89ncnPzyzzjIuR4oQiFlhma1drMoywYLd9l8VhqJ8ZD+n1ALm+ifaN4+ZY/hGyafxrsV2yqVNylda0NDQB275cNaJh0YIlUKw4N+BctGKgRnxd8S4gLhgOKx5f7Ri7OiASCTlaNkUe8D7gXbT1qb3RWySu3hQD7c19fq+hqK5XJKHeFAMNcbvKMBsXqBZqmdt92tCN2k2COjKQKWWmlg772+Zfy0otFpVda6Lo2gqAYiNmrqmYKnU72lZz6lbobgF7zfOkL/NFM0WsUCmdhyLWkDhnHCfxzctBrBG3xqaPRf7TY5X++BMcCK3qDD7i8YzBsfeB/eA4TIHJm9xPdWQXPVMoDBiMeJaZXBu01TZ1bR24tKq/aof0HFKNS5BvoHFp0hTZ/mu1lKgtzoIt2uqo6jaDEnBXv268kcJa9W8ywu711OR6/W7ACI1teIAhA0qmkDWDNklkHwQ0Vm0T1lKtz7/ed3I9JR3g7AE1Fl/cZICugBTbODZCVytmRChOWoVsvYFBX1BqsRu+1i7UAKrJIZvRx829YkzpVC39rri2spju+Ouvv+TF6zecLoXf/803zJcz83LmfPHEuOPF8cBlmfn0/gMp2Zz1xcs3fPfDe5z3TLt7/uV//294+fA9nx5PoJ6vvv4FaV549/4dv7j8jIeHO6Zhshu1Ov7u777l48fE3/3dH/jv/9XvyBlevb4HhMtl4XQ68+rlS3bThHdCSYm0LjgveIXqR6qL4EdjrHth8HckfSC6F+zjK+7GN8zpA8+XtzyFtzwt3/G8Ruby3HIOKriC95WqC+jVUrif4tpEqrqZQ9C6WuuUujLmj5GBqtjM/4YdVXKlJJjTQl7fM4bveXn/nuPuSw4vzAK2O+PZAgXqAtPxHlcLogWnldDGYRaBa2EpxoW0DVZEWNKKcxXvnHXjRanJCta8zBQs88A8CYzsNJ8zT/4TwzSyJhsxnJ+f8cc9OSXmy4XgwxXyrMUg4BjZTwPiQrs/YX93ILSiBsw9cM0Z0sq0i7bpuBa77CyAq6NgDQfbRgF2DTcTrsbvsaagk5BvR2g2v3cOHg47hp99xZe7jP7mKwafGAfHumYus2VCqIKEQJAI2KilNhTN+4FhGJiiZ8eCrGdcTsTmC8JyQpcLZZ1Zn08sp2fKeoGTqXeGIIxDoJKZ84wulX3ODPs73uyOvAojxyEjWlnOj8zrmSx7cndmlGqbhFiD4Guh+6C4tpb2y85GV63obyuONNb/7bRKGhfB5I+GXFraZQYJiBbjiKotTSC4zV8mmFVx9WQdcLriGXF+NS5ALwo0tmLAY6MAh8/eskZcwEnEMVjgmx8IfjC/jRZhj3jq1vG2+OkGi1+VFNudatdjbaPjbVTQ9geuP7P5S1Qbh+S6GkxfafecFQM2ams202W18KlGFK3VgqiKJqRWM5mqa0PdbPRQMRtqO75qVunSz07d1grjBLXiByts7T62xEtDFRoyKZUe3NeANMQb0dxpxaJVG5X+H+BY9MdPRwawgx/E48QzemFyjp2P7GJkihFHhDpSciBowe2v3ulLrm3zCm0M1AuBBllL24y9b5KottbWxsJuVpy3J73L6UoLK9FWQdp8S41QgxrMpcYO98VucsK1rLgWAv0usec1fkGHfR3ZeLnttHaFgXDLHO+VdpfFQLcZalVqqwRub1yb8211a3seg41MftPGCGKz4SpyVUlIY11U8wOw8QBbxyBtViZ6rZ47GlGLtGW2GY2Io9TC23c/srs7Mgw7himSs6OUzJxmCo5cjXCYUcIwbGjF6Xymlsrv/Xet6g44N/DVmz/jfH7mUp+4PJ+ZT898+4e/49d/9WvGceI8DtRS+fjhkSHueHjxmml0VC189dXXoPb67u7uiME+z1lMj97MAUR1812oWczet0ZUYcARw8gu3JGHB/b+nlHvGdxEcCOP5R1zeaToBXRuN27qLZJhTlKoEm0RlEY0M2E+3XhTbhzfPnu082F2t9d/rtny5WnhR1QY/MD98Z4xTpvFcZ9heu+pMZq3uXTWsY2utI2V7N6y0ZsLgaAgzrF3B2IQolPIM/PZcZEzNWfmy0JeMyGYoRJaGaLfFkuqcph2tvAHT06JFy/u8c4zzzMvXrzgeHdPypk4TXZoxKNOyLXigkeybIlscRgZxxEJoR2Tpr1ui690BdENZH1dKPoaQBuTNV6F4dbmIkiTtandRXZZFDSv7BxM+4lhd09wC+Iqulc0W8wsIm3TalJgZ2hmny9bJG2CeUHTmTyfSXkhlIKvCe+UuB+Io2N/GCinZ5anR+bTTF0LaYG6JmRdmZxn5xz+fIbLis+F+xD5swhpF6mL49ucqTRJsfPbhq3t9vfSp+DW/DgxSSeuM+n7NWnHzjmh3jTSLePG/GMcxr9pI1Za4duv3b5eOXUGU9em5HIeXzOuBpxkfG2wf11xPhIYcNpRSEOQnfP4YkWCl6EpWgLRjZQwEHykuICIIQkG51uzs3lnuEjPqLgWAq3LliuSsL1/bfyrXgyosNn6lkIt6YoMtBRUVFvkdjL3yprIeTG+gBralutqYwPM1rlo3/wLVVJTM1lBaHSPziRrH01pVKVac+QbmlFtLFS1gDRFSCsGQBufqWxrurMYWozXUWzkrPpZA/Kfevx0AiEBLQUoRC9EFSKBKIEgnsGPBD/hGMiLUNPMTGWMnjwMqCZSu2HbVkofB2rb2FSkZTD3fzTyjlBtRmrapq3LNhhFUfMqthFD7et0c3fSbCzx6vBqeeob/ETfgLvngb3XQpMUKdCYzdb5XGdWRk5qRh3i6GrY3vWrKrkW+lc6fHk781QF357fUgsdkDd9ruKNFeEUrULWagE9uKZMsOFGagxhQxv6a7COyXnXNqCbdkBBsyLeE/1kHCMXOB7vuL+/56//8DsuKbHbvyRnc8q7LDNLmlF9ZJ5Xg4jv7nnz+jXBR87nC8N0MFMO9agqj88XXr44cLc/8uL4wPPTOwKO99//wN96IWjhV7/6Rzx9escvf/ElVQPv3n3ieDwSx0paVy6XlRgj67q24y6U1bq4tLQ5WnYwFLwU0prQkhGJhlQhOBlRMaooNTBK4MW0I/o9wR+JPPAsP3DJH1jLJysAXLauUIy4gwRUkhWcyLYg04tY18GYK33z5uZp9cCVGQ220edkZKFp3PPi7hWHcUcPmgIaR8H2Qe0peb7l15dCUTFNo7YZuzbWvbMOxAcMJdmPRK94qejqW5EorPNMyRXnzA45RosPHsaxRQl7dvs94zBwWWbmdWG5nKlamXYj025it9sxTRO74M2ASc3/3klDzqqSU0KKjSMiDucDcYiI9y3oRXHVFuYASPW2ePdivN1TndjWA8z+2FVOayWECM0NzjvFu9Ybq5Lzii4ztZzMeKheIBiSGCRAMMUKVZEquODbPNPWCNs0CylfqGWm1IWSLuR1xddMFCWuc/MP8IT9hPOOOE4slwslZ3xw7PzA6E0VpacT8+MTz/OC3h344vVLwouRaXggfVz4MSmpZNSZPFF92GRkxtK/dsSo3fPX231bkegNzOeglYnFxbfRg1iSCg1ZqCrUUnDVb2MrEaGo8bG6dM27bCMDMQKr1wEnHlcDqRiCIM6j3Te/KROcCzhii4EfSM5GBsEPNkYQCx/b7oFbuL+49nVPJ9xuzRvh5r1f37DWzK3/wObfsFkO2zEqLYHQTH5WMxnSZBu/msV0ZUVkBb+CtswNVorc8AUkN/fbVlSJ7RsqvWEEbsLsOqpf+56hNgYHbcZx7aMXcdoavtql9wLeuDJCsp3tPzcyEJxDNTFIZgrKPjj2ESY/EVrHLxqaPWK1RadmnLQFKQkb3iRtuevzEm0wgIBQ8NJnVUbW09qIRa0QuA4JGpmvtkWjmv44BBiCYwwOL3ZTk2ieQ9ZRXfvv3qFLu26a2Yg2Zmyv4W6qKyMZ+uac5s00Qv6+XarFtlr33e1E++vfLJyb7af0DaCzSxu8takRnD2TthuhlTpNOtgrQVpR1GspS3crzrwOttevNBldxLvR5C+rEnzkeLjjxYsHHi9n3n34fav+BSeJnFZKgd3uSIyR/WHPn/3yl/zi57/kfLqwzCtPj0+sa+bDh/c8Pj1zt3vN6y+/5M9/+QtCTPybf/X/5V//q/+BH7/7PX/42//A737x7wnjxH/zv/vfU7Lw/fffstsPfP3wlyzLwu9+9ztSSgiOn//8Z9QiLMuFy/nEmhYzqKke5zJFVsRHslsIbkfwO4MpXSAXJWdHrQNO7xjdQBj3jOGefXjNp/jA8/wtz+t3nJNjKc+Ib+xiqhUFpWJWrC0fw4ktxNoXSDOQ0aKNIHT7qH8PMVA1hzsU4y1U26C1dDb4teDoM1Po8GZT3pSeVVDwtS8WHYFyOG/I0zAEvKu26LlsVt5hwIXKMBkeNYwj4zSCCCUb36Ab0CjKuix8evzE+fxMTZn9fs/Dw0sQYZ5npsPeGOTe42IkDCNVaATGZoTkTCPT45SdCCmbT4GUQl/rnbSwqDaCuTlq9BVgAwr6fYct4t57Y13nFR/AG+PGTMG0QsnommzWm+dmEGTBTc4H7Idso7YOhgbl2mvxgDuOsHNM64iuI6QVSkbSii4LJSVIycKXhpEYRmS6M5kqBVcrLDN8+kh+OnF6/460LgyS2N8P7I8Th8M96zHwP3288PbjJ84po2IbqhObB3fFSX//0omAfeO+XjHW6W5KgH40bVMybwmunJkOfan5Gqh0y+Em/yuZ3NZW58J2TQmZQDAVREORpb1eECTEVgzcIAQYqmwyQxsvBB/aaOHaxaOG84jcsrwczg3bc7L9+/BZgdCLxatCgM/+pDWcfRShtbYCQBsPIFPr0jp/8y9RXUFmlEQlUzSRNRnJT4yci6sbmqi1cYwaEtMLtK7MMMGSnZsqfXwh27nQWlHXFXM0lZMV2yLWvBpJ37VLVvH6R43Jf+Lx030GULyvHGLifmca2f0UiB6DcYonV6guga7ABXG5zUH6ItWkKs0piRtI3WxZM97V1uVoMwOSVk01SKw5dina6dgNGTK4f/CRw27k7hDZ74TobMFcLrCcHXmh+bYLPUzJFk7doLQqNL9767hLqWQtZpyC6aKdCEEC0dlFbOSadqNor1DbiWgwrj2snLMipMvHmrCxfW6LIH+vivfRfAMo0pjtBhk6SURPy4u4LgiGhpnLmZfrqQ4SCS4Qww4horWQlsy6FkKIDRJVq/CHgRgCois5hsZOT7x69cCvf/1rfvvb33I83DONO1Dhr//D3/DNN9+S0h2hBdB0mPW//l/8r3j7/R/4F//i/8x/+//8hv/j/+n/wHfff8d/+U//l8TBs+aZsAvcv3ngxYuX1Fr58d17lnnBx8C7D+/56osvbUyxLkbC8p7od1Y0qRF7qM3cxPdCzbWYX8Wk5AFwxLBjiC+IcscYD4zDhJzMIXLNNnoSZ92lVCNxGWrdzh2CBPtcq8erNN6rNlUH7Row0g963ayBhshERB1pXnn8+InL+WK5A8WkZNfl/FaxYtd7H7O5m+7HWT3ROsdmICTKmkwKRy3UVFhyZS2KeLsWxAk+RiQE64jEkdX070vTOJ/PJ9Z1RlXxg2fYj7joWNdCWhfmlHAh4IeRGO19GnLmCdEjtbtu2PjAl9Jsb5vdc2sMtBaDsl0w2HobBsg2Uty6nd7dAX10klM7uLVYDC8ZR8V5IYZIGQeCjPhs8G3JFyNVtvvSB4+PwVzy6lZxbMcYARlHGzW6aB7QdbSx1bqgav4RBVszQpNM+v3e7m0KOp+p61suS2GZF+aczZwqr+jzJ8agfLnf81+/+QVxd+Lf18oPHx85V8htEzOicBMgC8hN4fSZirVdHoI0pPP6xc51ca51m90wqL/nZt5jn7Ot4VXU0BNniFetpjgQSVSNeJdaMeBaMWAvQjTaMe5fk0BuKX3SYqGdmCrGyw0is72ptj7iDFXoYwZn/978aHGMWB5CR42s6bsWA7cFgY0ZbZRQGrTebM07D0CLFQN1pehKrU0yKJdtZJA1W9HQ4Hwza6oNbSngDRG/8h17MVC3P7fXJNpg/gYrYgox1dr2LWsu7X7XNheRVhS1drk97x/Rl/5nH39CMZAZ/MrdbubhmDiMjmmKKIWShaxmxCK6ouWJxMng9mbdWRu0YUTEK1+gwx6ukd98+7NQjFkc2hsVDPZsZCCD3tui4B0xRA7Dgftxz8vDxMu7yDRkvDOTkOdT5VGUi1TWDAVLOIQbXabYBWLSQZMPZjXCYGmFh2ASRY8jSLQgHdcyvtuHJVDJJvu4zodo7YxscJtrqIITs2d1KoRNF6rNFQt6FYwTGy83i9widhxw1cYFKD24QpocycHNc0IMkSlOBLdjXSppqZQsVhDk3KJk7dhM08SbN695/XDHEAMxjtzf3zNEm9ety8LwMvDmzSuGOJGWlf1uxzTtWufrQCPnPHP/6gX/zT//57z/+CP/t//r/4V/+7u/5euf/Yyf/fJXDHdHdNjxy7+yWGpq5d/9u3/LZV0to905xmkijoH5IqS0sswLNdgYyhVnlXWtZElQlzZDA+cy4sB5R8o00qPikrndOXdkdJnDsHJZnrm4E4ObWatDWQFzCqzOeCDiAlJsUXW1yWGrN9mt2Kz5c4JzR8Q+v6dEhN00Ef3IEPZM08g0TYzD2HLp5eaje/ULwfu2IFQbybTMA3Fsm4M5zjWiV6lczmcEW+w0J/JayFUIYcT5ZuzjhRWDpFNaqQrLsrQUvYz3wv3D/VY4Bx9IObE2xMikYxZqU1IBVjMSQpqPQEvG834zIRMRpnFs3hmA6/LeXvx8DvP2DanfSj1t0DYpm3FLye3eamOZFoyz5k5wHPFMiK8mvVsqLutNbHEmrwveW0rhrVR4K0LmkyFDG1JZN5geHwjjhEkbA95HcBF1e4oEyAvrvHAqyiVXqjjC/kCUig9Cmlf8+UI8JF54z1+8fGDQyt048cP5woc1syjg2whSr5uDdJtH0W0jNPi/XR/mU72VpOIE76250fYzbGTEhma1Ilara6Q1abWB4dm1ecj0kDkr5vo4INDDmYz0aEVCbehqHwOIdqTDYP/tGpD++3uVE9raFjeioRcbbZnniMcRcDIZ6io30rrWYPUEyM9NjK7rc7f9LWqW3VVbKJHeIANYAVDrgmpuWv9iiamdYGnYdSMLXn/H9n8xlEh7MaA259fKNu/vl5Ud6tZUbreEa2D7Dc4tYu6b4lqz/NNQAfgTigHPyhgWjtOF+/2Fw+SIg6foHSkHyCOpKKoXCifW+olUImtxrDXbxddsEU3KYlWTyela9eYcXgFn+lYjIHWI3rpd16DZft9VVYorxMlzf9jxZn/H6/3Ii50yBruJcy0Gl2Q1CcmcUZ3sYNbaxg0mGEPNnrd7Cpilsd0kpn60MxHFM7hA9IHgglW61Rzf6IE4KFLydkIU7cpKeuiHazImTzTugfpmpSq0d7l1ReIMGWiuuVQaIU2E6hOh/TvOgka0ISipWo54fww+sh8PTMOB5SNoMaZ0K1159fI1GjzvPp6Y55XT85njbmAaB4L3PD898fr1a77+6mseXjwQfSCnTPCZaRz44s0r7u7uOZ/PfHqawUeEyvcf3rK7f8H/5n/7z1lL5V/83/8F//R//ef86tf/FfMKST3hcI9DuDw94eLAP/mn/xW7YWC+XKyrcVbglGqpgSLt+qgeimzjnKqV5Ixn4JwnxJE4ekp1LNnQHt/Y0RI8oUkS98NLzusza1mpyVHymUqLNnWmETGpZuNtNLaz1mtR6UTRGwtQaU59ImrM7X5PtQ1yHAbuDve8fHjJ8bAnxsjnLOnrQ1GzNTV2oc1AS2p/t+vXFqdK3hjNFR+DIVLVEDHnArFW49s0G1onpibRhvDN62zHuVpIiw+DmRB1meliioKSzbp42k0MwwQutHvduhULIjMOQ/CeGCMhRuMk9K7R2TmtpaDqm024+2z5hAaD9pu/f9Rm+KNquvc2qpAg5GJz24BZHjsXkDCgOiCawCWbY/u4aflLk431cB261LkjmGp8j1ae33SfBt2Kd1C9uVK6gJsm3HRE/REkUIuNt3Q+sz5+Ii0XvBamrgxRoWrAVc+YK3/28JLXDw98+eWZbz498dcfPvLj4zOnlFlavLKNrIw/0AmB/fLEWaHWeSQ4dy0G2prqtgJCtisNOljTnVJqs8zt44nrmEa19J9oapZWDLiyNT0iYjbHHRFt5MPe3W0Kqd75aput35BITRnlcFi6p/cDwQ0mYXShoQMBL2tzp+1dckei680aYZ32VthIu7+aSZfZN/fUSVMFFBoyoI1O3rw6uv9ILwq2PIPtCraCRsW4XX1MIN3IqZk56fZfbQ3vDXqOoQUdJZF2rAw4uKp0srN9ZOu3f+LjpyMDkpl8Yjde2O9O7EfFh4EqylBHXN7jcmHNTyS9kPSJJe8sSKY0QyE66acYE9I1ueAmK3JM0aQlzpu0KOXMumZzn6OlXgloYw4LSozCtAscDxP3u4G70bGPBe8K6EqQhE6OWgJrgVSNcW5azgZ7tZFAL1RKk2+oYNnQYmleXWs7uMDgIzEYzGrZCL7feWhtDoI3c9x+A0j3J5e2CDsj03j1OA0ECS2kpVX7rSCwKcbnno2qRjB0cTKtafAQDOJUTIY4u0y82ZyC8wzR3AfnObEuZTOTcs5TizKNIw8PA2mtpFx4++NbHj995MX9A69evSKnzLfffMMyz/zVX/0aLZnz8xPzfAHg8fEj79+9Z1G4/+JLpmnPX3/7d0SE5+cTL958xa9+81/wxc//gnNy/OHf/g27wz37+3sejnuW/IFvvv2Odb3wqz//Ja/fvObnv/g5UstGkCrFnNTmdcGPO4awx3srmlzA7Kg9rTq3+e2wC2QZmc8zuhZKsTFKIDDFA8f9S1YuFMlkIGWouoL04Cvog78+ZpLt84bYiFLD55v+MESq6BYuA+bguRTzGh9i5LDf450j50SpFb9xQz6v7ksbhWjJkM32W2tBc964KYpJX33vvqfBNtomPZTWia+1oM46YEHRtCA5Q7JZ77jzjNPAungjJYkw7iacE85uZl0TSmUYBmKMTNOEuIj1PE1T4zxaymaj6lt33RPWcs623LV5rTQI3HUu0WfIwHUCuunOmx1rLbbxpLSCM7g/5QU0MUUletc2igmRFRrXxmmCKngtuOIJJUGxsC9DU6zDE9OcIQqhHUO2zrI9xFMV1sU26ljBD5MVd+PYuAiBcQy8HBwxBpa7I+u7d+j5RNVMHCJ+OuD8yOg9spvY7/YcHl7y4ouE/+5Hyh++YX73HsndN+C6rvSZtOXXqKldNlJpbbkH7eVC4wRBx5OF6+cbQbN/7+3ZaOfiyti3f7auPyMEnMutGOwj0Nq+7hAvSA2tueutz/W89o5YN/+Wpv0S2/SzJkIZSX4l1KHZG8eG0C5GyG7Ijdw0ZN1/4VoMtM1XbjxruscAuW3YtXEFVooujUNQWxIhG+HQeAY2Euy28LapNzfLreBqIwK1a9Dk5PZz13KgNZBUIDUMvSMD7Uy00Ym6RA8owjeCsDTJ+H/uMcHkM9NwYRqemYYT0cgCuDDiZYLicetCYMXNK0sxKU/OwSxkMVJOJ1IpiteKSCFIJvpC9IU3DwO7YWCIewTP5bLwfD7z4dOJ81pQGVAXTN7nMl4qx8Oe+/2O4zixG/eM0eFDQvxqc1mtTG22lVNF18ypQq4BFW1yQZMNoo1T0A6gU9M+exxDq8KcODPicd6S3cTgUdPlGqRtm0NpxD/fLgxtAIdV751r4DH5jW+wmSM21Vq7OTsspxV1TSrVfA0ECL4yDYU4OuIQUD+g4sjqKNXhSya466zaEdE88HTJfHg38/bDifcfP/Dx+RGVBQ02dz0/n8kZXj684IsvXxGc8O0fvuWbP3zHV19/zV/86i/IufLhw0dePjzYYi6FaWrs8v1IcZ7ntFJ05se3bykp8/233/Hu3VtwcF4ufDo9U1CG3YCiNpteVr5484YffvyO5+cTu2HifJl5cXdHGAacD1RgWRfcyeHDRAh7fOjQfz9+14hscZU4DBy8o5bMvJzJKVtIVQzEcc9hfE0VK4DWlFkkUWqfvVsBS+uubQ32rVATkzdqI446ty1hzsEwNp14vM4PhuBhCMQQ2e8O3B3viIM3QlvPl6BeL0ZVRJsCBRqhyJmiQBqJt40R/ODxwRO8+WzknKiSyQg2TJL22gxBEu+ptZCLknIhV2V/uCN6K969E5DKMI1YumdkHIXdrjR76AkfRyqudfreUAit3RnWFrpScKXgG+HR+T5ekQa7m299iE0ypv16t0OwDUvaztHZ31rVjGA0ofMZqNSASf/SgkwDYee3sYKoRR3jBjg+IJohJ6SsW4jThrxUM5Sh/6kVV53lQRSLsa22a2FMdCBEk8EGQ9y02LqzUoz0OkyENz/n4e4l+rMnytt3nN9+Tz49EQOEaUCa/JKakZwY48TD3Z43l8x3bz/xjkdyLVBtneobg8HoZrctrhVUzshnspmT0dYWtXHJH20Yul0hbe+RTpyW7d8L5TPuRu/uaWukOEWLkTmR5unSRgrSNkfXSS60cDZtcrjeoYvN7PsrMdKh8bQsaCwTGDDr32gjQUw1dn3ttg50rskmJ2zqitqKPRvx2fVuXgbNehkFaYZCNTcvgdxIqlaAl+ZUWBoSZ8ekFQP99u01gDSk4CYPocs4aycTNg0B2lB0citYuJ4ZaXJ6e0IrgpxvU/WG9vxRLf2fevzkYuDlUbi/Kxz3z0Q/g79D/EuQB0QmBlkIPCHlQpFAZM/bnEnLTMoFiROiYguic0TvGHzF64UprLy8j7x6GHh1HBhkwNUAKbKI46MWwlp4VwunNFHcYAYLcib6wkMcORCIGgjskDBCyGgQu2BKoa4LAwuvR7h/iDzOlafkeVyFdGmKhDAYhFohMhjxuFZQxyAOiuKDdRyhya7Abn7BZjXOWyStLWKusadrS3m0WVK3sbUV3eEwEswgo90wKkbea11kLZBrxnmzoazeLC5LTYQoHMfCjrMtIjGBH1EZKTqhbgdzZvCZvpTm7KnlgCuvcf7MJX9kloU6COdzJl1W4rhnv3O8uH/gl7/8JR8/feDtj2+5u3/NbjchIvzbf/c73n/4xOHujpdfvMYLyOD59sfvuMwXTieLjA3Bk9YF1LwIvv3uW3748UecBKa7Af475Ysvv+b5/IH9dGB+emZ5emIcB/7xb35r/YA4cqqgnuBHc7tbF969fUs5PYNALonD4cCgA5GIk4hWIUw2Y6/FmMHihGk3EKRS5sUCdnJF18g0vCLudgQ3MPiBkhU9v0Mlt3mejR0QI7bWIhtUZ0iXzVpriJyvSxhhcBCU7PN2T+12gS++/ooX91/z5Re/5NWrN9zdHTkcBsLg22VUml2qIQGlFHzjfxStrMmsUZ04QhzxYSAEj/dmDlOreapLVXKp5GZtjXdUrTgX7ditiaVtnM45jsc7dtNAWmdyWpj2h9ZpBkoWxmHi8TTjZGJ33DFfFu7396gIl2VFVBnHiSnYpj6fnrmcT4SoDNNEVWVNi71HGnzvHKpmMFMKhPb+jSAXMYmZJQf2Ysh3v5JayfOZunxC8iOuLux3ETk/c3n/EXnxkv3wM0QcOZlTqlNLy3NVED8he5qrd4G8oilDqmhOlkhYV8RZYVRKVyWpIQYNnaFWfKl4MRqbc5bMh4vkauM4Y903E57dERkfcIdX3L/5inL6SFme0TyzasVrRS8Xc+ebTLb35v4V/+jrzNP7E+n5Ld4HShWWlPDTQJCIc1gBFwBXTOfuC/hKjY61X4ROG9H4OpDR2z2kKQj61zafLboTXvczaRvvtvPZ/66Js4ZwBtUtn0Dw1CLNn2PDewzNaFtepVDKsiEVTjxak+lDwkjQkVxXNA9UN7QGy6N+7O/muolJQ4E3s4+OQOjWkRtiYMh1t/7t/hcq/XNFm8dHzgt0jkCtIIYgVe0+tUI3dAMjAUorBqyQKm1s0fr+rjroRUJrAPpxV6A2cnL/3l4AdvJhLTZ6cNLN0P5nNvU/evzkYuC4r+zGwuBLk91GcEeQO+wumg1GCjaT8i4SosetgmYjRVil2qRqJUOdGccLD4fCq/vCw0E5TiNeI5IGtAaowhBiI7U5tAZqsziNQ2CKyi449oNjPwrTIMRgc1BloLJDZcV5wcWVqIUoGXUFWQM1eC4qXGolmV1JmwEa3OVd0zurEsYJ55pLotBu/mYJ2UYebiO7uG5GuMFDfS7V8P7tArEza9CzpSVIu6hDO+ntxpBsUst+I/qCekV8ZnAwBCUO2hLzXDMIMtcz7+3CA8G7Cc+erANgcbO5RVKrCGsqnC5PvHz9kuPxyL/+1/8agK++/JLL6cKnT0+oKnd3Bx4eXnK5zHz7zbcc7vaIF/Z3eyRgjl6ukJeVd2+/5/HxkXmd8SHwm9/+I46HexSH1pXdEKhp4ZwS5MKnDx+MoLasfPHFV4RpwvvIsiyYv/2O3W7PNE2kdWZdl0bcLKQ0Mk4TwzTZ7Lh1vpaL0W6oYhCd8yDZxlH5rLikECC6A2M4sotHlnAmy4y67mpmqoHP5H/a4UgaBHq9A0NwDEOEKLjg6H3Ow4s7/uq3f4aXO3bjHTFGYoyM04h4YdVslqJVrftriAC126V2LwzLZ/DDuJE/VYwXUbNFrq7LTC4t0KQVmopd1yVn1mWh1NryCCZCSxgszd/ciW8jLWcM/ayEOCAixDCQhzYVdd5GeMqWDOq9ZxhHSm4YXGd0Y519zyux28G8CRy9i2vEwOLav7X5M4YEpGVG04LTyt4Xnp7fYmXYymVJDMHz5n5gXc+k8zPj/kiMI5VkXX4j3lJhqIL4apyHIEDEeE3RiiaNdrFIwY8TZgXesXGTptWcKcuKQ9uEoy0mCFKT/bUpUrTN+QkBpr2NI6cBWfZomqEk843wbssoGLzn4c4QmPN5oeTC958+INHCn5Y1EUbz2NhGjGJrSL3dVW4ft/s31y20/73zpWS7zluXK7I9n9TrKMEancq2AN4UE9q6XqdmJOR6Ib0tiJ+/CtWOr9Wb12lXSA8Qck0ZZveCrY9/n0Hfn68D8K3Q7EXLtsm3WX/3GLgpkq6BRtCVB10pp9vn5XOQX62k6UdHaysqunpt4xUY0f46ErkWLNzUSrd6Ivvpsp2XrtRxDXlX6aZ7Pw0a+OmcAbfgWS04KGOMagngIyqR6irqIxoCefCUIVgHK86sJDOgYgujdzjNRLdyNxVevai8fFHZj+BDwOke2KE4s3/Ek8WTaYRChegdk4/sBmkflSkmYrgAhZJBgkNk127ogIszMCMusXOFGoR1dewKxGSQTzXDb5MR+oh6j+2tkWk44NzVIMJS3wwa625Vos01UDrBAyPyqd0UVm5csZsNIWiXkMHAprd1zQZZxbpBM1RSemCFkpv5jYF66gR1LUK3xzLkyjD4z4hrwe1AB1IyJ8Fu6NPnrzln0/aL8P79e0opxBj5m7/5W0rK/PmvfskwDLx4cccwDPz44w/88GPlzZtXvPriNdMuMk53HO8m8rJwen7mcNiRcuLT4yOlmLPgX/3VX6HqGMc9tQjff/ctT4/P7OLE/f7I9z/8AGIQ9PF4BGBdV5xzxDgQ2uap1Y7PGAJDiDgxo5T1MlNQxrIjDM37vJnIlJTMTKXdVClnypJwQQiT4sZAdDvGuCP6SKkznfCKdFlquwH7mui4ZkV9xhkwnT9eqcFvxcD9iztE4Hg48PDwBce7B2KMLOuKC4kSBkpphCdthFPvSfnqu+4aqTJESw7skGithZpTUwIklpToMac+2LweZ/P6dV1IacV7YbebmIYBETWtPEbyik0BYDC4FRohNma3cwzD0NjPncF/3cxRta/nzJLmRvYLKFCqMoReOPVCvBVYzqHFRhZKbluKFTBeKqILmk/k0yM5XVBW3PKBXJ5xQch1JcjEOOxZ10RaZ+I44oeAY6Cz1LVYqhxtE5DuaikgwZuJS5GbJrND8lconZaJ4kJokH3Zujp7KI5kzUK1EWqtjWjZGiQZBlz06DhQ1wt1XXA5W+Z9MJ8GxdJU73cTf/nnP+cyX3iez5yq6fxzyVtnr+1YWuHRN+a+ZfdXZa9sKxr6V7e3e4MYcEUNgM+Y+q7dSL0gNnlc38euTVD/WXNMaTQ5vWH8I+28tA1SGoTeOQz04DgjtbKNJeyjVvOn+HtGO9vYrf32vhFvfIdm6tMQAiMEGlQv0rfr26JBUc3t9V839t6s9VEHN0UtWFFGqVsxcC0aqhFXsTVmi6BuhUBtlrxWQPfLr/kMtGsCpBkTOSsEqr12uTnf/6nHn6AmMKtG4zwI5E5SMwg8Y57RgrEZVyekaqxm1AgqUWD0jmnwDM6znwKvHiqv7lcO0wXvOmt7B+GAKixaeErK0wpLhqKO6AO76DgOnrtd4uHg2I+FwzgTo8MxUmpEdGfIBVa4qAjijVDkw0zEnBOjC0SBVTBWulo3E4PNXZ33BF/ZD2LGLVJRzKKyamFdsuXaN5Y6WnFijPDaYNAqvmUd9AWkXwgdgroSDb0EQiPKACYzaYtgv0HM5CIjiuUltJNZxb4fZ5BVZUHc8HmlXAYup8Knj098/PiR8/ncoDMh58o8L3z55RfkXHh6eiSEwDzPnE7P/OavfsN+t2famaXsMAY+fnwPKM8nTxiUcY6AEoIjhMj+uGO3nwg+cP94R0qZr7/+mvvjHTkrf/j9t/zN3/wd87wyDjsexfM4TPz217/l3bt3pLSwLDMpJfbTyH4/WQc9DAxxYJmNyBbdyuDjNisdpkgYR9Z1haI4D6Fpl4N4EtKsPUGrWHgO4LIj7vZMwz2H6YHT/JGcTje+FM32uq9b9bpCOqQFh8i25jonBKeoV274gxwOB+7v73n18jUPD6+JYU8nn9ZC0xVrgwIVqiFrpdjc2cfQzmvjRagtQq4FpmgLKbLsdbvOnNvgKiM+ZQtgcU4Zx4FpmvDeU8rK0uSFPozmTOjMlhrMObE7w1W1YrGqOQ0am9+27loKWZVpiIzjaEVsWxylFW2b6UufdzeWtDSMU9Viqy1YqeI0ETzEOjO6hepPnJ/ecnl6z25UTqf3uMPE7rAjl4VaA/v9CFjELA5ciLbR14hPZyito6wd+m4bpxeozc5bHT08qWYr6/t5l/Z/wbUbEeMctM2CpkgRTbZ+Fm9Jmy6izc8j+MZjiBF8BD+Tn54QzZb4mAz98uIZJPDm/sBv/uKXvH965N9/8w3rkgmjBWt1ezJrFqxQ2arVm82h6/Jv9+L2QtvmY4Xv7U9AKzS6lEJ7ifF5oUGDw7cCpEkVZSsRtN1AXVbYn/+KTehn33f11jBr+2LP3pFXwUZ0VMKGSLTnaufpeq3RUID2LW1Dpm/kqob8svH4WzFg6Bq0cUKX77ZNvbRCplmVXfkJ2hHEriC4RSfaul6azTC1FQK6+fF0BMqeqnMe3EZo7rk80oYTLcUKmu/AT3n8CQ6EI97vcf6IkqjVQ1rI6ZHVeYoviJ6RlMjZiEhalUFsZjuEyDQE9pNnGhzTMHC3v+N4N7PfKSGsWFzQBG4EGckZLvXC01J5WjKXYiYfh+nAw8Hz4pC5O1y4vysMoTDGM+IzcMTXYG9PJyoDttBkq8R9QsrJ4JO6ghqsFhzkCiKBGIJtNkMkDgPRwyCF4CrOW5JhqULVTPKwrpV5gaU2AhHdAMKMI7bbSbdamU4i2VKo2hXr1EiHDncDU1npaxdwIddErgulKEtRkhO8SvOvqCDmrb9kITW5Vn/M58rHb97z+MHx4cMjl8tly3JXVcZxpNTKNO1wzvP27VumaeJnP/s5OWfOlwsvX73giy/e8OHjW06nJ1483LEsZz59zIgoy3ppeQL3jOMOlO147nY7drsdH9695/7ugcNuYhcjrJnohPky46vy6dMn4hA5n8+8f/+eECIn7/j666+4O+yYdgeDnz8W8po4jDtyyszzDCLc18qLODaDL9PbawvrCd6Rcw/IMu170DZeUpAaGPyB3XDHECYuyW/dar/50N5TbfcqiAW/yHDlXXsnjNHjB4Ehcmrfut/v+e1vfouTO1J2XJaZEHYcdhOE0Cymm3xIaclqpRFQr+Yi2gq50ohQxhOwsKEesiJbJ2IvtGhpK3olBIf3gWkcWyFQWNdMKRURT/CeEIa2MAWCV07phBOLO661Mu325LSaMkDZyFodMatV8SEQy0gu63ZsVC1qWXH4UJsaxAqCqjZr7iYrtVRqWsjlYol4esanZ/zlLcPlR/LlPV6FUJ+JKMfdkaXJxMIYSUlBs40fZWgEQoeUBDVt0LBzlR6kRnM/tZHglVC2WQAb44xuDy5ebRHhuvhrLaAFIW2LOBINQXAWPX4bKQwOCYMtzgeFNJNqYV1WU9PEESeRKUz84ssv+O1f/SM+zQvffHqkqxmkddy6rT2t2AL0s2Xfzql5cvRRArYu0TpLaUUuV48BIx7aKiYqTf2EjTX6DPwzdMEK0K6Qss3dDNy6l8r12NzO9K9NEn3l7E+hdrws5g2qptYJV0r5Y2Rgu0Hb83ZkoB/3Hjmn23WgrXCt22rdUIBtk1cqFlpnRW77mV4KaBsTKBuCDNWkxzeIwOZzcAPLdFMkO5n1+n7FLrrazmn/USuUquVG0BUSRnzW/9zFQKlHfDWSVtUTmjNV36FuQMNs8y9dkTxT14ymwoSDQfFe2O8c+wkOeyX6yjR6joeBMISGrQac30PeAQO1epZcuSTlkpU5V1J17GPgsJt4OAw87FcOu0zgGcfcyqYBcQX8YChGjYgOQEXcGXM1A5fNP1xropYB6ogwmBsbQnTOPmIgxsDghZ2PDK7ifTZISqEUWKUyI2iqZgLEddG9Vrv9fLcLoVXs5l/dmaRNp4qVRZ9fzrpd0AZPJVZdcaVwyRC0kqowoATNbUznKdmbPK5O2zM9f0q8nZ84nxzLkilFKdlY1t4bOXJdE6lYN3M4HBmGgVIK83zh7v6Ic46Pnz5uI4aaE8WZMYkLgtZMKiunZzidjEo3DAMOT06Fdz++Q1TYjXsO+zu+/uprnp+eWS4zgw/UrHzzze/59a9/g4rw4cN77u/vmWvl5fLAfhrs3mnmNeu6cjmdGEKklkLKmfk8sNvN+GDwubZsCWPcm0dELQXnqiFKzdJTqxKY8B6mcGRwewKRSrBNSjw9P9OJUjqhpxqD2zsHIW7He4iB434gTkodh+3fd2Mk5YTqCkTiuCcOB/Bm3NONY3CCFIPntV7jhk0Sa5eXOANPy82ocetwBEIIKNaxhxiMxa8KRPDeSIchULSSciKljPeR7n+vXcccPN4B5zMuBNP4qxpXoPZO8wqlOkz9UNtYYRgiuhS6+6Y2QmCfMftgKAfqjOPQNOE9EKyWBZYTuTxTlw+cHn+gfPoOtz4RxYigD/cHYiwoK9PxjrwIuSwgIz6IBcWoWvfkByROKBYeZChEaZC8IAU0W4iN1oxIMZb8jYrBbk1jum+9ccuUqKUVAtrsovssWrRljiiSC+TS64pt3XAYh0NkImjBSHtqZEUHWjxxGPjVL/6Mt6eZ53//H5irza9r0SsQoM33RG2zhht4iqZe2piBus20u+5duptma1KvhMO+xjVMQKErGWhDALnZ+ECNsLghFU26udkI96JFbz6um+WtedDt6zFVgWyFuYW7sb2+6+jhOo5Q7Zsx298/4w00ubn239uKQG1RxPbyrl4CVhh0jkFf//swpPENkFY4wrXQuT4sA6cjBmzvG3QLne3vqI9e6oZqaBs/3xjV3YxAfsrjpwcVha9J9T15XVv3XSj5A84pPjwT/GCRk6lS5oJblYMLjEEYhsR+v7DfrUy7C0MMDOPIMO7ATRSNZpbDhDBS7N4gFchqTNzaIMRxHNhPkcPkOU6OXcwUecLVE5oKUiN4BXewal8FYQBJqIuAbfY9KtgkWXZCjXhh+v8gYoFMDqJTohOCE4bgGdrGUXIhNfgnq+Kxj0SbC7oeqmQnvrsZVs1NZQDOVTIWsoMkArHB/9IMYiBrIulKJrXPE0mzkcQozLmgKTMGT9RMKL7B0YLowLIKKTvANqLHx5kf9ZFaIrnU5h3fUgtLZV1X3nzxBX/49g8AvHr1kv1+j4gwDgOqSoyRH3/8Dqi8evUSkUKMwjBExjFQi2XcD8NAypWUMjlnvARqgdPziYf7B97+8AdEHV988SXLsvDp/QeceNJaeP3mC5Z14f7uBe/PZ969e8fD/Qvmy8wyWdxuHAfiMOCwVLy8rlyWpc3/wDc/irys+AghRlAlhoDqZBtOSaahD43JXo00NgTPYXzJ/e4VS/pAqqaRVjxFrVMyyK4T4sxcKHqPG4YN8IzRc3/c4cfKebguxDln5nlhGI9M00QcjyDRsjEoiDejoJLzFmjkncf7QM9ht/l6kxeJKRlKraZ7pnkNSKTLWb33tom3Dq/kRGwBRR0dkqZhdt2Jso1WXCMQ1pxwPprNbIg4pfkNNAIlTe8O23PudocGkTqGYSTllaKV3W6HeN8Mh5Q1mV46xoncMh4sP96igoOvFBbS6R2nd3+Hnt4Slg+EfGYchLCLjN42fdOMSiPlVcqSSGmx5FVv+RKqra9UKxCMz2AGXiho1uZsJ5RaKNmy6n1oTom9m21JejTUZgPNpRVlVWkJTuYa5zC5X7a8++Lc1ZzK2ZpUS2YpNqoIYyBMEYIR7yy4zFCH+7s7/tGf/wUfzonfffMHKkoqxULisq1rYYiUmtoLujHEwjeLYDvNvo0ZLXq6F6S2sYm0DUevRaohH2xIdjeIE7EC7ho6zzZ62LY09fQxSofTtzn5zSvcbLX5bAixfX0rGmhaftiC23r1YjyQG7Rm6/LZ6g7VvBWx2lC2vtEjN2MC6na93BYuvQC47fivMsbbQqa2kXH/N2nXid3TalX1VoxY3VGun7daypqRVqRvRBFujuMtF+MffvzkYoD4hlyEkmdEEyInajnja0V1wZU94va4NeKS4pIwEpi8EOPC5E/sYmIMyjCMhHBo5Jk7RO+ojNQaGzlPKCpoS7WKw8h+2lHHwIvjnuNh5LCD3aj4oeDlAjyjmqAGIKL6BPWCkoHYToKZjmivQqXBmX1OqdeZpWtwk6PiKa1Kj/joCEHx4vDqkWoxKJ4OwtkJKWjrCNplqpWsmVwt0lJUGgnKNmFpVp+rOjyeWrONCbZiIJHKQmaxwkATRYz0tJTceNF4XUsAAQAASURBVBtKdJ6gZpAjQCmJ9VxY80gvBtZVKbhmO5sw8kphXVfbnNpGVoptdJsxjCrDEFnW2YKIHh+5vz/QY1P3uzuCd6zLunWvzgm1Vp6envAuULORfLTA2x/fc3d8wQ8//Mh3333POI48fnpEc+X1qy+4nC+8/eHHlqonpJzbpmYLRAgDwzAxTnv2h4UBg61zzsTBYO15ngnjQNE2D24Lfm3BVz6MLfRvBVfxmH2spUOO7McXPBy+IJVHnpdKKpmsthEgnXlsxz+GQAyO3WAysP4Youf+OOJj5dNwveWcwDgNjOPEMJpzX6k2B6wVxFk3U1vB1p3cuPafBnO3xdUWC7dd37YG2fcFH8yDIdi4I1ea94Jv3ae039EMtnzY0Ku+IDvn2xgh42IwImcrakvb6FUzXUHgfaCUYtfYbnM2sHu8hcHkoTINA4rfUkFL0abaacVINl2314Suz5TTO8rzO/LzO2J5ZvSFQGUaA8Ng5DLnxTT6PVWvBlhWSloRN0CoG1LkencPmHKo3cTNk6AXNhsrvlZqKkgzI7Nr0kM1jxHZvt9yR6XBueaFoNu16LwYyqJtrah0LVHbRApLxkayDtxgckTnAoonqqO0lMAvX7/hVz8/83Q+8+PjR/KSiMXR58+OQC0GqWu9WfarR+qwEV9d8yEoooA1HLJ5mtQ2KugbYOvEG4K1weDNprmKOetZUdTGDn2B7FwCtTFJb7Y7efQa9GUd/20RIdvm2v59a3yvPCyLwe7PoNv36k0nrdt5liskvz1Z3X62boTGctPNXwsK2jGxYD2u8E77ruujjVr0xsPhsw27j4+dXZfi6Kqb0pobmrIMbVk4ztG5Nl2RJtaB3ly3P+3x08cE/o6kK6k+oHUBLdT0TGBhaBeQcwFXAqX0+NFIcI7BOaIkAs8MvhDc2N7UDpV7RPaI3oF4VM/Np9wWlxgCu2Hg4f6IcyMvdnvuD4FpSrghI2GGekZ5NnvRMqD6jJZHVJ6p8mwnUhMesCjbASTaAsSAMIJGVL1tzg2mRCtaV7RmarfTrLR5VEaq4gkEGQnO4zrcD1cJYK0UrAjImklqxQAFS3b0st0IFqFpN1ZQC7AxiVa1gqDOpDqTWzFQxVL1ILFqwVRxjlCqSR1roSRFZ0cuV0jKuYHgR57Pj9ate+vE53kB4OHhFZeLOQmGYJ3q+/cf2e9Hck6E4Pj46QNUm0/v9xNaV8Kb11ASy3lm2o3glbJmzqcz7358T4wjy5xIqbDfHfn2m2/56suvefv2HW9/eMsQI4gQxdCZN29eE4OjamHwI58eH3nenci1WsAN1YoOhGU1stuLaWIYB5Zl5XQ6MYwTfoibBepmMqJqxYAfSS6TG/veSSD4kZwytUTG4cCL45dULshj4nF+RJv+2Jb5KyysKMF5xiEQx6vzV/QW6uWjmtFQe+x2E/vdRIgjzhv61Z3FzFu8LTJyday0a7D5pAlcmdifvy8RK6y1v67QLYB9sxg2ot8wjHjnSCnZJtwLZAwlMmdQ0OZupuKaSVEkNJSoaLdirg3hs4UoBNv4c05cLhcOuz3eCZfLDGob1fl0Jg7jVkBo42yklHDOEA0nED34PLM8v2X9+B16eUuoZwaXDb0LA3G094gPTfrcTIVkQKIQBkzTXjMlJ9RZsaCVrVPzja9gfAFMAVLMPyCIw4eIesjriZoLIgVLzRNr2XrWbq3b1dHLtSKW5md+GZUhKiFGU/oI0BwlO3lexDHGQHaWpKjSSMXRXB6RgaAB/MiLaeQvf/lLllp5/h//Ry6XFS1iqi91UEKbP4s1Hu0h6pAScbWBFc61jtNUUSqlbcwt96GhBQBF11ZEmWeAc9fXLU5xYtTmbeWR2mB92v9uRqFtk+vrXyeYCnLd1MUIm/Y7PJ2Y93nvaxu/JcZuT37z8UeweS8E+iLcnqO/ltYzfvb5baHQ+/u2T7f4eWXTeLXN/Hboe1sIfP7S5ebZ2kcrdjy+GRLpdiwsh6E1sUjbP3tsmflo2NMqP+Xxk4sB9VBrJJWJVPaUslDXZBW5c2RxjcTmKeqZJbDqgNaMq7ZB1ZLR3OfZEWRGZEWcpYfVRsgo1dnNWhxRYD9EvBOcHziOgTFWvF8QTlCfDAXQkxHEtEC9UORElU9UmTA3LhA14p/UCWXfxgQTykDVwfgF/eZR28hrsftTgTkVgoOSlaiK1IoURatHqsGBRSupmou1Nk110UzWlVWTbeQkEPBk49W0mZuFYdhN52ozYcFtqMKaFrIuFCwwwzwTM4h59CcqAcUXZ1W8WiaB1qbBvbkcc67bvD/GaPryYSDGwG634/HRVAQhhAZnzxwOO3JeyQUulxPH/cSyLHz48JHjYcfz0zMxCCKBtJhTW6qVT5+eSCmzzJlSrKD64ektHz498Td/9w2CcDwe+fbtj8QY+e2v/pLj4cA4jnZccmG8G9nv98zzzLLMLOti9rLOfPIv80xG2KW0VdJrSrbJW5lsx7FkxiGYU1e12aJz5kyX8mwFWKiEKpR1ZIgDx+kllZllfWLOiVLP5oomFecrnn7drTgXbVwTy3a0nUBwisXyXouyaTRCJW08k2umirMcgR5igWwFwQZjdyTAJgNbR7VJjRrxTiQ0Qp4C1yyMohmw7/MSbPmp0nwtZDNl6bLADmPayIA2nnAt4VJxrssWjZtQW1bAMAwNIXCU3HgCTswBsC30y7raxu9DQyhsSepe71oLURNDXXHrM/X8AT2/p84fGSWxi54hGJKn3qE+IjJSiViGRES8jZHG0TxPACvnWvFUc8G34C9px9JqMo+rTXJcu+TLRgpehAYpmUuh3cAb0khpm2cbI9VS8OJNRV7NPCrhW/CaeWDQk1xL33Cr5WZ4Z9JC36TcLoIfEb9DJUKB4AKvX7zkL39R+P13bzmdV6S266YIJQtaW17ELTKgDikBKYZ2+Rbvbs2Y5TpoKwysSrl2zlWtanE0W3W8Le0NCjce9ZXVryJt49J2nWqzxW5Et/bUtnnK9frfPtebEKvrWnYlZ2+/vP9l+3u7jLdCYOPs/dG6uH39s8LhFjG4KVp0e/YrQsAf/3l9R9c/r2s+N8hA91zoCEIfUXRFiNvIjJiyqB1ze86elNGUOP0YcnPK/oHHTy4GlvrIUi7MWVnTRM5H6qoEqWTxBB2JwZKjijoSnrl4QqokMcjfr84iiuuKDxdcfUbYQ4g4CkU9qWbW7MlroaaI1MIgQpwGYhyZomccCs6vIBdUzmg5oXqxRbAK6EKVM5lHiozGayCAGPTudAAORtyT0XwS1FOqcQosrMTSy0o2KL6iLKVQq0EzTp0VAq1YSOZmypoqa6kk1MKEtJA1kVlJdSGTKPZV24TaaatirzHXRNXVTrLzrRiwiyDl1SrtFpRhHWoxOC4IXiFWaVCjXYSD822GfN2E1pQ5r7NJwFpIzegcyhERm2UjEGM0fXitjVhokaGlJpzsub8/Mg4Dy7zw5tVLLpeFEgLTGLlcTpTVJKfn5zPeR+bL2WSOzvPDj+8AYU3mazDtj0wHmyuHceDh5QvWxcYR05IYxpHdbtcKlGiFTCM7TrsdMQ7ky4XT+dxIqVac5ZKNne4slIqcGbeb0EhzUReGMaLVNq1aV1Qmcx+sgTHc8eKYyeXMykyeZ8paWkGgOJ/NUtvBYS8cj4J/ut7+zimhNf23vYD3JhMsmsh1pajgomW5SxuvWOdli4158FvOxzYT9G3pUK6FQLHNXRrc750VqbUaEdH2MGedN64pFBwx+gbrmzmVSEcqWtNLhyoF55r1aa3b91rgTSSl9Tqu6ddQqpvPgdlDmyWyc56cMwGHet02E/uaI+eVkmZyfqI+vmN++pE6f4TlkTAIMY6buZSiZhjkJgqRqj20xrpvNwBiJFcRIWkfV9js3Y63qQn6xt79/ru8s7ZMAqm1+RNYQSpdxVati7ZjWsH382fwtZeCl2rpdzmRXAU3mJOiM3vZegOb+1Jw3kadpTkzqtj6E5xHXOOPJFPivLq/5xc/+wVvm0pIFLTodh4pzj76QwUpHtciuL22blPMWlxdQweobFG72NjAiNC2CdlPuU2vYOY5ikrB6fV7rZjsMkFn/ge1bfbuZnPeCuFeQFz5KP3a35CBTfbZPxT9fJfv07L2nuE6828X998rDNq/bz/X7+bPH+72d+lNEaDaUIJOKbw+y62l8xWvYNvEtf3eql1FcB1NXN9GPyZtNKCGzuh1WM0GqfzEx08uBp7O3zGvhSUVcvVoOVKLJ2klAU4DrgybJ3tWyBrxSyFVh5PIGAa8rpAyQ1zw9YSXT42F+oxqYCmReRmoc4ZsM25PtZCZKAxB8F4Rl6ksOFlQWaExq01OtZI5U+SJ4karV2VqcJZY18DUTlREMYi2qKECZihUyWVF3ApSbIa2JDREvJ9ss05KSUpOMK+VZc0subRioLZiwDp4m+nbmKCSKNWyzjXYlWKRzQFfHGvtYhnX3v0tcNTlK1YIqBZys/z02tirrt2WKuSq1D9CBmojqAxx3CRSIkLwkVIyT09PLX8hMk071tV4BPN8YX8wVcLDy5fsxsjxcODx0yemaY9IZZkv1BY8k7ORKYdhNFivCpe5sKyJXE2r/uaLr/j0+Im1FL742c+ZYmCcRpZ1JefC3d09ISW+/+57dvs9v/jlnzEOI4ZuJMI42rxdhHldmHYTFOF0PpNK5e7hBWtORGe8Bi02wvGq5FIAg9ZitDTCZS6kJVnBuqymJhkj4+7Iw90XLHxk9Z/I9cyyGqLlJCOSORwG7g6eu6NHdjc3Yi1QMhI+X5SWZeFyPqNuAjehfmrduzHy+8y6M4ft3FmBY99nowNbUXQj4d0inn026lqIVq1m9IM6i0JWsbwAF1pxYh1zt8Luvwdp3JfausHudMgVmejfW6snpbIhDB0tSCkh1b4vpZWKMozDNhettdJYvBj50Tb4dZnJp4+s774jf/qRkE8MWAEBBQkRP+3M40Ma4VgGqgwIA94NbaXPtuC2MB/UchOG1l1a8EwGWbEkYMG7gHhLErUgqHrt5to4oGcrcgs314a7N8TGCZZWSCV6S8SzcY0ZsjlRJNgooGAogfGSDH0oVUm1GuAQHA4LFAtNwQIgtTLFyM++/Jrf/Y35Dljwk3GTnA3yjdvQHlId3UdBtDug2vm2uGNnCCqVHqhjm3wl+rZhqxHYZNu0r/C5cQaujPs+/tVeHzV4a4th1taNOysWthjj3uv2MYRcEQOpBpF31cTGR5Brd3wtLIQre8HO4Ta22EYXev3rlXhwxRy0/5Nuz7TB9+1rm8NB/96bauB2TLClXUp/PQJNBrxlqohrxMhebNjP2Rrf2WodFTD+mb3+nwgJtMdPLgY+PT2TKuRilDrbpCbQaqqg6nF1QNxggYzVQw1I8SATO31Bqh7JnlJnilZGqeDPZpUrDi2BWo6kFEk5IGXCS2jVtV3UTlekXpD6EXgEfW6zejvwq66sNZFrBjL4FdGLzXS9p/SDz75tsvFm5fTWHTrFNVKddwWRDDWxpApxwg1qnUcS8qzU6plTYc21Jc5lktCcBwsF6/6qZrpJRckr1Vl5kl1FCTh1pGJyJjDvA6cRqrHFgzeHNtz1NKvaTK2WikimsjZfA+M/VARpVs7bSfcD++HIcrm0sA2TLNVaOV/OPD8/M+4mxDniMJByxnnP4/NzY7FqM5kR4jBaRoM4dtPE+fnM+fzMy5cPOInUtPDwsGdZEtN0z3ff/8j6fObu/p737z7gvWOaJitQauH+/hVfv3nNoPDh/admuWsd4KvXr1jn2dj/BGpVUl5Yl9mkO044zxd2bm9Ru94xXy6EJuer0MiHdqus64VcZoS1dT1WsKS0spQncjb2sAs79j4yuDvuptec8wfO8wnJZ6qsOJeIFHYxsvPCTpwZWLW7PtfEnE/E2JArrKA6nT9xvnwijDtiPBJELKxKHaWquXaiTaLt2gIjxkDvd66A87IF9dSW5ChYx5uwAmG32105E22u7ZypFbQTIhvCsM3ve3fcZhE9UdA5b+o0aZtxX5haMIp3keK6rr3JIH1hSQlRS0gsrcue4rA9v722jDTpm5ZCTZl1OVHOH1ie3+HWJ0a/spuCZRfU2s59oGBQvLgWk9uUAr3TtU2mHVPBAoay2iqoDqcNFavZJHDeo8EbB6G9Rtf06PgRSks6VUXU0iBrlcbrsB5NtG9w5jDntIKrhhSpIFqgOkrzdMNDaWqHEMy8y+KgjaDotBcpro0gV9ww4rwhPB7h4XjPYZz4hCM3q17nI4qNIbt8DXqv6RGCddfqcXqTekcBaS5KLtFliUrFSUN36BuVaw6sdj5sS47k9htU2Ux5+nzcyHJ2ZRuP81pgWtiJWHZEKwAMEW83l1wRAyOrCN1fobav9XN9lSUavG/nrG2tW/F8u3n2cQDt93RNf5dE9vfcVAwNWhDYihKT+HWkhGvnT5dJ9o29vbQ+7Wj3kVZFvGvjlH6795FCLwKaOq4XBI0n0LkKf8rjJxcDH54cIbaMcE3kvLSZnuKIRD/h6khdBqgR3ywhY9ixO0zs7yDuFqgfWNJ7lvWJUBKTXtiRCUGo6snLynqB51Ml55FhuGM3HXAygAjRZaI+4fI7qB+hnmxxbxDTXJTzkigZojimIIQwo+7C4hRtMZdSJpbVHMiG4JlCoWRFfDRkYSkEl0Ezo2a8JGqayUPmkhXnJkqN1OrIKZFytcAMViqLsf2bY2KlSVJ66IpiDoO1ovXCyqUtqP2kRrQMSBmIVfCMBKJBeM4sMJ1UKtbZGTiUcXWGnCh+QdgjTHi/o3QP+/aIYcdxMmjw8fmRUitxDBRdOF3OzGlFomPc7TgvC0+XCyknxmnHtD8gIjydFr7+8kvCsOcyf0dRCOOO8XDk/adPvHwT8MFzeT4zysjv//B7/tk/+2f88MN7Yoi8uH/B/eHI6fRM8DtO5zN/+P3fIlrYOyGqcn//Au8iy3wmBk+az9Rp5Pz8xOCFaRqByrJeWNYLl2VmXhdSyby4u+ew2+EEBmeTtZwTc0lMl4EwDCAVH6R582fKWsir4IikvDKXT3ifiacKTAxT5Oi/JMULp3jmXE6s5Qn8wnE3cRcjD37PUQ58KGxry1oTp/zMUGEVD9wBMK8fSfUFU3iF9wktC1L2pNmKGx+6JrzB2bktjmKDoHVdwSm7/UitmbzMOGrrvCqlmlugOkeqibU0G+PSOn6trMtKDIHgI2tajT/iA8s8G/zcUATTXRe8CwzjtPEFQNjt9uRcWNdkzp3DgLl+CiIDORd8cIja6MAkoTvLTEhGYNW8ELUyiJ0XVMhzIWohk3lePrHWJwa3sOqM87vGtnYs54UsZ8bDfvPpQAshZ2RZDJXySq2r8RV8NOMpIpRCXp6bv4GgS6amhXE/4EI0El4zoxIfbQyQFXQ0DkpdEKdEqUgMuOrMm8ibakNLC60pFXwgpZU0r6R5QYDduDOTw2K8puqsEBMfkGDcgOpMuTF5Ey/LutoYI5hxkpBtE3fWWU4h8PXr13x6/5Gn84z6YAZOTszV8nbVd5gM1hlEqdUK1qDe5GoUKAXnle4hsfEBNlDq2v7aJmQZsLbaDXi1gqNKSzDU0iB/i4R33gzcEoWikEVRDxos58IV39QB15l6bSoM0VaXdv1/ra24HVoxY5t4VwRsNbq0DaPRM2rzy/hM+rgVEb1aaGjQVpaDuCYtvrIkm+mTNR3b9N9hRlaqoAnfRm2+jddEnMmB9aqW0vZcrlRcKYi2Mk6aAk0sJ8QK2eaSue0jusmLf+rjJxcDtTpKFVytRnQjmc69wfNCNplhqT0PhyFGxtGzmyLD6PFhhmrwVsqVJT+TaibVxBAdBWUtmWUpXOZkBkc4XBRcSngpLKwoT7j0ESmf8Loi6lHvmB3MyTOvB/JsXvAxztRakNAsYtlZF5E8pUS02iYbnCN67KZRsferSkoV0YSXhFSlrIW1LGgjpGkJxhsolbUaCmAmQgZJGmOoXWAqbCSv2itEhVZZGhO720f6Bj+aTjxIIHZGvF36QGOZaqVWG2cYg9ltCypgm4e7sth9m/ducLBY17IsMymvxCFwvpxINbPbH7Bo24wuhcfHJ45HKwjWlHh8eiLXQhxi04gLnx4f+Sp9xW9+/Zd8/8NbyyPIlecn897b7XabBXKMgX2M3B0P7KeR09Mz38v3/OpnP2c37bi7u2dZVoZh5HA4sMwXPn38gFDx3rz8EcwoZ10ZokHCOWVzbBNBc0EmYYiDEceqEbq6VWouiWVe0VRIq5Elz6eTzZXTYoucE4tIlpFBjozhzlw5q3Epog8MEnEayKuwLtfuK1e4ZBsnpXy9Oddq/JE1X1jKI7XApJFhPG7SvltEE1e3RQbMDEZEKSWTm/69O6bVzn4W1xIwjQhaa4tAdkIuxWbi3m1OjCJmhJWLyahCMHKbZZIoLrLN0mtTKtj1Z1kdADGYjLGWYjP/2iS0vsGaDYVwPtgGvKECuo0WaF29D0IcAi4EqnNUsXtzTcVyTLwn1UpeZrKANfIjg28yOFXr9O1JN0940cYLUBphzxDOQRxFnJ00X3ExWmfuTQJHsaaBZAE5Q4j2s6htcs4g81RMY+5pG4xzlJLI1eKxl3U1M6O1MI4TcdzZ5iayjSGcd82rxBQzvZfum55UQxlsw7OAJxDuDju+ePMF3//wjtPyllQzvsksq/Ub26OTUktt0L7zNuu2HbSdKtc2Xgc365U0SL7ZpxlK3NYxQXDqWsEW6NPuIANK56QY28C3qsI8PFpRJH27veECtHvB4PtWFrRxjbRRWZem9/dml1IDzTuzX0FrQaprb0caGbDxCLZ5wM0G+NnI4eZreuW54H3bsG2k09df5aoYUxTvrADw3hFc2/xtocZoK4Z21cbZEeda6pehLw0evjmR/e+tcG2vr2MlP/Xx04sBXZHqmk52bQSgYulvFbxfzW+7VCiVyoB3gshIjDti6BtSxoUFTSvrurKuSsowDI7qPOcsnC5wPhdyhaIzLnicSzhXCawoM5IXXM2IBih7SnEsOOYcWeaBcp5wvuCHZ1xZkKE2tzEj+5hDqCDV4/FEcQwOUrEZu2WwC1krFNtknWvvn0wVCwGVBueUWq2waWOBKnpdYPV67fQ4UOduKsyNoGPfl6uRbhyCeFvMg4stD7xsttPGGu8bWjEXMdcgItGtWLP15Xpl5zyTsxmwzPOZZV1QKaS8mo++OD49nii1sNvtqGo57oIRzEK01LuUVs7nZ1SVjx8+cDweWS4zHz9+5HQ6sZsmaq2cnk+cz2culwvDMHC5XIyX4Bwh2HN1cuAffv97fvzhBx4OB8ZhIOfM4XDHMIx8+PCBV69e2XEUIcbB/PTHkf1uz+XxmfPpxPPTE8txJobAi/t7c+1DiDGQm3zTbuJrwNSme8+Z0+nEcr6gmHlJJ08OY2TyEPzILh4ZZMKLZVsENxLCnqqReYHL5aomSEU4z4EgypKuN+e8FN4/fmSpR4ZxwLmI40L0E/VG8lZQI9e5RipqU0/XPGBLTqSUbE4N26bsnCf4iHcBrX4jwalIsyg1V0DEuhfXeAKlpGYRXE365gIlFXI2yaot3K0I2D6MUOk94OxaLCWxNj991dFeT2gscpHNi8KMfvoCzsZzKDVRXaWo4Icd0+4FQRJ+9eSazW2x8WVyWlm1MMSBgUAYDGVuN6hB+qU5xG2a+Yp3ZhimeUVKtjXLO5MEr6uhClLxGO8FDLadn09NPVJb1pCzPAYxFUPpmQuGG9t7E9qxNv5KXlfKWki5MqkBvmCEOkGozhOj8Sg6YU5Um2e+WCGg3XHOAHYnhkq8efOGN198wfcfPnI+L8hwJazc8lYs0je1sQjgDPYutev9bdOiNUmubdhCV4RYQdAFbX376X4E0nIP+nc6maBmk6ci+Obq2eWL0oiHRbS1Qm0UQAfcezFA5xxeCXm9iFJaMXzlKdwSCqv2jr20gqavzbcEvb//uHIFbl5HBeft3Iv4jeRb1kTlVnEg9PJme53O4UPj5KC4Qsv4sdEe4ppiwFQ+5jvTX6/jKovs9uj2IW3ccmVE/jR04E+wI05GPGldZO0+3c2wQ5sNptr1iQNyDs1O1LewHEEkG+EKm62X+kxFydVRXeCUHJeLsiRjf4tPLOuCd8k4A8NKkRVf1WQwOrLWl6w5suTKsnrWs1BnUJeRYaHunvG54sIelyeCt4UkZ6hVmjSwbhecrXaOirPXpQZHinfkdrnaolLwTQ9eayFrF/sZUNaJKp0O2Jmf1p14Gx2IgmS6WUZtRYFxQVp0rDMyXxCBrq8VNWOalme9vaZ+hTaDDFGbwVaum1PVTMozj8+f+PjpIykvjLsBH4QheiPGqf18LivLfDHG925iNw7c7U32V7JZAKOVD+8+8OLuntPzc+siK6enZ46HI4+Pzzw/PVFLYRxH3r19yzLPxhb3fpu1hRg5Ho98eveOtz/+yP3xnthmysfjgXGctrk3GLRn8khAleVyISdjsEcfWOeFtz/+yC93O7Qz2VvynkXv2lwzpUTOybx82/M7Z3a4KSVDCs5npp2FLXk/MYUjXidciQQ8TgacG9EaWHNlSVeArhRhTh7vlJSvy81SMj+8f8sLnXgVD+ymI9XPJM5EDCLV2tA3rNMsagiXJZxZ9VhKMWMmaSQ/tcXC5ooBNJBWbYY1oO3aDN6b+1/buEIIVthqg4Fx2wZYKhQVgjqjhNVKqYncLKuLmqZ8CDabto5z3QygSg02SvSWPCnOTKOcOIRs837nEUzmiRoBt3fTPu6Ix1fmxJYKztnvLlqNMyjOchg02npzQ84yD4i2yEIrBgpOLKfCiVLWBcqCV8XL1d1PilmEq5qFdc+ByCkxn57I+cIwenaHHdEP1BYZVmvr7LXxhupKdAEJQo2ZFAaKL9QihiqmRPUB7weLV8/e/pSyxWFv83BsgbW1oVlFSzXSnRjv4e7+yNdffc3fffcDn+YLqYVR3ex99pwOfFDGyUbxzhmcrqrkbNeMuoirztw8VegcAhMhmovrdbtuUPgmebuWC4glrmhj0jonxk+QpqGXYmiHpq3gbeynrVG6FjLWJfsGvRuZ0DbQfg8b+tqMxhqJEdq3dVRAO2K7Lf4/+SHYOQjOW4Inpg5Kms2DRHvAXK8Jhe54uyEjTjA+qxVbdv8VfC1WYnXUQ9sxU9fLvu37O1hk9c8VGdCNKPqfuRiotRpU0ebPpTTNLaZV9i0/WzeDCpPWlFpIJVPK2LqdyJoiax5JZaJUJYuS1G6j0ypckiNrpEolKcwpoZgzmWhFvSPKDmTA+SOZ16TqSHUl5UJOlbys5LKS45khn/GhIhF8PBHiEZWJVJzp97MjlUopsi16pV34rslWqrY0OecpEkBMtlQUk3FVyyUrmHtXaQu3q6UVAt7g+uZYNi8LWhM9hrhfK4gSvLNFCfC9g9pMZyq1evPBr+DaeRBvQ4WKGppRzVYVFVz2WwIXQIyCczZrt9AYC4iJoUmb1HF3Z1C1U/ML0Gpxx8s4cTmfGYfAfLlwOZ9AlbvDjpwSHz58IPgACt9+8w3B2YamtbIui7HK19U2HjVDl2We8d5xcI77uzuCWnzux48fefXqFcejZSEMzeRmY7ijzUHRCHLH45GPHz4yzzOXOFgWgnOkdWW5GMLkQzAORTUabPA2j82Lxf2CzW/X1eDtipor42VmvswMw45xPzDEHUECXi0B0ZnDg3lVClvgrt2KYp3WFmLV76nMmhdO53fsD3cM495uePGE6YCT0OaohVoLpRoLfYiRkjLdMbNkg2xtqmCbs5PuZGeeEiLGTu9s/Q5LKqaqkDYfLRRKk5xe99JG0kO38UBVUwf0PIa+4BgDupuuFHJZccUBmWFos9AGQ/dxlT1uSGJYOYuX1ms4XNgThhdkdybnT2iwMZ1owanN+2PwDMOEC6PNwKU/U58Xy7ZwlprBZ7xzeG+y3bycGVwh+mYo5frrke26sPRHGOLACqR1BfFMU0R8MBJiSQ2q9s2HKJNLNs6Vs5jjOAxorhRvSik/DIRhxMWAhjaaEEfRiuuF7M2xq9m6d5xtpgYJXI/fNI58/fXX/OXTM5ea+fDpA6muOFc+2/NCUKY9jFNpvDw7RrmYA6kRe8E4IDeEvcZL6ZucbjD61euChhwYblAxXoNv44TW8zsrWhVtRHCLJZa2fYMRZKXv2XqzoYsVCp+R8bBxg7SCtjbmQv/z2j1rC4STz9CBP+3R020jMcR27Kyt8+La64WOCvT1uV/r3hspPLRckVRs9B4bwltrhWprODU206nuPWPNYC26IQTSCo8OW/xR9ME/+PgTigHZbgwtDjQC0vzKo1l81tDIpvbicl1ZlhOnEwzRtPglzaxLYlmVOXuUwfKdy0oqlbkoqUJpF15VS93zzqMxoIQGL8MQHN4fcPWemAvDcGL0M5eycF6bjC0poQoSBIkVP2RCvCB+R6p2gnKGuUJST1IhVWVVUPXNiCVQVFmzyX8kRKuOxapL18xItL3eokJGjKvQylnBoH7vmheDCLk57SliM7Jm6xl8ExWqyZbMmvUKwhkztzF3tS1WElApbSZul13VjDhBcyJtc1PazK6wP+woNbOuM2AL6m434aNnGM39rW8Y82VmWcyN8ePHdzhXuTyfcMC0mxCED+/fcz6f2U0TXhzffPMdKWfyurKbRp4ePyEiDDHg3b7F6xaztfW+Oc15jvs9TpX9fs/hcODu7o7dbn/jddAW52rFwLzMOCccj3ekeeV8PpNSYlkWvPdczhdTRuxGhlaE5JQopeLjSHSRECJpSSzzzKcPn0yjLcIwjgieaVxZ10TJI84FBhkJBOObAN7byEadQ02Xth1v1xY6T+d02EMkMcREWt7z9DjiXWS3h92wN4Jo23wAg/CdGBtdHKXNpJ14ajOdoRl39URDhxUcqrAbTUpLVVtcHaa4UWyj8rZxlWaSJcEWNCjNGTMjzkyWarVuveRii1Bz0exXaK2V4D3eRbQmcm46c1zzJmjQrnSvggYpd+Ss+blfzieqJlyFwY34cMCNd+TxjnX5wD5EG53UjFQhxh3jsMPFToizq91myb2zt0bGPAVWW0vac+RlJkSlWwobupmQMNmopXdgCKFFaK9rQGqlpNSMgQai6+FgFc22EdVSSa1EVG2beAhIKQYFu2BZFL43VQ32veEQbGQ01aY2ybhsSaqqjUPST4MqLx5e8Jtf/4ZLyay/+zc8XT6wBe20hw+w20OMaysGWmpntyVusLfVCZ3P1LrbVsf1SYhy88n1D/psW1DrbPWKGXS9h7XZnqCeWs0zpWv4u0VyR/TsCZqcsY8++v+lISh0Bm8PEy4NMbPjaCZejXT3/w8s0H4ieEMhY8sRqQipIeNe5OZQS1N5gcPcLIN4orMcGa8thErABTvOuRS7VjvhALcNMrTaVNB8dcQag/a7qrZiSW9f6T/8+OlBRRhRzog+nSnscESbaWgwA4k++6sKLpFRnpdC/TQTvYXyrulMqkYOzKWS02qERAepgYYd+s25gAtMw4QLE+NwYNrtOAwDgzce/ahCqc/kXLn4GZcXahJOJ8d5CajukEGhOCRnfLyAe0TZ2QJaK2sJpOIo6owL64S6JXx5k94FARfs79s0q12kHcMSk+fQjTAa41mcx/tIdBNOAxodKZuErDojAqkY+zuIBfoMYmkCXiwfwW4Eu5md2MVWGsQl1WHmhcYWrljkq9QMRZuzYTuXTomD53g84Jzw9KQUTRzvjgyD5+n5iZTNorYqHA97YhgY44xvMHMMjjJE/DRwOBw4Hg6bbeuXX36FAB8/fKSqMg4jL188sM6LJR+eLwxDZAiR1Cr8r7/8imEYePz0CWLk/PTE4Xjg/v6eZVlaRznz8uVL9vtDc7dzeD+x2+3Il4WyTyyHmZTzxkWotXKZL4QxcrlcWHNGgieOA1qsU3ciFnYk3TQF1nkhDtHc50rhdDqxP+x4eDjinGeQwW5mcQRnsj5i2Vjb7ubO8l6ZYkJCwcu1KNuNcBgzqVxI8w88vgcpwt1wR/UXlLFt0kZmbYojzqeLIVXFFgcnVmDmJhvzTrB2LjeykkPETG5UzGJaxLgFPa1SHCzrjGohDgbxehGibyCvE0r1DNGuJc2JtKwtf0DMZvh8YYzGDTgvC8EFpulgZMRq98nz8zPjOLI258EYo5n66JU8qG3xS2k1HoKAq4IvniEeiIcX1HIGMctsJ2bbvc4J7yuxe7I7ueFZ9W7Mvla0oprboroSpoHT+wtlTXjZ4UJA9kcktfS6WolhsOJpWXF+IMSROIzUumzkR9cSDQUz81rKQsorIXgLcyqW1FdVbRQhJhMsdGBdtmNQG1+pNhOaIA3x8c6KdLERWy0N/SiVKhkZRrSY/Pf1q9f89te/5Wl+5K9//0zS5svSHs4VvMzEWAneWg3FUdQjc2ZZqimi2qjFqXFIxFlmRk8p8k2yew35aR18QzS23lhdg/1ls9fum7jDshq8tuRLjPt0a7HfpZpCl+6xFT9NDNiKBZtXV80UtSbJyOEmKfS4zW3Rjvgtq/Kzjc/W9/5rmu+Hc1ZcDj5Y4SvtuTFi53au0AZOqY1PKSAQW2T4GB2ObMqyYIWpqvmBpFxYV/PpWbvNdVcaaG2Ou4AKpdr76uiAoIYc3xJE/oHHTw8q0mCQnVbAFh/nvJlyiKf2DtdpK1Qy3oO6xKqZcpnthNVCKqtdtC6x1oU1X8BXfHQktdEC1Yggg3oGAuJ3xHDPODwwjUd2084Y13WB/JFanlnrW0p4ZB0qYTxQouey7skF2xAlWyevK1Wecc46ZLRSciSXgKrvE3dbcHGoGR3Yxi4mcemohafPaTrjteUyVGfP1Tsm9XgGogw4zCY2KKySUUngrTJUrNIPLjBIJUolUvCa7cSWSnW1QaPtt6rgNVCLR50itRVmYOZGXCFfsC52mgaQuw1uLyR2ux3Pz49czhdKTYQQGMfR5C2SOexGYiO8vHr5Enmwebv3noeHF9RSePr0iTevX1tkbXMIfPnqFeu68u7dO5Z5puSMG0dUlbvjkdPpxOV8tmwC2uYco6EgPmwbRSmV0+nENI2sq2OevW0mYp3atJsaIY6NoOZjoLZFN5fCUjIuBCMwiUeqjSrWeSF6e7/7/Z73b9/ByhaONM8Whfzw8p5jHZHobDEIgSAJqs3MbR4vn60twSv7ISOxMMTrSrMbKi+OtfklrFCfcfkRXR/RcML5PRLMEKt26FaVZc3tGgrGxK7YKKeU5rmjeGkhW05sVENqRFWxUR+uGXRpQ4ZtFOAF/Oi26yvGpkQPCkXxvlhgWalIXREKqRQIA+syk1IiOJgvC/v9nhAnEJu511qZ55lxHG1J0euG8R/7+zgOVHUEhJAzrmabxSOWMFnM7jeEgA+R4ga0BmrL9LARV95gbnNdNNhNHQ3xKNS0NDROTXlQCyXDIAK+BT+JgDdL4FiKFVY3hVrPFemxxoJYQVGzpS86axhqbptU7QoMI+6JwpIr3mVj2IeAH8aGABnjXxTzXPHOYrKb0Q6tGbEJrTZJoDHLBx94/eoVX33xBd+9+2vW54Wiy81aUBjGheArQxBEIuIi2jZbpZJzg6Jp11nzRlAxRAWaqZGXjVh+xQV6m8p27XVcoAP7G3m0vSbX1tweD3z97lZc0FED+7pTGw3Y/tTJgqXdizZmK1pbeBxtDGF+Cv1V+u03/ccecn21YgWBcQWcRX87Z8FwrWCL3l5P0SuiUVFcU994HIMPTHFg8Nj5E0WqqVYEk1p6KXYNV0dO0szCKo1J3FADgHqjiKiGtbT3eXs//UOPnz4mSB2mMRtTLwHnjAGNN8ZtxebkpWZQixsFS3K6rJlLm7ummpCguFjIrBSdkaD46syfXdU6YwLOGTfAu5Ho9/hwJIQ78CYRNEnQCZff4fUt0Z1w0VODJ7mRWUYWZ4SXmmeQhNNEloyI4RCOjOaRWiKWeCiNBphbOIQ3tmtj6CsmtWnn0arcVghIk6zUYsYjW0npPF4jnsGSzJwnhEqo0SQ1Tg0ZkEzwlSiZIIVINoi5qqkFxKChWp2tBQ5i9WQN1BraDetw1bdCRo3pelNex8HjvGXFW5c288OP73l+euR0fmqjL+X169e8fPGS8+WCJ3F3t7fkOycMMXJ3d8c8z6R15cXRCosPP77DYxXxw909xxf3fPnllxs/oOTEOFyzEH72s5/x3Xff8fj4CSewLguoctjvSSnxww/fE+PI/f0LxtHMekopLMtC6Ezcxnh23hOGyLibcIiRy3LerJj7TVFq//mIc8pymblcLtQ44J1j35QNqsoyL9dNyjtO5y95WR8ARwzRjKCwmzmXhavxx/V4B6eMQyUMynhzx01D5e5YzVffhNUMAca4EuQMeqLmgGJ+FsuqrKlADbg2pwwYmTAnM7UyhzvPENSmtVK2iYV35nuhVEoJTWUBqI2egrfCxYtuZLIYbcQRfEJrMknU2oqo1UZM63mGcQc1kZYLWRLrmpimffMdCG2RNqlhH0uFYHI7K9y6qoDW9WS8YCmc4hl8RGoiUVlXUxNRV7SmZo4VCfGAC5OtSUDNhrS5qlTXZ8UtVqdZ62pN1LzidWaMwYzT1GB9XS4Qds1i3Tph5xwSIsU5NEQ0RHKCsiRwM+No6INz5l4Y3ICThbRmBmcNVUqJmovxk0qlpmRKp7SCKkGFXRzpCZWlGaDVUs1xUDuloHW2jYgmYlJE44o03NKZqdebN695eHHP0+kPoGm7BkUSMVyIvpryJDT1gLOxnYiypkqtJp+uNVOLtJm0GDEXIJhmXpu6BKopTlwj8m1NuyGv0shwtWU9XEPE6o0nimxIgHkYdJjd6gvfPKBtPyxbgVVqolbzdamdb9OLASvTWrHRS4HaOA5X+fXtox9bsPfc0wDN/EmI3hN8IzZH2wdKqVZoF4e6Sq2u8emEnY9MLjBKYOybiGLpmWJS8FLNl0NzoTiY2/cobR2t2iy/GwuhmUW5xgsS9E+efPwJnIHEtftVVG2Wjm/6VSCLMSmzZERbN4uRHOY18XQ68XQ6sZYF8YoMFfWJ6lacr0ihsd6F0U+oH4k6kapSqmydeqk288VVnJ6R8gnKI6JnIJMVTilz1sjFCSu0C7EiDcpOLiEuWfek1ZzFaldHuFaVNmY/0mbBeWOpIorDt/GVwzXXKVe9eX3nphZwfRZq/AMzD3K45pbmXQtNkQwu40JmigY7BQHfq36sGKj16j1fRKhBiMWRNFA1GiG+eqse26bs2qLRH9M0se4CKXlUF8umF9fc35p06nLh+ekZ7zyPT89oVaYp4nzk9HzhWU0vm3NmXZaNxV9LbXbGwsPDA6/fvOZ4d4eIsN/v2O12xBjJOfOLX/yC3W7Hsiys68qy2BhhN0189dVXaDXL3pwr4zhxd3fPfr9nGAagy9OsQw8xEsaBYb/j2HzxLVGvcl4u7HNiFzxjDI1DZKMb1xaATo7yOKZx4uH+gYpyPp/JJRvbuygVT66BoAMhTAQZEJIlUGp3pBPybWa80OB6/axKj1GZxkQcvOnjxRaVIRSQixHlSqTWSCkDeYVlVXbTnTHvBYO6dUFZECkEL4xRGAfTmIguOLGArqKeXByptmmT+IYMGCnTixUu3lWcSwRfiMGCiLxb0GK+Da44fPSUuFLXmZqfISpeMrVcqOrNQ1/NOts7GwWUkiklk9LaxjhmSxyaV0TVSkl23nJO1LrS3eyGBsWqc+QugSuWBlpXT/WVAAyDORCK94g3ZnbJKyoO76N1UBs8XSl1xZdEmi90992SE/hAyRnxvQCvLMtKcAI1W3ExDPhxgnQmLYnTZaEUYbcLhGCEQ+8jwzBxuZwNYlZIKV/JqrWS14y6hI8NpncVWVaKOIZxtyEDtII6IK0gsI3fuZZS6rrMsBnPlGYbHD0v7u95/eqBdx8Dl6D0QYHogugzYxyJweNDwfsKrkBt91GtlqlSrcHJucmms/EoOkrRjYsMzjZUocPqtVkUmxN6ExpKc6jcNmjdiKp9ArClGLrPZXpWJnFTZbAhLrZGN55AtTFB7mMXseu8dsSiHa++IX/2aE/dXskV3cDihcXJhgqYDYWDISAUC5/sqJuKrR1iKO7gA4PzROcIQtsfQvN3EIyIjCmJbFK0XTtdrl5rMeVCNkRqw7AbIdfuG7l5zf/w40/gDDT2sgaq1NYB2yxNRVnJrLqwaCKTkGqQvFfT9C+lMJfKUizIR6lobqE7Ysx6akVdNaKPc3gN+LQS5cJxmFnzSi4LlqNjJLygj4T0AS0ncimsq/B8Uj4+rzylyEwiuYyXitSELyaJLFjITBAz9XFEQzrUFnNpJ6b1lBZJLE2g0mJOa2ekNtMIqc1oQwNOK76hCYakRLwMzUAIXCN6VXVUZ+MVCcowCNPQZlo0pmvXkGKBKcWZy5lDKVGIGggFiobNTAMEbZWzd+Gz6zzGSIjCmk6cLxcU5bA/WCJhWlsXr3z6+Mjp+cLpdCZGG23c3U+cn5+3+yOGgJbK999/xxhHg55zRrzn7njEibNioRTWdaXWyjRNqCrDMPC3f/u3XC4mXVyWhWm0OGiAcRxZlhUonM9nk6R12VD37W9vzDz7jVcx7CZ0nlnX1fwaaiXVgooYahCjwZnFjq/3kXEYmxwIwLWwIEceCnWhKT9sbp6Lx+vAEI7EsMMyMkAbHFlLpeSbA46DrkCR6y0nDvyghCETh0T0iSArwc1QnqEIRT1aBmrZgUYCgRC6K+FK1dUKAZ8YHIzRtwyPgicBC5Dw3pAj5yKSm42phWc0O/TaFtgKkhBZ8K7gXMa7jMhMFUNtvBOCHynjSskrY1yZhmxwpzdYPASP89alCYJ30UZ0Xig1N6MZZV4ujO0uKyXZpofxBWzUods6QykNrbAxHM5Rc1P7FE8t9h4FC2jCWephLpa+5/q0r3XSUM3aumYup2fGYKqZnFemfTACcLGkPmnmL1ZEeCMIu4AbJ2LZoRQ0ZVIqJl0uK6UKYRyJYWKRlVJS29gr87K2lEYh5UyZZwtk8xGpSsqZuqQWbd34FLX5h6SEr0AVfG2zaenmRK2paXC25oJ42I0Dh8PENHrSTTHgfWW/h93QiMtecd5shotkgksUX9tYtLb8h2LFpIttrfRYBPxGb2v8gEaeVAPsjQGvmGTVCp/GFKD1+5syQNoYwLp2LBSOPmLAyNZ9UbsyO22EpDb2Ui3bmKBqpRhs2gqR22Jgu0v/ow9tmRnSXq04byNQ7zdpoG9ZEoJrkk9DUoybo2SnG68giHm5mB7tijr4GMkF1lVZl8zlsnKZC2ltEvg+qnF9ZEIb/1ox00eUUi34bgtgkj+ucv7jj59eDLR5trnnOcx2F9tYVVh0ZtaFWRcyC04Vz4hvkbUpVwoOvJGXNBRUlIKYrDCnZtkJIxBCIZYM+YIslQnH3nt2QZA6MEQhOCXykZifoKysCZ7O8OlR+ficOa+JWQyWGqUSWriJNptNgY3lHVG875lPQqk2dyxNd21Va3Otq85GFKr2eas4RR1OPYFAFNP0yuDwbiDGHUOcGGTAU82H3g2IG1E/on7AD5UYjZDmsapfqkOb1wFYalmvlOHqYhUyNiogYRZgjbxYy8b63S5uNXOdnDPeB+LgScuKODge77hcLi2gKJmLH8aLOD09kZMVBlqVTx/es98fqKWyNE6IF8c0jlSRjSfgmjXr6fGJ0+MTQ4jsdjve/fgjv/uf/r05VU4TwXmOh+ZuuK4McUS14v2wFQvPz2Zy5BwW/9vuhTUnTpcza8744M3iFhDn2O33+NDkS94zTqN5C2ihpusIQYtuCofn52cQmNd1K6RKysyXxOWSGabIbrxjTvcs5Wz3IwKaDUq99X9Wh8iOYRwYhsP1nvKOKolMtmuHCeSA8MT/j7U/a5Isy7L0sG+f6V5VtcE9Ioeaq1EAGwQEFFIowt9PPpHPfAHRbKCA7urunCLc3cxU9d57hr35sI+ZR4MikKQwrcQlpTwjw81NVe/ZZ+21vhVlJUWh9eSDyFBSeCSeTszcAk65bMTc/VYgiZIyOTsELFCBgyiNEIcTIpnDtgja3g8S5s7Td60yd+0ijSCNECrCgbC7aQlIUTktDp8ZI3I6R3IGlUjtbkBblsjRhq8NJfmfE+Mc5Fy+3bY7vjJIUw1QZ/JPtG2cB8PoHW0b1APRStBGCoakgFgmpIWYTmBxng32QZr0l2Lik6fJ9x1ko/Pw3+5XysXx1n36RMYY6HEgkgk5ffhTRscPaeuIJtK6gg1UdqzDUT2lIVE5EwjZEwKt+cpGVd2LEoJ7Y6bPqk/4iUqH5DfF1tovu3LA3iOODevmwqx71x1xbt4Ua87YdYm+CClFLueFh8cTfU3c5603J+Fyin4BmTS8EFwX7Ukp2W+iQwPSmQffoCUB8XSG8zvgva7ZcJXnHYk9JoPlY58/UyM+vMxBwCIfHRcy44v2Hgv1f7fgnQPvKQN7V/nnz0XmMBE9YjL/y7kGmJ8ZMX8OmOjH//j/+6z8JcR3fs8fK3JfA+WcWUoiRiPG9+ewN9HGkX20mcmHHnUaLB3G5YqA+K8wdQ7x/ggYbONg3w7ut4NtH4wRUHEvzLv5K0ylMcapJswVmH+9syLeebR/YWXAosvjOtp01zp219T77Q9tbLq5OdCav5FznPttoc+9bUz+gmmCHpjVqkYbTgDFIAdBemCIsNdB1w3PJRslVqQVtAgpwQgvBLlho3M/4GUzvm1wbcZmnSqCtw768ODhAJuS7UBo86E3B4JZBem8AW9kfJetxGyaamzKX2FmWX1AenfHBvG9a5JAToUYE0tO5OTJgCRQQmSJmZgWl6sz5LWT4oTfkP2hGZjO8WmAmisNNU8g9KTEbiQxkkXMFp9ko2E0h9TYfy4V+Q1FWcrC7bYRgt/Ccwlekzya3z5NGQHWkghE2rFz3A9++1e/oelgO3aESG+dp8dH3l6vnJbiEnCIfP36lf/pn/8ZBS4PF47j4OvXL+zHncfHR1KM1GPjfFo4n048Pj5yuVy4Xq+oGrVW7tuGV/H6wLhtGzEymxDlO8UwuJkr5sy6LJRUCNETBU+PT+S8zgepuVRMwGz2yrc2Gw0HvTX6GNwmaKmPwbquSIrTvLdzbDv26UQpDyz5iW43ht0xcaVrTIPe969ICmfW5cRS1o/flRBpTeeQGRE2QtqwdEfC1aOEkoGGD35nQhbqOEA8ix3CIEWvSE6C+1BCR8QHAZHmki++rzXzQ9m7CeRDYnaKnhKCNzAGmYoAzYcK2ac60CAIiXdHtYE1ltNBTv4Z3nvCCCyLuYw5wLRg4odSn9yCMQa11Q8SoU6Ea4yRHDNjc9R1AoYe2PGC7S/E487YN7J0ckq+FhA3X/WpH8fR3VMwGiKJkOZALTOX70cL9Mo4Nvq+YafkBwl++x9Dqa0SZCfjcBmVQK2dXBYfyvpBkEKMHYIyZPjfrx9oq8QSWcKKDR8ycgwzEuZeqiiBWNwDYgRaHyiNkBIlK70f8J4ImWkt1e7AmbnrjhLp4lyCaIGRKkHX77FmFbIEnk5nfvP8hF1e+PnjnakUa842CTbvEH7DjTGQMsTsQ1PugxaNlnxVMHDWgSddvDFVP9QAnOGijTbG90InkXkQh+9YInMIFATP0gdmtNIPcpkRS2OWsomvTMeHnwCYK92P+Pv7zvwXwwLzsvwxJghuJLXhStXHP+p/rgPgfHAIMhWAGEg5UEogl0AOSgpCjuqfRWmYdGQcDogUmXk0/yxbwNe2c0XpQ4MrMt4a2j2O2w5q22kdusbZdTFXo3NlksVXQw4Bs/dgx2zLdVKDa8N/4WGgz31M1+HthSKOCyYxLNBsUOvOqI1kXg5T2fyGq9OsFAZLUSQNZO1oUu4WGJuw74I1WBBOupLqglnmGMbtuPPT7ZW9v3IOP/JgJ5bmA4WmjW18o2vjtQa+bYHXYWxBaTampO/tfSPCiIIEZcnFZSgzvHDYZU5353tFqMzmNYIgYYD4DrOpvb9VUI2UnJC0+E1+OH0qS3IX9wjkmQ8f9oqGhbye/OFiwhKEko287OT0lRgOkOxytHWagZIhLG5KdNixy95hsC5CiFNa207IKCAHEhpEd3nrYcj4z98Qy7Ig1GkgPCB4Fv22CU/PF+8q2O7kcCIFtwSm9Iltu5PEpcunh2dUjR9++MzT0xMiiZwiEoR1XdmPg9Y7b8dOKImffvoTAeXl5Ss6GufzmefnB2KAfd/41//6X7NtO6fTmfu2zz1k5Hq98vnzZ5al0Hvleu18enY/hI6BmLAsJ87nxv12J8WFZb0gFnl5eSF8jjydH1mWEzJbIde0Eki81asfOClhErzToFaeP33ier2SJv1vqBFLcjNgGoTRaCZIOBPiZ4ZlRr1Tq7oJ9hcfrRAT5/WRx/MTSzFcugesYLZOSdybAEffsP4NDe4rsXj2VUJaPjwlY0ZWRVyyLzG48S92QqxY8Bre7x4Fj/9JzFgLH4buoZ1hjRiGm8GigSghDlJUUhaEjrEjdieE6T8oGRkHcZqESx6YfaHkyH0PrKcnfw/bTs+B661Rk0N1SIm+beSSuW43TODojWVdPabY/PZW4kJYG/XtT9TjSrEdO14I7Y0lC62v7FtnOT2Ry4W9DfICfYFdK2nAGsYsKnJFoikQMi0EdO8sMXDbbhzffkL6xnaFT58/cb48c1QjloUswrEf3stgUJaFtST3FoVEo4AVYJBK9Ftz8wOhHwf37Q3FCZdH3bm3zn3bCKmw187WB09PnzhaJ6bi6wszX08MJ6XaLC/S4DKxDn/Ai7gh0evAldw6eYVlvWDWiKaUtNJVySL8+umZ/qtfMS4/8c/zvVkEzjKI1KlgZbznwC8oJXS6bmQGqypWlFGN1gPVoPVI6/7P99kkOtRo1jm0s7WD/fAm1TB9Ln4XDmSM5H+Sm/FwVeJd4Wbe/kUWwBiiqPgFyZUs/ZDM31d0Q5VunSH+jGzDhzNn80xT5fujcBrtJM7o6kQwd+20caDBI8qS3JycSyanQM6w5EDJwhIKjIqMnSyVHA6MSkqNSkRbYNdAiSfS6eIZh9DpqtSmRAksJeEiZyPRKLlyOQNhIW/GvQV29Z9fmsTMoA6P0xjoatQGFZ3eiOiJPPErhoT/lTT8//cwIEZn0LTRhtLE6ITp2PRhoGt7dyb5TlwHQRLikHWIDaRDrkiqWOn0UVli5xB3pS4EsgaCupx/tMHrUdm3G9jG3zwknvJB3f3Df14DWRNdE/cW2btQh09GMRRCnEz0AEl0AoIUs0iImRgKKZwpnFh08VjLcOezqToSNMiUmd0wM4JHOnQSuIZWXzq8U7lE3aQiwWFN6p/gd5nSAsRYyNIpsbFkl+NydnqBmicBXOryB3wMC+9EraDm5i9xBGYUI8dKi4mik+s9aV6m9uEheP9qrdOa3wB0qOe5rXE+P/DDDz9wu74AxvPjA4/nC+flRI4e4/vjH//AURvLstKGsR8HP/7q15xOXiq0328Egct55euXL44YLokffv0rjrYT1FWTtWRyzjw+PnBaz0jIrOtK64PQGiLB43wxcjq76fB2u7EsBSF9rDlqrdQJEFqWk9/85wMzTMJda+ODmOmcfmjVu969vMfJen26z3v3sqKyFKcJjkEJnu8eo8F7dEwiIgtGoo/I0IhpBItTCp0P3Jy5nDMP55Vc3vf4UPKCkJzhXwdBGpoaee7p3VTakNhg3s6NnZxXv/C89xSo38YkmKs5048ieLuh76lhjIjJbNp04w0x+p5/6rLzfd9QmkdApSLSieJEUcQR4S7ju1H4e72r9zeYNf9+tLu5M7rnYnQ/DFJOk5gp81DzvWmK2bU2AxuDgFFyIHawWun1jrQ7TW2aBBfudXDKQjmfJrjLY2C9VZo1tLaPtkHJ4ftFcfI6kgS23mfKIbDvBzEvWPTYdAkJomfte+sT6fzOo/DveaTiru8+DZMp+U67exOd8zr87zWGGxFlopFNA3W4wfOdOogZY7ZAkt5/TkZ4L3n6xS3ZWRtxsvHDNM69172/b9mdkLmmleeHZ54enj4uzSkFSva0lM1vAfHyoGBeapb0exbeuyCgJ+GwwN58ddB0QpbU16lD/WfaWmUM95vZXAm/g9PeUziRQMqFJRdi8j28o9CbxzLfr/RuR/fv3c0f/lrOi9msxfkoz9OPf9qd/N6B4AquJwTEPV3vuun0FCDmz33m+z2ESaqciZtgrqLJOwFRiaIU6d50K4OIkaIAmRBWmj5wjJXaGxo7WJtGcDe1WjdC6KQAp5zQxb0K1pVmwjEEia5OJMOTZRNUFGQqncEruXsfYMPLNacy9Od8/f8wDCiVzjGRv0McEGTdzSZdDdU2JZ/oNxZztKKJ0kVnnr5BOBCpiAyW0FhDZ4hRBZYgZBVkKN2U2jq3vXGvxqUNvvWDxwZbaCSMkxVKz5hlbj1y34VeDXqg5DMhlhnzMaIMonhawSyRYmEpZ9bywBIeKHohlMRYoG4NanM5KYKGQBTPrAd1p60LSh5da9bn5OkHbxCHcHh3/DR4mEv3JoOYByFWQtyQ2GejYsEomDyhutB7ZEgjxd3hM+YJ3mAB1Uy3haELQZSSdkaeHdsTYKQohILklRTLx2v5LlPC9w/UuyReyoKezpzPK89PT3x+eiYSOLYNAfZjo/fBcjpzvd0/2Pavr6/81W9/w1oyn54feHp8BPMmx8vnT/wX/+of+fzpieN6Q7VRJ+HvfD5zOj2Q8oLEQBudfaYKxhj+35/PlGX5Hj37X785zQec0cdUPDxbj800wBwaTkOxbLTWXQqcA8D7TvA4DlD/z33feXh8xGYM6uHhgfVyIaXiDxecGhckgTlF750W9h1R4l8hCrlATPNAnV8xQkqJpoGj+2tmGKHIx+1dos0He2ewI7KRYvSo0vvqakaWVN8VA/9+CHOdZEbtnT48R94Njl6JITk/IDiTwHXljpo7+VurxNAIYcydsB8aEhXC8Yudrk2/jFBCdKy3W5/J2ViK0GyAVi8PSn6gmnrSxcz/viklwoTFDOts+w3bvZY7mJFKIaczKQySKHlZOVrDJJLLyt6VMAuKeuvQd8IYxOAGxIBh2hFxPLeOPim+vtdX89RTVEFygThYzyeQMEvThDb39Emmkay4zyCYcehAuyJivgos76uQ/sEUGKoc8+9Diq5K7QfLevKoskzH/hjQGr4uDL5vjjNBEL6/ziEmYs44H8DXM6oDmQwFj8U64yTFM+f1mdPpGZgmYHHVFPVYs+iYu21m0t9fj/dWwoDNzhTxJsToN25r0B3GjVhDRnNfx8QAmylo94u8OHDILzHiAJ6SWJfsRmVxk+nRBlJ9WLd3Y+E07Ml8P7r/xA/OMdyc2c3mRSxMnLVfTk3eeYfzzw/BjXwWpqHUD1jeMctTgUgxUFKgpEhOvhJIAbK8m24bUbqvhgO+v+c99ryQ0spWM/WtcuxvPHwCHQejNzQtoNH5E2EQGKwpYSUwujLi4IhGnubbHIUMrkyp+AoJYARGk0kVdZR6l+mP+0sbCKsIhxlHH9ReGWIQk7/J28RMjPliByFJZA1CCUbTTtfjI+ePVn+zDCVqZxVFpvIWRyCZwznGGDQVukQ0C1uAn47KcghPBUQGsTZKuxA400biVqFX8WrZciFJ8gfYLEfy0jW/tS1y5pSfuKxPrPmBVVYWFrTB/b7zdrvyVh1v7O1/MzoTbCogYyYMhpOuNBLl+w7T3suBzPO4NiYqWAwLG4QDlQ1low0YbUE4EfkNrQaOOmYd6O6UQmZFalgIMRA1eAICJSUjR8fUShiodLoIyOrd7zN7DUwWhINSYgyUZeF+3Hi7XokJfvz8iRSF2+3GqI3TsnJeVsritMFSFl6vN8yU83nl5e2KmtL0R0cZrwsW/I0ZUuByPvP8/Im/+eu/pu8HOQXqsdNbwwyO2sgpsc/uAu9tYHZ+T9NOmlXB2R8YSKTWznY/PrgBtfXJCIjeOSCBZ3WGfq2Vo1aIAQnDi3JC/p5MsDkYzF4C/3P94e9Vy5mHhwtlWfxWZm6M9cESdARGd4OnYm4Ge/8yxTg+bi7vXypQTicObfTaObofzBLVb+NW3agaGhJ3vNN95qOl+NAt753oce4Kv2O8dUwTnZrf0NQIITGGfyaJIKESOCbK1iFcZh3l8N4Kazil018LIfr6ifZxk5qKLsHw6F3Ajas6WIrDMOowus4yJYt+6IVAKQu9+7+f5A/q0SuG79fJidZd3YgSnFlyNJ6fLlxOJ9LRIGQkr4y+IzrclDWU0ca74IGNhvaGWfAa3eaNiqO5WTAVP3THdKWJCW0oSSHmhZiT1xLPg6QOP9ADwSN14R1HPjn8IZKXFT0O9onH1tZdrjZ/HwQTam3IdhBSQcJw+ZsJt2F2hYy5x9ZBskDO8jEM+Psj4URCVw3G6MiohNGR4TdbYiGHC0v5TE6PvA8DJo7PjfN9KTKQ0J24ih/g2JilTd3dFBKdtBh1muf8OZ4seBzVfLhMMbKmhdaUVpXW58ApkEU+VIklJZaSWUukFI+Q9jGmRwvqR+mXINOw50ht/3m39j74OGr6e7dMnIN++HDeR4kfGOAkgRTcqi3qqpFNXxjqKnJAyCGQU3J1NOL+LIxgw82sVAKdwGyOnX4FQVhSJMaCmtDqnfv1C59//ZljVHqH2pQsGZUB7wMfkSRCxnmQCaNEX6GU6DqPBCdPumnZvRpBBljDrPqAlArqT6g/64z/s4eBfShHV/bWadXZ5UH9VtjnBGpjECwgOfseN0SSTEOJNto4sNAJsRNN32sDyQNSwLvSQ0R64kDQ7piIUE6IGvdR+d1LxYbxfE7EpGiHUwssIUIotIZHv0KhcJrNhgPGuxPToyc5L2RWkp3JnFnSiTWtnFNBFHLBoUj3Qd0qHP6gVY2Y9WlAcQOHA43U30DBJ1b/B4YXK1mAOb2629ZvX4PDY5UIZmdMT5g+ov1XtMNox06XOvPZBzH6h9F0nUAPr302i1P+SsQAhNWjikTacOnafiEVDXMprY/mbAEx+mi0206cJLbTqZBjosTskcDWWVoh5kReFu5/+hN7reRFaL3Re+ff/ft/NwuLvAq5z5s6wH27z4eNONmwPLKuK7fbjf/0uz8waIxaiTNuhUAp3lj4Tq07nU5cLhe/HUngdruz/aJq2PCYlqnSpZNC5HK58Pb2xlA3gxH9o5Fz9geoTZyr+n69j/4Rf4wxccrJGeE6XH6bN7daGzo6tXZGhz5s3ky8hrR3/ZAwBp1jHOTe6JqA7ykIQkZJ1OEQqDoO6rjTUmZJgVjEP/jv3As82gULQQqBhRQLMURf24k/PsY8RPygVUYLnkDQ6UQPhknDbMfEf4bf2/zccyDiaz2xd3eyH1C+AhH30kwhWiYDRBBEO1EqMR7Exff1pRdad/6CSaINofYwb6b9vUbGf1rdMcSMRoYJgErksBJV6DvsdVBWYT1ffPWBk0HHUUlZfC03FMn+iKv1wOwOebAkg1ap+53j2Nnr4bfEnAk5k5YV4sIwYW+DJXraIZU4410yux9cjvdIdEZltk9MVoIXf3kiZbtvoN6S2IfH3nKKDPM1VB+KtM6I5gNeFAgJidlld58y/ZkTp1FuKhbW/cB/jwZa9wRIjA2NY9YdRGI+c15/oORn4HeAGz7vzVizm4RVBR8IPUXldLspAs0kU4xevavDD52AV2W/G9VyCkD5QAD0bhxbYz86345j3tCNPI3WMZjz+eM0xQJJOkQ3D47ZIeNGO5m/fAAeNgvsZA7lc+DuEhnvHkSzmUZwI18M3sCYgptCo7gE37t6C+w7MXJGUOOMEeY4/V8ogUG0QcAhdsH6h2kcgkdoLU5SYWYQydHxyIYPxr31WeI2fPXAICX3tPU+gVTv0VwRUojkOLtpJq9hzMTIGPN5Pg2IhkdvTf5zlfJ/6+vPVwaGcrTOMeXYKJGg7mxtw8tQRHVWVE7pjTLlpV+wuM0oISMhuiLTG2E4CW1Js/RIIraD9OES4LrSJaB9523vRIWt+g5QNPJgwikJOQkM34+VsDrtT6dldD62bA4DS34gWoZesB492hCM0Q+farNSTsJikdSD7/8qeNjJbzueKX3Pu9rHm5GpzOiUXWWWc/gvrwZWGX6VCs76TrYQKaidXVJqbjDp5re61gc5NkL0FIHnIIwehg8RVub3FIlhHhjzFobm/2yHLTEQUmDYYD92N8w0z/CXUvzQI7AsK6UU6r7zcr2Rc+J0OfnPcN7W365vDFPyUvjp5z8R5FeIQN131tUVjFor17e3Dwn+dnslipsMex/sx0FZAvdtZ13Pzs/PaeZunTGQc+ZyubCeLrNqdzYLjjFxtN/72g3Y990rk3P5iBm+Y41rm0U7vGOOByr+oa/mD37nzAuXpycQuG8b+75zufhu+DgqPVT21qhNGX0CodTjqL1/n8Zb79z2G5TA0c68DwN9DNowji5s1VnkyE46hLpEHkpgEQjJd9GKH8wSBLFOsDHTAEw0dXFevXjm3pNqkdGHrxCC0seOmZIWQaUxdEPC3S8zgisTYdaMS0dkfMiMZjIf8LOk62PzPJ/UFufA0hDZ/JabKjkmelhosmDhhIbAffcBykKilDSHXMNGp7UN+sH921dOWcky3NcinVMGSYltv8PtzsPjM2XN1L3Rm/sUsgWXyQHEeSCtVlRvJFPklEAbfd+o+87eKuuSSakguRCy+0DGcJ48bTjUSIqbsWRS+hjOSqHSVejTzNdap0/SZuudozaPqPZBKYXWnc4X8kKYiGM3rs3bfxSyiatYMTkxnQnkUegGcdrirffZXmxoDt7/on6jV+2e+hqGxIRQEM6Yfl8ZHm3w7XpwSWc/FIOvc3VSD98jp9oHaKcEYTGX14d61Fxktn9G5mGWCdEj16YwGrSY2LJDnLqIk/wkkZPv4j1BMAdXMbBGEJ1rhKlSCJ7rj06sDMH9WG0mQHSuEH1g8zXU90TCNN6JOFzq/VeQjzi5X+ymxKX+gfioGf6AlLnJ3D8SSpy/Eq5cxWCAp5uCJlqH90Kxd9Wn9UDtiaMOvziMzpKd+ZAQYsSfC6O5/0O8RyHMFEWQWWGs31HVvXePS09PEyKENFMz8hceBu63g2OroMLoPslZd8BKjg75EDHiEJL67X40BxTV3qk90jTOG4TLakErajvBGksQ1lSIIxHjwtgH5yQcobAjVCu0odQROMSZ5aM6zclPX/fZBxNywCXJNiCGiWP1P9fNIJEkq0c9emC7N2TsaDnoyVgXh1IMDi8+KYlwtA+TSQwJgtHVSBJdYrPOGL6zj4YvLmUQ0swdqBHUKYVIIISFmDIlJbKsrHIh6MndsqeNHgZVBV+ZGrH7dBgiSHZyY5N93gzMlY8QCDExJiDKNKDd3fPhF7CbZVnYpzTctbLtOzkXr1iN4pzv+VC79U5v3cEoOljPC0M7237n/PjE2/3G5cGxs2/XzHJa3ECFUVtFNBJT4ac//omHs9PUvn79So6R1hrX2w2J0QeL+43btlNK9gdcEL9tq38gciosy8Lz8ye+/PwzORcE9wN8ulw8t989xrScVkZrvLy8UUrh8nAhpveaNWHMSubb7YaOzlrcoOkGr4MQfBhKKVFb/biZ6FRUvNSq09vcCRu8U9hsyPQl+FcfnfuxIS3Sxvd1zXYcvLxeeXvbebtVWvfXNiVBe0SbcUHJ65i39IKERu+DGM7+e+a3aJUVgtceE5Lf0kbwFI16Lr6PnT5spk/eyYW7qwM2cFaNk9sIOgcBpsFvDloWgOxL2ympGzohXRPMIg1oxFBdsbJACGdyeWKgVDOWfKYN4b4PwHso+mi+Jzc3v4ZgvL29Qj/IYRD0oIVGSS7hc1ROD64IOaFPYVRGtXlofEdyi7hfAG3Qdkbd3WTYPaanIRLKQiwrFp3WaAZe35ghJl/RzApyj0Z2x7/GTFd/gJtMd/f0gNSjcj8qR+v0vfr3I5G9HpAaMXuldm2DGMU9O+aV6qc52IUgpOxFR/f7zopwOhU3vkaZayEHFXUxj0hLRKRispEpc30j/h6S08d7cG/K62HUu/r6TCY1D18xBZng3uGvcQtGL4NkeNmcRXIuhBgdBheCl35FXDEZxmjQY2AtkVCMvasrajrmIWsMbdQ+KBMGJeYG0hiDfx5srkrEPtYoEtxS+D4Q+1vU1YwP/oGEqV25giPB3K8xvQFm31UHXzO4CuNFe0656M3oYlD8QH+3dMJcFb3/zMzj5mmubob58+BonTEi9/sNQuC2D+4HtENo4kNkVWNZAknck9bVqKK04CvMYLMrwu9pHwqVf8/OrejzWT2G+1H0fX/3Z3792cPAsR1oU0oIDFWSBc4xc8qZsp78DWBuKw3dyBaoh+8PDxW6BmyCP8bIFM0s6TzvtxvRGqKRkleWsBIehFAS57jQ9ztjuyNkokZMVy8WMt8LD+l03EwV5ouMOu3LNH8Q7dz96xQ4VVcVfFc8wA5MByN2kEhMUzL2/5k/9LRjo4OvrCdOOCJmsyjDVwI6pwYJyhJmnln4YOeXLKxr5rwkHnJhDScWzshY0PKV5fyVtFc0GtfWuN08B19yISUjdHHzkRhdBoxGVL81mkwVpk/z2PAp/JfDYYg+PL3HAMfok4YI7ahcj8NZ95cHlolG9hv+zn27o/cbL9dX8oT5lKXQWmM9ndj2HRH41a9/RasH1/tOzpmXb9/Y7lfWUjAzLpcLqsptu+Mtae5duF1v9N65rCdEAutaKKXw8PjEsvha4fn5GQkRbYN9P2jd0wc5F6oe2BjE6IfVUY+ZBOHjV4rRnUG4hC3qP7NfYpF/9atfcTqdPvwIYZodS5lV0RN36pQ0ePcOvINB3/sQwPeYtSvLCL/grrt8er93tk25bZ3WIYxAzo0wdn8AxOjArOTFXpFORwl0LHRMDsx21E7zZj+TxeIeF5Ewuyn8JpnE3c82jUaEirC7Vcz8IYw6pTPYL25ZDsF1QxIF0eI9HQZ+de14eqViNr0Gqp4pVxA7E2IjhieXYkOiaaFOrMboAx0N6ZVed+p2ZQnifo/bjbVAiYMlBZZ1wWw4gjqlXzTmKTK6/+dSkBnH8+y7U0FEq2Odj9vsRZhAF/F0Qiwn/3BPbPH7Tl4t+EVAAiFlxhBadUOkxITFRNfpdbL3Ibax74dHbFtj9EEaiorQzaijU1LEhhKGTfHOjYxHrex7ZYmLS/wxEdWw4/gw/34Mae8SuRkyHFRESPSwI2EhyELICemgUUj5+zDQhvC6GXue8Kk069LnDRhVrPWZ7hiUBIcqqULKTNZEIOeI0Qkhsi5CTPPG3Y0ejSZG7gFJhXtt3OgcbQ6eKG0oYwghpwlMmuspwf898v3QlmCzN8Gfs55oaxjez2FmiPoQNR2iMBXqgBtyMf0ocXtXTT2hNOZqzf/9XfztkAa0NmZsfP69Q/gYOML8c+z9skt2Y6UUtqMxrHPbdo7asL2y7Y12+DC0qlAVGkYcgxDMFa2QIDkq3Npc+9mYrARXH2s3jjrYj0E9Bq0OOpCjX3p1Dul/ztefPQyEVskoa0jkGHg6Lfzw+RNxLZTlRMyFaBE9BvV60LaD+7ZjQWlTQp8eS8cM28oaCykO3/m1zXfV52cWOfGwLHwKZ74M4/ZzY791og2SCrIppEBcTwQNhHh4atVcOunWUFHa6HTt5DAb8MRpVyH4LjAzHNkrQhzdYx/j5i/0ktz00cWz462h/YYPBYAEr66M7nz0/xvTmesRLVSRPojBYyYigZQKy3JiLWfO68JDWVlDIUvEmnrOPP4eTY2DlXQX+lW57ZCtELqTwogRC9FvNECRAdrcya2NZu5LCCG5rPXRFsZHTGyYG4BySW4AbJVt2zjNRsHb7cYubgobvdH6gQVj23ZUjdv1Soi+l9pr5fzwwLcvP3O/XXl8fCCVTHt549vLC3XfqWK0o9JH5fV25Xq9IiIc7eDog9P5gZQz99vNNyghcDqvPD09sawLdXTuX75xuTxRysLLtxd+/vKVh8sFM/ciuPHHJf/Rx4fkv++7+xCWxQmFIfsuu5Tpg6ns++7S6IxRtta4bjeutxun85kQAqVE77yfpVIheYBvjABjRrFi+ug8APdo7B1yV9p/NiRAbcLRhOOAvXVkGEWVoPPgqQGVQc6dnDvCQMwpdSoVKMSQIWxOskNR3TBdgBMpFo+rqlKiYuEdK3tg5sAtsfoREcQ8GoW9Nw0GxkRYxveOi/n+F3n3DLz/pq/ZdNwItjHCgVjFRmfUhRheIf1I0x+oo4H9wLo8sO1G1+G79lo57hv312/k8+K+kZ4xO7jdb2xvB/dT4nJeiZIcXKMdG43RNtp2JWSPOEpMKHD0juHvhdEd83q/vWGjEVJEckHi8vGLmJFhjheP2T02YxAtQMoO5BJDQ0a1scTM6fLAsd3YemOYUMeg1Z193zmqK0imfqAMVbDg/hKdC8yhhORDgk6jsb1deQyLXyBKIafMsniB0TvNz6mNfSYOIiHnWY4TkdiQeBBtA01gGRCGvu+RPZ/+tjuC2NMtRsqQE7iLwKVmwy8zIQvE4a2mw411JeXp6/DDOdDmTt6v7mIDGx3VwePJhw73l6qbZ1XoA97pg1HAmqK9Yno4mC16K6IFgSHzcA+OOW8HvR8M7a6S6ZT3ZXaPhD7/vvN2PVWwMc13nYAYtDo8Nt+n98CmETj7h7XuN1JU1iJcToFQoPG+tnO/iA2PtqecCHEFy3RVmgq1K3s90P3Gtu+0fSAh0XsmNWHvRspe4JVyIITk0LmREHPVs04F7J2Oe8y03e1+UGunqRKid2P0/p7k+AsPA6t0ksBDEWJe+fWvnvntb39Ekk/FEBGN9DjYO9y6crtf59RWvY5RvEhhDYnVIqkLOSRSPpHX4nvhh1+RrZBHomvkuL1xkcpzbKg4A/rYm7eumRItsoQH8nxgqTZGmIYyG16eFJREJIm6RG9uTpQUCdErKCXNyBSDQSdYpltgPwa32+A4dmy8ESKO5gyFEJwm58xtf+irujw43oeDQ8jJUBNyHhiBEE5EeSDJiRQXUjSEBnpDxhd6/z1CIKZPxOWELAnTzH1Ef0ANV18kGJKEIIpEN474MNCdamdKTuHD0/D+FQOEYLR2EGLgdFrnzwtEDiQERjeGHURxR+w7XtMl8s5yOrHXg7KsxBhZ15Ux9/spBn7+8hMPpzOIeXER0OuM01jn5eUbYwyen58py8L1fnD/+oWcCilnam+cJ5ehj8G2bez7QckLr2+vfHr+xFEbtTXKcppxK0FiIPG99jimRAjBb0tTHSnhBFMO3LbNITHz/w+z5a13X428Xd/Yj4NlXef+ECy4a1fN8/iqgz66G6PiLKMK3z9aXWFvghzKUcfH7+91EA8Yfe74hydTDKMQaSlRm1cy2y+lTWme+5YDmQbEwDoPiIrpMn0klRDOhFBoRycm3+P21tHREbyu14IPjmjHwnAFbPILLDi10MywkIlivp5gRhs/EMYz0tQ3tF9RffOOBbtjo9K3wN6+UO1PXOtnbu1XWP57yvo3dD171lqV0TvWO0mEt7dXRBslO97V+s62v9KOG6aNKHBsN3Q0xnGnbXfq9Y10XrGHs6+DzGhj+nS0e1Ssw3HcEYyUMsv6QCwLFoorBBJnasdBTYjTLT3LPqZiKMRcfBcdjGLG6fJIb5Vj31DzNdC+7+4N6Q7HOnqfSoUbiuc0wDB/Ld2v4dfe1gf7vlHmUYa4mVJNabWRMoAfYEOFEJLfLEtBQifGSgw7mhI68oRIGdteP54HbRiMhN4qIQpLMYq6IiQxkeNCKguimXURTqsQpDP6ThzKktdJ+4zzvV4ZWpEp04tNk676OmsphRIqSTwxMoYPQEPdLxbnIdyOTt0OtHdKOUg5E/Ms5/Kbgq8mdHysHMCTOBjkjxSSv442b/86lTy/ybs6YDocsT/MhxRlcjm862T05u/hYyfI4PGS0B8eiOKR9XeeQ7fvvqRyElJJmBUf3HFEt6LEsJHi7m33k9HRBmjzFBCSCKlgWmhV0WokEr0ptTpAqasrjntrXO+NbfM1iyHkLIRksNfps/jzzvg/exi4ZCfrPa1er/k3P5z59Q8XVIKb2Tqec+xCzAFK5FtQlIrYQZJKyYHzKVNS8S5ohFOKPF5OfHpeOF2e0PQDoUXiMdjvG7fjjd9cMuf86KbEJry8NL7elbscJMmc5IHFMsMa1cI8DDtDO02ErEq0QA7+YEUGEpWghSJuqItJCdHjVWrTYDYix9HYdkX18KrP4p0BHQMLHEfDmse4xpilHGL0+SKHcPIHy4TBGD5IxHAmyslBInYHeQP5GZGvSK/YiLRaOUZis8hOZMTo4A/rnrs2j2ESsqsh1tzENZ2z7jD2zvNfWkhSdCZ5nK5cUVdNlnVBEbbbGzlFTiWz5DSlTJ/g79uGTZlMZ14/xsivf/1r/s2/+R94eXnhn/7pH1lPKyEFTucTIRaSCN++Npoaj0+PmCmXy4X7vqNzbXC939mOnSVnHi4Xzuez5/B7ozXfz+bnhW8v34ghMrpyWs88PX/yiNroU47ts0dgo7bqcv8YWDVvNhQfFt+7Dhi+OzyO4yOS641g76z8xLIs3oUg/vsWKt3ubOPO3ne6+UEq4h6H8YsMoVpgH4G+Ve7H9/rYbWvkZqhG95AEQ6kOqhmdNhpZO2G4Wc/MYTQ5Rj/0LWExAi5xS2+obZidwc7fDYCcJiQlzISLp3kEv1XraIg1VwrclopO7PWQ4CpKgBS8SCwmeI8Wvkcz0Qa6M+oV0yuib4jcEe7YOPxG1l+p9cb1duUP375yb28slxufPv8jJV18UKmV0Ro5RbbNC3+6tenaNq+x7jujNRid3nawjvYD6xuj7ajOz3nwhs+BTUa+58OJjqJmHvDL6UKIBZNEt0Akea8IAYLDyVyKF4YNjlZR3Nzn0Tc/tPrwz/gEAtCHuUlSvIY4aHAvibiR2dRvnobRhhFTAxFKyo7bDnEWdQnavWgppDhhWWM+Xxzf4y55Nzb2MSN2vTHSQe+R2BPWnZXwC3GKNoS+KRQlRSHImBE290ZI9N/PKXMqkSW7IS9YIIfMUk4uR6v/vqnjlGV8uPn82ah9vr8gSCWIN32KhHltct/b4fEKjr1z7P66Ls1YlkweCRVnUCBCzGkOq0ZMboq2OhhmlBRIKZOSEKNB8BXu0DHXuQ6m62O4+XcIQROmDusymIhfo9XGsVfu1ytROsPOnB5WHi+LUz1luCrQPZyrGtivDZM7kmBrxtGUrXna7Ok8WMtgnJyPo5bpKu496qAxYrFgsjDaoB0dxagVahXaVCxaV45m7IdyNOhj8idiIAyBNj5SEX/RYSCxs+bCQ3EcawmdJXQsuDwSVDgmeUq0OpwydvrYEb2T0+DpdOLT08qSTiQy63Lici48Py08PRfy+Zlb/wG9CzlW1pAYbKRT47CTP3Sa8mU54E9XxnEnxTNZTyRZMKp/wHAXflenAQ4GccZNUEUtIcmIfUFSdrjEcENVsJ3KnaSZrsXjJhZZ18yPT2fWU+LWhFsVNzPuldbMP2h97uyD7/JVA6H7ekCkextV6/RqjMUhEdUqxFdS/AnsD9h4Q1qmbYn7TXl7a1z3wX0YsQgWOtIPojkNLcUG4UQ3dzcjOqU2Z3zn9P4G//4VAyxLYj2V2eTlTnYJnuUPMVLKwrouRFFabxzbnT4qKoP1dAaMZV1m3heu9yuv1zfKUvj0/MyyFJ4eL9RDSfHg8XIhRqHuO7/57a9orXI6n/n67Su33aXAkBI/ffnKGO6PCMEBKqrevCgzCvj69kYQl/9LcVNhypk2pht56KS+GcuEFR3H4SVF85B+9wLs+04wh9S4guE31BACvXmLXohefPRevhKC0um0ftC1EZOQyonafC1mw2u2v3+5Z+bYGvf9+zCw75XlUMyKx8ywqdDUeQP1v8+7Y3j0TgX/Z4f7XkZxaIyFZd7OJzUwDN55GpgS4zSUDqcGZpmxPjPfnZv/ClZRab42mKRFDcNRuGmCs4InDN7bLXXu+20c0K8wrkRuBLkT5A66Y73TjunL2DtvLze+XCt5TcAjTw+BHKDtB9vtRrRKigno7Lcr9Xgj0RDd3VD4eEK1U48NG2kCbcbcXyd/H4cJF8I+VCHVjolLzkHipFTmeeB7LbvMFc/czLvfQsIkPbqxboiQ5XsJm7ZB7YNW3TgaQvjwqAjeR8BkPhB8kFDFcdoTwNRa85jrKpTiShTmJU29HRCE9bzO94YPcykvxJhdqn7Pd8ziGkxRrQwN9J7RJgxN/5mfRU0YQ8hTeTL9nu8XPPK2psASM0sJpNAn/GuQ40qKGR04e4a5tpA62yc9OjfaYFRPZgQqrTZ6Hc7k0OJrK/NK6tED2jrtGLRmyNyTlzIRSGPQRsMY5LB4CVwKxFJ8YAv+fl6XQo6ZXAIp4f4WArX7Ra93ZXSlj8HRBtbfbaxuEojuOp+rYuOoyn3vpOjsG2ImlGWqC4Z2hx/p/NlXVe77lZCUbpG9GXsdnB8iz0/DxzdZgSdazxwVXl7uHFWxLjQTEOhHoO1QtbmRW42hPjTV6iuNMSLvnSOeOvEKcUeL2wQq/Tln/J/5FUYgLUJKirFT2wu1PhLSikqe8YaD/djYj4OtHViYsjWFJbzxeNr49UNhXRdyeuDhtPL4GDmfQHJG40royfeHQUjnzlMelFG4bcqxNZBAPxslCXI00oQ8vJubdNLPus0iCwE1r1tO+K6lheEVw2MhjHesg/l9Xw0bgWVJhFhQHaw58fhw4h/++hOns7HtN17vd27bhuwbXzdjG4VqacpRHgMzix5x0+gFQArr/c7ldOVcCoUNaTtDvpDinxD5gtaNtgVe7vDlNnjZB9twBLI7yhsmOybDIzwhYcFreiV2jDoTE5kkhRwWX038Yk1gqROWSlyUxRKWBN0ae3UMb6t1BigHcXpwYl5Ia+GoN78hB+F0PnkW1jr/47/9Z2Iw/vbv/gYEvn79yq9+/EwpkdvtztDGcRx0reQlE1Lg69sL54cniBvfXq60PvzB1pV9q2De9LauKzlnYpkO/t7Zj8136hIYrRFYybmAmVc0x8iiyros/PzzzzNtI4SUCDFjY7IxurPLj/3gfr+7WcmM0/lhrn3cQARuzA05spwj0j3tkZOwXAqnh8K3Nz8IlOKRsPklBKQLjU5tv1AGurJUcY9BCDNaVL0edw41buzrmPaPXfLo7/tf9zX7deuY+edOSHX6QsZMDGwkOXnGf1ahurEsMXRFNXtqwIbvk4N4t9GMCruFufptL6jTkui+e50OZm19wsTuMF5Rrkg4iAxkRLat8vKmfL123nZj3yK9RfIK2/2NJZ2QnGltZ7u/0fcXco4s2Wt5U/CyHRtOwTySUddEsI7M0ioJQlkLcSnzdY7I8BZGESUH0DZTDyER0oKEhe6BLlcOQ5zZbEeLezLNH6jOLhVfI0zZ2ct3JodgxlvdSOpJAAvuPVKJfknQPktvJijGnM5gITivvvsFq6yDIp4g0tHow/HRbtTzTg5HSk+TmArGgdVMWR/AHIVuKqj6Je39Dn4cx/dngSVSeADxoi0TQ2VMgJH5zj8JMTvyeNgsHhrGqQRMlDoaez0wMWqvNK1+Wx7vv/ygFDOWqhy1c92VWw0cKjQizQJD/dk5mrpcb+5ZOIXkdcHJFQYH6zhXpcREykJZQGUwRqXFTsqdlJO3wKaJW/afNLE1BL8s2vChoFVx6JV4id07L8YoaFe/aIpCUuIilDUT8uodKsMvgjr8/WLiHpR9OKhJxQdGQXk6Rz6tN5bcyDkiobHXhdtWsBF5vTW2OlxBGkLfhVpdyRw6zalmtO5xfwVMAiHmmYg0ZDjOPxPIobGsf2HPwOP614zxikrHQuWtvnI+DlYuiBRstlP10Om500Z1lGItNFtJ7SufL5XffnITWsgrp7VT4p1RD2r/V1j5Ne12435TliWw63/A4p94OD+hNYJGtrYxRmLoia4QdPDWv8HZqKNx1DvdGrVXn+hTmIOKuoPehAUjJWO1wTF2+hBqF2of9F6oLfCrzz9yWhaEjV99vvDbTyu/ecqcyjesXGnrG2/bxtIP+hF52S681kficsb6juhGlvnglBN77+yjEUsgJyXZG5wCsiiEO503sMGwwLUafzw6v9+Vn0dgiy57at9ZRJ00aEK1yKGJYoGzQMqDXW+ghVyeibYQuVBiJtkGs8W8x53LryPl1qnTpfv61THDtTms5/76jY0x638Lab2QU2C0jW9vb6TsxpgQAvfbG4/nldqEx8uZdVkYvfP7P/yJpRTMGr/74xf+5V/+hfW0ks+Fb99eePn2wt/+3T9wu+2UcubYG/e3nR+ePoMGHh+f3fsQhJADTRvXbzc+P39iWROoeAvc8Fy3JHf8mxlfa3fU67Ly/MOP3Pb/hERnWGxHxczIMfL56ZHtfme73YBAbZ0QA0frrKcLR+u+Sz2f+PT8zOVxoceN3oT7cbBcjIenQFru/LhEQrxgf+j8ZN9+8SEzTiKMIB83VIBDhG9H53lJlJDJyUiL+Tpo+BrKORA7MchcKSUYhu3eWPe+8kKMFIwS1A9lqYhsYCfQC9gD2Bk4QbhgnNxpPw6MhrFj4nAU7XcYrqaV6DCwPipN7w62NV/7CLsbEXubqyZF7YraK12vaFWsR8ZReLslwvJXfH0x/vh1ZatPXGvi8rkgwajtTtCMyCAXZfTKy+uN3/7q16wl8fO3VwjK08nrrrOB1UZVJUmkrCdMMum0cAw4+uByDj6wtOr1subs/r12TBY0nIn5BPk0EwHCoYbUWVAjgfGe4w+egBDxW35MrmL0tmN6ILMJNORE25RqSlhWIp46CGfhODYsupIjs4VQQkTn8NHU9917PQj3G4+XRx/IQ/hwzm+bMzdCDK7UYVgLDr3CFYmj31n7iTEeMXtE4kIqbhrU4Tvy9y89hH4P5GWlSUXwaHg3oUlgHx1pGxIDSKF1Yz98t56XzrG/0IZ7d2pv3jJrgW6B296pw7sMTAxssFjj2A72XdFR0JTRABWjqhtbZyyDYEYZiVzOnM8Jza8cx410zmR5YIkXRwTHHbEbTQ+iVnIymn4hp89Q3EwZQyZLZo0Bza4ISjeGJLYh7PtAzgUJG2FcSaIkuRDDA7IUjqrc8s+Uk3J5TqQ1srXOtnnCIE0S6NBZgW2JUBaOqmz3GyVE1mQ8lcEPeefp8SAn70L50isWfs1pXfm6wS6dkKDXRt1BNXHvk6yovsIzDGKgpIREwQakkNDJPInqhuUfHjr/+A8Pf9lhQNWd8CnJLFRIs5HQoREWhBiUoZXaK3UodRj3aphl8umJx4uxLsr9iOwVTA/q/Urrd+72gpUXaJlejR6Eaoc/bOpBOxJvLxt/+Plnfrpnvr0Gjg7dKiYHqW7unAyAhWmsMpeoZqWsvNPj9kbJgfXe3MVqkEKka6BrZljh1goWMikKS7nw8PjM6SyssqMKKVZs6TydYS3+cNBqjje1TrBGxBUIU/xmXO+EUClycE7VgUZDaeEgcQCDIYFbC9yacm9Qh6M1o8RZhdnnLX9GokJy8ll389j4YAoE0lzHxBA/pE8AlU7MSlwM7l5SHnIgTFBO3fdZ3TqwDUx25DjISwKtTswaTlfKyfemy7KQc2ZdnNwXo7uLW29s242vX78wRud6e+Nf/uVfaK3x009fuDw80Zry9rpRyomSit9cSuLLt2+sp8K5nNjqzv1+5+F84XRZ+eHzZ3LIjKaM0di3jeW8oBo/pPX3PHhtHcMTBhIDrTfu141IZ5mgkTGhHapGyoXWG8UKD4+PhAindSXnyLZvbOMVk86yLkDlqDeWSyRGf2iXJTkyeX55QVL01+UX8KeukM0Z7+fTyWtxy4Klg14HVkH1cBqf+WseJXzc+modmDkgpmXllAMhezmRs9dl1gf4rWsM7+QIgY8MvrQLpj+g3FFNDNR3u7pjDMbYqWZAR2WQrCD9ESQjyVMHMdhkzUeMTCfQFDeH1UQ/FrZD2O7wp58Hf/q50qRDWbzXox/erjcVEQlCWTJtj7x8/UIJRg6RfbvR3r5SovFwXmm1feykvWwqElMi5kTI2ff9ExJkszWP4EiOPgJdA5A+FIH3GFaYMdEQ/GforAaX0OPE4A716mmdJDnGmLHR4FBnw5G47/HEqE6HFJvfs/qQUdJktHjpEUyfv+HG1ugrvveaZ+Z7WtSm92GyL9SNZWKGVGFIZ6Tv+3CHvjWkCOl7izYWB4NGtDB35sy0iSepTAe97/QBS/W+in0/QDspus9l6KC2xtE7+2HUAbXD213Zhw/zRDzuOhptb/Tqai6jYXGn0qgT2hVV3DQZBEkCJdJFGRz06HHQFDyBEhSiGdob93qwHW5KzKkRpBJZSFI4l8yaMmIFdOWeV7ru3FtD7aDp7uvXeFCSw36GjbnnyUhcifGMUdmPxOsr3GjU2ilRWSJk3DzYurMZhjCjf91t6V1dsQ0LOfq6DwJ5ljOpp3AnSlknxEpoR+cYjSE+9EswJgGbpQQWLT6MkxlVqXvDxk7iyqcz/NXn71HS/62vP3sYGDSWkjivC6bCEhbiiIh0R3kmZYv+cGq9czTjOIT7vSOhw8MFkzPb0fj6ElxCsQbdW+f2cCcsr6zhggRljUrHOO7CbXQuaWXvnZ++3fjDt8R1fELL4kQuUWpXj7lN9rpKdOlTors9Td1Q2Ly0ZGjgujk+1kuHhktueCTpy+tGv8APTw/E9UI5n+njxoHLoqg43S94c6OnsR27XKKxhOT98iIeRRvKtleut401DJ6WSBoBa8YSO0m+mz32mtgPo1XQ7tCTEPLkagci3TPPczyYASuXsyzyzoZLyQ8PD1G8S0Xu/o4xcz4vHLvQmoM6xmi0Vum9TQxnIkRDI553jZDTMvfmYUql31vnlqU4CEgC6zrfgNYpOVNy4Xw+03ud5TqOdN23nfP5gd0GYa4ejn3nth9s7c6DXtDgcT9V5fJw4Ycff+Tz588ct5163N3ct/rucds2jqPSWqMsC8uysG2OM15nIqC1NouZDvqU7mvvHLNyuQ/vgMgl8/T8RCmJx8sDOSVu2wu34428Js4PZw69+/pjFN9RU9Ew+AXjySOMy4lzUtYlss3fF5F5wMB5zZwugXzKWFxoVTm2znYzjqP6ARBxydMiOsyVrOaft5SVlqFkWPPwaFjw94Fq8CpcFWIqlDwcXtRgaILxgGn0WybVEwBAGxuDO136/HwAeiHGExIy0ZhrpEASjxy7d2Fh9OKH6yj0XlAS97vyem28vA1G3DmnM7U1TvadcqjTGS8hcVpXjuudo+2kmR8fww1itVaCGGYL6xgEEdZlIWeHXKXoxT0xLYS4et+BZEIqBPOYn6OVkxsBg2BDvfXS1+2+Hpotgl5ApbN/5X0t6fJta2OunfCCHHNTtc51gZdiJT+sCZMD0gElR5DscdScHSvtsJ/wgdhmFlH5UO/JJQc8GaJKl3cmP4RJv2xmxKSU1b8PFZtxY2XX+8fScEhj66+E+sAySZ4J9w+Mbgwahw1ar6TgNczHsSFqJDmTY0Qt0LsjpvfDqN3bDG+3wd7dQ+VbE1chR/VhNoXkMULx8qa9NjChhESR5IoIgY0drRXVO008Kq7RoWijdpp6muDejK3FGS1UNHbMOlIGqcAS3Wyp5k2MUmBEo0nlGMbY75TiBXoaIOFeBk97JAYr2iK3WyGoAJVAo+TBKJE1+Rqudv1Qyveq3K8Hosr1XmnjkVu9EHf/HpDMtcK1NfYOKt4BMunTbnRuja1tkJwDkaOQi5CScF49kslwpsMI3lJ4HBULN4hG+OX095cYBgidsq6syxnpkYVCqEDfSUkJYVCi7yqd3S5sLbDXhlB5vQV++rJy+yb8/NK4Hht1uzH63eXxslFOL5R8UJbBuXZCOtivhm4H//QPv2V9BilXttqpekJW8T16KHSEPDP32jo6hLKu5LWAGNux83a/M6wCidsuLEskpwXMa0YlREd9JvHyHRU+Pz2zd2OrShiVLJ3eQCxS++C2HdzvO+jKubiL+OG08HhaKTJZ0TFwDKGOxHF0N5fUTiQwOuTgvfQxJVKAXiN7mxFGTiRZSZKdLEZz5DNK8AZwL96I/rDJwetH7f0BGzxbbuEX+XZtGML5kr22tW70sbMdG0fbMVVKDJ43PmXKeSWui8eEKpOj4HvAfTruT8N4eCjunjZlXc6knDj2G+niU+xPPxs6FtbzhW/fXnh+euL69sbT4yeeHlau1zuWjLx4tKvWg+t2perBp+dP/PXf/DV//w9/R+uVf/6f/yf2+8FpOfPw/ERZygdV0JsK3fi37zu9u+y7rutHzFBV/QYo0Yew9xuk+LjUe+fYd/Ry4fT0wMPlAqrU+8Z+3FArlHVhWGe/3RjhhXwuKJnb3mhWv390UuJ0fmR9uHB9HHydv7+EwmltnNbE5Zw5nwNpdZx3FYMW2WVjdL+pxhAwceKVH4wKXWgDQh3UVEkR9uxc/Bj4YOerDmKKrOcz2Rqt37jvbupzoUmAzLCMqhtt63EnxJ0Sx4SsZAgZMy/GCVF8p/yxZ3VSi6VEyYvHs+qKyInW4MvXg7fr4O02aNwZeUF+/hM//PgDpWRySLSb10ujHi88nxeuL1deX79xLoHL5YL1HfCbs7vnPWufU5nxTy8PkpBI5UxZO/t2Z8w2VYnOoA9xIcQCxLnndwOYo6gVhptxv8e0zW/NXQmWAXV5/p1zpg7PGjjBsGmkmdIQr0AeMlMh0If/+9owQlcI3vgYk4PZ3FcQ0Xk7DLMJz7+NaUScyOwhnpqwiam1bgxRrDsTxSROZTRwaOe279/fmzNCabWRSCwUlpAIdIZWd9TjvhpD2ffGcbyTXoUlhQ/Gy0AYzT1XjOhxado0bXvF/UQXOQsopclLMZpVmu4OxmLBEkBkhMG1w9u2QdoJeRBHpY6N1BVts+tFlGaRbQSsCckWeih0S2QVb56dFxqLPgR06TQqlZ0mB/Vuc/WWiBEOhMgAq2ytsVe/mV9vbmREHCPc1dVFEycFVoWjG3vttEPZq3uTbruytYUvb4O9CyE5p+TbrfOybVzbYEhBUpwsD8cw19Gpo3sJUvRhQJIRS2A5+edmVKXvg2gJSqCT6enMz+3Kf3jd+HO+/uxhYDkHypIIISGmpLggbaC2ocVfpCB3YvSMch/CUQUVj368vCr//nedQuC2Rbam3K4DrDiwYsnEYyOFnbJ2Lm3w8BDYt8Tx2qlW0KRoPHHoTrNEskhtSimB3o2UolvltGHqyNP1dEZtcDTDbPc868xsmhbW9ZEA3PQKIXAcg5QL23Hl7b5x2yujH5zKYDxUTgXnC9iZaxv8/Lbxdj+ISfh8upDSwtN54dMlkGLl+vZCMyVq4nScqKPTVbjthnbY3vGWAW/8C8EPgZ5QTeRwxsJCkkDAs8qYF3gEc8k4zpIixcgxI+ZUM7XuDybBJa/3YWA0dyPHEymrU8diQ4ISU2RU32kOlBRhfSqUs7c56gbWZnyuu+Fw2zbkAc7nM7VWMLicL6zrSmsbEjKXcGHfNx8czhd3FPfBzz9/YdtulOXEbbv6+yv5jrH3xsPDmefnH/mHf/V3/NN/8U8kSfz3//3/i//ln/8XLuuJ/91/9V/Te2WvO9mD1x99A/u+U2v1Xnhc9gWZBsSd05LJy+IgGFNMXA3JJaPqhqDeu5sXA9zfrrR9oyTfD/baPkxhP339iXR429ZRA90a715yAsTFf4bnU/cHJFDywtODcLlkltVI2Su2DXfotzZoVRkDhAgURDKB7INe9PIh/YiSed96r+ZIYPOedNXh7usSOLfMXv1guu2VozZExP9OYXi1aptYUxXykrC1UFIiSsH0ASyisaGjEmleeCSevRc2Quo4KDoxauKICSNy1E6IC2UJCCvLsnL0xtHqVD0yEgK9qRsT650lGjYa23bHKizxzJKcaW/a/fUec3DLisSJhFZ/vOUlU87QRsCLqVwaj+AqRiiTG+Ivl+ESrdcO2wff3YclmasETwHAdI/LPNB6oyoMSXSLdAtUFY/vDaH2uQIAzCKg7mS3hhHJMwEiEiar31cUiqcNTL2ZVIjfzY3y7mCfRVLB3fcyOm2omwgd7Etvxpdvr7x8uX5/sA/IJK+bZ5DwJIGOQLNAU5lNi76KOA6j1UCSTHodnEv29dg8Slo1umbUEjkIVpROo+qB6sE+BJulPkEnqXEedk19SGtB6QhD4hycBnurxGIkTdjoRH1jkTZTXIMRhB4ShwraoUTn2Eg0pCnxqChKXiOaYGuDW6vc20bVHdXBfoPA4sySyDRed8Z4Y6sbe3ew194PN8pap+N45aZzaAthKjNwOwY2IkMKZsLRI3s783ILXHdBZUOKcauDaz24NUODIOSPR4cFp+s6etF9bzY9A45nju57GcbAnHIbYZC49sL2JugfvhtG/zLDwMNCyLMvuStnEbzYZ6dXxUrDK3Z9eqr+j/nuWI37ofzpm1Biph2RvTVu90JZVtZ4Bsku9YfD43qiSDhRN+X17c6fvt243Tf++LLzuu3EdRBloddIU0c0LmklxkzUDEQvK9JMbwNtOFuyO01rSSdO5cLD+Rkx49gbXb2MY1kWL1epjev1yrVtnLKT0Z4eO+sCUQovR+Cn18bejMtl4dPzIylmHpbM0yUhJPbrG7UPMCGEgo1MtchVoAZ3C9tMPYTi7Yu5GSaFkU7EuLoBKEBQh4WYZc9JW0DUB4Kuhhqk2cilOlz2n7GSzvdhoPed1oXR1Q0+KMuS0EuEJmjMvvJgJ5ZAOSeWB2HsQpAVbXM31tw4pLebl1PF8F2CV2cu9DFoh7fDrecz2js6Bg/nCzm6nyHGwHHs5OL53ut2ZcggxcjzD3/N3/7D33J+uPD7P/6B129vbPc7z8/P5JTdvTwqvVd68+HkOHZC8Lpjma1dx0TCxpI/1hvvVc59ekoIbjBrrXlDWMkEEXKM9Na4vr3SauV0WoilUOsbPQ0IsB13QtDpHi/YL0gfOmOu2WQe6j4MpOAfXEJ181g1Ynds6r4p+94nGjXMPHki4N+/F7UEhsg0kAm9Q/eCeXeb10o7Or3vCJW0DJa1kcoL3cQPYrsTM1zWB1Yp0Bp126lNWdZHTJSyuPlKiZgVmjawO5LuEHaYEWMTAduRuJNCRwyOJBiR2w1+/rKx7Q8McwUtpsJW77xe3/jhuXIpl7l+8jKxY7/TxkEK8HBeefv6E1/Hxl/95ld+MzZHtQpGqztjdGLMpOSqhFkk5gt5TaQWZvN4n4wBvwEO8/WAE0o9p23GvAk71tWx5tPuMU1/Y8yhwPDkiASGVZoKGjIjZJpFb2dUoatwDEHMnIQ9vR9H9507cRBC/5CJc4wQjZGyxz/V/zCJfiN3P6HBB2zNDwPlPRrY6fOXmrqPpkPfdsL4/ixYCPywnjF5JcUNhtFrYQShiXKMwd7aRzqrHcIYhSUshOZNfylG3h1Jtc4ukRggFFIOIJ3Wgq8xPfMGYaoWuKerN6M1PwFTiAwyXbwv5FYPtiZkW1hCoNcdacpGJcx2zl2V3ZSGr1hy29EcaGKsvbL1nbRFyup4xbd958vLjdv1Tt8r0qHvwkiFXrJH1EURabTWOPodFVfeNB20ySppNYAOjtpoXUnZmyS7Ktet+/vKEjaM+w5v9wAsKM1j5UXZR+cYgz4L34T32uqABveChBmtJjSUMVtnldv25pHQFqkVogXqAbfrwYt2llNmP/7CnoF9dIok7sdO6sZIMxONG4B63TnEpgnPUY/DbBpfDMrKoatPjToI6URaT4yQ2TTTt85yDpweF46j8XptpFiot4Oqg3//n/7I1293/vj1ThNDuUJNJFlp20G3RokLD+dCGIGlrMQeGPugHwMqFHFeuSA8X37g08Mza1qo2w09KmM6zO9vV05lIUfj+vrKOcPr6wvbvnGvg8cnQJSvr8rrEZxfIJEU/YaFGq0Np2BJQYdyvd25vh2MkQjhxNEK96bE6A/FOir0yKfzibPJLJRZCBRG05mLDgwVbHiVssOzvRYTVTxMghdnoGztPmmKicH4eHCYNYclDSdzdauE2U2ecwLJLDlSR8TSQSiGLANr0xUsbhiUuae9l0Lv3Vv/qjuSx3zg7PvO168/cRw7P3z+zNvrlXZ4njrnwvPTkx/GtfJ4uTiBa4FUIg8PD/zt3/0tbTT+7b/9t2z3jcfLE5+fnvn86QdKLpSSvdZV5IOA+PXrN06nM5eHB0opmDl4CKAeh0vmMZBychOWQIiBmJOvB5obrcqyuG/g6YmYAj9/+Zm0QumJqAGzyHF0NnYanajNO21CJjr51R/UotRRkcPjdN+nBGXYwdE7ssGa/edp3Wh1ljNlb6MMIZPSOqOLfHg6MpmeCnIstDqoBxzH4NiVeihtg9r8gdX1Tl7euDw+EEqiM6jxSg8HT/sTPz78SOqJo0V6P5Ms01SpGiniTYnXbSeHO6dyI7CRYifk4YAfBsadFCoBI6SFWAYShb0a19vOH36qdHtE42AU4fH5zOi+ptPeSTFRcqZ37/iox52QA+tSOEr2fozblcfLBcG436+Ydk5nhyzFOCjLA6pu3grVMBbyGhBTRm/E2GlHow4jBXfli+Ly66RIinN0qfM6H0KeTYXRuxSGH1yOrfC+AguVvQt7F6pGmiWqBfZmtKbszYgi9H1SFYMwWiVGr5NOaWEc3vIYloR2Ja6Zox4k8XXgXjvEyJJdvXoHHfnftxGTI6NF/DPvMDKvo04y+M1zIvzTb/l/84oBf/erB/71fxv4/Wvndz/9TG+VGB+4H8YhcGjj3qo3zmrANGGa0J5cOQnB/7sxiJJobYKerKMM0mlB4+AYikikxIx2c4qq+G5GhzfC6vDP0/q00HQhyokxnNj49evBpx+eWU4X+riCHe7tMV/P3Org3pURB3k17mmw3f7Eb59/5HoY9jZY8uqLVjNSWfjy8xvHtpMUwlEnBnDl2AcsmW34ZcisocxYdMjsx53lUqY6Gr0HBrCj0a4HTQ2ThdYDORZOKbHtO0pyn5om7jtoTNjSPLGRnKhoYRDM/PO7N47eiCVi0wS6LmeGKLXeCQLfXu5oE4IuoN7e+fJS3VND43IWHtOfd8z/2cPAz99utNq4JOESMmusaEgTUavYMdhF2VugDt+drZeVfasc9zvCib4mltMzWjuig8hga4qOgIhxWgIjHmgQes/0mhmWOF0ubHXw5bXyujWGQAgbwjMprAyrfuNs6tGnkDmVM2KRXjvW3GZ3KmdO01QXLUAbHLc7x3ZntObGnBi5H3cn54nQj0rIhW0/uB5XXvbKpSYkVm53420kDgK32im3G2v01HI/AksODocZmeMI7BsMXcjpTNdMHYNIJIbEPgIhFUZ8pKk6KrgF4syZhxggeWuVdpcGnYltjmMlkKKzsQnma4NuWIJg3SEWcxh4HxaISl4iObsDvm84oMMcLyxD2eXgsAM1h2b0bwfJCpfJGEAgZTf3vUdecs7+IVbfE962G61VanvgaNVhPm1QykLMiZwSZO83yKXwm8+/5vmHZx7OD3z98pWvP31h9IFo4NPDJ1J0RvvlfEZVud5uoEIKZSYJ/HZ/v98/MtUpOQvD67Y9F55z9hz/hBS940fT+4dHoCyZ88MZ1Y5EL04CZ6mbJIYKHXPVzKpDbNL4wLP68OURVt0GtZ5/MQu4mbNphd4JobBaBnNypISFlKBljxFGXP6W7KCnmBI5JvLMy4/hlL2jHmz3wbHBsbkRdYzBdlTK2tGQOYfgdbJqHNa9H+LY6C1S94aSqH2BLsSmiBwkuRPtDcsb0TaC7gTGfD8B0pG0E1IlBHPVwwK9GpfHhZQb9+0K8eQlWeboZwfTdEdVj471xmiHY7Nt0I9KXgpPDxe0Z1JyLoLq4Pb2xu31jU+fPnG6XLi1GyEthPWJwxZoCYveBFjK4muW0GFsjFEZvrzHeqVVnemhPFdKTCk2kHIhpOyAp+544xCDM+MNV4RCpmngfgzuVdk7HN0TQW0IzQJqwtbM0eoJah2kaFjo5NbQwwmTKj70Pzw8cRgo5tTI1if3IEzWgFf92KxqDviNNWBYNCQPJFdCvGKyczlthB/0Y1D98bHzr367k84LP710jr3RauJalXtXdgZVu/siHOqOWHRlUZSiXkrHwL1JRIYJx+HpgjgaGpXDdkJUAkoyV2HCXH3IEIJlHtZHxA5Gj7zdD3oKXl1tlWCFkj4xWnYFKiSOevXVjjoArqkb/wS4qfsuvh2V+rYRNFCSEWNmCOh94/XrnyjWeSwJtRtjgf1+Z1l+zeXxN1xfb2zbzX0RwXkgOZ28vry7LyBJpGlAhmOqt32nqRGSgBQQiAP2NpC0oBRqi7zdMy0Oh1WZkldYiqF7w+rBcTfqMejjoHUjyKy6z4un8Bp0ixxVqUVmpXWkdbhtB007ZleSRootf9lh4Nur8vb6yqeHzI8PZ8Z45ZxOnNZE0MJoncMGew2oJWd+B4+FlccfkXxhhDO3u9d6yjCOMXjbdpoInx9PCMJ93xysopHRCyk+cHmM3Hejsbs7VZp3GsRInHGtOgEXghBjpsSF275Re4cYWJeTR7TFXbL7beeK0GtktN3BKYizEvr4ZRycoca2H3zdX9n6G3ER0hoISbiPBQ0R6QpvVzIHmcg9R9acSBLQURBOCB3VgOnCkPRhXGsKzZQSFyye2Y+doYPYdK4QXEJy8ET/QN06/1tpYjSUNDotFjQMSvRURIgJbY2mEVjmwZiIZbjxzIz1nFhOxu21TZjImdPpQjRD5CDkhqVKo3HfDpb4QFaX9EN2k9e2He76DpHTeaFbY6sb3TqNQbPGMbsQYsnElMnrgmGkHFniwjYqj58f+au//SuGKd++fuH3v/8DWjuX5UxKmft1o8SbD3x59dITHeyyE3Bj4LquQGDfNoYqp9PZ96nmTHiRQMrRbyVt1pUqrvniGNPT4uUr6+nEMOXrt6++RooOqGpt0ETREP2pHqIDZbS6nP8L6FDXxtbeqKNSa/h4HUKAkIxmntcPvbOOhRQu5JIoYfH12eEy6hie+Ig5ECOUHCi5YBo9lzyG7ytb5YiNMSr7Udnuburdq9dpt/a+tsoIJ0paWErE2sZxvzOakfKJWg3LBTsGo19J8QtLuCJxzGKgO/1odIQ1RUoc5NAgNCSO2UOygEV++NWFvG4c+x3JZ87Pv2ZxUozT7tR9Er3dOfZX9ts30nAGyRjei7KWwnJeWRdvKkQj99uNb9++sO13np+eaa2Typl42TBdiXJCSqF25YQPTyEnkgrJArVVYsB7LvadFEDHymlZZyEQGA4zIzoPQIJjib3xLrrM3Y3b3nndG6/3yn2r3PdG7/bh21EpnoSwQMSHiFsd5GiEnHm7H9S6eb2355cZpzP7aCy4spHca8h+HKCKSfgOV9NBHzKNsN5nn9dIKI1hGyG8kuIN9O3jvVniz5ziv/Dw8AMhwH5UhlW6Ltxb594bh3lrqlBIs4PGBhx2IGIOUJPoLZsSvTZYvInw2Dc0DUZwqmVU5TQJkRFoTZEeiN1TFPvLnedfP/Ff/zf/NT88febf/fO/5X/5d/+GSyoUSew7EFd6GGwm/r4ZcAynfLrfIXJ/yzysz7y+dO4vO2vJ5BJRaRA7t7ffcYob/+pvP/G///vPJP2EyhP/1//Hv+Fb+zJv8B3CIOczJS6k9AOX0xNf315hLOjYGDFSFep2gFWHywHBIhIjRkO7JwxKyKS40mpnO4TrGLRY0TQ4436AoQPdOvXwRMHRPOF1Oj16tFsECZlhkT4CgxULC63Hj+KrYyh7PxihsatyH99BZ3+RYUDHM1v9SsqwLIPtGJyi8CQPRF3QYFQd7FVQy6ScCTGxSGGVhVAu3C1yq52t7Yx7h5h4225UUX749AAjMELCtHPUSo2Bks+0Zt4pHyMpn9ibE7Aw3wdXHWytktvBMbrfdnpn2xsdPxzSqVC1cru9cLttLCyci3G0Rt0PhoKk6FN1LCynB3KEYV45urfB67bz8/WNLko+FS5PD8DCkha6FG5HJ4xBtsgeE2vsnJfVHz75QsxOClTzyEyaufc6GiqCpEAXo3Ulh4gEL64RdXONzUxvG4oEz6YKcNA5aE6vCx3SmIUYSpKFrR9ULR+vZYxCSoFmzspe1uIEr+EVm6cc6RO5uZ7PrE8dO4PukfDgnuOck1cfEwnrwnG4fPvwcOHx8ULrnf24sx0bFpy9dD/u5ODo4LUsfhiEQMyRh/XMD3/1I+fHBwjCf/z3/8J/+vf/kR+ef+TT51/R906yRCCgdbDfd46ys64rpSyc1jO9DY6jEoI3frlRy63g79yBGAIZIxDduHRUxOaAFNyYJSLkUsilUE4rt+3G7/70B673O/mcKWR3JCevKzUi3YymjWCQZSHEX356BsN2x9lq+z6UxYRko9qG6Q6ilHbhki549XAkpUJAqDJhJuKtctEL9LzdTPJ01cdJx+to39hvN3SYG/IQxxHje/GhjjeWsHCJmee1s+oLEq6kEIlL4d4HlcaxdywcrKWTS2evjap1/ur0AVoKPSlrVgchWSPEgxgXymo8PGbOlzzLwNS5CwRa7cTgRUi9VY77le32je32lVjvhO4+mVZ3cihIXj/WUzmdMB3stzeub2+MGSfFxlzJixe+pIVad/pWfciLHjnOy+LvTd29gMqGy/B4oVrJmTbrbI+gZIWUFu8emOyBPlxdaUN5ud758u2N621n23dqd7iVzrXCCLNXwMJUVf3BrRgr3j9w33ZSECwKkhL17YUuwjlGYoBT8OHj3g4SwrKewHU+hvnhuyxe/x1TIqYIohzjRpQrob/wdvsJ7BMeC94ReSXlvyLlhxkTXOiy0tQbHxvO8Beqx6kb9KrocOOdPTzC4uuJLMnZ+NEQ6bOTwAmOFqDZIBLIgl9YbGLcUT49feJvPv3I3//t3/J//G//G/7uN3/Nv/z2zP9Nf8+/+91P9PsraX3mUGWIYTHStKPTk2HqQ2XQQBkn2Ar9gNjP3PZKOhmyugq9j51ffxb+6R8v/F/+u19zTsLbfuI//vGZ/+Ff7vz+/kpen1jCwppWTpw5x888Xn6gHslX3bQZJfVh8v0zrLOWMUUfiLRX1CCmjMTIftw4js51b7SkpFMgF2iHQ6fCyMgQsO6m12DE6N4dte4wrAGt4USwuNKrm1GHRXoI1BCxsnIz+NOt/2WHgTE+A1DHnWv1rvOqsL25YSMkp5f1IbSeMZ1vxCb0phz7jTcdvLzdqLURNLCsGaJXSj49PnHKzn8fXBn9znY3KoHrdmO3O10HMa8wOqbTNS/KNg6ubSf11fsRDLQdaIqEmBiTBbBp59oq133DcsRimm7wCfaJmaGdtC4sl2dsVL+ZgCMzQ+LQwL11TAdHMkpO9BTpGLF3pJqjmxmsIRFCIQc3p6W0EHpzo594VSVRpl9YsdA4+kGfJsYITuQa1RvyJNCm4S3EKfqrsdM5QnXGfp9NdDiRLozK9bhTfzEc6pjoTHUvwvly5uEhU8pBCIN9r74rLTvrqpxSQLJQThm5FKjR40a9ec69OpugtYNSEsta4DC27ca2byDuym6mPqGHxPPzZ0peSKvDocql8PT5mZ9fv/If/t1/4Ha98fj4hKry9nYlkzGFp8/PnNcLS17JaSGnwpIXHh8e6d1Rq17i4lluM2Pfd0oplFJm/eyE8TRDW59ri4aYuOxeCiknylpIJXG0SuuNweDl7ZULj6znxTPsoTAU6mg0GkUjIt9lWHCTlMrhZslflIakHCAMat0Z5vGftG+E/EBOgSwdDROjKuJpmZiIsSNBkTAcDzyxsTEnUsnkJRHzQOKBp9Gj5/dnfG6MzlE3Rh2EdCGWzDkcfH648encuJwCGoU/vsAfvjS+fLuzjRt6GoQTWB5YapQ+OE1mx2iwJgjnRAq+ynNAlsfLYuo8PGZ++OGJPi6c18WBVSr0Y7DfNmSvXL/+zOu3n9lvP7Nq5+m0+hrJFKaD2hkRkRQS53Xl6fEJx1AnSvFympQithRiyVRxg62pEnOmtnlLTd5yacP9MqVkjt0z9a232ZSX0arO8O849GXyAhCZICBj2OB+dF5uG7fb7lW16msnHf2jcGgoNNykG6MwcNNqVQNt7NWVingkGI1WFzejjkDEkOwR2r7tLClR1oUQkz+DG7S9UnIhidcLS4gTYRs4js79uHM7fnE4SKKPwut1MPSREBdUT9MB789XxDBtiCpmHRtKq8redghQlpUlL459DjYZLJO8MswZJeKq6xBvMAzqqlYuK9YGD2Xh//zf/R/4r/6Lvydqp9+/UbbEf/v3zxz/p7+l1S/84eUbOV3YeqNbJ5ZEN0X7XH/iDJY0BnlsrEEZ1Qup7nfnTCynMwNzDHW907YNqTdKSNAbnx4iKRhikRAKy3pCuhCt+CUoLGhX9n7n3u4sl4t/pnSgOlxxFJnMDrzhsou/dhI8ybRv9NpozcFC8ZwxU+reEZRYYVToGO61VVIepKTcjztljdOnYe4piplDd+6tEmWFJboBPWbuozPevhtG/yLDQG9PpMX52S/3F5aSqcPQeyeQWZbsexLEW8OI9Np4SA+c0gM2Dq5vf+A//e4/ctILz/kzKZfpf+08PD6ySOHtthGSJxO2u6I10ENnlIMeGiYLwoqwYEPY6p2qnZ1OC0BJYA7dsBBQMUe6DqXi+N2RIve9cgwlAz040rHjGdEQMhqdhLfV4beBuCBpQcrKGMJWlX7vlBw5JTiHxCqRqGGWaxgEoytYH/79ABK8hlOiePtbNKINohhmjb3eSaGQlwV6p247OnaGNiSm6UyGYO4tt6Hs0qkzz9sHhLlGKMGQGrluN3rP7yllam1umMSrLpelcDp5pC7GznF3WZB1R/dOOoy8VpA8Cz/c5DK0s9eN29VNgWP02VfQZnzRpepYEmVdYRin0wkxxwaXUhyJK4YF4evLN37/h9/z7eUba1kpOfOn3/1E2zo/PP7AuVzQ7vmpSERsti1OuJDq7p31Q7nfN66321QJ9o8/L+SEjsFxNPq+c+w72+1OPeo8oJOXH51OrKcT67qynAr/8K/+kS9ffuJ3v/8dYT84P/3AelpRvaEbHL3RQvfBJwq/CKcz1Au7UijILxUDsblCuDNs80KpdiOkC5dTJAQHdvXuEbEQhJxcehTxutJh7nVpI2OSIbqRr5urQ2kprJp4eXmjD2dk1LYhLWJ0skaohvSfeDp95e/+Snl4HNyORJfCXhfub8r1enC7NUZW5MHgopxMEJLzJ4LQZwY6xeCgL+k022n7G69vmRgTv/rxma0+sqy++w/RW+H2+4aacX37xn5/o9e7R6VYiCF4WdU0/9Za0d5oKbIumaenR2fJY+TFq9BjisR1xaJTKmt39/+qeAKmHR6VjkYfDVBCCh6lVKPpIPbGupynKS+4KW/ILF06WM6LswCGxyOP2jiOztvtTh/O+QhBqEflfrs7l0KV9l5WlDyBUcfgtu+IDu7H7kmRPaIRHscjaoNRB9RGWBcWM477DSteGx6DfOCKdTRMKzEYOSViyMjMzQ+ttH5gv3jsv16F/+l/3vkfv/7Mt2+P6Hikj4UmiRgLkUEbB4I4+c4UFbexDjVqd+JeG8oY3Y2QExYUQsJGnNCewd47PXZnqvTOGgcpCCUnfvvjJ/7+N5/5zePKicZL+0Le/0iRzn/5dysv17/i//7//AO7XlE1tn5lOS/EkrGWplfAdbpsG5/XK//4V3/Nzz+9cbtDO0PPwVcIWyCMz9xflevPGb3/wOXxgZtcuX3r/Ol3b4zlidu3zsPfnNFxUFultA1dNnq9sdsX9n4nLHnSCv2ZG/OsSh5Osxw60AEBX4Mc25163F1RUUAiQfABKSTogbp3WhOIDhqTqKRiSGzsx5W8Pk7+g3u+TAJ7b9yPnfOaiWsiA9Y60uKHmfsvNgyYRXJ6YB83Wt1oFISENig5AwslZMKM6IiIG5s0se0Ht2PDmvKwPhBr8VKO1jnuToELEhii/H/Y+89mS7MzPRO7ln3dNselKQeg0Gh0N5sckhKDlEIx1IQUodFfng8yMyHFTNB2k91EA2gUymfmyWO2ed3y+rB2GXFITisC+jY7AqisrIrKzHO2Wet57vu6Dm5m0xaykLgY8V6RTIsodR9Mpr4B0eF8ZJ1XtDTIXEfuulVICSEIjvPMmlYKHqNr9a1KSwSrd0xupjEalMBYzeI9S/IoEi46xmUm+Mhu2CBkW1ni2lBUwkVPXCMxCjAC0xh609RwU5GQJcJoUjHEUFcoOZWLDx6UuITMRN0da0H1aqeAUfU2tEaYnSfmKgGpp+sKudDUvWAumZAjXmUokZTK93uzEBUpJCYXETHzHYcqhEByK0UbkBEpEkJwEXaEemhRmSKqq8D5DCVV9jU15a6Mxpb6xhxixrtQmyUhMM0LMfhqw9OKptc0tq1e7rarTHdRsEawuErJikvh6XzCx8DN3R3nxyOfv3mDKQotNOsys+03xORxYQbS9zrTdujwMdS8yaXi6LxnHEeUUmhtLmuNRAqBdV0ZxxE3r/h1IYfKf5fmsu/MlXhorWWzGXj1+gX7/Yb37+/5f/+PM+O81FxK07JGS14VIUAxdadc35Z+uH3F7FnTiFXd5YZbH56VUDyuOEqeaYjEFAhZQ1NzJjknYqy3SqU0SufLG35AJChlvbAGEkJUDLIQF3Su0XSDRJvM4+FQR4tJEpKpNUcVUNKhsoP8gNJn2kFhmgAhc7W7RsqBzmx5/0ZzesiskyOTkLJFqHJpuVSTYRKVCw8Cr5sqOYoWN8O79xPOb7FtS5WhJygRITSURM4rPgVS8RRZ097RR9YoCBfCp20lsUAIEV8yyQhsoy7TAIn3js1mj+gtsmmwbU/SbWXj5kIIK6EVpFx388r0UGQN2l7WSNraGsrN4uIwCFRF9MUjUAQhZs7zwkZLlJEsPnKaFmYXCKmw+ErEU0ojMiw+cV4dW21rvqBApH4IBlGxusKt5BRZfawjdVPH3zZHsk/INSFVoBMCZSGKQJR1QpcvzQsXA0vymNKTtUaoGjqTUiGtxXRbRMmc3p2BEwDvDpI3v42MJeOKpqgWF2HNsR5uKagiKUWiKWgh+S4+oVSlncKlohsdmULXaLRtsAKc8BVHTK3YLmnECEtTDGuYaJWhE5LXN5aNeeZ4/47+5o4Xux6RI+fxLaY/8Okf3fIXvzvwdDzji8K7QGt7WtmwikQRtWKqy8h1+8w/+7OBf/AnG/7dX0z85nczuRl4Lj9M0pTe4ebI87hjCq8I5gV/+bv/iX/z65GHc8OnP/sJX775lhxm8uKIThN1QxxWsvAUVQFbPrnqT6HiOIWqwUhJRpSqU5dFUweRicWvhBTIIiH0pYov6/Nadz06dMxnTyxgjUbZC+lVZ2KJ+BSIciZJBzQkCaF8N6FNJANGKIoCfK0zy/jjBNwf4DBgba4sdLFDyAYXMshamwo5VfKd1JVbHTO9tZSQKbL2JVPO4CVt7lC2wdqWVASbZoPSCoPmzfEdD/6R4eqWkjSTn3EUimnQoqc4h59mBOZSJ3G0oqHPljlc3AQEmq7jNM/cT0dO6czNBrZNQ5MNvemZheBpeuR0OmKMZLfb0A49S15ILGTVMrkDs5u4vb7m5uYF754+pyhBKIEsMtYYUgYlDCWAkJqmHVDCXJjxmlw0S6w3h1JqjcloCSJX8UnyFFFxHTlWCJHMBVTArQvr6lgzBKHJMhND9YHHmBExMCiJkpI1BIKOGA3juhIo+GiQWdJmi3eCLv+4957qlKBcxn9EGjvQ9xuaxjOHkc2uZU6B5+MTZd9wdVMnF7rtCb4Gl7b7baXjpSPGbLBW0bVb3r9/xEeHlLDdbVhzBRN1do8PhdlH8vERPRduXu5Z48q39/eEBMPmmrAUiIIPX7xmnWfG04gXmSWemR+ONE3P0G3Y+z22+7CyA4whKsHTdOb4/MwyzXVl4qFtMo29hZI5Hg4sy8K4zIzjSFgd227gar+rdTPvGfqevmtxYeXx+ZH392/49Kef8M2XX9Ipi1eBkusgUBmDVA0la6zcIpIhRwjpB9BHwLGWmca5qqJlC8CYjizrMyV7NtrxYg/GJzqxYb+VNG1PyLCs5wuUqq36YRLn04l2e4VzK6rp0KphXFba5gWkgveOoR+QwvGwHikio+wWpbaU1FJKQAoHeSKlBaFnZAOTD5VxKS1aBnYbT9sM7Po977rM/bvCoyukqXotRYbsHUouaDWjuoa4VP67Eh0lNRweI++eNMP2Q/ThRJwdfj0SZsHt7S0xesZ5wk1HGpVJMmPNFp8Cp6AJ00pjBEueaIzg7mZLqyVGZlbv8MuEKJnt1Z7m9orQd6yyZltkaRCpkLxnWZ6BM7tdz+HpxH6/xy2+3vqpGZzmEhwNsU6PXKr0yhg8fVcJrO58Zri5JZKZ1sBpqp310+SIKGJWTIuj76tWd02KNQq6y1RCGcPZLbz66CUP//4vuNltWYNjPJ2wbYOLEW07djc7pGk53L9lSIakDUE7TCc452e0vGINK4NpSSlzmkYWUdsIqRlAdWjd4twJoRasGqE8kuMPz81j3nAoH3G9/4AmW8Yl4NJMShGpE0bEOo6mqU0FVyiuhuFko1FaQomEvKCUoLJNJZ2WNQQrNPO6Ep0DEchquax5NNkUYpQEL5iPE9E9EhfPl+db9tuf8eLVhxh7Zo1/y5uHwGEWzCkRi8CknnIy3Lx4wVfz51i1w0qFFmf+r//1Hf+Xf2jJyxP+g4H7LwVr6FBDz2hWjssTz2Piutnw2fvAb5/h1Hp+dbziHTc8lZEb78ic0aUGXOMk8crynsxcPIeUKaahlDqlErrWfykSqwWqFGJw+MWzafcEH5G7nik6AomsPEp7iskEIUEqliTY3u75+v4zlBZIUxXyujEUHXl6Wum2O4J+pDSVs9NuDC6eKSVhZYPyuob2VaCoiFvWC/r6D3gYqAjbXPdXwlYSkijkEiozW6t62/cRWefhxBjqfisWXE5IVatEIWYWv2Bty9D3DMNAypHTdMQYQXGJMHqy8+hWE4qo6NbuCmkafEoEEsW0iLWOEPfXV2QbeT4/UoLiPBbW6IkXHK9SAi3Ap4TzGSHgPJ7Y77Z0XcfiHELWXU/KCR89TddwdXUNSNY1MLuFkgpK6lqn+U44gkYUCVmhhKkHhVTnwS5Gcg6IklFUNSYXwUl1Z0sydX9fb5SJlAMxOlKpJ94iLhS0UjnfWVQ5y+pd7cZTvdxCXMxnBIqMiBiY3YhNDZ34cbq9Et5S9MiU6DqPba9pu5YiwDSKTGWn5wyHwwm2sBM7/PlMmgGpsbqrDPl+W8NbxmCatsKHXCR6jxES1VQI0vuHdzR2QErBfDhw82LD6I746BAyY6ShxIIsgu2whcvXKMUK31n9ihaap+dHTscz6iP9fTOhTgZmpnnkPJ5x8/o9TKZtbN3Txcg4TTVXcAGxoBXKWIxpMMpibYNtqn/h6emJL7/6nMf3b/n9B685H44M2y3tdl9Hzy4SVUXTNnpH37Q0UkESRP8jTSyVu1EKtblwecx+4XQ+o3D0XaXLdUZiKXQNtF2FdVUfe/VQiCIRRaAxpOBJeSHHmZgEq9OUpNFyh5WC1VV+v1I1NEpRSCGgJEqOSJFJeSbGua4yosA5QXSlhsPKWL/PjeT2bqDkPS4Ejo9jfQ4WQ4j1T2e0IQvD4ZToGoMsFlEM0ddRtDJ9DQWHmo14fHqHC4Kuawiq4GREZIdbZ5QSZCkoolBEwTSGlCoAzGnQsnCzGxh2PQqDn6txU6gK+ynaUmRTV4rSInBIIenaFlFcfW3luvtOIZCjRxAxtjZulNIIaUBoQsyVK1AEGXWBU9VddUJwmkbePx2Zl/oxiFBIY8nLfKn7VZxsohZWyqWxlEMhfK821mgrMG3CdA0pOLrtjtvXrzmdngi5sKyRpje4lCg+shSP8hMbv6JlIuTEEj2rDOysZnFrhQ2liPczTR8oOEI447wDBkAwh8ScJC9lj5ENSa3MxRNTqGhuKdBFXSBBVd6TZEZJDTEiRGWP1Kb9hbCoAC0ubSONyZbiMzI3tPoOQW19VYGbJoWWb744IfLXfPCiY7cdKOPI5nolS8VXXzr+3V88c/++I21aTCORSWIVBH9ANRPWWMIpcHWV+eTjO5b5Hhktn/78Z3jZ8S9/fc+3y4lzHOmHjDEGf15Q3UvM7gP+w2df89kXz0BPjivTIbJrXmCywKqIl5FpfETKLXbTYEVhDBNGqlqHzbWubI3FKFHBXLEaZrUWeBGI1BVKERV5XWRC6poLCKUQSg3mFp1AKoQuaGuo2ulY8d65smVCKlz4YpXamepqYrvb0Omep+fHuiJVCvF32xL8/3AYiA4uiExBHXUjqf1nWXGZ8WLu0lJRAJc8iVQrDwWKlrWuQ2KdVhIJFzx7u6tM/BQpYUWKnte7aw75yOPylg9e/5T//f/mn/DB7ppWB57PzzycR1IYOD0H3t0/8hgfeQj3qDWzjh5jrmtAy1MPIzFTUmB0kfMYqgdbfXcbaBiX8cICrx/wy7KybTc0TcN8mhjPFVfc2R4rK0zE+/qiFqmapSZmsAojbT0M5RpUSqUGQ4RUlY1dMjFFRKpjpVjy5c2lVtt8DEThfvCBfzdarmMWKLWuNgWHJhNkJdzJUmtGJSZKqgnWeZ646e7Y/ciW52KGGMnFo9C4FGiNoN922M5gDKTisLph2+4Y4yNuXolNZplXwlwQGFSpYSxrLcXUUa3U9c/jgscnB0YjdHUEnMYzXefphpaiI1e3G5CpCkpSZej7daHXPdvtrk5CxEU7uyyUAv0wVLMZNeindAUFRe8Yz2fOpxPTeK7AFqFqiErAui6kNHM6nXDeI03lV2z6Db3t6YYtjarcAaEEz6dnljBX2NSyMC9TNbiFzLokyvOJjoDYBho9cNW/Yhgk2kpQiVUcfjgMFEVONciVf3QY8GsguAu3XQpEblDSIoulaSTGeGTIaC3JWVOiJuVCYxps64l5JJSJkj2hZFbfEH2DUT3aQDjPiGIQudAYfTHlzaRQSXxGBfqhYdfBZisZOuhMQqZaWxqXGU+mFYLttuXqrmF0HcfSMfmK0C5AKoocNSVovA8EX2i0QNVMHLLoKn8pE4Wa33l6fk+m4eHxPX1rEdkxdBI3n9hvewqRnFdm57GXm3lwK12jOeRAdAuSO6xWnCcPJdNnhcBgVQ+6JXMRBl3CfsZYYvLfr4tCcHjnmKcTkoi1GhC1Ft22aNswz555qSE0ofT3FsLK0MgczzMPT6c6ilfVmKhNrYChalg3Zg+ytgYy9X0yCSiXJLgyHZ21FGEQCs7escba1FhiZM2Z4CNd2zDHgnNr1QuTmWPEpjrBmFMg6kIWmabVdJ3FuQVtNeCY5jPrdCAmdTkM1HqqIaDikcHu0G0h2FxrnlTKYxJQVF3jepWIpWB0qWh08Z2OuX74gyDmzLwuCGFACJQ2yBRRdLRySy4OWRwpK2Lq8KXh4Sni3Jm+a9FWMo0Hhp1G6oW/+rfv+ey3EWVf48uCX2b23RWNEvh0oNlGSCNLXFhT5De/e+bcBKxwvHgl+KM//xT7wYf89//233D45hG/jHT9NU27ZZkm3t0/M50Sy/PIRil6UZjfH9m/2NEjGLqA/hCenxIP84GwDJiN5mrYEOelftiWyhywl2CoMBUXXyJIJUg5EJJHSgtCVSeKuDTGRCbmSC6WmNYqIRI1B6KNYl0Lfk3ECLYISjAknzCNQArFaRwBS79pGecTzabhZz/7lF///j+gpCTJP3BmIBcPpYo25OWbL74LiohSxyAFGttilcanyJTcZXQvKVIScyKVRMiBNawkCufpzG25YVwmGqPYRcWmgB9PmPDAP/qzO/7p/+mX/MlPPqZxPW5cSOuBsivcvdySyoZf/X7g6dcHxndntrsbTvOB/banb3uijMgScS4TYmZyicWtSNOx2fXkGPB+rXsfKS5thkSO1YblQ+Xep5SQQjO0LRiDy5lF1B1OIzQqCfwcsTliuhalFEUEhC6QaqZbXnILlKo5FSIjJMScLl38+k0TpRC8QomqLZVJXbrO6TIZgCIzLgdkVZVdbiWX//aFABYjzGugU6F2kes5gjVV0Ya62MSW5FAi0PSW7dWG5XwiuUxjG2zbXnz1kRSqQW8ZQ/3x7Emx3hKGYQOyBq9C9Cwx1AyHbUjRcz6fEQpkU8AmXr2+o9s1tXdOlbQIYWntDqsbcimEmEhkpNYobcgpsXpPP2zYb6+4ur5BqloHdW5lPB85nw5M0xmFpNGWLOB8PrKuMzkLlnUhxECnN9i2o9/sa8UtFaypVT6fXK18zp7j8Rk3T7hloVEaiSJHwfPjkTnNXJmOzdUVw9CgdWUUoAqreYO4JIpLqhCq+CNZFFRZphaSvFZwUVkN0vQIKrTJuZHoag0SYQjekUKgtR3KZMbzkSWdydHVr3vYEvOIsg6ta+EsxkSOiaG1TNPF464KL5qe1y83vHq1Yzt4bnfvubuZ2ZmIiIkUEorMaV0p8UAsGt037O4id3SYSeK8qzAW3eA9rEtkSZCjRPQai8JfSIjen1FGoq1jcRMpL+yvbqpUKtTnn1QW7x1dMmQSxsLpfKLkioeVqtD1AykGFpd5Pi401hCKxTYG7BafW4wayLJjjTWcGzPEVLMW333dY4zE6Cklsk4zMa4oLXE+UorkSjU0bY8xkjSNCGUQqiEVSabW+6bVc5pW5sVh2xZtTA1FX0KkUl9Ce8VRRMSnlVjqh6lCI2yLbgeSaIgolOlRjWCQsLm6QjctSQjWVFApseYCISNCpdLRtKxkxuhZgmPOgbbpcHFhs6uG0If3b/no0xeEEHg+H5jnZ/QyALUddnO1p3nZ8vrqmVe7QsgNtpnJb545hUQs9X2qyOrBiLIQlEAqidSqVkS1Rn5PuZNkYPUeITJd16GtrR+EpU43RdaIYii01eMgPVk2nObE7Pd0S4+bPMPxM4bdCgpijtjec04HfFyhuyLEeivuhg3Hg8e0e6Dl//E/vOHVIDBi5PZW8Wd/v+OP/t4/4p/3/5zz//3/yeEY6dSGEjJN14K0fPXFO2RI5OnEbRd58aLn559eofMb/vQXLXfXLX/579/w/G+eKn/Db+uErsjaCKn4OGSBHHMFFPWmHpAKxOKJxaNL/XqJokEGikwgqvRIqEgsC02rkOXicNAtbvUVqQ+VtBrbWgtuJU9PR4Zmg247ltPI3X7L9fU1q3dIJVBaotIfODOQSw35CamRsvK1ixD1g+lS4zJCYdoGJRTTtLDERJE1+CaoYB0fU61hlUxrDNJabD8wLo4YBDJYXr8aEOKBzfXAP/6v/5TSZj7/9b/mWr7katOw649INYH4ltPScI6BJH0FdjQGaWpIaGh2GL2jpJWSIyEGBAmjM1pFrM4cxxOr3zK5BTsMlIutS0lDTCun8xMq19rSNEdaU6Ez5IJMUEKi67f0qkPGqnLlMi1RjSURyBdOvxL1bvDdgYhL+CpSmw6xpEueQECKNLqvgSagFIn3a3W4W4WwkpwyvkRkLihZ3exFKpJPxBjxsVxqJxXw9N1jydX/3uq6PlmjrwjZdqDdNMxzQhmJuAQcrW5AdIisKg+fhA+u0spcpGu7SumjkEvC50AQsZro2gY/J0JK2M7S73r6bcPV3R7VKMpaef2qQFoLsTiiLFVcEkMdQxZRi/Wl8HR4ZrvZsd9f07QttrEUCS6snM9HpmlkmWes1BQT65t+qHtf21Scr24s292W/dU1tt+SlsDsPUpZTC6cpxNLXCkClFb0ff2gbxuLkLruhKeJtSy0O8XuesfQ3SKwCGmRSuCsBr76/sMnOIgmo37UMsipILKACEiNSB2RSqY8HI4UQVUj24FcYHELyzIhVUNjC+PyzBxmXPQVrSsarFihnFFmx2a34XwMCKmxNrMsM0qvbLaGDz7Y8unP73j5qqexzwyqMLQjhiPkjFYDt/s9plGcs2d1Dpc7Qq5rg75Ymr6GLLUxBH/FPO05Pd/j48qyZGLxhCkSnGB1K0aAUBFlIkVGbKN4fDpfdvESd2mezG5GkXi521AOVaGttKWxDdcvXzOfF4zWBCHJRWGGHc2mRww3LNnQiJ5YDPNS65wppVonTfX2mnO+oNRLrQrKKh5y3hNjQSiLst0FEiRxodAoBfKSJYiJKSQeng8cxxWfwC8rKkh8CLVOq2pPykd3sfUFxqWu8rLSCCnRTY9qBoppkdbU0bCBrlW02w3ndQElcSFiEPiUSS6g2oS1gqwVcwiUtLB4z5o8fbMhi8KyzHxzmDgdntlct8RuZlwcpchavb08B4e+Z3u346OXBz55QTUt5sLTcWU6eozQZKlYv28McBEzKYzRqAu+mQtDoVzIqDGXCiTSBsXFZlkgu7VWb2U94EaqWKkIgcqCc0ioecHNI83xif6m5R//0z/li/Nf8T49oeLE0HakoFlnQdNvaLUgl2f67S1dY/j23Rk/w9A0LEly/Je/4u1D4JNP/5g//+k/4vAW3ty/Z7dtuL7Zcnuz409++TN+81cH/tv/8z8jZs+//Jf/Aj8duPsAPvpJw24XML+bCGLFtpCNYg4Oi6C9/PmN0KQLHj5SGIYqa/POozSYBogZbToUEcFMJF4OAglUJMYFbUptpIWIkPUCloLAtlVbnEOHKB6lJF3fM51mbGn5yU8/xOrM0+GBaV5AUd0y0vxhDwNc9KRCZqRUXLwuF2pb7dtWBpAglsLqA646VypWlB98BUIZtCk0/UBfJMP2inG+JwTN3eZn3N3B3/snr+n2B96df83f/EXi8CX86Qc/x/68QzUHmhaexwNvHzVfvJkZdm2tzyRf37zJyBzppCVGQ4mJFCIUR2cSH7y6u4z+F5SJHB8euO4ESTpcEnRmYFkd98GxM/0lDBIxTaGkKuIRGUQqaDTbbocVDeu8sC4OUzJto/GxGrlKyRBqVSQkfzmYVE1pIhGIfLdZLPmyfhAaqWzdE2VIURBjqQQ6XeEyIQVkycisoEhKkqQYCSETQqbf7Eip4MMPhwF/EawYWQM/KTkaEcBA1hHdSdp+IKXC6BeEUjTNwGA61N0GKVpklsznhWmeUFHig0NoibJVb5sDJFVd69JYdNMQcsAOlv3NnpA8h3cj03EiTgnpDWEqhGlGGIsemrrCsRZhapo7hogJkdWvHM8nXqeA1JrVO8bxXMEy0dU3eFV9A0IWjFVIVWtjxli0Ndze3nF1c0OWLS4vuFgPbC4GjuczkUDTKvq+I/mCjyuNkrgw4WJiXCZkzHQHw/XtjmZ3xXbzihwbkAXfRARfUw2EEuFlTRDnH74POWfkhR5nVYMSA94VDqcTa4hIWRC6Y9hLiows8cC4PGFth+l2JBGJWTKvijUIrBEkEwh+orNXbG+uWf2EWTLzdKbdKq66HR98tOWDT67Z7S3anhDiLaLcQ3wETogYKNlCeaSxPWtoOZ5b7g8tp6lnjRK0ot1YbNfRNB3DYNnurtkNGx7ffc48PaFTwdCx3+7o9y1ZSbb7F7z6aMCn35KzxCePzRppemKOtH3LPD0jS2QtLVMOoJsKqGk3tFcviWJGa0sICaEVethgdhvkZsfqHINoCUUzrQEplkoqNYZu2LEsVeCVSiGkxOLd924KUq4AoZBYXcS0FeLiQkQ19cy2xsjsA5Nz3D89cxxHYkos43Sp3RbmZapEyBzwca0H3BxYXUTrBiFatARhNRhNlpKsNSE7cok0jUV3LYfDe5SUxBAwNPgUwTmaVMi+OjSSq5OKNQTW5OvtUSne3N9jvORmf8XxtBDCyhgSXd+gVHPpAMB4HvH3D9x0I7d7g1S2bjikojc9RlhKzMxurf6IUqmjRiq0rEAsIatdMOSaw8mh4JaERNMPA0ryffUw+gWlI8XW99oUG1JQiJQw0rGWM4f1wHIeKfcjd68/RDWCq1vDaXSE5xVROmzuLuNyMMZgmoBzmdMUQF/jBVh65qXh8HTg4e1f8Ltffc3dy1/wJx/+Pbb6nrcPn7Oejux6+OgffsLf+6MdjTX8h7/5a4bO8cs/fsXvPvsL/sW/esM//Me/YHP9gmZYOc8rwU91dVQq6lzp6qbJpfIGpnmquHWtKlOhMzS9Ic2lMiFKzUzE4usF1QgQkZBnlKoyshIjUnJBu9cVu9GCmAwSidHVUdJ1HTfDHZuN4en9V7x/HBHCoA3IS+PlD3wYqLxlcalzyfIdQKXeMkOJRARNjogiWUNk9pF+M9Rxrw9oqbGmQxjN8fCep8cT+6trEJaUq4Sjaa95OPwtsg2Mfua//399xhe/l/zZR3+EakbePfye9mXLqjZ88zhzWjccxwM/+fQXXG02kGIdkeaEm8988uHPOT6d8THgU6JrCp/85DWf/vxTvvjiC7Z7wU9+esdhfk8oEy6OBOHRjSR4h4+F/uoFQ98R4pbGdkgrGP3MMjsabapOWGiapiOGxOodLjjS6im6AmGkqGCi6Cq8JoSIlprofN0tXqQg2tT8RSgJ3EoUEhktqhgogpLrOkBKTYlcAowSa1uMbLDKMy5nctEoWcNwYYGQfkiUziFAyTSA1bUGOrmRTbOn6EjE0bYdccn4GLBtw9AbjFCwqYIeIwxt11+oZyvjOjLshvrEVYWsMrK1ZAWZ+nywvWaz26Ks5Zs33zCdJsISyYuglwM6NnWqog3a2mpeLKWGP42iiILSdTWVSMQcMVbjnGNaJxIRZaCTDY221fQnBH3bo0x9gdm2rQeB62vEpX7VdHU1Qym4dWVeV5LwjIvjeHxkPj5xu9/guxnEnsV7kvhOFy3wS2Y8BHZNz2BuCCmgy5ZLnIocBZ3qEQhi8t9/H6pvQLDpN1ipiEGzjCuLz5i4st1aHp7fY3cblnnBJ4eLjkTLaRoJGVYH0yIwds8SBMIKFreQWfnw9RVC7/HpDaGsXA2Gj3+yZ38jaQeBTxPzfE+j3tLbM6ks5LyiRII4g9BkWo4Hydv7HZ9/vWH1lig97T5yZQdsKBgj6NqOxgzoNDO3irB4Xr14we32A4zY8DS/5/rlLV9/PbHZX/OLP/k5X355Znu1oW06hJFkkWmHDbMbCSHytKzI3Q7RbVBqw9WLj6G/4mb3ISXX1c6yLJShR9/e4JXifH5P58BYOIwTRnpub24xsqFtJYjAupzxsVr4uAS60BqRQJkGYSwuZYbLbndcVoarW9YYOIxnFuc4TRPPpwPH8YhWinmd8cFfDqSBxhhWv7C6hZACzq+s88Ldy75yN3pbj/8ikUS6TPpqgPn6xQ3oOhqPsbI7jFMX4mGtlG5tiwuR5CVaZeZlJYrKxiee2N9cEVNhGPac5zNn53iaR15+oDFJfz8ZePPNO06/vUelhhQk1ij+5leOT37yv+P0N59XfHMYSZNDKUOj6oWvURqLRkuFkOBDrWKXIgDLsgSsbpnnhcZqUqiXMS3LxahZQAeGriU6hc8nQn4iq5bt1TVP9yPvfj1TygnnzzwdEmbYQvIouSWsisZsEMoxL0d8ObCGyOoFhcB+eMk6KawZMMITl3ucdsjrK/78z/+MX376c/7tX2V0e8aoke2u5eAOCDWw3w5s+p6//qvfM86FlHo+//2OL75xLHHAC3g4vefu5hZVNORC2zSs63J5f1JVHOU9rW4vwXlDKgHTtLAWfPKoVtF3PaM/0Lctw6ZjPky8evmKRrfcv3lPTI6ut5wOM0070LaCp0P9mgoZCSHw8sXHqCx59/5r5umRpCTkTL5AiUzzB54MCF2v95kLLx9RYSOl5khzqiOiyS/VXlUSKQt8yAQXIMH2akBjeXp85ng8s91ImnaDNR2m6Ymj4/74wHz6lv3GM/uVzz8XnM4d1y9u+OTTPX4dWUXP/ZPmN79/5LgeWb2ixMjQtAQfSCWRi6f4wnw+sx92PIUFqQo3O8snH2z5ySd7bu9+wfPxTLfZ09/+Y/7yV7+Bg8eFyBpsTVxngVCZ1nS8aj4kEEkyoqMjp4jEVumG0Gih0cqAFIS8ElzCyOokl9TwWMilwmIQSBQuhirbkAWfMtKoWsWkjiMhokttFAgla2c1ZdzqyKkgSz15dqpnsB2YwihGhDZEVHXTp0rC+u7hckSVXClWAnRnSGsgS4/pqCuXVAlYQpZLa4SKSDWVRiilZNj2OL/ldAKhqyDJhYWcM6qBdmgQWnJ6PrEkz9X2jkzh/cMDz08nrGwxugUrsaqv+1aVMb1FtYYQA1KBvjjchRSkrkVrTddWpXYqnmk+czof8GFFKom2ms42WNtgbMP1/gaEZF0d2jTsb67ptxtcVmQqKETI+uKdlpFxPhOLZ1qPzOMz58MjSiVaqxkGxRpTPaVbi1aWdQk8+meu2hW9LaQkSf6Hl1ZJCqIhFEf6EQoyxYSVikZbdNE4pxhXgUcSpMduLNP7E1lCO+x4e3/i5d1P0QaOp0eOJ8d5igg1IFRTE93G4n0irEd27oxur7h6cQVqZNgmbl5bjHG4NBNHj1vPbKyn7yNeeTQekSPTOeFIOG0Zzy2//e2Jdw892jTkZiGYkdZFujZSYkHT0ipFsoGrXUHlwn4PSjqcE3RDQzu0xHIkxQV0oR0szdAybDcXcE7EbDY0fkdOLc22Y9Ca/fYGkSxXH/yMobmia3d4n4jjDLrHa8FTKFgpWZLg6TCizIbFr4hGYDvN4+NMjBU7XdA4n3Ahk6WkaEVKkqwlSUmiqBahJCQhRsZl5jonwjpzmkcW5ziMR9Yw15tdVjSt4Xh+4vn5mWHb0XYbijJ8+c3vUVZh24bGaIZNj7TNpRmwUExCdYJiEskFcvaoRjOvM+fpxK5p2e82xKOneF/haDld3AOmZolKQciKxV29w5oW2zXILGjaDQ/jiYfDyP00kY1lc/xhh5yCYB4Vv/9KMC8FJRxvvzH88k//GCWWqmMImexPmFZwsXvQ6npB0VqTRSKlTAixWkdLFTCJEutaLSbiRQuuEISooBgQAZElxjSUnNA20G+uOE+GhyfBeFL87d965nMkdC1td8W215CvkLGhby1JLiz+iTU+4EVCy4r8XcJCK28IXqDiwuuXij/+4w23N4X95sTDU+F6A5/80Yf45Z5vvpkoxaP8FTEljGnYbPYY23E8wm9+0/LlfWJJ18gm4KYjPvsLRjoQYrVLGkwFTlHXOzpmpFY0XVsnUkSU9ChbcHklRV/poUry4uULvh5XnFvoTIOQia7v+N/+k3/A4fHEb/72r3h+9vhVUlSma/e8ePWa6RT49s3npDBhjaDbNoiiWNYJdK7/+0MeBrStVbmUL3F2UYg54nOF1OQCMSTiVCsWiVpFEQmMNLh5hlAH4uPphEJwfX1dR2JaY21DyJ7fvfmSvTzgzopp3DH51xQd+OrdW37580CjNnzxReFv7gWffVMY45HeXuPGmcH2fPv0LclULWkjJW/efcsv/+i2BhqXMz/rdvjlPb/97QlpLG2/IWdNiI6QFooqpBBwfkFGgUyCeVlIAjb9DWFZCMKTvScFV/MSOhJ8rI4A51j9isszJUesMEglK/MeEMISoycXTUYTUlXvFlk51ibXMUGOlVAVqH6CIiJC1XS8S564Jrq+xWJw64LKhoa2BvSuXiCM5nmc8TFQElB+GE9LVdnnNaQX6bSgWMEaJ7qdwXTg1omMQhmBDytqzdj9DtVpygoueqwxbK83mKbewFGZGB0hBfbXe6QVhOI5+zPdrmF7M3Cejrx7e0+JAmladDZIoZGqIeZEJFS8qqwmQKlE3bPmSBaJza5Worq+o+0NIQeeTk8cpyNCQTe0WG1pm5a27WiaFm01MWWEVdi+odl2bK+3mCBY1kyI1Q62LiOn84HnwxPH5UBMC+CZ3czzKfPi5grTSvLi0LZns9mwGXZICufzmff37yA1mKaD9MNoTssWmXtyDuT0Q2YgxIyNFevdiYbDEY5TIZpCWUZulGQOjlA019tPOJ3u+ZM//hMak+m6O5rmHU9/+zuULqxhQdha60zCs8xPfPnt79j3H3F7c4NSHU0/0XUzKZ2JYWacHCVFlqZB3RT0dsU0nugLb58EjwdLVK8Z02v+w1//DUV3DHsqm+KCfSYnFGBlR68Sw3ViYyXnQZH9M2/fvcevWz75419wOJ8ZrnZMk+IwPTNcv0CfJ9ptV/v9UqDbhiGDlIWrF3tC9Nzcfsj5eSXbHjlck0RDFpnT8wjWMvqFwzfvubq5IgvBm/cP6KblvJzIJbD6az7/4jNevrjl5Ys7mn5LFjVLA4BtiCGQlSGVgoyR664lyMIUHJNfOUxnkIJpHTmNZ7765ivePz2QfEQJyUcffsjjQ2Gej0iV+PCjl/T7gfAfIjcvrtHGMLRtDXY1oG1i8c+oNtBsQemIDLG+jnTGLSsuOLyGzdDgXWEJK6bRuLxynM60bVfbTxI2V3vWxRNLQjWKyY9c2SuG7Z747i2n0eOz5nnKrEfPd6OBq/0d+eYnPPlH0vPKOs70zQ5fBLrp6ntFEZTEBT5UK6qN6SGKS46svkbLBdaUc6mNDZkYhg1uHskZNn1HjonkW2QeaEQkOUmjGlRn2e9v2G5/yt/87bc8vG/Zbj5hnBJpLRRtGQ8ZsLhl4a4v7DaZKTjOabqA2QSoBqkV83LG6j3n85FGPPDhxz1/9MvI8fgbJge2fUlMX/P8bHn63RuajeRP//yPkEUyu5mH53v+/O//Mdd3d/x3/91f8vtvnzgsktAYkkqg1QWPX6FVa6jrpmreEBVhnzIxJzrdoqxkXhJ+mWmEoB0kT88LSQSKEsQUORwOhJAY56mGn7NnWc9IHfnpp694+/BbpJZshpY51HbTMgXev38kxJW2sZemWiDGBdUIigiE/AfmDAitL9a8704ZpfKUY7hU32TdaaWIyRap6u2NFOmbhv3dNde7He/e3uPXkb6zbIaGFB3zcmacRw7nA0/nI3bX8Dw1zOM13e4nZHniq2//ki++KNxd3fLuPvHF1wsPR2j3VyA0bvUM/ZbpbQCjWYrHJ4FaI28e7ylGonvFz37+Gqsn3jw/4GPmxeuP2d1c81f/4l9ymgPKaEqKeJ+RUZJ84vkwoeLCs1hIImIGiHhijKgi8d4zzzPJF8Z5ZHIzWa2VWb5krG2AqsBEwOpz7TILXQM9OVJK7TILKk6ZUqloWYAQhSyrxEJJhcyVMrW1A6tfWKYzeltRyI0daPaKJATOZbIPFEmlWH1/Grgw3lPG+Vh7x1kT3Ym229AMijnOdQKkFD54ZEhEEsYKVKdZTwsl1f3mzg4VvVkirhhy8Oyueg7nIxmB3Umur15gWsn5cKwTl2JIvvrlBZDzgnfLxectCKuvRctL3iSnQPSerunIOdO1l/GXKoS4EpPH2poL6JqO7WZL1w6X4FINOVldPfEhRVwKSNVgjSKrylyP0ePDyhpm3rz5GmkK1zcbdGtqs6QEVAP9RqGblmE7YKxlXSdOxyeK/1sUmpu71wh++NBvzEAjr6r34Udhnpw005wpBYxWrAmOsyR2oDYClxWhWMZFcRpPLL7nr3/1Lb/49BXWdmx2N7TDG9p+4LzES/M0IUUNJY2nd+Ay11tF13usHVEiIdRCoyOuZJ4eIycREay0XWLYSsgdUzZ8fb/j4bRnLjvePe/pbwyiOERybEpB4FEiokXCZE3DStdGBuPYDYLT0fPwfsR2G2JJvLl/4uUHv2SNhcPpyMsPXmIGQ9IFjEI3DUVqmu01Emi3e+JyRjS1FXRaPP1Q8b3eBXypPvuzH3k4P7CWhbv9C47nI7frFdNyZhoPdK3m62+/4ub2hqYfUEpi+4GiND5EtDEUo4kkYiooIBuNj5k5eOaw8nx6IqbEvCwcjk+cl2fG5Rl5AQgI+QpjgJyIfsUoyaZr+eTjT3jxwQtOxwMv7m744pvPUVIgdWSNB4R1CLNi+76G6qRB6BoyboaGEFZ035E7RV4KsjUIq5nTypx8pbw2DcN+z0mOROVZ88y7pzds7jbsrncoY7l5+QEyKdb0zHFy9WIC9P0Ocfea6TwidGE+j1xtrpncAZ/OdE1LwlEIxFKdAxINwiBKRiIuqwFBzlXeJIoi51LphwiMNigkImtae0fxtTbdGEnwCZkVm+4luy6hRY/3VeaUpKVvCy6c8NlxPnpi07IumdwsGNVjskD4Bln6ynEoLQgDIrIsEwZNv9Fom8hyYdhbvvziV2TuQU9EWg7HI+O7Ed0a9kNgdY7HxwNffPkVH3/6AS8/Gjj8fmQeq3U05oRWDU3TYhqNwBBzxnQXRkW+eGoECKUvXIFUjbMEinIIXWh7yfDilq/fPpKL4Jtv3mGFJqvMeTyxuoVxOvCFKlxt9/S9ZV4Dzs+kFJinlWl8JEaBtorjuCCKZjO0pOTIVPcBP6oz/0EOA6lAAhK1llZvONXUFlJESlPvsDmSY6G1EiNB5Mzt1YaPXn/I1W6HkTCdDhxPM+s6UpzDdIbT+ZHjeGIJEk9DVA20DWbYkrMihisa+wprGg7H3+Nji7IbjtPCcDMQQmJztSNJRVCFhURKjpvdjm+f3vP6w2s627G9bcFPTF+d2Fxds8wnFregreXx60e6/XW9qRcwWZE9LDEiPKTg6TYG1SqKzGijEKm6rqEQQtX0xlwrhVJVSZMgobShSFnHaT6DVZSsufAHL+O3gqTaBYWATKQIWT+8VeWO5xyhVECPDBmx1jdig8adV3TX1MDPPOHnudb7lEGKH7PyEzE4mtIhVWIaTygj8c6hG0MzKHI2rFNhCZ5YAplS60GmQzWSUBzOJbRWWNtUSYfSbERHmh3XNzvePb5BNYbbD3fc3VwxHQ4gI/v9QBihBFGtXiWQSmAK5/prmx6/1MMPoly8DYmSEyFdOPVG0nQGbSRNZ+mHDqnqVEpqgTQKoQXOB/p+U5PaQiG1IYjM4h1a1YFJJUQGhExIVXMJLjgoiWu1o98OtVpZEqZXvNgO6Oam1txyYZon5vnEfJ7ZbbYM+56Uf1gHKNFCGhDq0r3+7jCQDdFLTDGswaAZKn43JhbveXgSHM6a9iHy7s1XKNnyr/7ir0npzM2NQhtfMx1cwCPBE/2CKAEtwYfI2XnOB8V+l5HlkRRqJmBoenKreZcyz8uC3c7cZMFO9khzR2xveXsW/M3v4LCeOISm5h3KEVt8tSCW2tIpYab4RNEnEAFrDzQbh1KKuzuL1lfMKfF0HHnxoSaVwHkZuUqOqxdXzHNgCa7aPTH03bb6B6Su5r6YME1HiLUV4n3m6fBYmQE5svqRmGeeTxNXwxYXFkJ0IBPj+cjToWH1C86vhJiQyqBsS5Ga87yy6TXFqNomyIVGCmbnScVxXmYmt5APj4zTyOpWHp7ek/Cs7sTVZk9rqp785cs7np8ecd4hLiKZv//3/pyruyt++7e/YbfbYt4KmlaiTAa50vaZUE51XddUf8K8npnXM23X0F83dKYjLpFsQHSa4fqK2Z9ZcqTpd+iuIxtF0oo1B0w445Yz6sM/YrPv6DYdH1/viY+Jh2/vSc5fGJjVphhjdQdIJRA6I03mvDyz+CPtRpLkCiZTZeQGJSRrzCgfsVlQZCbHCk4riYpIDxEaOB1PGCHIITP5ldvbD2h7xTR+g1KqKp3dxM32JVddS461cZLEyvP0xM2rGz796TXvTg+UJXKOnqHd1IM9Clk6RNxjkKTiSVGhiySEhbIuDO0txrYczhPz2iNEx28++4zNPqBbyfP5jDAd0it+++tv6JuRwd6gi+HLz478g3945uOfXPGwnHg7n0jesK4SqQwSjY8eZCLEiGnail66YK3lxY4ZQsDHWmlWqpCpHo5+a9hf7/j9Nw8UqppYCMW6ODCRlAO2Udze7nh6/8jT05lhs+Ojj2748puvcWtEKYMUhtWdCAFe3n3MsJEs92cStY0g5B/4MLCGwHfGsJQDqkiUukB6ShVXCC0ooYYJdfH4aeYnrz7kow9ecL3rMQp++cc/5Wo38O/+/a9IxeOiw7me1Y2VaigVS8ikRlAah+OBgiPNKw/3Hn/MHJ5X2n6gJ/Lw7pkitjifkLpBtJagA1ErjDQMmyvu34w8zkdyOvCv/uJ/oimRN+8drxE0XaI7jwzDpqY8paWUBFkhhSWXSElVndt1mqaRxLSSiXSdhWip3sH6IsiiMqqlEUhd0/0x1oOTFDWpnC8/VzXMugKJSBdu/cULfvnQzxSSKEiZ6wgoJEzV9JB9YtdseHX1Cmsbnt6/wxYYxzP3j/cEoLnaI7RGyh8mA1JW93kIAWMl8zLRig4XBGM+YlqFURtimHBxqk8oI2roRdcbqE+BXOroPlFv1VoqrFWYKLm9vaL71tLtBzZXAyiPMIGu16Ak0hd84HJiTngScxqRsiHrSEip3rhEgUsFUmtD01Xb3dXtnqY1xOhRRrLZDwhR1bO5cqLRjakhQV3taUpLTNsgTSXI+WUhrR6/eEJwlJJQWmIbzf56x7ieSDlgGk2j2yrjKZ7dZsvd3R1S73l4fOJ0OnI4PKKlZpofWdY7vIs/zAayJjqN0i3qR5MBKTtcUISimGKhbzt8TMxuRhwrV+Crrxy5TDw/e7oukYXni29/S7f9AJ0T0zTyfPa03XWdouSAKh6ZU6VipkIJBzpjyeVMciekzrStImlQ7ci83vO4nnicWqTZoMKOQ7jjOZ75dnzk/vQeryPBG1TZ0jYWlL9UjNeKTC2g0oxMDpGOIB1C9BQBiz/x5nHm/fsjLz844UL9+p/nkVcf/ZQkJsbzgnCWrmlo2g3On1hWRwGmZWI33HJ+nEg5skwzz0+PoDLCJFKciHlmXVeO5yeWZWJeRpSqePLzeMAYxeF45OHxme1+j1QWaRomV/e3CMni/fc11uP5TEiJEAO5ZBY/83R4z7JMvHn3LVe3O6b5wPV2YLNpOBwe+PjDj5nPrwkxMgw9ORdevXrJ9uaK+/f3VU5TanI8pMo26TcKty4V3JQqnndxjvN4YrvfcX13Q1kDUUREp7Dblu7GkhZwk0N3LaXRHJaJOQa8iEg/08RaRSsiXJpgtft/miZM/OG9IPjIMkVS2GJ0h5UtJe/IsSElg1C2asZbi8vVoomBOa7oNVC0QmhIMZJyFWoFfwnJlsJ4HmlUBYc551jXke1OM00rMVRUu18XUuzpzUtSDKx+BZ0ozYlPfnnFf/OP/5hff2b5/dPKr343onlJwxZVhgpuK+4yXXwmZ08RCrd6NBKEZl4k9/fw+ReQYuHpYJnTirArtlX09mPyuBIWz/j4xMvrHSLccHg68Tf/7sj+w5ZSMm2nke01TPXwFLzjXFasUqw+YNsaDBdCYhqLEBUwFdxMiAtCFqyVtFaBBi8lT08PFaKfKk9EoBCiYK1FiUQSK+WighYIrva3fPzJzziOI9O0MC8ZqRK603z44Ufs+o85nL/CxUCzqfh7pf/AbQLnfMXMpuoikGSkKCQpSaiKda09CHJKlBixAjadwMgJUmZ1VVX8X/2Dj5F65Hefv+PdsyPnuofqux6fVkqUCGmQIjP7t6Sw0pTE/+1//GuMgA/++BcU4N233/Dq1V3FdZZEEoJG94SyVCKWp+KRteDh8AxE/sXTxM1QuLqTfPV45Bc/e4mm5avffUmrGkyxGDJSNhjZUpRHhoLRkuF6IAvPuFZi3m63BTR+KuhcOQwl1fEbyO+d4qsLlJRASHysjuqaDE5AQQlRRSlQ9ahF1HQ7kEVBiFzlMIAugkZY2tLQlJaPX3zCRx9/zMPhgelwrOsAAbFk7DBUE6GxVQN7eVjdEJTFh0gnLCFn+iwpF0z0bmtRrSQdA6tYULoFIwkEDHUv6YvDqLrf9DjWONIaCzojmkR/ZdjeNOyuNqAU83hGGoXpLbNzFFNDMMh0SXRHikj1QEkkJUdJIE11XkhTLXfGtmz6nr7fEEJkPB+Yl7kSLEls+itau+HmxS0/+elLtvuGp6cnnp8m5iWTZSKGxHl8JvnqPk8usoaZXAJcpgMvXl6T3q+sbsaYHqka0DDsLb/4s5d8+vOf0bXXfPaZZl2/5PDoIRai97hlwS/pe3NhKQJRWiR9reVeHp1pOK8CV+TF9xBZQmKJiUb2rD7x9PRIu5spsuHh/T0v9gOnh294v29otxbanuIEqVT62abf4NVC9hO6TbTKc3s9s+snvHtEpQM6CRqjSVga9YD3jzw9Jb7pNYfnluwtzklm1bKahDMTS1ooseGFHBiGntZGNo1hYyQ749iYM4OVWJNrZsFHDoeZN28dx/Ezfvet4P0xcvf6c3ab12yMZj15mp/s2Ww1z9OZXM71MNhcrKFhoe01y+K4vTW4947TeuAwPuLyAUGhbSoxU+aCyInj+Z7zMnEcb9h0AyEXTsuJIFeelyf68y3FdAjTYrsORCZmgVSKNa6X11zkPJ/JSSKlQiuFNgVKIHjHPE78/E9+xtPxgUhhnld+9+u/xWoLGv7kz/4E3TacpoklrohxYh5XXDkzxYUmN6xhRgZL2+uq9TX+MoWDGDQ+zCB6IoFpOTGXGbNR2MFgmwbjNGtayRpc9hyXI6EEkijM60TJmlWuPIz3nNwz433m+ekJN2dUtt8/B2OK+BgRckNKlZERoqg6+lyDw0IajGkRYQYpEErgQw3DqlJrbikVRKZeYFKia1qMUbVSHjNKWbQqzPPIzfU1ogjWC7LchcDh/EjIP0M5wTp7+laxf93wp3/6GrtZub4b6O5+znh+zzpteHx7RAlbw3dFQZSUAImINIqu6+hES5aFtTQ8LYK//E1kcSNwg3Mz4Xzm1UvNdqeQnSAZgej3fPzBz4jzyOPha/7Nv/uWj/0NDweHlB03mzu0TkzrgZjOuOig7Yil5unqeqTWHVMK+LDi40oqEaMVymhev36B0JLjMvPV3/yOjRHoZAhrQvct0sAaIqA4nwq//u2XDGaH1gO/+fXn3L8f8THS2B05WHxItTW2Jr5+/ILVP/DygzvWdKRpLuv6P+RhgCwIKZAUYCxzqcpaIevYWYVCZ23tyMWMEoWbTU+jHM9Pv+Xm05+RRWKenvniy3+JaTuMmQmrR+07RG5pBey1RsTIsogLjAFicLSbHaq9ZnYTX62BKUUULWkRZGs5x8CSIlvd0WZNdPVDRgXorGFaCiErRH/FwS5MLtAIyXHxvAyCTgysIdDSoIrHWsu+7dntbzl/e09RmVVOYCRStORsGafCelroGHix3dM1LeXoSWGtu7QESYC0sk5VZEJYUfeMgmpOaxTkwrouaGtotUIVSVRVp+tLNdmVNaAi3HQ3GKfR3vCzj3/Oz+4+JayJsgr6dss391/SX7f0N3t8yTwcntltbtmpH77VMhnaZsezO5LGmdd3dzSi43l8rgTJXnB2R04cUHtdEdO9ISdPlnWnHsXC9uqq3uJDYJEzyiRMK7m+HXDiyOZGkcKCCgOd7vHF4zUwZEIKrLMnNWCkJTiPbXT9MFtW+lZTENjNgLYV75x8xnY9Xb9FCcO6BE6nCWkMplWXkXEklcz98wN093zYWX7+X33C433Df/h3jzw9HWnbDZmFxQeIBi0kQQRiWZnDmdkdGXrNxx++4Le//TU3VwNrWFHNNcI6pvAVv/3yHX//z/8Bf/bnG9bxii9+tZBWSVkkfizM0w8VQuc8t/2Gw/kRf3YodvVQJgVt6ZhGz3awfH3/NVe31/S5Y1MaWiWR5luyTsgs2HU94enAP/7lP+E3X/yW9pUl9ZJkMjGsWGtZg0QUS4wHpFi4vooM7bf0piDWtww6o3KmDYnG9PzkWnOatzwdFg6PNzzkLauvjomRQrIaYSQpREootAYaE8jhxFW7o2eizZ6WEZULORqSbIn5ii+/eOLrN4LIwl/8tWf7ouGzz/+K//aff8BPbm54821PV14QesOifkPEgTC8Pb6HoBB5YbjbcT4eWMpE7gO/+vLfMp2PGCXoTYcvVY2s0WhhOMxveX9+5FX6Cef3DqMlRS08uG8x2nJOI+H5mbh6Wjfjwpkrs6dtW6T6itWPLP6IVdeUInl6OrEsM1ula710XJFR8fb9PVFLnk8TQYFziefTmdGd+Ppff8uf/cO/x82LV8yTg9VwPM8c4iOpk5zWM90gcX5Ctobb13umdeHp8HTJDBlQEa0Sz4/3pBihz1hdD+m96VlYCCqSc+T+/O0FgyzxS030P81n/v1nv0KYlud1JmTohGFn9vT97ofnZgokFVG28HR6x7brWdIB03+IbBLH+bmu6pTG5Oo9FQm8W9ChgG0rkbYIRAYjBEVBZxVDU1cKjemYzgtaagiRFDRCbDjPB7xPpKjwTwd+6jwPhxo2FGVFLIrxsfC2PPH23cT++ufcDpZvjkcWd0TMM7arl7d4nmvl2lqUbRl2HeeHI/QFO2z4ajpiSo80mnU50efCbT9gSmFvF375y443X36LsTuMSZzWE6GXjGlBnTyjb/FBEU9nYk60baHogYfHyBwFOQken05shy1t0xCcx4W1Wjg1FcSkE1llUixMz2f6zQ41S5SxhLVgm55pjGitMNbUBpduWYKE1Fbia+5Qesum0cyjQwp4uH/Hz4aPePP1N2w2LZQJLfaUkEAbhm7zhz0MFOp+KQvISlJEDb7lXKCAVpcxV6gkws2m4XonQJy4v3/D0Cle3X7AdrPjd599yePnjxxHhShtfWJJSWssKoNfV1ISCJFRF7Vv0+8RVl4UkJlUBMOww6iGFDIpJsbjmewTVih0rvthbVukTgy+Z/aZLCQewTg+MSiBj5K+26FFh8yFksAog/eO+/NCd/eaYdMz+xGfqzvepUj0CZE0OVY+QIwBPQy0TYPPmlTydzDa7+rmfCcWKNVYg9IKqw2pgAkGVQQlJkQRWKuJquDnmRCq8Oe63bHOjt52/PTDT7nqr7h/98DoJ07+iWUZa8//0sGPOaKNInhHST/US7bDlpN+IuSV5FbOY4MQPTFEpPA4JxjP55pZkFzkS7pS+UqqmQhV0I1GirqbRmRQENKKzIa2tWgjmKaVRjQYY4imHhSLyggL2Myu35J8RpgG1kDTGkCw1R1KW7JWtJsNQmiOz0dSqSGuuV1IJXOcz3R9i9SZ6CZyFNUtnyPq6FGPheHasbv6kJuXhsPxSIgCHxaWxaNFh25adCOZpoVxHmsOwli6zrIZBuZ5Yn+1I0tQjeI0PdMkwePzV7y8ec2rDzb8H/+bf8q/+B/+FiESiztzPI2XCi5kEqEsLGEmRkn/3Rvx6qBoSobHpwkhJdb2CA9atHTWcn1zTT9sSc4iFo8WDVfbO9r2gTdvH/noz25IYcavgdWthNBitazmPVdXMaV0nM8r61HRXlk66xmGhFQLN/qK/emKcdTkPJDZkmXPWiTndeGDTz5k8iPr88rN3Z5SAvPqsV3mNGVYBFlr0gLWFJphy+g196fA799Ebj/8gDfvPYfpme7mhoeHid/99oFllBh1RUkGYSWoiE8j0/qELpa8CPbXhuP0yHk58ObhG/bbHb/7/deIEtmYlkBE0lXj5qbBdJLP77/iFJ44uHuiF+hYsDicmDn6B+TYYziRQ6a7fsFaZqJKeBEIBDyBNa8ksZKy5uHwnlICv//qWza9pe0buk3LcTpj+oYcAuN8puks2ipyiITiSSryb//qX9OpDS+vPqJpDdPjjBwqtz6VRGMqs/44HvAl44uHnDBCIHTBh4W4epSu0qYsFdoqQoxVHZxLzUHkcGFqVBFSSgLbDjwcj/zFX/97Nu2e7e6W3WbLeZxZpoXmR+/sKVVHQ205GZSSuLSyhJWsEmiJlppGCkqqU84calOg6RqEBB01WkpCTnWlp6DkSBKwrAvrutDZ2u4RKIZhh4sXhTgCYzRP5yPL+YzUmpvdNXDgq68fOC6J54Pg2/dfcD5tQEpMq8l4pJLYBL3S5JSYl5k1F7bNjm5oQBV8jgjbkaTlOI4YY3Bx5c27Mx/sX4K0/NVf/YaPXrVM88z96WvO60IEXIbn55k1BGxjSNGz+pnOWLpuIMYnrFEUMj7Wi5ETlTURs0eo+r4bcyb5wFQyx9NE9ommBasNQlhciCyp1gxpASWJqeBCRiRRaYPDnjydkVLTtgPncw1iSlmDmDlFlClYVSc/MSaCDyzzD9K0P8hhIKZIiJFC/Y0pWSlKOeXLh913idLq01FGsLvRHB8fOB5nHp/PGDPwshmQYsd4CqyLwDY9KdVbjRQt+BNrjIS1oHQ9ZAgEFIH3oe7ZUwYp0KZhXTyNNshSqp52mmltgxQKZapvu9WGbddfDFEFYQrzCFEVljlVCQwa0wwUFIsLOB/JPjD7hYZCuRAXCyBFqca7HNHKEINjXid2mx6jFUarKiMpCZS+VAoFStRsgbxYnqRQldUQL9KPLPCLY/HzBcJScN7VyYupidW762te7l8D8NWbrwlrRneSyZ8oBJpG0jWG1umqMFaa8Xkl/qjfbqwmZYcQNRIao2PNc+XMm8omWJcVKw2ugBIFIxRrhpwrTdEYTWM1KguMksi2oWsafKrhxm2/xeqWY5ixJpAo1YQoE8oIbCsx1wMfvfiI+TSDEDweH7m62+APExvTYpue0TuM0ReXfEKaCu5JREKBOYwQE1c7hWpUTTJHSZGJECcen87cHjVX+2vuXhmeHiUP787MU4AsETqijaBpesbjAR++w/e2DNuWq+srxvnI4maurrdIrdFW1vFuLqx+pajAhz+945/9Hwb+9nfvyWpGNfG7fRGFynBIcgHR/ug1Bc+HmRQ0RvV03YboJetciEYy+4hULTEKZDHEVKtcj6cTynbMT5GnpzNJOAa9xRhFjCtGWbS1uLlhWjtO8zXFzaynCasVze2MaAK6ibTK0g8W3WaErjVPUQSZhFCFcT6yver42NwR40Im4XLitCa+ul9pU6Ivml5J1mXBDoGkJY/jSpA7tsNr2hBoNisp3fLb3z5Tpq9xp4HrW0s7dLwbz5SckQVSnFm5x00L3e6OQe8pyuPiiNA90haCcywhkIsm4dGNxvRU696TYJWRQ3hHigWrBMZlsvQs8UiZvkCUCuiaMUxlYUwjJhrmEvBkjm6EEpA0BLVwPp04jCdmbzBKUWwi5JUX17fYvSFPkfFwwqcZoQu3+z1SVZfC0/M9IklizjSdpr/qKNmR4oQ2LdJkpnUmyWr/iyGiVEEqiQsrq59puwYtNEUUhBIXDka6hHoj+bsLx4UcGItmt7siusybb+/59Cc7SqrCq75vCfqHmnEKnqGtdMNGVl5LQjAvE74E3OLw0SOVQiqFyoJU6iWt6xqM1SAKOiiEEqQQ6qSm0UCp7YqQaqZoGCgyM85npKVa9+Rl6tBonk5PTMcT206wub5imma+/OY9+uCYFotWWz768KdI2XD/9A2QaY0i+kgjBTFLQpboIokpoVvD6gJxrer1InL1dQRP0yi03fDm/Ywtit3wgruPXrF8e+bx6YTLEJNkOa8YYyFDZiXLVGvndkBaS0kJLUV176RMCP6y4i0X3HX9xqQCMReWFHguZ1SRCDNXvL9SZB8qJdUY2qZBaEFKgZIh5wvETSuavsU21d2RSyaTq9UzR+ozotANXc3qrB4fI/EP3SaIIda1wOXNQhWNLLmmZnPVBEtdAxAhJMZxZvVbnp4rMS0VwZv7L5GmsLka2F/DeT2hlSUGgVU3yCTJKmDkiFGSxmq63mJCDaDEkqpZ8HLJlUrVw4EsWGmZThNx9WShUEbW0JQQpCJojaUQiSKAtLSqQSI4PK28fXdkcQVte7KyLIsDJRm2GwIZt8z0vaUQKDlVXKcWl1S7IPnMso5Mc4syVRmbQg3V2U4iqORGLSX5crBBXOyOEUiS1mwwWiEo+DTWdP28cp7ONI1Fmo7t1Zb95prD8cCX91/T6Q2N7TmPE6bLNFoThaVtDb1vaIWgG3bE6R75I1eFUfKSng9170/BhxmteoyWeLcSQ6YxHU6FClMqVSYUYsXkNo3BaInIMPQtKWnapkHFQqsNIkrCFIg+UGy6WAyrvc1YgSqCthv45KeveHz/jDIGvbm0grxi6FqkqhXRkFckGmUFysgapjSRJQfWvJCc5+PrD/j0p3/CfvMSJTpCmnHhLbP/ipAmHp6/oGle8eK15dtvHllXxdV+j1agdKJtKgHMGM3kPeM4Yayi7Tp8WjiPR16+esFX33zDy7Kh274gK8FxPvLu/h43Kv7oz/4h3z6+I8pn0o8SvLGsLGnBixnBD/ta5zJab5jPC7ozTMdAcgu313dstwNfv/uMySVCduz6HaUYlO1YQqZIS2O3PN4/MewbUiOQnYVUD0NCWoruGb3h7RPYvCPOgYdDoB80Q5iwcmUNkpgtSnZI1SBUg0x16te2is9+/w3DtuPnP/+Eh8c3SF0q/jZa3j6Cci3Ca/IS+eKrGdMHmq1BDwPNoPjq+QtWn9D9jiw3OL9hXLZE37JHoBuJf1jQ2ZJyh0RhbcViPzx+w+66JeaFXFq+/Pr3bK973n37WOmbRZOob6LBZdAWO2wx3YY5zLX6JjQpeKxRCOFx4QmQ6OGOKY7MwfP28C1KKg7zmZRTZQvMM9a0GNHw+29+z26z5/7puSrWTeTF3RVdq8Fnkowcp0fsBrbXAxg4nw68uLvGn1een9+x2e6wVtK0huCqA0FphZB1314QyKJ+ANMUU42HMRCjqCwPKUg51g8caotJCIGU4qJAB2sbvA8I0UDxFApt01WBWUxoqTE/CrGWnDFIet0STSTmQAj1gGI7yxpWXAgYIbBao1K1ohpRcdoxBYSkTgZlJkSH0gLbaGQW5FiQWaCNpO0t83Ti/HRms2+IJWGahqbpMcYyuakGE5MiygF0w/P0TCMtxzNotaKfnujbDZv9wK7boSXM4wFJwSBosDTasrgVrTWrX8lFMLQVyjX0hnl2FBTd9obHwyM5LPz5Lz9kZMMkHQd/whdJioZ1DLy6G4hFME2PiKYgRWZ1K0uoDSolKrclqlohzFlVZ4pQZAK1eFcdLAgYF4dCkjjXqqZSSGVomhZrLcbo6qgR9cIotUEqxeJWhk0lWD4+PZOIFCWwnamXXAVrcOx1R5Gxuk1yYlzmP+xhIOeCQKDqd77eZrNAFUUu9a9KWJSMOBc4n1Y++9yxnjJWb5C6Q2rIqt7OtTXEnDBFULJEqx6pNP11wJpUU+lG0XSaxU2EEhgaiwya8zrVaqMSdM2ACNC2Fj+f6WxL17TkVGhtUwmI/uJ1p1LfcoFtfwsxcx4Tb98dqj5U6Eo2yxlrDVJXeYqPK6229SSWUz3BWVW95CnVrqn8jl+vLqn2amo0UtbaiKoBy5Srzrke5etBoW16uq5FSck0nRiX+ucNIjFsel5/+AHX2z27ZsO7L97y/O0zrehJVuBKbTVIXZ8MuSRKzGgUpu3R0mJF7fl+/70s371oM1pdOAY5ohWE4IhhRWRJowzbVtHaAVMkRmp8nC81QokxClUEjdbIQlXAig5tNX4JjMe5QkaKw2eHzwFpJEZZFAItErotZOVQKtPtNKfpiGgy7aB5fjpUhLN3SGXpeo3QGWUlPq9My0QQDhcTT6Pi+hwYhp6mU1ihUbEjnAzjdGZxZ662HuQNMS143yGEQEiPD4lSItoKuqHl+fDE6VQpeba1bNWWne4pMvLF118T9Qt2dzuyrBVT2UIYz7w7fMbmVvDFm284PAdUua0I4hJZ80KUGf2jQ4L5/JrtqcdMju32Cr+GuobpLOveIJ6v2ZYOoRrazTWEltZk4jc97nCimxWdvWN3NUAq5KYnWkslpGbyGoge7othMBuILTMT03Xmm61HKsec9zycDG7ZI3X9tfCZEqF1ig/e/YRSMsPNnp25JX8VUAqMEuQoSL6QPURXcG/uEcOWYhX724EoHafxGecjd90tjb5DPxo24xUERTtqTuUd+qi4ml/gQq3kDX1LnzccpmfmzyJ66kitZD55rq/3dO+vaWyVZgnAC4FzNWh7xQvE2GK/UUgyRglScLSNprX17S4V0F3DwZ4pR80sFqQA6QxKNqTkETNkGUhKsvl2YLe/Qp8lbaOQpqDvNdoYrNT0GcK7wHAYsJ0lkxFGoVrNi+kVy7hy++IOzgXTKdrSsik7+r6pH6JhA1LQLFX+VRMQCmMsPixIrWhtQ2NarGmwuYaMm3WHUlU8JJUCMkIIuniDkQoTClZoyrEj2YYkIE0K9e6H6ZRRDct4ZC1zZZvkusab1qlGF7TFiIiSCm0N3jlS8JDB+RUfxSWEWfFoWVRiqVJVYJdyQkqNMRKI2E6zxIzQoItEdT1tNxCjwLsAtnBaRw6zxWqNi4bD25X91cfY5oo3b94SY2ToJUPbE1bPsk7kFMmp4BZf5XkiIHM9qDS6hhdjSSChaTQhR85rpute4KXiX//qHffziTWsPMwzx7ngwoYcJMUpRJGIFDFKIrTCI/A+0hhbpy5SYrWmlGqmlapOg0KuivIkBCiFFKri+QuE2ZGVQpsGk+oEIYRATAkhMylVI6wSiiJEFUxJQciBw/kARSCFrayVHBBasIaFkAdETggNOUOMf2ACofxOV6z0hZCXIVXmvhQKIy3qYuzLCaJUPDzMbNots/O8f555+WrL8RR5eP8eFzoKBaU1FFtBHBL22x2NSRirKCVWxeMK0Qe2mz1Sacal7mRCdHSmwypNaxoWobne7zBG8fR4ILmIWx3zuqJbjZEKITVCW6TZUWJhjTOFhv3NC86LYx1PdG2LsorzdEZuNjSbFmEkjTCEVNBG12x/chRf6GxDK5uanlUVQ2WtojU9UlymAUJSBJSUL6fHOvJVRtPajqEd8G5lmmZiDBRVaNqWze2WzW5DiIFv3nyDW1aKrt98L3zFkuZMa9pKK8i1PqOEZdPueHg4sE7+ssapD+8CKXq6oQIytNDoxmKEYppWhBJoYTDK0Gw0fbthOpwosVYlYvQoZeqBTUhabbjZX9XVQduAkmhT8cy2sfi0knUGUatVdY2kUSKTcbgwEoXGDgY/rwxdg2rg4fieZrMl5GrJ3A51FN4aW6EbYUT19XaTZaSojEsTaa4A6JAmztPC0/GAbQQhCMLsap4iNczrRNs6oo/kKFCiRRmI2VMuN539bkdIhj/6059y/3TP5BaejiNv3j1wdbulbyWRiC8LT9NbgoyM7h2jy+y5AcT3JsdYCjr88JK7/suP/4uvuZfs/5M/74ANL/iPY0EF+I/vAN9916cf/dzpv/ir1sd3xvtf8Prv8G/Xx54/+Z/93NV/9PcvefX/9fdv+QaA3X/iz9rxEuD7WUpz0e6+ZPc/+3fbH/34xd/x91yA/Y9+3f5H/+z2R/+NV3z3ffrwP/vfuuKD/+TPDz/68c/+M9/Pm/+F3+d/7rH9X/5XAFiB9fuia4eh+/6fCa9RqcUtR9ptS9M1ZJMRsgKGQk6s0VWUsBTEGMghoKQhpEDwkVxqZiiXjDKqwtZyrPkq72lUSyHXXftgaZLGtIo51ep0KIGQClkIpJWc5pnT3LLftaTcIHNLo65YpsC6eqxVhOB58+aINYqQAk3fUpIgLwtrqEHmnCPbbsO235JLJrr54juJdSKDxpcWckuIkc/vR7pBkpuGlZlSQMuG6eQwJrHdDOiucIp1B9+2LUrUVYtRBq0V3od6QEvVUROKp8hCUSCFpui68oTKoDGmwZiWnGqjLARPTB6pKuVXCgnUA59pbG2jLRVKta6OxhZ8iIRUkfAhVXkd4pIXC5Efkej/i4+/O45Y6xoWREIWyCzRiDreEhKNpsSCEhprWhCZVCxJKELJ3L+fGSdBdPWD8Bc//wQXHxlKobGKnJ/QugFMrSjmglIKFxzjNBJLoguZ3X7P12/ekkqh61tiSOzbARIVrlMq4EJLhVsd67wQgq+hFivqfsq2JDRZCmTfEJLE2IYye3Iu9H0PMpGiJGWP2WywnSW4VEfhl5566S1FCjSKvm1pjCFEhzEKo3tSCQgpK1ugZMRF+1mAmApd117CH4Epj6zLzDzWAFuzbcEqYgg8Pj5SQkUbd33Del7Y7XYIBO+f7vnZxz8l5FKhFtIyjY7tbg9Jc3g8c7t/iZY/jKdPpxPmI02Wrj5Bk6BtW0RWNejTDRjd15GtrkTBkhKC6gmwjUHmwtXVhnWciMmRcmBoWvpNh7EN0iiatiOGyBTOSAXIuuMKOQMJ0/Y8H9/XVYoF1YFqMtthYJkWxvXE8GJPDAXbKHxaSSnQtDsWN5KkZw0zm6sNZqh2w6fjM8E9s91esawnlG7ohiuUThxOE3k1GLsFmTlPzxQZMMaQY0WoCpPody2SjiIT/a7DdD26Vbz/8j2JqoM+jQufff4Ft9c94/MjCrjdVVY6diXJH16BsSSWaaFYw/R6wb4a6d793RK+/+vjf338/+shbgTNL3rkUGj8mdY0RBlZ4sp6GlmFZ3RTbRNIQde3zKeRlBJGN4zTSFESrSVKVRJrLhltNUIJ+qZFFoFfAkLICuHR9YNaWYFJhneP93Qlshl2lCxws6PpW9aYyKeZ3eYOn2F+8kRRaI1GKUFjG4SRLMuZLOHmxTVeWM5FMC4jba8gBmzTo6SukDVrLhbIjFQGcsO6SGLRFLEhBofVLYERoTWqsYDn+Hzi+tqipCGFlUKFm2nbEP1KCJ51WZAolKogohgTq/dkWT/ElaiNi5zE95dmoUApC0VUaV2MpJQpqVwCahmhFca0jLOjyHiZ/haKyKze42P5Xs9uTMWur8FhZFUIZJH4QUv1X3783dsEpSCkuPSkFYp4GXJf/j+JKkrJEqVMRbvJBp9rCjZ4hTsY/ALGCrLUF+puARFAOnzKjPeCFDLaCIahhj6MNCihyaEG9owylFIwqqGUTN/25OiRompuS0lIIeqOTGk2WqNtRVRKKbCmYVoEKVSpzDi76nv/Lqynqmmway1CZIQqoEEnXb/AMpPd5YZP5eUao1Bak5JDKl0DICFUP4O45EhkDQ/WHXxVUqaUWJeFKUVKilhj2G9baBRr9szBEVP9Wmst/z/s/c2SJEuSpYl9zCKqaubuEXFvZlZlVXc1BjQgrIBXwVPjDWaJxQz10HT9Zd6fiHB3M1URYcaCWdT8JqG7s2lyCb8UmREe4WamqiIshw8fPsyX3/2e11/CnnPbKlYcVonhRibU9ULvjcv2zOhCLRc+vfxAqY86YUurTLOOd6G97ZTlRsVprYe4piyIV4oKtE7Vgg7luB1ghqpwWRd2whnw69efwgFwLdRtCXFUyf5fCWMqLTGQQ4n2yj4Ofv3+MyIFN1AJFfP78caFC3qJgU1tNPbXg0VXGCEshU5ZBRWhrHA77vz89ZXjNhhNGSy8vb9zfeosl89o6dRlpY9nfvj9j7y93mgtbEHLWhk28O4sV+fL76788e//gT/99G+sz4VPX57553/7Z/bR0SXWbTf49v3Guih//ukXLkuhSljY6jIoHwaF9W78+u2dsTj7l6/8+v+68fLtE+2tY6OhCk/rRrsffHr5zPevr/x6e6VcNuQQ/v53/8SXTz/yp1/+Ny6fB8tW+PbLnffvB/+3//s/cPSvvHxeWSlctKJloZlxZA/5/X7w5z//iefthU/bF4pdaDdib/x+ge3IrC4G39xbY/T42df3N97f3jla43K55Pr8zKpKOzrv7zv3e8ek0rzwL//+M8u28Q//8Pe8XFdae+V4/0b3G3VZuX9faHeoRfinf/o7hhv3u9P7yr6HSVBdOt3f0IvTbISmZrvEjJP7nfvtjarOy/MTn16eOW4H/Yh9JBoW2z4uXKpyWd/58Yc3/v73cF0K933l6+vGf/m5sevCodD3xrU+0YdwtINtVdY1JGDP2xe+/tx4/bVRELbN+fb6E9vzhcvLE7oobRwYna1uuMH97c4Pn3/kfrtz3w+2baNcCndvDO9RanSotUAJBf7RG/txcH/bqSgv2zOXdaX1g09fPlFLUPSFGq8nyrBxzkIpGmO6Bw1qRzC0BxX/tL7wtH0GX+hdgYWqF17+42e2v7+wt3dej++Y77y9vvK9f6c8K4cetKPFni6Fy/VCXWoEs6xH16VQ16hx997DDrsoUpTr81MwdPu3iHuLMqShK3jxEPwuypBggJ3oRpIafjajOb97fkEUPn35zL///K98/fUn/viPf0RFojZ/eeL6cmUU+Pr2xm10yhZDgaqstGa8tjtFheV5w+WgSgiaW2vYmOL0cFBc7s77bnhZ2a5PlGVw7Ae9F3qLkSOyRIlq2OB+v9FHZ/TBUoSa7Mmw0FQ4cfgvdQ1JYSa5DFCP7rXOwIeF8B2h9QZKzKa4HbQu9G44ke0j4VQZMyAOaq0RV9VRlKN1pIYIOAdz/m3BQLfBUlfWuuKmDABRSqmoCjaiRWV0i/nguuH6RLcwXEAX1CqucO9v/PTrv3F5WlAV+tEp1fn168+0t8LowrII5sblunK9XEFhpN3lH378O+7HgZTK9rRyXa8MEW4U3ARzGMOQMljXjcs1Bm4c/YZWZ6sbdwa79UBS+87R79xur5gfLES3xLIVEMGks+93nspGVeUAxohsXzVQMSUm+dVlwTiwAViofUsNS2CT8BosVdCycOwHx3EwrNGOO5dl4Q8//ki5wG3cud0M6x00nPXcQ5O/Xles96DJr8ryvNBvnY7nBLwYh3rsnaVujD5Qf6DD5//8A6071/IJxkJ/VwobRVc+v2+syzOlVtZVqYvgY7DtjmJUewlXPhGOr8L4tjC6oMvK63XQn955vQrrpaH/2zOXXin+hOug1HIakTBALcSovQ9MDLlUXlplDOFy/T1//DPInzeqCW/f33l5fsHaYBRhuz4htrGUF6TAsSi/rDBaAa/w0jkO4bsa27ZR6xXV39OPwqfLD3z+k3C7DWQxugijC+KFxZUvbWV7v7L9+Rn5acM/bRz/Uvms/8hT7/AvzvG/r7AK8qzcX3+gCyyfrzFL4g3Wf+7nMBgk2r2+3t94vx8sf3yh/c+df/v3/8L+/srnlyf2ZaW971z+Tnn991/4P/70L1w/f+JpPPOHPxr+yXn76VeOH9+Q1bn9IrAv1P/Hzr7/GfmxslZ4XjdqfaHbytEL+67om3P///yCL+88/z7YqfbLQRvKy396or4c0alRD8yd2jveGu3tjbev30I83I13eedQ5ff/tHLdVuz1O+3nP2N9IMuF3uHbf/4XynJFf7xx+Y//Ebvf4L7j451RDXtViinojv3TV97f3ri9Ve73ykiFtdc3TG/otvL97UbfnS/PP/ByeeHt9Tvff/6JrcL173/Pyz9e8Ab9gPfXxvfX/8Jqg5ftP/J3v/vEH35X+b/8h4P/+Pd3GDd++WXjf/0vlX/+X9+4y8qtKPfvg5s8IxScAZeKXhaKFA5x7KuwvIVB1fv9O99++TfWlyvj7z6zvizsdqfbQSsrxQvH9877xbm93ni7v3F5vlKuhVe74eqIOWFUqnQS8JTCcXR+/vPPXLQiLz/y1o3WD+of/55tvbLfd6oU5LJF4jMCrB19R3PyZrc7u3/juhY2ryy2sG43/Oo4F6wttOPgbT+4/PiJH3/3A5fjmdf7r3x/+4l2hMbj+rTR7i2s50uUiRFBlwWpBVNle3qiLBX1n81LAADThElEQVSd2Sqx5MtSab3xpz/9ibWsfP7yGTuct/dXig7qRWjjYGB8+vJCH4O3+3fElKPvFC8s6xWojC58fvqB4/ZGUee6Kd+//8Lz0xeenp9xv/Dy8sT//q//zFv3cJE0jTi/XWh7TH/9/OUapQG745pdDr2FwJFrdH8dxtv7CLth2SjrheVpZ7SBl4LrggsMP2h9YLxz9COSQjdUSs6QUWpd4uywSGYrS5xfZsFMe6e3FmykOGN0jtuOW+g/VCtFamimWngTIM7oHi2kPqdLRGfbSAO71jui0fUnYtnF9jd2IDQzRApFI3uoAuIhBkPCnta70/tAFEQLdf1EHwXUEHF8GLp2bBx8e/uV55en6JW9d1Yv3L4Pii5RY21G2e+hTF0XSo2BOd4HX16+sNzudDNeri9hrkCwFprWlxGALdzJVE9Rn8jAegCbmkxueGHssanUKHljRHNqQN+5987T8xatk264OarKWtZ04BrRJqMFLNpMbCQ67I6KIDWy5D6c4oNj7JgP6iJghafrxufPz/z07U/sfcetUyTu5eVygWYcxx7ApjVsdJbLhlS49zuDzqqVve/I63faMRjjiJ+5p2EIwh/+3//zX/vY/7tfn/+iBnzkLzC+8H/9P/Xa/+G/Uof9b31Nf78GCDG85PYX/+aNDjyzZkXX+e1GWPNnXvhPOPAKfP6vXEu89h/owJ/O7/7hN/XnYiEC6hbAs1nHquF1IBfj4MYqQlkXvr/fuDx94unzG1TBDuf92xvSYxJnO95ipPPyxOfLD1Qp0dpZDCmG1EqtoKYUVsoAW5SX7Qf6MLoLiw6O8k7HuLnwQkVKCaZInFqjX31dFLGkLb3EmO6ysixb1IaLIWpsFygXxXfjD79/po/Kfnuj7S26ZWzlun6h6ErdntguKy5vse7Dto5lEa6bssvBe/tGXZXlougdWgsnyMuyUgUua+W6CJ+uF37/+Ym1rCyy0PbfcbtduGyV3//wP/H7H5759PwLX56cz9d/p99vcHReroNl3aOtVzYGcIydy3VlWxXRjolSdMUcnj9tLJ8vXOuVn/9UWLbC9/2VPmJ8s1VDqtK9Yy0Ow/1oqbbvUQOWNVxEtbBqDadRwLqFMc/TM9cL7G8Htkctftx2rpcr1RakA82gKoWaot+BZ51eqzC8MSR88qsFtFGMwYBqjH5w6wf7obx97wgL1+sLz9uV509f2Medulyo/Z37W/gXSPFogyMEfqIFqQtSF16uT2HXbB3RQllWestplmMP47cNtqcorRYr3I5vXLaF1gVX4fryxPv7G+9vb1QKItEBUqTgXbnfOoseiBplc65Pa7CfhzN6tLK/fb/x9v2V5x//wNPq/OnfY4z0clkZ1ujDGazY6Ly3Ays95jBodFds0ajHdnmiUPFh9KE0c+qlUA6lXhbKcqW50lqne4dKxHQzuhuMxuIrtRRUhGVZQhemFUvmoWihhMIXGx2GM3yEqZcZ22Vlu1xobjEt0gJo4ZHojh5zEd2cWrITxYzeOmdr/4jhZ4JQlyW6E/6Kr/+BMkEKtcxQD48BlYKSzfcWHxznRIhhwrGAXXG/M7ij2lmtchzOy+dP3F7jgBN7wfol++s7RSXm1l+vXK+X2Fh9sL8foIodg9EHTRqM9PUXQUrc/GIW6KpWJAcJLUul1GA1llJZqlHXglSnvd0QDBtBkRYpoTDW6N1UUbZ1i83dwrN8DA+AJAsHBxfdqCW6LeIhBYprvUVvPooV5WgDeqNbzxYSwgNBB+24048Dsxalh7XiAk/XC/d+4357x3zEHAeBsirNdjotlO2L0O3gdhhiyroVdB3Yf3rH/v5A/339bzzl///X3/prf77x7R9+pukeIisZ/Pr6C11vHOPG9lQQc9anlcWf+frnnR8//8j15RP7uCHA+/d3xm74U4+++rrSsk3z+9evsOws9UKpC6oXRISqTinhwrmi/MPv/5Hb0al1iWD4fODtjVtzLuOHML8aIEQ5x124Xi48XS7stzesO88vn3h6ekKXC52D4SGmLUWiFluV3//wO76/Dd7eDu7vdxapMEJ8Vlzx1lme18ygHHFFWajrRtmMt/stykTrla04UgZ93Hi/wdO68vn5iR+f/46nKvzj3/3IP/zhR57XJ16uLwEE/T/xdL3w/PQDaz1QdxZ7og4NXRGdtUSpkrZxtAvH2FkVZO2Ua4i17g0OL1gbXOpA7Z2xvPDr61d6h+vTJ6z2EJsSpcR2GNWFH18+c7x2yqbc2w44orDqwrIuLBR8ODagyIjBNrLiBZ4uT9yPN0aLGPRyeeFar7g7aoVCtgZKgDRzo+Z8gNZDkAeVMZTDDXwwljjsXI3mjcOc3To/vf4bl19W/vEP/yFcPrUGq+bK/W3n8mmlXC54vtfb2y1mh2V5Y90u3FtLO9xgRfuIQ6kua9SttWJmrLry/PLE69uf2JuBaoiWi6Il2NK1LigDaVF+7s14fX1Hrwuff9ygOXVR/vD7P/Dv//zKn/8UMyd+KNeYQ9AGFwqftyf29527NsxiQNneoPvBW79Tr53LWlHtLIuxYbQ9HB5tCP0QjnunsGPFkA28KiYLfawMXxA1dHHGIMokKhSJ1sFh0S2wlJVtidJRb5GeLHVhHAMGCeoMt04fzlKXEElfVl5v79laGq2KpQaAHD3Oy3ZEh4dKlAt6tjnWEqxM2w03Ba+o/3Ux/38ADFgYsrCzyIpbCNStOZ5IJVodos1OqyHLN/AYUTl6DotZNpbyA9Y3iv7A6D8z7I0+Ck9PT5RLobVKVeHl0yeeX17Y1oXb7YaKsN/udHPaCMX4cT9Yc2BSN6N6KDVFhVIry5KikdEpBAhQqYRXUrTjBZ4xVJ3Ro3YsJUoSDtQabSOllBy2cU8DJHB2Sl1ovjDqYFtXhpUQiEgBjwyh2eAwx1VpSanVIgixUNYSqvPX9+9UFe5Hp64b27YF6jRnrYXeD9xDh6CLIsV5399isuDoDF9wYiSySIlhPnZH/p87//Z3/wv8m2De0RKL//698PZrINZPz59CAyFPSTPtwA2xRvErtVa6NJ6eLvS+YyPtXq2htQQNpoprRbXyer9hBjaizUU0DIwAiod2Ak93LjF0LXy/fee6PHEpL/z5Tz9TyorqwnV7ou+NiuQGaCyXilTQNUSs1gXGBRsa4sFyp9s7X15+oPACdgmzJf3Ken3lh89/z9ivfP/2nVpCIKUaZYvX1zeQgpny+nawrFe27Urvd96/feXl5QVcGG1wWRYU47KGv8W9H3zfb7z1zk+XP3P7hxtlWXiSFVk/cfTG9+/v6OpoXdjqhtRClSvrunB5+oFy/Mplgy/yie12oe0tynEy0Bp6iyGNt+/vXD93alWqvlDkCyoeg6/kjnqwJX/83Y/cTfl+f+UubyzPxv39jde78XS5sq4V95g3UkQxnKqFL59/4PY2eO/Gp+fPLOsFpLCPDHjbNcy0TCnApW688c66LOw34/nLE+gB/RWsYe2IxMHf6b0iUljXF4SF1t/Yj87RoPQYL7ws8PnzE2qVdYFPLxd+uFy5Vuf3P3zmy8sTz8vGl09XFtkYB1zWJ2q2FI5hcBTaodxeD15vndYqeKH3C9/fV4Y5demM0jmILG8MQUfSu+q8vn0Fgd062+UTv/vDF3q582bfaXXHa2Rs63Lh+ekz4/0769PCkIGVsJhdgWVZY8JeKKxwDw3N2Hv085cNVoOj8+n6xPP2wvMWI8KlxzTOqoXukWy4WWqUgmUwh1qeYl/1jjo0c/ZxUFQwaez9oKyV+/6dP/36z7y8XFFfObpFT7wJVaNt8nq5cO93bDj3+52yrJhoaFJS53AcO1LXADW1sm4b67LS954J3RNVFvYxWLeFw+4UrVHWGA3EWJbCWgveLNxdHZRoW/dV+dev/4Zu7zy/XPn5+68MrzHsbW/Yc+WpXjju4VHw5frC29fBfmus65YtmgeH9XAj9IEjuB+oLKzqrMVhdI4d2t3BlwDXV8OsYOLcduMwhWWllIFoxL1SS5x3LogqjNQylZhtEaBXos7fPbsxCkVi2J+7MGiMo7PfD4zw9alL5aKFo8UAO8E5jju32xvDGpfLSimFY48y3ilQ9877fnDcQUyQVf7yOP8/Cwac3lu0DqqjFkIStxApOBY3QDJTKIA3SjQQMixaDqkLolfcF5yF4eHUZNZ5fv7M06cXbvcbNmL6U+th9duOI4YPmWGHUUplXTZEFdVKH3E4jzHigBc42g0pzrCV+/0dLcKTXShVwAzr6cpnZJa/hHiwRNbtHsIO0ajX3O533m57uFoZqMYIYnfFTHE0xuRKto+YMADXEDO2dgs1R9FwUFwv4MYQKMuaI48PtAj3fee6FK7Pz/hx0I9wWjzcHr4FJUjx9/sNG3Dsd5ZloYWiA3NjEeHt9pXrp4XvP/5K+Q8ONcxFntYX3n4O/+9LfUZfnGExxrTbwPwN929Yu7PyzLquDLmz/fH3tHbjfnvl6XlleDybvR8MF0wUl8LrLRvaPEypSqlBcbtjvfN8iet3gQ6MKvzLn37ix+ffs9l3vv76ncv2xPv7zn/8x3+C7ry9fWf0g59/+ROff3xhfa5cX65UqdhRYDzRDufrtz+zbI3eX+nP71z0dxSe2Bb4+vqf0fXf+fQ/wVr+gP3bT1gV6ufPAdxud47XN4YXim7I0bm3X/jdH/+Bsb8xfvoTX/4AvRlv3954+vQpTJJkRxbB7m+s+w1U8FZ5P1aO4eil8rmu/PL1F77f3qlp4LWtT+z7jpbGpy8/8unzZ7bXC9u68Yfnv0deC7/8+nO0qPaFZVxY6DGkRxeqLlQvVL1Q9IJwINJwaQHUUdZLpeqV97Yz9o5eoPfGfh/cnncudiWsssFNcKus9cL6ZeH+LtTS+PLld9nulA6cEkpnRdhbjLk+uHPYDV03uuzUpxqzNl7fwDu6OlINsQKjUmTher1y9M7RGriz1pVFC77vfN4q2z98QVmpVNZaWKqGyK/AYjtqO9JiTsrnolzLyt6db99/5pdv/8rr15847u84lbcD/nSv3HrhOIT9vVHUoYTItfXBGMbwho87zQYiK+/7G5fLE8tl48vnH3h+utIFRj9ijLPDslQWj66Xt/0byDNaaxwQJqg7tZc8CBwrEiNtXXh9v7O/3XjartTlShsH2/rMpk9c9CVazQxMewwHsAYMhEEtEnVwLGh2XRBLcbYrZpVjN5YNunVu7Y11eWHsO1/fG1/fv7DqJ7q1EAQuawyhawfqMSrYzOkYZXFcI2N9f3+ntyPtz4+YrLg5h9+RYVzWKyo11PtVuKxXrnplHGGfHD330YIoVPoQ2jHwrilQ3ij1wmHG9vyJf/nTv/LP//6v/F/+6X9mvxfa6KxS+Pmnb2G0VjdcndfbwaenT2HLvGzoutDaPc+oQnGQnuDJBlZ7WqkPjiPYqqfnZz59+oz1KCeNJhz9oEmsMwg6vq4XfDi9B8gtZWFZFlZdwyiNyiAyZzsG93HHvbOuSwrjgy1WjfteykLvnsOzVsQtOtokfCTsgHYPIL6tlVJXomwA1StbraEza0a/Gc0d/etsBv4HfAaWig2LsbVeKEVxjweJhwvWWtMyU8CbI0NZNCfyiSJ1w7px+HeeLp/Yj9dQufuGedyQRa5Yiv1+/eUrw55ZV2Xf75RSuF6f2NaoDIgUyrLQbPB+OwLtISw1RwrT6X7HbXCMxnHrdBM+f76y72/YvkOXMOO4DfAFB46+YxqZuIgFFXgTjncNkVNdWYuEZz8ry1hZy5VaNtxq6A6kcge6QNc8vPHQG4wQMdoe/frX9Yl9P9jdeXm+hOJ12fj9D3/ger3yp7c/c6lbOD/KwmEh9FpqqFKP0UA3ZL3w9X2nWHR2VDEYxnJR3u5vMQ75sGiBWa7c98LeBk8vz1z8hXbEtC0tRvc7yybU8sL7q9HbHqNqF7jtbwyMXpRvx4EsEiKzHLmsCEhj2QQbYXtc9QIURg9bYSlKLzt1NUpRrIcN76afeP9mUIwvn37k+fmJ//APG8tSWdfK7eb8+c//Tulw9+8hINQFQXPO+je+v7+hS0xeu7cFvRu9fOdag6UprJT+D/z07zu//2Pjh99/4fb9O+3otG45tW0Now8/qOXgeTUu5U/88GXhP2xPmL+yfbpgPz5h3tmunbpF/fmpP/GjRSfN7di5j098ux/c9vcwW6FQxWl252m5YK3httI42C7Gt/efuJhS3uGmO9v2xOd/+MRPX3+i7s8s7098UmfVwrZe8XbHbsL1Gi6bLh0kmLKDzpAKVXICX2WVLTQvbaUPuN3vPLWDp0sYa7UD8A0tT7QGnz/9get1gAwuTyu1dtZ65e4eCvda8BW+v36lcdC3b/Su/O7T39PkO0blddzx0bg+vdCGoVy5vQajuFzeqItT7MZaHK3KIgd13/ly+cK2VMp64Tic769f2TB+//wjn7Y1xibzzv1tx8sbPyw/ofuN1j/x8y/O//Kff+Kff73h64asn9l753Y471Rg8HkNm+yqoL6Es2E7EDq6AD3WxPPLJ9rhPF2fw+vistJtMOwCo9Hagavh2vh+/wm7NL4ev7DVJ67rE5f1gndjK0Epd1qowktY1aqBDo+adVkpdcXHSmkbelQOucX6WQdLVdDBsjjrUEqCGHBqVYa1KN9SuGwvVH1m9AQlUrM1+gjvD3N+/vavfLo01mvhhQttLNxb5+XlR1SUdSlQDcad+3EDoivi2AfPT1d0u9D8hvfo4e9lZ0uLXNvhsr3wtH7COLguz7g6zTr7fqTBTli2f/3llXEb/P7TH1jXJ6ovLOsT3953vr2/sfCZdb3w65+/8rS+8MPvnqCH++S+C3ooKws/PF14u99Zr3Ee3e7fMe5Ucdb1SvGBNOO6LdAKN2/UTxfe3t7YW2fdNj4/PbNQue2N4x4gSuqA2hl6hBC8XBgSXSdFY7D8YiubrqxsHLeDW7shRRnHYD8OdIV6AepgaDgW4k5dV1pv7N/f8FLxqnRzjkEYC/VkgnphLS8ghnSNc8UL4KhUVn2iuSF2sKrH7JzR/n+c6P8nwMAY45xD4O4nEyAaxkMlrOwyoxxJicSMglKEqGM1emuoGGhH1ViWhWXdECs4MX9gvx+hTSg1HNy6cb/v0YqzSmbjEmLtbuzHnd5GtlrEL3dLIyPB8bTtLPQRI0d76yneiWE7iuZn99O8x4zQIeSQoWEWgozLhbpF32mxSjkKq2zhc6DRSzrtXny6epkhhHe4ahggmRHinCGoa6DvY4TzXV2iLiRhaFG0cL/fGWaolhgW0uNQBY1BUUo6gMFIAYcSExPDdbAjLizbylqvgZxrZ7WFVVYkJ8A5ho2dvnespu15FUoNG+Y2Gm10OiEMtUaIp3ycPcmhC4ssUiV1rxYCF3NQjL3t6BqtSYtWyt0p6mHjaR5DNvRG76GfuIzKy8uVX78p1+t6Utvj6NHfe79xvx/prrhSZKXWDRsxGKZuwlYWbnvFhnJ/M96+3uIQHHC/HbRuuFa6kU57yiLCtRjP9eB3n1YuX54iK9g2hgf7U9cLZd0wEY5hUfpw475vfNuj3WpbjLLC5TIQ3bnt4ThYq+K6YM14vX2n6kHvN0Yz9tFY+426RKsRvfHvrz/xd7/7I0vdWNaNl+eVrcSwrmAleyqJCcvabGEtAlUXCitmg1WvMa3RwmOhu6WojrBOZUEkRrJqiclrIlGjdg+62mqI18QcXQdwZ7kadSi6jrBFHQJFMQvgWjTGUUsRzDr7caesHrStx8G8VeGyXHh5uiDLQh/G7e2d92/feWFQfrhw0YVLFdRfseONxleO/i+47Nz7ztc3+Pn1O396HRyL0jX3pRTcFVFhLcZQWEpk7JGlWrZSE4LkEbFuXWM2gVZjjBYtgsAiIdUbhKZqZNdPd0dHZzNBWXh+usRgr77H7AcRtGgkLmVw9wOG4KOgrlS94Cbc7js7d/axU2q4D+IW+g6JfRaSzyhrLiVagwOWl2BkHcoSFu7LtkYsN8Pa4BgHr++/UqSy73tM2xs9gHPZWC8bnSPiz4j4Hn1RRinOuhaUyhDFmkf8FwsDtlTUT8F1O4xhFt0H5vQxUIlOdFAu143L9YlaVuw+uO/v7K2x73dUY5S8SggJ17rQ72Hytt+M1jqq4YlTaz33IBhV4xNLB9FIHASiw8uJz9I9ykoWo5UPj44sG4TmYgxMB2DBvLRIfOmR9cmAZh1cuB332I91pSZNr6WkIF5jxoXB6A1voFQgLKfRwnDY985hIzpILErYNhzxgkhct/X4syopMlSKbjxdPkEl9W1/nevQX99a2KNVSmRSUvF7kZiQtqxLHs4ESvWBS9DrYc08f29JRWY7RgnkaSP6Ilu708dBrULx7IVP1WxUPzUpeKKdsXeOo0f/poSKUyQMiBDFCQtikTgw3eD2dg/6X0oMy0jqE++4dUTCalks0HWAn4JYOGStU1GtCzoKVRY2WanxRIL6xlB3xAyxGK6kIqxlYV02SqmYAITwshKq0XE0bDRqqfTWuFn8nHnQmCKhM4iWxhLzxV1ZCNLQkolBBCOEQlqEum14ARejSmWhxLQxBHp4Kyw1VOXNLYJ0u6e2IeYoaJXwnPKw2Aw1c9h8ugb4EJ1tL54DOxQRBWrQz8OZ8xytRT1O0FxLTimCrpVFFjCL7OIYUZMuGyIvfP70haqFMXpQzxTa0bkfO4jy8vJMXa8xZXMYn5+j42SpK2tRdi8sEgBErVJYUFlprXM/GropQwZFlXVVnqvyXJSXi/Hpany6LLjE4BaXiklByoZJwRBWcyJkwLoV7HXnaI0iC7oJdXXa2HHecMIDQ9jYUY69xWAS2SkaA14YI3qbF6fWha+/3GjDcArrurFdDNV7HGRqwT655X5VVJT7fWdZO2aCmdCGAwsqsR+j+8WjzlkUPAKTFqUuROtnEVw01mmLwWXDRgAJ28EbWozLVnBidsXsryxaQQ11CX2ROVUKVgrH2MOGtR2owLKubFvlsijL04XWldtt5/XrN/avXxnLiLKVQHEY+6+0dmPInV0XbFHeR+Hb7eBt7+x5vUc3SvZkuygeaIllEZZa0XQJFZn3UFPR7TQOrAtdOmPsLNWR1L+oKuol96eFhe9SIsZ4CNhqWdguG6MfjH1wtKDkxfNQ6h6HiikyQF0pHuXEW9t5t3d2DpYhkREm6I+acw7FIZKPUhcWDeEaXeg9YlpZk8Fda5RD+oBhYRrWe4gY3ahLjNWtNajpkYfqGPGso38+gEhVZV0qRaKtcfQY1KMIVQuNQWs7R7mjxSIBKzXq8WYMd8wJYKXpJ3FZYECj0dueycxBLYAY9/uN/XLhuj1RLmsOuGpgMasBDcfabjEszsQYMhi9MbhTWsxWESl4D6cctzjLtBYKhYGneC+GRhUvUR4vIVIf3rE2UI/n5T0O3nEMjn5w7Ae1LLx82tJngFh7q7KWBIGjc7QwLdG68HR94u12534/KNvGtmzQe8R+iT2oqqwapfgpPq8l4/Jw7keL2CABcMaYnQZ/QzBglu0Kqnm4gwmURLelxA3M8kgI+NTp3vCe/sxEPd+GcfSd47hnkPCor4/QB8SCXNNy+E4p0SaoGhfnNug9zFzcHM1BRLos4TJYByIL5o2j7dhhiFaWutBHBD66xEwBApYWCWwvidiLRL0HLMZ6ehh1VDYKlSqFtVZqXZEu1DHNIDrmjXkcKBGwIMSViy7Rjig1TtmcArYUGBI1Hvw49RBFC1KU1nsK2Dq9HVkyCX/9tndKGpkYMDSyOyfUzPHEjBHmB1gHL0YZyqWuVLnyaX2m6IW9HZEhSmRqw4TtsrBUwYnNW2uloByjhWsWoWQV0elHAka0T2lkOXgllJoW95wQU9W6JFgQSi1crgVajbHU1gONj8FSwl60qvLDDz9QEX7++Ween55ZlpXX728RCIvy9PJMqRdutztCDEvxZlg1xlDsEEzg8nzl0/Y5Rq9WcDliPS0V6YoWZ1mMp9X5vDhfLoPrcmNdgonQGgYisqyYFIYXhhS6hf+9q7DukhtyZSmGL8bKRmvX6DLRlTYCJNe1cLQeHuSyo6shEk6RQwr1onz59My2btzf7uxHR+UT9/sb61pixKwfoXVxD1DmAq64h021m+JWGKMgXJDiuAgjjxPVUPerLEE1yzw4HdMAo47TLcygnIHbgY0byIGWTsHiOatF66B4tBrXC5vUYMGGUYqxbhUZg7f7Oy3HxF5fNuoa7ZJNjNdb4+vXN27f39B25yIrF/mG9hvjvXF7f8VNYFG+CqDCP3+/83/89MbPb419bFiNqXqUioliDs1HOJuWNfaZCC41EgNxznblpSAGo+2YHxQ3jn5BRRliASrIw4TUBFWL8b89MvPWLJ9t43bcue83aq9ciQE23oVFFtbtCVkq43CWEq6ah905aIxsz2YEYyVaUA3WzwkruOGhGSi6hKW2x/o3aWhTdMtYbQNRR9QxbwgGRVnqQlm32NfWaLedYgVdlSqFIoUh0RJXCqjGzBfRTBgk9nYRgrWwwd7eefdwIOze0RogVi3YynvrGMKyLdRtoXnDxkH3mHdwPw5cw3J4XSrvb7Hu1nWhyDWSLlbaEi16R2+8v78iRbPU1zisMXyPNemClTSCG4K5RoLrQinRIWdmdAkmvC4LVSteDF8GXgb7cKx1GCl4ao4fzjhGZuvC9nTlsoUxlWby5RoeE2LB7uCR4BaNEvjPv37jp59+4Xd/93e8fPkB/M7b/cawZLtF03gvBLvug7CYio6CNoyGMbrRby1KCx/m0vxNwACqiINLHjRZLjCc4anAtZhsGJtfoIC1ztGP8yCKY8k4etRQq66oKbgGrVwWbHgwA0Vo3XNSYYhWIBZuePBHFlxUomVnDfGbILHQPbL9MdLxSwtVFSmGIqzLikn04hcRarggE65RisoSp6sNhMqiAQTENZA7EmxDM8waHQHrMXoyeK+gTxGkxPiRKgvqgT6rrsFcYJQ1+khvbXDzoOMWDYFgS5Rba80gH5RbTQGhA9Vj8lmXKJ+EsZYEg3UcjBYbbK0aTmnFqSY8X194Xr7waf0dw4Q///Iz5j0ydAOnQ6lokZM6VNfUBwS7M2xQPFy5ZjBwDzYmKM1wrSRH8Io4ojW8vXUK1kKBu9RKd2EcB6ZBfffeGD0271d3Pj2FVfKiC9f1yrKsjC1Q/NEHo3dcAliKwK+/fmXTyvNyxasEpTkG1goyKiZC0S2YpWqwLOi4o6XFgVUOXpbG50W5ls6lLqzbBVTZrsqyrjSvdIuZFc2E7oKJU4RwNlTlfS/s1jjoOE84g1uDX7/vdLtHxu2D7iDcqZGgMxQ6FdeGLFc+//iJf3v/ldt+42jPLDTMMyKnR7yPKNP14QyDtW4MJ2lswb3GpMIs6Y3udHNWUgUt0WJWCLBu4ghhgKVLQVqJw0+D5hYfbCq0Fk6a3ZylNKRazjWJ6WxL2SIYjmCBShXKsrB3WFCuzxvXlwsujft453u78f298X674wOutfCyOqu8IsPottP3nd5XjmPj69vBAfwfXwf/5acb33alLWuKfJ0yolzXu58T40SzFGjBshVdg+DLrFU1DH3Ee7ByazAh4oWhI/ZBeqs40ySGeH0v9Ga8+y3EyYzMsoO+tiEspYYY8nrh+fKC+BYt1KKYjGDqSo7JlY5iFGIkeimVMY5QrCd1rJJxwclSrmQJtUerWQHvFgf4opQsHdYSWjBGAKW313dcBk/LM6turOtKsxbsJdMxtzO6RonQo2yiohSZhjgdhnFwh2Y0iQ4Dq/EBxwiAU7SwXTZKrRxtj2xWQCos10IpwtPLxroAcqGoRBKisG7hlFpK52aDcbRo/Yve8JjkScc8yibqMI5kOFuILClKOzNZYQR9DSIsyxpJrAw6R3i89AFdYQdvgvcY7iVDKSjbdePl+ilKGWMEy4aEH40FYBUrVI0jWCQYpJFePaMbx71xfz84+qD5IEbeRetrMaEgqMfadfVgWQqMEomgl5iKGQq6vyEYkKKR7eVh4/No9xEK9CEMG9E7j0c/vxidGJxgHqN/4/CKf7u3cIOqEm5f0Yep3McBWOgQ1CnLgtYFkNjUA4Z7ZjOeNbPspRzMpp1Qr2sFjvgnRC+oqLCUjW1d2Pv9Q207ctbE+ZnRKmYFPCw23YIi3XfDRqdpo4xCtShdwGBYI3ZlPISoT8XhrxRklOw80NQjCFvZoAjDVprVEExqdGwcxxGK+zESVIGbBTXmjthgLTVHO09OwunuUGKCRPHocd1qZStXKtHasmhMSJujOGsp2D6y3hz30rwFCMyGqP24xxx19xMUjmHn4ZATK+JaEbAAA9E9nP4IJTKWnYEfjpnQe1hRjxFpRZhFgY8epRYP2v+nP//MtkRPriYw+/T8Emvydo+uE7dksyzXXjiAtTay46MwOhz3mHtuUjj6wft+hFHVGiNvVQ6q3FmlcSmwKsnuxA261BzJPJTByiDGvA6f99/wzViLsFbn+22gLvR15bhe0erc7v0ElE6n1JIZijMs6egSCv5j7BjOdq1027nt33l+WZDS8zrjAMPnxDKhD2NdwjTmtu8cR4tpagR7YD7p32x4i76uOLRFcJ97gQD6s1TgRsT0UGUnBRZ9zs1YtwOvlrqiUNQjYcNbFol8RQZSje0aXvHbcwzAOmykcU/n1kYAmrJwKZ3L4qi9xYhiOsLgOODe4d2dmxb+9Db43gqjXJDlEhMmQz0UZUoJFmmpFc2DM/ZiQTzbV4lyWRsx0VOzNGDSGN7AYirfSOMkKSVBR5Roqi6hzPfKGM4xOssq1HWl9oFKmLbVsjIkTHiWsiG20HVgwG6N5g0vqbvwYHJcNQF0ZLRTMxCDxyQzTzmZRaNxegSGgCfAQAkG9LIsqFRUSnRGZHlxP8J9ta4l1kZkS7k2wLzTehogjZH3Lg+olHEj4NKxMdClRMuuS9rDhF9NXSrrulGKsh87jUYtkTGHToAQJ5rH9FsjZtZUYVs+ocuC9vD7r1V5fnmm51jnZV1YrFK70sYdPAzhxgjjoqJ5GFPSpybs74sGO6aquERicuxHtFr6oLhid4cWmgd1pZZgoNd1i+fajf3YoQTz2a2zBaJBvaQzrTMQuhvXpyf+IMK6XXn9/srtdqdeN3oa2qkRrbkj9mGRmvE3nm+UExxUKeuKjIitf83XXw0GYkPU84AK8UyIvYYZfb8xRijKyxJ0UbeRmYSESjepjpDrafSlpxkGQvrnG8tSGSPqXDVb6JZ1w9w59kTUOE5k/KqBTPsIwxQtMQFxZvmq9UT6WpW1VBZfCC+AEJP0ESI/PILVWlcEpfVA+YJHv7wQ1si701qgvZWFjThQxAfDDw476NaydisJhGTWUM6hFTV7TRmKM5KRiEUyhiUCD5OP/djjGiQC6WgtZx1ELXDu9TFGADXVzHQWlktYKa8lPBOqKIsEhX/sje/9Nf5dXWIeASEAKiWyzTBIisO/9x7jm4k/I8roFm6JEhtXRXLgVNxDzqrmGYs4joG1HnSmVMw0LEJHfGZB0tpagahZeglh4aWGDXWRsK3ulmuoKK/vr9zvO60bSuXz588shKZlP460gy0MC1M3H87unZY+CV+/f+PpSYB3DnvDS2NdnMsK11XZVtiWHlmLDgpR8+teMVljapkHla4SoGs/dswbbYSRzSKFpzVc6a7rEi5jzShkmazEARy+4wulKmqF/bjlAKyCloHJPeY3+MFiJeq8FodGMw8WQJTbsbN35XbcuLcD1zCp6WKUBEzDU82hIQzGPfUhBJsjcYje9jstHIpyrYXiOc22EQt78tYGoxhUYV1XfEQpTMzTByR8MkqFiiKyUVbBk9U0DaZH6sKyQfXGulScwXAPR1J1jqEcVthtY9cnft0HX3doqlAvmFYsdSkqAVbBsDQo0yw1elxgenQEyxXJRg9RrUY5cfhBs4MqodmxFHdNkXJ4/1nqqVa2Ev4VUo3hPUR+60qhZB96HMoQ8x6sdXqPccDUqFNbpNzRtpyfM8prnq6wIXr0umSsM4oqalGyXaWm1ivuW7eY3FdKYS1LtmLvbMvG5fKE+eB+rAyPUuC+73R6aMcsRHrhbGfhpS+pI9DoChvDUkMyY55FeUIsgbhxHKGPqXXJ0kWwjC6gy0zLgiVeyoJq2DObh6iuj8ZuO6MHsO9HJEqXpw1pAkfHXdIaeIG7sb/dcDPqulC0Ui8rRbcoG2hBBIrUWMdp+TssRr7f9neOI6aeGjEqXnZFR3girHXjermwXWIAnXiUske3xESRkBVZKCJ4CWZdJBiIYxxcXq6UdeF22zn2O26RALHEJEg1pQ5wL5hYxAcpFIxBCsctRJyYB3v0V57y/0PdBCoLQ2CKA5cUfQ3rDOtRA8UxKbgqh6c7l0RrHYxQFrvkYunYWnEJH2dJyLksNaFnzQCfPfUWwxpMOd394oAJdSoWddp58JrH8AshMpJMws+MPD5bKK6zR+RxXLmcitc4yDQ3vCHDYyylpfqaDtJwWRCBUEf0gCwy2aagniRrye7BMsSM6yiRZGqPeohvzCL7okiWPPzDZwxwE7XK+OwuMXbULDIgkRImS6pUDQXrmvqO6iHVEA9hXxsdrxoBYqnomFmFBR3IiPqxRr29p3I6ppEtBOyqKDU6CQBJC0163lMNUDVLRU4M/DFIL4fzys5r+5iJxKAPC4HdsHNztf2gHceZ3bZ+0EYLWrpWyhLgU73mQUBkzkUyX7JQ1KOUWrFm7EdDuDHkHZHBuhS2FS5biAq3ZSAlBWMe9Va3CB5FIot2YFHQ1UKoR/RB61EwFUyVY7xzqQXMWRSwiluwRr05VVa2yxPrFs6Vt/evUVETpyyGVqP7jT7uHLZhI0CsWwyuGkRCPqxzDGfvN47Ro//bjU64d8YAnR6CKzeC/I9+5tmmO4ghYMNaHk4lp1lWqlwY7hQ6Qoh+rc/uEUfKpCvjflMiGEqNwD9tt1miJDHE0VpgOFIVWUBMMRXejsZP3yPerEXYj4X9EA6vvOuF70fjPhyvArqATBOwWAciIDIwiYMrJazJWPbcPyM3yGRDIw6YwJDwgHcJbcYxGs07aoNalxTQJl1eYsCYqGCagEuIVhUvtDEQ81Cme2HfG+0IQzWtcT8ChCevoXruE8n/Ym5JHg6Eza060eI76W6m3iP2be4mhqfpV++0o4EolyuZqS/0vqYdbjRuR+lBKVW5PMVQtO49/WIyU0r2ZSRAF40pe1o1a/QBwCNzT00KIXSE0DGUeTCTuqaqiAZ9bqNQWbFO9P4f0PbI3KsW1m2DEoZy4hEfR8hYcnZO6ByQ6LSRmlqHCnHXNJIFNzzvy3Hs7C1ijBPnT28DbrBICEZrie6lWtYoMY2BDRDX7CaLklCR8FEYMtKoKEJdp0NVbDiHtehoIVxxZYk1aJYmSB6+D6qWXT7RN6apFRIfoINtKdT6N7YjDlpn5CEZ9E0pAeFDZRqb0zB0aAhutOdholm7CE7APeg1G85ajbVmZiskLbSiJXQC5pmpTEU92asvjksgwZ5+BwoUFXwII4+d4R6B2oM+CWNOxaLCTxh1zPrnEpShCUdvCSLiwYl1+mjRBqPx3iHQicEVxsrQRqmKa6hXTcNydJYyfB5yuWijxDdyoxoulgNMaobMEEsOtzwX/WQGPMFP0JZOT1JuGo3M8sPlckFLparGTPIEVmoD6x2bLS0eG6Zn66KyoOxQNPQX+dndlZGbygigplrjsM06MyZhpRmQ5KQxoySX9L2EaU8bI1TwNWrIc51Yz3r7OZAjNinEZum9ZzdDpXsYxQQ9HYNDwnq6stTCbgdShKUWNPUPPmAUYbfoIw8Al2autTLaK15aHPbFKBWWFeqSWXvpqHagg7eoJ/uaR0qsq2DBgrqvtbD5GkZEWkIX4Rqip2e4bIZR+PHFgUIb8PZ2cNyip/3paeHoHeHOaClsqhJDYqSzjwNaztRgSYYo3qeLYDRuo3EfN3bryKhxzd5h9NQ5BKjvHtekBOsy3MP33kfsG41AW+oS5TerDI8MZSmVrVSsDKo+AQu40i0Oz6WEFkiLo5oH7hItV0UVr9GeNYZlphb7TGoYex2u/Nqg/3TnZRssS7ib9hFiwxvGty68jxUrBa0xSyXsX4VFC+JgKYSWbL9TKeGRYiENN0IwrUpmvXmmzhhWohQ13E+1vUHECwpSCosqy6IIkaUNDJvLOe/tcRzRjnc4Kgt97+x7tF/GFMQQrHm27c4SJoS+gXy5IjXikUaHlUcFN/aWR5cEaLIesc9C2Bh6pNnFomXl0hpSCtt2jU6THuzdGKmZUKWosF1WtIEdFmLuQKmIlGBiyDRKhRGqudDA0DMBCPMlJ5PDbGMVSSGfkmXd2eURjEq8VOEY/gFe5n8iwb5oWLX7KGds6CNm2MRrazKKDWVBSsauQKUxTXCM6DC63WjHNJeyPL9AGiEkX1cuW2iXVEObEoyaZXk6OnrK/P+iMEtnaXYVQl5yzkGwiEb6A6hQSyRtJRPh4SPi/AiRumskxxqhB6exrYNPz8rz098aDFgOvHCy5SbRW7cTCHTrmHfEoh3H66AsMcEp+p3nRgyP9pnBa9aHFY2ZActKSbHcMDuzyFkDTkyLMSc+tZOa9hG9o0rJjMfyLElk5cagpxBwktcS2YPWQOmJwEQITwSJvNfaeAyC0Gync2K0JY1R1hi2UQgDkswkwogn2gw1pPwhcMneZDDEAz1D+jdYZvuJsLMpk5k1u8XazTyL5uGN0C2CAFnn1aEUgjr2oqGczVuCRX+4G4FgzWnxlGMRS7IOElmFJVjoZgzzKHfkAV10CeGSpe96drNEHVOzFDAi4yLfszt9BMhTcg3ElKsMd4F2maLDpHlLjba+MYz9OGJgDB7eBK1F0CqhNxkEnX14gw4FC2+HZKL6COUvCi7RilTyumpRlqqUOqC0DPaOyACvuG84F8QPZBwga9Tg8Zzi1oPJ8sf90rKwVFjrYKvGy9MztYYV7Px7EaV359v1zq+/7OGG50atztPTxu39Hu59S0Vr+HOYwdEjf4/MJvr6I7M3mhl7f6dxDwU8lk5qWaqbAmBvmDeGlWgjJLpdIoC3fI7RQSRVca94N5QLKoMhOy/XZ5bFUDaqXABl+EBKR2pFlwAxIpYZeO7dIrha6hE8KfsA3rLGM2qt8OYr7bhwM6fuwrBKt/DZuHXj5tC1QK1IqagL2ECHZIFy7q3Y+95JAaBQUEaJxMTyPkWCHYJDNzJeJY3sMwjLh6zdqSVM2NaanQhu0eWBkyEbH4NxhAYJU7YlbIW9h8ufVCCB+NSDy9z45L7xZDST8YxJiJbfK+cejGw9HSYzUTBzrId/zDEGQgzTasPC6KnWoNiB7i1aHpHU88wzIdiFaGeOUcc657Ngqd/hEbEl2T2CyRQJLYcwE8Jol5M4k+H0AYjop0VPIBNljiivWAmgVEroBuK5xfUPs9RbOVoKtSpaSnzPO+qW5njBtEwN1NFasgIHo/dTnxEW66HDul4vPG1X1vUS/i+Z6M72bsmyb5wl9RRQu/rZYWfSk4wO9rh5Y9CTeQzmYFHJ0i/JFOXkYB/BVOccCskunkUbXy6d332qfPn8gU7+b3z9D/kMSI2A7ZA3LPvMe4uZzqMFuiZpYLVo6yLQkEwfAJXQHlhmjszFLGip0Ydaam7WAURmMWbf+SkOG3kYtsj8E6iohTHFrFJLme8SC1KcCE5IHtYCOavQJViHoK1HBvSRWbw/6GqfmWkcvj3rikNqtmSR7xgBWd1iI5tFdmULSLTUmCXoIB0eLXd3LszwGEgmgtgYaCjwPRdJd8Ncg64zwhMBQY4AJqjQ1OGklaLGT9bMbcR2bd7ZpdMY2ddqUB6AYXRLGjUU4p6UNFo4zaAmPUZshgc172eZIP4cbVWCoBImTiJErbMEVe4oY2oYEvDVWlOMM+ijna1VkgFZS5Q66rZQao02m9boraN+sLBmV8mCZ+2vlACPZp2yONd142nrXC9GrVEjbCPEUrUcYUUtN5wLagfIjvuagDO7LXykEVP4N0RNOTiXi8FAkdpZ15Vj77g767rhwGED1RUx5+3WaOPGsDtmB7UWLPvXnQoswJLsXQBGGQHSRw/G5+ide3/HJChHc0dy+Akaa8Rk0L3Rxo6ZRNuaTUZuJBzNLhFJ+tHTljzbs8Q7yxqQDxPGET7rUu5I9XCyK1lmk1mASFpPJCF+tOu5zWcamZMpNCr0K8PXsAQ36CYYBfeFexcOE6yCmlCSQYsB8zFgrRBge6S1d+9prLTEQV9klho9yk3Zitgt3DsDxIdSvnsIDI3soHKlJvsRJl2kiCtilpElr9RPzdG/pSplXcKZk2BFdI1T0edBjgXDaJwA010huxk8I840gxPP63I920fnpEO3WXVMua/GXkHCmG1dInkj9UhienYwuTqqHhM4J5+WwuxS1zysHzb1IgG2kDQcyhgwyyl4lB2KagKEzPdTs5L0TNw4TZbXs1xojo/pQxPPc3KSLo4nK+3hLBfi3CUy80jqwmuGMn1lSCZhcPTQS8zurdOMygM01iy5atHTVdEsjN6KhrYjwECWWUyynh+xoVmLIXMSjAUOPb9v0oM9KxqsWT4pD2pmnmzJFg+8h0OoltBYPC3Gj9fO3z03fvj0N/YZaDZQD7pZ0KQhR2YU4wQGs/4Ry5I4pHpDjTBb0Jo1u+y7JAbDqIe5ycxyGLl5fOAaYsMxRvSep5J5WNTwzWPBScTBpMoTLWk8mEnLzWp1d8uSheaiVZyo40V/eSym3nfGOFCP8gHKqVA3n0xJPMgRVlWnKVJkn3LS924GY4Q6Ww5sBDVaJDzFJTO02bp5nppZHphVuY8byXPoRvOsaWaJUJ3IhDTo+6hna36WCLwUP2ulUXYYkfmLMzSHB42YkCgGbcDRs91KamywfF5uWSs0MoPKfEY1gdUpJMj/iwBUNT5XWcPkJOp5EsN7iFkNAchHEo8RSM2ScvUIcGbBDmhSoKoRYJdtBY16eG896mqzhaoSTIh3VjNID4ulwnXbeLoMLutAyz0o3WG0AauFdW7RK3MOANqx0TKrlaTUw9EymI5lPkxUhWXZuKIgjVoG9DdGNyqhzPd2Az9YqnNZDekW7ogegtIuUSd2KyAXpBhGizPPBt6gd2X0YNeOdnA/bpgQQ6UGoAPxBL7EPexdOVwoOezIiAPBZfalx/6pUtIKdUNkQWSBohQMK9HpM7qzS0P8ztAbVhquI+F9gpaso8fwomgcnmLQgIoKNRi27kYXYcjKblAty2GprpdS6Z3zoLYR7V5Br80OlwCUUyjoFnVpkZo7NYCnJxNi3hFqGOOMZA1FcnjY43CbNpsy6fC5l9O3JAJIdm9MG04yu100uqlK8pSLRgKzKlU0uo9cMZMHTT2in7147C/TjpWksSXuMDOpCQUoEKXGkYPecBLUBRW/LlscyETGrho/ZyTrUGsaT0Wid4yeJdyS82CSYs+JNCOLBZ6+J8a0Ts++IsuyJwSYkPh+cJ0zUMX/BQNpATIs1tYYgo2e2pRkX0m9gkT8EQGKorWio1AIzww3i062WihbDhtyoq3PY/S0pYZLZlk2CHk0jfbWUqMdshScmG1gw6hakYytM3bjhg9jNIeSts3eOPrOmMMDhLS4jphbFqVKTWMpSx+ZFNhqnC24YGMw2gBvLKKsuvC8wI9Pzu+eBl+2v7EdsQ3wKmd9XUZSZ4nOzIPuk3RDcmJTRHtOIPJYYHEwe9JaA6dbj7oSWYqwHIiUhzdEfccIwDFSTewyzlabKV3xPLRN5kIzvEyq3/PnA6EFzR51phDIjQh6JTboSJ1EJywmPU1XcM6FktqcUI6GBRzFLLoDNKh6n/+dB3agyJEx5KTFxGIRpMFPXAPnRj4T7LlPBHA9tY8ZgpBzA4U1qWoJcaEEEzK9IgBiSqGc9yIEZKHBMAEzTRONQRsxQEPykFfNkY8ZyM0iGxNTZnVz9r6LxOQv8YBHnhu/SImJfXVJP4kYUKUpelEqOgMuoY9o1pBuoGu0KNqgWQ+JmyRg7Ia0yF6XzAw8FfmlhmgoZn9Yhq1ZcAlwFWrpaGuqCmoeFqT5y3ygHpbayEjK+8gnoHkvLTPkfOYDmsVkuJEPsCZNSs4qbzpoNrjtO+/3G7f7wCmsl5gpMKzy+hrZ+9ASFrCiUJa4gtEZI7zq2xGq9DFywpyNCIpJZ4Z3gIfXBtCtpQHSQKUhHIQlcbIaSP6/QimIrGhZUdkockHKQkkQad7ZfafXzlgMpeFyS2o0VnHROAzDvnyWJMKrf0h0QUhdQjw7s2F3uofbWxlOkRh+pSUMcSwtjs1DJ0DPOGCAKpYDcpiuaRBspAZj2bJNcpyCSUtmZK6M0CNJWqU7aRdbyFbo2AvdY1ywWIAPUz/3yGT7AhBL+gJoAPERzGdNEK014i1dUzcVa6t7+KicOFssxc5k5miYNBqO1g6U2M8eACbEadFCqSpIMhkyY9XMQLVgEp8ljtJsucx7MbP2s9xo07DMzjWGTAbWIguWguazFNPsXNHMgJItPA/fsAQuGqr9SC5DSFi8JtsW6ymcfCVaMJM6V0KzVhay5RdmoRlVdKnUNTQrNjxamPnAoKZ7kriE4ZMZhWhJvWwrn7+8ICitxfC3eN08myYoTOHtMTrahWJRHp5sd7CHEec9u9qU8MCoWqhSwz4/6pRZug3QFWL4WWruYZ1ehc+b8+MKX2rnUz3+qjP+rzcdItotsKz9SyiAByGs88yAKIXujVu7gWRrCTVoy6y7VQk713B9GtHKthhWYrFYnnZBP0XwHTaSzowWRWMkI2GUsjJtet3BujHaCBW8xgaYIAUFy3pqZImadbmOWqMWQ4rRPBTpzUNq6OoxFyGzdh85mnIk/cMkRGLxq4dDmM3PRWYkGmixp190oOL4bKog6iySuNojI5qUECbncS/ZbtgtkD4laa/ZtqW5UDJLnm1hk3rrxEHfvEcdtUgEQNtp42DQ4rNrZWjBZYQjlz5o/pBeZXvU8AQSmvYKUf+yMbJ9MlwXJ5skGuUEhNOu2dzDtMbDQjPalCQoPAmgoPMZioUBClkjVDnZKUvpsJhRiSEhkjW+6V1gPnJAUNQMR5qw6CJ0jH3ErHo8Dp3FnCeBTTLRHBbaATr0O9ZfM+BdQGqAs8zC3CzqkTlee3jML7cR2UK7H+x749Z6Wt/C+w3evg2OY2d7XrmulbJVXCushr/eYlLn1jjKBbMSwE+Uox8x+Oow2og9ZxR0fcpDPyA2Zrh3VFL9PyyswKfQSVcKK1iUA8pYWZcLUiruFbTisiLlSinP1OUC4hz9zm5vFM2DyHbEX3H7hTYOukSr2NRmxOuUbFN20qE1RcA5p6KFR3yUq3rKPUOAK7plQG4cPfwdnBidTuesO2tS3q6a9HrsYR8jArkZQ2PS4/RR6J4KbQpUwT36JYYWyhS3zqSopyeESqiBDI4+cpTtzITJElKWNCk5kU459oN+hBX5ogu1FGQ1DuvsFl4fqAZ97Y0ZThJWZ298VOsdo0vD9YjDVyvIgg9BRjrHqiB0hh0glTYOhBLthK9Huhh6ZvZZ1iC8MGb2HuBzgotoJR6Wcy6iHSASDqI9cixRrCU7TabXCa74iHJyCKijLjkSVMQNi3qDDw+QJyG8jtsScWkQ7JlL+Bm4xxyJuMbY4yKC1iiLyLpEEtr38P63EWZhS8UdDjPKWmEYY98RlLUWrtvKZVvR4ngaQS2mSAnzJUnLfhWwEnt9HzvWjM2uEdtKpSaw85FtgsgJsgoV9Qpdqb7GeTjPI5+srKNSQhxtznVp/PCi/PFL4XcbPMtgG39rMPChFrKUmjW4iS7Dw3vS5gaBznIuweTjSgbHUKdPcVAitaTej74H6CDZBfIQg6ReU6WZf+tE7U8zgMXZqiddN0/imZ1L0oCSKtWgQO18eMHD5sGedcww3OFE08EEPLj8xJKB9onDVnLhSnZc5AoNWjaFPJkQxmd2zZ9PweCZ7cPJe+S/fdRigrZyH9hojDQaiX5kSUSsp6GTZ+03nltemwcbEKroRht3hqVyXI0cOcCcjTCBAMl0TNOhx3N+FDM873sbI0F/tvhIKKFV07SlB/ARScrLYrhGKYVlWcJHocZAUOsHI2VgNo2iCme5ptRCXQuaw1lGi0NOPEoymiAp2jY77qGUDrAdwcuLR4dK1junCVCIGP3D4khGzDvmO8cQugyaVLoXDg9Rp6Tp0lTT4ANJs5zozR95GA92G+zmvL4fvN9CE1Mye1i1UjahdaPUOSUy/OiCuk7l9BgcI6xJ++k1EAeiOdFV4yFwNBrqPTI0M3yEKXcRQS0GR6lbrvWoU2vQWMwykBFrznMuhkkwfN0bze4c/s69v3KMV9zGqc/wtKhOsi0YvcCF8Suz8lhcc71nCWH+0tlaOzfS3CqhaQndSazTOS8iKH5iXRgJioJRGtIZariSGifPfTKXt58gb+6LczaA5drIw3640QvISEdTi9a6aMPLjJgpOO2nj74TwHqYxt6mM4cgRd09MsrYwyVV6jUoZUCq4HIwfGf4EeCT6QuzcFbX/cEyRvKRIHqEPkalJiCfP2HnXn+UKVPMnO2YMtlaD53S3CexXvzUC5xRJOPoaVKWgU/zXqtDS01Q1N1zC03qk6Rl0wcjswvCozEvMC2x0RQgnqxHlojNcjHZqRnzFPmRLeSQvisq0Xa5VNZFc0pk2Fq7Z4Knep5ZctpFP+LljPOIpFNjgMEQg2oUWeRxP2YfnuczywMjz56ItUVhKcK2KpdVWerkVeI1/5qvv36EcdZ2YrqXMltlIsbHQWUWPJiXuCE9F8wUzET/cvQlTyGeZA1tZB04inw2rzgWoeQmtp6UYi5Kj+Ny5PtY0l65ApjUuWDnwo8DOZwI/cPhFoFNzizfVZAR1MKsV81Tf/b3Bhcv5+c9ywEY5oJmH2ksdhII5Gt8AASxiO2MeaE8T6rOs/YFHz5rHCHus583+1ItGIkiK1JT3FIjWwzLX8ufiUUUw4Ysvx+GHnubphoRnLQQ49Nzk8+a3Oy9PgFbUr2KM5k2MruSuXF11gOTntUAB2HRmbVVPJW/MdGylKCKSwk6dW+pEShxH1ySqbLsuS7Rmjq9+dvRApRJoZQlprk5SeuN6GrBcypfiR1UohTRPXsfcpKYS4jsipCADJyG242B0EeLQTayMrymoE8TkwbJHKXcEQcsARE0j3QfnT4Gt9Z4v3duPVTpfRjtaCyLU5fCos66ZLAp0Z9slvd+GPsYHMM4bIrM4romaTnGpL6zVVBaTA3tgonGxEaJwFeCmEkatyClp5GSResscUB16aQCg8Pv7H7nPu7c+hvv7Y23441udwRYBdRL0njZzpeAYBjk/JzoCXfPFrnZqhl7W8PWMJXaJZ6Hzd0xci/J3DDn5olDMEVcI0HOeAi6hja8ZslTNQ6gVINn6hk7XCy1MSmgcz/ZNzkpymC9Qs8krJpdPT4FzcrsqAhAHMybJDvpMuWUA5fUA1iwbefn8miJXnRj0zVah9eB6Y1mlaMLo79j1kgKLcGHnoApwMBj5oyIo5JMrETJ9QT/SJZ0shyWGhUbs74Os+9ppjF8gAHmUywXme3MwaLnqaAeIDTAVTyfyKNS6uhAiiDL1ARIHjIzCZEUWp4H59QRBWvqs2yRegi32dadICafIwkMpvZCSmg41nVh3Va2bQmdU0vGNcsvaMl7mcnSmVDqeUqQZ4Hm91Xn+ozLUNFkjSPWSpaHAuBOwXRa3otRirCUwrYV1rVSFmfoTktQ8dd8/fV2xEzQ7dQ8jMznA8/NKfOQBiTb2GYG7I6OmRFVStaFZsY9sl5WkzLz813jxkUQ6zk6dJ6i9vhsCQLiZk7UFA9X8jXIdRjiFcIxMA/6qZWOc8vPgzb+pOcB/uFEBomfDgVsqp4nmpwDTB60weNeuqeg78PNzdd08+wSyPuWh2uEwewTJsyFRhojdQvV89xSZ8+pzvHFfgKj/iFrGWZ0G0GP2kiataVyI+jS2ZnwwPTlw/WfSztqhfl7n4IbDzpeVCLLPgPK7EXI60vBWCK583lKboSZAUTukT/v4cutRGCa08/CVEZAwgN8eL6XFIrW9HJ33Fp4XdTZyiQxmU/jTjVr7N2498G9D/ZFuA2nDkHTVtdkAHvWegZF12y/XcFXfNSw6u73+JkEGwLo8KSFlMqgpoB0jMa+79yas7vQTSjdKcedWkPs5f2giLHUaKdrHtqAkkYs927sZjQPDctseXPn7IHuFr3rQ0cE1xF08OhpACQh+I2W6NQJeEV6ZowSmgkfR6rtnYNO94P78cZ9fOfWvvHWvvN+vPK+3zBazNPIjG/Mcg7JuHh03oyRMxVG1jOMk2KP/SMgs14cNrpCwdO/fcxV5DzAr9ujjp2H6kjHUfdgUJrbo98927rOtW5CSnoQCaEX7nE45+6STITPPMznus0szdOx2UO0G7EwQPqYmivR8ForIDXZq/RacAmQo+ECFqJrKisbmzxxKRfqUimb4+XKYd9hj/kNUZceAWDmr0wouofeybN9t6rCYjl6/nHIRShL3UJ6F5hZ2AoPQD56yniyNhNInOlOPJ3zFI+opXloKZLGOZzlBwNiUEoA5whKM8Zqaq3OtCRjZQqyA4LH5yoTluRBTbKqmbHrGbcjQwvfBgsxYGbxtSjrWljXsFCevgiS59jUtMnUZWUJOCYqFvARrK3MjpVYNHKePdntIpJlNEmyWvM8GLNAE59xOCoxxK8uhbKAF6WLslOpXjD7G4OBMlHcmGYKoaoc4aoTalOtgRjdcg/nBUT5J1TD3VI9n4eBeFLUTpcQWzxOx8eXOY/xme6//WySfeMJ38+yg8X8aZmN87kjxRRpIXQiD/EAA5YoMBgC89njGmxC9P5nucHJxT4faJYScrnF+RUn+knt2Ifff7xK/wBsZx8qM3ClaMY+KE7Jf5/izTGij3ZukqGZ80mIMcMQJyfX2aCPpHGtRRAwS2FRS3OYoBXdDTWh/mYjO4/yyGPzWOJeObfkPLijhGOJhKcrmeOp/3hc15x7gQpV60nNO9EjzAlpIhvpBjKcsDKeQDRR1NxkUoOJmoKRDxxLjJ6QnMaXr+2GeLSU3lrn+955KY1n7awStDk4tXa83sODwBsud2BDfAe7MPpK74XWFXqOsS7h9TASjLpVoCZj1ON9s1zQhnIfQnWndmcdIZzqh9KOG6N3TCoNZbfO0QvihnVlb51jdq2k7iIT1RDgpWI5WuMy6xwaU0hdZnWM4RMMxPd7CRGqSHpXyJGZ4EBkx4dwtDv3HmWBW//K+/GV2/6Nvb/H5DkctYqOGPHtFmNwRaJ8EmAg4sEYfmJ+z4M9Ulc9fUk0ny88AOjpDhSZBnNORe+NIlFW8ZEH8IgjY/bLD4mAZd1yT2bWZglCMvmZbcURCycTkRxedtlMLHGCirxXUYOIw2OebZGRRjsnRTCJvdjtTrcDS3A+TdDUoj5fZGHVC1t54lKfWWqFang9wJzW72EK5h8Pv0jUpjGZu3A0x9TC1CaoQJr2s03RzbPdM9tIk9G1QXY5yHmoixJgSsOAbZZ2R3q3THAfvgglDXlC2KlItmA7Qf9ZMBT+SAbKTPzEksX4QO3n43eWjD0zqVAokiD4QdnHWZUQwYVTqnyCjRHairwPYSs9BcjBRNdS0jZ8ik4napVMDjP0uISAWWNfoR6OvB++FGF2VszP7hK28GKeKVVGMQkwepbDU4PZzbh3oxZldGGR377Hf+3rrwcDaeFrqRidAGA2rKqWqH+IBOUPWZORMxPFiDzO7Py7R+I8nbwOzvrfx1uU2ebHdo+YBZ5jZGcWSdygs1/Z0lwlA08czo4PC/5BJUobSW9picE3USeUE0nL3DwnK8EjO86Ji57v8zgv00WP+P3Hq3qACB4HoUyTibzXzBbKuDeSmfN8/p6bZMzatDtDI/vvPlAfWD/i/s1sYHjWZQMMTGVxkpXJkTz+i48uZ2b5l+AnvrIfmOlWCFNxnMRiAC2PAVWWAkIys3Dx6CoQOU2i5nwJ8h6EDiMDQwYFJltjoSd5wKusQZaFqhvnnHOylDXvOVNbQm78DOwWzoP76LwdB9+18VKciwqLOMXAFoP1wL2jZSeGr9wx2xnjTm8rx17Ym+DZ9kQpUEKdPdsCVba06M7xUp4AT5QuBbPGak4fKUbbwx61jcYhgyZwN6VRw1WxCUcb9O4IhaXE4d3HDMizdSpshTs9hKc4VSIzDzImlPJF+gmhqoegbykr1TpuR5ROLJT/1p3X23f28c7eH+zA7Xhl+IGWYF6KhQ8CYaaOrMtZKjsHyJiFeto5h+7kUsv9o0nf18y48i8zzoAn5Z3ZYPb5B4CwNMZKsZmW9LIIVtLoqbL08B4wQ7xGQiDRDz/yELG0b56twDPrfgj7gifQdNaM1N7ywJrxLA5QgbP18jBDu9PlzjFilkBkxiWcPjPrjD72mKi66oWlLKk9UFQORBbSySj38gQFmXF7ZPpalwABeQCOud9E0p1RMkZGYWtm7gFqBTwsl0MYJ2EHnNblPgGTj+hCcX2AmtTyxPPMujlEnd4eMcZT56L5+5n2WT5n5CzQZsfUZAZi7cikbdzD1RHHS0SS8/UzntqZrFjOzUn9iWUCWMBynk4YHxHapnXQD5/VDVymvoYsEyRjW6anAskkps6MqXmba0fmHx7lBEnd2YzNcnLaUUp35+jGe4uzrYtQ/9aDiubceRuWeCsCcZg+yEkNBdKZSl2byVwy+tkm8+CAIWmQPgyzlvUN+Y0pBz7bbyJQTKSnksYPoueBGyNa7RSAGUFLSImFCh795J4Hz1xtmeUPz9kDElOyxsiHm1z9xADmaeiRGwM8GYjH30suuLB19RylLOnV8HhAMoWPSbQPS+p9JjpIHiBRM1JJtmB4unlFUIhZChZDpax/qE1HFvEbBmOi6KTY40CfrUAw62zktcwbZe6Z+GSG5I5bsDnzwD9Ra2LFwRw//YAYkj3TsdCzBpmIegK7Wa8LhiSDCZG9IKQBFYzshZc84GuRpB0XVJbzGZlNG+Opz5gU3FyKj7JVjCgX7kN4PYRvRdiksAF1guG86gCTg+GN1nf2tnDb1/DMHyXAZBGU8HsIvUdFWBm9M3xNYJzUuJbQL9QCvjBoNBu0LgmmA/EfY7BzsFMjbzTBeqVbQDCRkCiC4gqjD1q6sc0DbNYzO5zrOw4yZxwHRTx+qeAykHGwtYNKiTklEqxNM+MYjff9lXu/cW+v3Md32ninjTlHnhhJTsd7dqK40ponMzBH7Y4ELwlA52GTdeVIQmAS8tFSF8xklJBiaNnwEe5/hA8KkLSqkq0fJ8D1KTCTKTqcIsIZi0ayTLFvJbuCPD+ju53xZZY0VCcdnP927iL/zU4AEhwnc9adAElimEY/+hQMRjkpDhNFqTnUrJaFpW4sZfpqGG4FYUF1gXFkW53E+ioxAyM+i2YiVBGN9mqTPDATpYR9b2ozcq7KZAkmzf1wIw1KPuESnolQdBAZj2S2pKAv7xOEgHgMPM3lEE0QEndvJi4q8frx6YONsUw0uweoMQv/mmh/jWFq8X4JCHyyk4OeLTbzOJjHazD7WZ6pBSG0a0fTYMo1RJaSrqhSZh2QLBfHArNkTyXZjExnAjhJAKyRugvVqUqb3U/RY+ASO8BTDGru7GMwi7jHGMhhIeYVS1GxUO1vLCAUCXc5G2R/sjwOSNc4YE+8IoGm5qxmA+Z8+1ktFk5RX9gq5sZK+uGsvwxjHpMRBJyw840+zHL2DWd26LMuOs1HgiEoLpzzGlJIN8UpSKBbTcHQ/M8AsziEo6XFTgowhEMfED9TVCgkNI2hJqkmxSwc05JlKPoQvzgz5U76KoOFMetb5z88A8rwWav0zHBDyTENmQ4biLWk3uJQ1UlPCufB+9H7IEQ1wYn6pEdT3TwpxfPxJmqNQJibXaY2YGLAyCwMMjNIpiCBxLygSe+ef3eqtQKsBMmSAjKJEIBI1LpzfXmZ/utRdYsRwHNscs0MbJwZIqklsLwqnc8133qYc3ThjvLmhddSeV6Ud20stp/B3TLhR502nHs3bkfndjRubaWPheaE2G2pOYY2POxUwHrFKDGnYDiHRR/9EMeSzegO+xBKi0MRFvpwjtZpQCcO41m+s5HZqU52K4bCmH9ge2aonloLF7qF4VMSQbGGCTqWGpqfxmDve9Z2A7h0N/beaOPg/bhxjBv38cbR7zm508+94QlkupF7qdBbrmMhwUAIIQdkic5zd4VWRGZ8STg2914kCPYb8IdZCiyzdGDknkhA8aHkRQZuETkHngWzME+JBKfYb6h/MlOdIHla50674gCL4amiHwE5j/2fFfw4JDwZDjwO5rn2CdGbip0TCOeenPtG0kPBR8M9wIDICn7kARj/xqVGXJmMmceRLnMfnLFcz1+aMwc+fniZGp38fzmLhfmfzYM8o3jGdZnGUjNznmvRgrHys6QwI2HGKQnznazYRLzK/NJdz2RGSXmdeNL7KXZ0T8aDGeHP/9zO28nsikFnTI61Ht4IA+mh99AlQMGMx5HzRklB0vXQ8lnFhN2IFY/06lxk53qavjkzzIlImtnFmtQJ3jy9LWYJxUM4rN3RJpAlyeVv3U1gJlHzTZWleHh8e9Ln4pKUreUBGy0Y4Z8d35/Z/KybR84aC9pyXYdSltOcg9lKkMeLMmcZFFSWGL7D9J4KERg+IktKpG0WrWUxG36qZzMEeJQVQmynv6Hi4xCLABbez0r9sPnCMChHisr5aPO0jfcIr/jcBEZuRgthyhnM5lcGJX9sgEl9edJf5GKP7coZvERqXnc4dDE63mGpa2ZTwejIWZqJw8OSTZkHDwQL8dgskrRe/j7bGh8tXbliLT5nWOQS1PO5kTPb9vHhHuU9nH7kH0DifNZQznswmYwQDqU0KO/5+E0ljRNYzQ1mH8DlpCzj8HGq1siEp92zR1Dp2Z9Oj894oXCtGxsFdHCYc3FjGUZN76Wjwz7g/XDejs6tCW0Yh8GQQlnC9EekUDWGsKiH6c7eYe+Do6c3gIV+xj1GEc+WqtZjmNf9KLQOjRTdWbInaAa1KfCKINxai3uicmbgrXe6RqamWQ8N/434KkkNm4DMHno6d9+xbmg9gmJ34xgHx9i57Xe67TTbGRbvObOcaEcruAUgsmSrzBxVi64XOPdJlCSZnWPx0fPoLBrlPM31qZloFAo9NURY1PRH6odUw+zFAJ1lO4/xyY81Z0z1eBzGmQCc1KyfeyFEgzEmVtOYBzwlATIlSufenkI15s6Pmx6JRV7o9AI506SZzSdTFoyb4TaiMVWiA2LQw2c/9TUm4ENDl+IJCKYeK8sMJ/MmHzVQweoGf6Wpk4i2SLfYo+GEN4H7BCIfkpssw876+8e2ZE8EPWPCFGCO1CjN9nGmJXF+f8a9KOvk1tZ5XzJWCzhRgngwhTOm5LW5PT5HflZLmt5lCivz8E/wNxngSAJzSJFHB9BY4/qOHmZhSGb2aVEcKDEZDh8UT++UPMDN7dSEuc8ycd6bjPkFPyfXPuBvXFNdwtnUkyluuTzVQHtJEPo3FhDavIEA6Xv/cTqeOOd44gmkIzvjzFg4ceMDCcU5n7a4Zjlkh/PGp6QiUH4ePGEnGkYaRZeoZQoh+sNo57CkADHDHge1ZC/0pJ5mhjzcEBtRppCk6D0EM5bBeC62yVLMSYcl6fRpg2zJb9qcuDbRNxkc0spO8rUS4jItS8m+1DH7wafIJTfEzDAyEYnD+vRmCNqLD739lkOR5oKetekxLMs+QQcaUfuNv5+tMJAjMk7w8shC/gLV5qs7k37LAzyDx3kg5w/UkrqRD8hVzv+ZgWD+zQzCPi/6fC1LtDzv5QwC895EC6UnO5HUJXlPvDAVyrNDJjTLS4gyzXjD+UbhUgobgizQZXCos9EpY4AafRj3LtwavDXlPX3yjxG90mpQh7EslRUN2VsGw/sw9mEcFoe/iaPEqHAzoblAKzQpVBWO7rQ2PfL9VMcPsp21yDxVcZ1TAJ2cbUvyJPRUbPsUt2TAnXtlxtKuBnTCN8kZ0tERvdrNozTV7GBvt6S1YxztpMnFZ990QUhDGGLNRQY9g/h82iHSM5NzWwCPbO+kl6fFcHpPIA8hWr6OZ2IxwWB0LsxugSBZ49/GkJez/1ctDxuNbG5qP3J9Rht9XJ/O+8UEDo/1LLMO7oA/su95c0U0YsUUPk56fW7o3Gdzb8wWV1V92Nr6wWI7PqKlu9NTS6RgC+4reEmMrOc1zMmvESqmrkGJUeT5TEyCZRgSLbyZ4M3y4Rz6NRm/MPrJbBXLxEoeB6zLPNtTx9JphF7A3TAJU6M50Gcq/x/xBWZr74zVyGRRY00KuQfswcKECdtEDhNY5qf0wfBygrE5Mj4GyE0L45kohk6rayqsPLu0IFxnc2R1hPUHiBSNe+fpXRAaOT9F3EhoKFyiXPW4vskoPZj1HOEWXj4m4DWBZnmYOeoEA39rZoCol4xpR2u5OBM5Yo5auCCFIHZQLD2qPeh29LHPZn18tifOTM4tKUVgCt9OIGIEeps2dMw64iNDVTFUOtPMRbKm5QkpZ7/mR1T4+PKT0pw041kTJD+zCEgcPaXkDOtSI+jOHmCLTMQlRhlr1gPjcLXsc55uAQ+RzGRWyEMg8wwmP/AIMTZz9nNR4ClKmyjXAimioD5YNGlzj6ydnkKtMRmHuH8ktexp1hIhsjCdDj4CgbM96AOtn7fxIYgKTj/zrryODMxF+Q0QyJvwoGCJ+y8zhYMIvvNH5vclf46ZLMQBopJwa5zxNCxe85mrhPe9ZJCeGUOIjgrmQWcfJrztyreibKUiUrnL4Kqw0lk02ra6dfbhvHd465JgoHIMp3lQ3AvCJqHUr5AzODr3Xrh3o2WZIE2zk64UsCjTKeED0FsMDzMisJADVSwsg5AU4Ll3hsop+sXnSGLLGjIZYKafhs87f2buET+d0QM0IbFm1GKwTGPE0ChrdIvW1Amb5+x2yTZeRRGPGSDuj3roBAMnwMvJqJ4lP3FJEdY8QDPxgDObiiTsIxgMoKESIjkgmaGJOSbFHQBcf8M+pW9AgtAA1pHtnuZm7mcbpk424i+WJTNuZMZ5Sr5PIDL3Ra673PszFqWwI177FLd4Ct4su2oOjnFHpYSbnSyhd8Kzk0txW3KvPWKISGcCD87DJt7PveBzPE6WNrFEkT73sJ2H9tyejjFH7FpKku1U7JMsxGRn/Vyzw3qW/5KeP39NluwBxCRZL0QegCkBx6Oo/EgsHjqDWDt5lERCJBkrp+jc897MGJHJR3iacL7/bNmN2RSRy1FSADk1JxmLw7s/wY3kJFG38/2C+czy1OMonJxqCPPn1pQpLCSBNJClIc02S1kkyJ8Zn//WYCCsHTmzJ52ZY9ZhzkUbTUc4YR5hiXYC9T0ow8fimVnjTIz9sckDb54Yfz4eiGwyMneSeo/ssFDTlnMwCA9stZHQoZy9mzGVL8HFieQfTMHsdIj2wvi8JWkpLVFzjOmKS4zRzM/udMQ6pAixiyWVOS/W6TLCKOc8YvOQzZU9TVFcc6smtRW1Js+FHpvjVPiOZBHsQT95qMaycm6UQFN4CD9O1sP0kUXNe57n4xk6ZgD7CAIehzZQHgtOnDQyCopt3j/OeRZZ/zxDYOaI8iFY5Sb+zYtmWWFSkz6vR2YGOgFSirfyDsf8cv+QZaa2wTRbRiNI4fnZ3XAJ10CkMFC6K7dW+LbH+22m3M1Zi7DkujBXdjPemvN+OO9DaBYzCbqFeGjp0IbQSoxTlh77ah/G3mAfTve4tniGs0ylWFqCd4PRI8jjA8+S0Hnf4AxE4j3tDJJtGmEm1bOrg6TXVUoKl/IJ2McC6jy0JKqV2coUrbvQsXy9HlqejAUqJVqvUAL6zKymop6q8gxi5DyLqRq3WW70KXL7SOH6bxijeO5zg53IPdgCcQrphnpm3n/x5SlgnD+fdeZ5+TYPIZ27L95DZUapZAcyUE/tUWY6ZzIxLXJjbeeBaI+EZEoM5pXMZU/GqazwJNuYrWYpMNz7HXelDaPoFSe0EmHmVvAEk0Jmpwko/By4IXnIx/0Ob5GIs2Yz4899nZqb6azHZFZm4uQTAMwCp5x7fT64s1TsnqlNZzrH+mRnslzjU++R9yLW6EM0Hsv1EbMiVn0AtT5hQq6xGTfPmJ3ZvY1khAMAaq470WDqTDzOjxx+J6XGPBoNtqcsjxbnANw911yHFA7GQWXpgZI6uw8gZcow58E/18UEg4EJ9FwYWhSTAiOTZAmL/TB0axH5P3jc/Le+/nowkOj8IwoTHvTJcIW0I1JRKrFgZMQpUC1Qo45CGUqR6FmexkHG4wOfz/J8phMcxHEVbKfHcAzxh/Aj1b/Ru5qDS2RE8JF5m2Xu4mwVSjAxA5jG9x8K+qwhzkxTwhRCZ69zttNEv+dHUJGHTvf5qdOlS88lqTKpf416UCKGechbBp24Zs+gHK+XF3Ae3HDeSmAi+ckpaAa0sCJ+dNdpArHs/CAzqcRjmo6CgY4nDZ+MTNYIfwMIeJRLPD+DfwiKZzRDTqbmAe4+vs55GXPp5R9meUbyvtVzoZjE6gszmhjrq1JjmEmN+2gjNnv8ymw0DTnMK87ATDPIZcB1RWUDYmzwvcWi3FMsuJRB0QHSGcR0z1sz3rtz62Ge0yym3DnGOir7KKylhPuBR1DbzXhz5+5Oo9A9FfAueLa1QdKz3XPsNCfIMksqNo2m3ObaSCc5JDKw1JUMC5viKkrVQtjXlBOczgB57jzLgzprXUMcmbVrCSdDI2dHnPRx+O5HJ1AlOoxihYeIMspbc1gWeAgMTbOtMEBWsEMfMmnxc9Kb5OE4l8+gY2WcHYbBGoQ99ZhdJB7MhmiAgKHpWa9zemisfcsDpcyPkp8gek3gpGxTCxVti8GGADmcyM61HN/3fBaZFWdcjHX+0AlBHNQ+r2EeJA+4lvcmtCKNI62OjSWDYYz5FWQUsELxaeaWomCr8ZyIros4aeQRR1wxD5Ot6W1iRmqx8nN+ADCIR/JEOEgiM5mZ6Utqm3g8W05gMkuA+UYp3jP8cTiSZ9AMFX5+O//ucaD6bDn6ACKHnBK/8x4wsZAHO/B4HslQS8RRS192kdADSNE4iG2cADAGBo2crjvbtoM1nGeDq2NSTqBE3oZHgpxFqxOH54lS5r6MZ+sp4pcS7KYhydY7MeNDOIalxu9vzAxIz2eEwJwRnVm2q2OtB42pNQP9CDpaLEQT6RUtPZB6tHx42srGjel4CoF4IMBkSGbbRSGpOXcYMcmppxgrEHq2HBJTB4tE20fUhOxhZFKUtWTLRgvnsUljPkCIZ9YQ2UeRCJ6hlzCst4cBEGRbY2ReQQE56gujTfpRQ3ouyi6zTEC+R1CcJIgKutzPAJNl8qTvSVbjkUaUBCWMcg6+YICues5uHzPMeACjImRZIOZhi2p2WmcANrImOuuBCiMp3xRvnUs0P2BoQGLBam52Gz3LP7OLYsSo0GFhiJJtozNBkbxVonoyEZPqQ2pQazPDUJhdJvE5NopuVLlQZY0M9EP92sgMYFiY38iKMejwaEk961IN8TB2KboisuEUugvWY44AdNwPnJgKF8p+4RjO3p1jOIeF0E9EqN15P8JoJwaixbNpcP4aeWgPG1gbaLobihvDhN7s3BueplNmkpbIMVeBIsgSkz/7CA+GyLhjTQcTV6lFWCwyC7HMLiZXmWvFztiUwVUUJIEFO86ByRHfG9OtbY2BR14QX3AWgj6V0wa4lmiL87nnZ6yRAO8RHxWpdgIMB0wFL5HxWZpG4YaPTpODsVgkBmGuyGQffCh9tNhI1dAa19gl6rlFZ1tqiEpr1pZGD+2KaM2M0iPIE3tBRagqLLKcoCAOquzisMEY/YPeIIBKd8ts3M4Y6HkIzi+X/giECdYkSw3RzSUnI9kyTvb0LvDUkrgpOmrELB+ZmiTwy4Sp6GCek56ls+GRBM1seUxha75ufL445C01FZ709ymCnMEcyDTqw/t/PKTmaZ8JWsZTwc/4+nHNm0xBejnXqXuK7VzxTAoUgeKhjRmdYSPBXOilWo9pgi3B9wRpUVJMH5KS55z7o3Mh3RxlrnGJc6z3xtHuYeb14XmTgHacLFtckHqYW9U5/THvQUC0SLri344Pe0QnaRCErMe8D8+OCe+wu1FZPzyD//7XXw0GlrTAnMKsyEqD5phq0cczTfSagpUTz3rmgR4PdDrX2RR/kAv98RN5eMn5/fP/fWaZeRjIQ8ijGj2falNWpknxx8uKeqj8PZamMbscJNX2jwx/hsUTvSWUi4c/dQ/JbqTX/1Qvh1Dx5AqYLSNnE+Ysm5zgI2/gfH5TGDnht86MYN7ofO1kbM6aFnFvAs/Mg/KxKo1He828xyTA8cxe5uGaD+B8O50GHL9hBPz8PHMjizwIgYipemY3UqY2S3PDadb6YwLXOTQqUfBJ4M6Mfi4zABOsaAp9Ys1J0umz7zlMWlJz4TF4J2xhSwIQTZAlJ9gKwBTb9lRLazgGmgmuNUFGIdQpJVr4iPbAw8I4ppuze3gWaGbUngd3chKRSUlk6iP3wrAIYDaC4jQfFPezfEUCtnjEWcpijsvOp5xUZEAdPQNmVu6T6UrQlg5wafj6iM3YKfaS+WDP7pJc1x5+tFHXfbiVCgH0hJrMYbjNpXtLlNnqku+f12OxNsOXIOGmpDKbCYIetLPNLEnkfG5R5olulpS+x+ucB5SnQU7GhBJrskoAgjIPdPLgyf097/xUu4d+IXRAJ4hnfpZ8SlNHIAn0kcd2+c1K/s03/+Lv5h8fe/7xz9OQi5F+HeFiOZG1D4+Wwg/C7EdcyyuagpoPnyVix2Tw/GzLO0s1PACBSQpvk0qP0Dxj9cdI/hd/ysuZ6zJ0IFEemiR0ANdHHJ6K+0g8H8zLo6Qov7ltNmOZRblhjEHL2SePXwks7fQfhGSHVUjQaY+RxGX6mkgOgYMxeky57Uf4JGgKleZnmqAJHpNoP56nfBANZtwLv4uIYw9C5ONz+suvD2cCj5jwX/3nf/H11zsQ6uMA8HklPj7U8aYDXKI9lzNgkKIKnWuOhyjk7G+fFyrzkJ+00txMJVW4MWzDPSgrlRCITUetOczDR6qs872n05wkvCw++xT0A7X54Z7yUMeeiD5rQ1r0XJTMxWIeGYDnQkvRDP5oKZo1N1GNPltg2jI/xB6TjiIz2Yf8wzMYn5W6PKMLHzaDTI3FDEjzIJ+lC8/EbwY5SeQ5s7MPNJo758x0fwhXZiSKg9/PxfxYpr9FozLv8QQMCeZk6i/Sq0GVMAXJdsOpL/m4lgOXPL4jGYjms3QJajMC1PT5znKEWrYE1XOzuM/j+HENcdhk/TCBZjQrZ1acazoEVsZAGaJRi3fyV4zSbaRvAJylpw5ZViIzFbIs9KF+aNOJL7IHz24Hzc98BoYst50T2PJ9pu1z92g5kyGnSAkJFknTCnaW1+Z0zvNe5HOXk/rKlZUi09l6FjXMAozU5FSUlcKC+ooQXgpTDV00OgpqqazZajnLSZEhSyq3MyNj0shRE5VcCLM+7fiZsc0WTNG//PwPEBWZfKWmQYwUhxL14KqT8o/+7ZHtYvissZ8b8VwHyAc9A79dn3ONfoyddsaq/0qU/nhuPlblhz3gH/ZmlrQyIEpOz5vJUpSTMk5nHX+kwHOQUxI925HlY7SBaSoX0x3z81t+7vn6WUKN5xSJxLlrz7gwS7R+7t8ZN079gsuH+5aHs8d+9cyeP9xRZnn3t1/zmcyx09kpYXHemI9zCFqfvzwdXj2YkJNxnNckMARULUYRi6fTbOw7xdO06IjR72O6N/7mkXGml35ixvPPs/xzngFTWCtTJC9nGOc3Mfi3y+U3b5h3/bff+29//Q84EE6hDLlRp28/geYT4c1Dx86G5XmY63nwzVYvI9WUEuhSIIMKjwwkgcEsATyYg7mxLHtUJSmtQe8x/c2y1x2ZWQcnwlKp+cCTaZhMx4y0kkr9ee/naVXi15w66KI5JMdz9GqyHWSGYrn4PWpBInoKYj5mDSdel0d2YUAtctaWNKnBQOCzVECcvT4nWuUC+PD5M4GA/ByT5oua/uy7neAne/tnG5DFIB91PcHPYzFOJsB/U5Y6wYHOzxbXXQqJcuXMtlQFdI4HlhMMjLnoPzIrzJp1ajpk9sUn6pYPYGDScZkNRS0tBaEfMuizdMKsOz+e/6wZzm6LKXWcQS9ua4qlDJqHr1iUHJyO0LGY407k7QNOUNx5bOTo4PgAhF0wCxth3KkeZaopxpx3BUhmI7wibApJ8VNMOkaa9Ugc5GF3HZqXnLSC6MNmNkDro1b70MsEo5NPN0K81Ng7yRZUjRnsIivFV8SjiTJAVTmV+KrKUhYWne5qs16egKvMslks8HO0bDxVxugZIJ3ZQxEfNq9zMoWZxJgZRUParBqi0mljTtok12RJQgcQb23qqE2/uFn/t3ifycjNA15ihcT0QTkP7TgA4/6cedRsd5Zcmx/w8xnc/UOMmIfHXLkOQftLtqdmDETw0c6EiclsDM51YQRzkpEzgNaYJ1SsVEgQOksCZyDJmCmOSs19M/eMI6oJri3/vZzHEqT4dD7VyShPdbUHOMAzhrpFxjfs/PdTQjcB3oOhfBx6kkBgdgSENmPkkLbZzjcBQLAHw2fyCGTi47nflPh3xQMYZMci5CyRmPfSgg3O2D0FqLMLYX72sDz/ELiR8z6d3S1nZ0pqsxIg+NyMH671kcbkkpjAwkMyPk+Wv+brry8TpBNlZHGZmXsEsd6iQGcjNrPNKZVzMSRlNIUwkyKPg80eTrkOpwgtLygfb1AyTMAQh1UsEEsVr56Up9ckK2UJA53ysIOctNJ87QjMMelv5IEpU9g3D29mApCBVJMZ8HzYuelPYw1mhpYL8QxZIGL58/O9crP8BU13BqPh+Z5kLU4SCPgJBopF81/eqqALnRPcPF7ZP5g5fThgmZg8iiZkwJgS9ZIeCFPYEge3niTOxwQmnslv1840JyEPjzhoI1hMEaZgYdlbajwU6wHizg8/76CeKvtcDVEvF0E8BmQXCTAxV5KfGgA/xU9mmQnIhzjnuSDGXOfxl060AnYiIMyphQE8lOFhZtNd6SQjYB4tgC6E/UY+f+LP5z2brpee4Noj0Ex/jJxWG1cvv22LlFyXoYWUdNt8TGETgkkoMktss2L7EYjqhyzroXD33IsxRMkewtkimWmmUZcsGbwWXJyaswKKrygrKgvnoCgtJ4Uer1dPOj4YhvSuj5USfe0usUI1DzAJxfu5aoWz7HXusomHT8wWTEitNf1fJEoUJwgdoH6WTk5wPg9jeezVyfDFvdfHuoGk6+fGzTgwwZU/GLSPJjznlz9A9PkXMo/RR1yY0wbnmpEsq+BCyvxS7T/bnR/7Pd53JBggoUBORESYsvAzWthjPZwJ2bnPS/5ez7JnGJsFM2DnQ8gZMOeNmmDmAUzOMmiuv/Pv3CYyPcWBnB0hknHkIxM9QYdlSS0TMg/Ds2Fxxd3Hb5iB5pEUjCyp6nlYJ6soNbtdCt7jertbbN0xS2SWcUTyuXGe87McE1elD5zEDKBx8M9bNMsg53LI5IR8Ro+vBwA+xdjJHH5wojmh2H/v669nBhYP16+kdefzNRN68ajDN2ekCM6mwOX80Pm7qUr3FLmclBP5wTMQ5EEb+zDFdJKWjvMy80BQdRZdgr0oykplNaFZBGnPw7Mnhe/meH/0G2s2KYd6eAYTfTienR8vF+D58Gaekgf/XAxn5pgLkvl9OVmVv6QS8al+jt/M9nuHbHdLSlviQJsCQhMJOo/fEDGPH04qL27jBC4z0KXa9/Fpz80+FcBz880BIr99no/QcdKgf7FuZl4g2c2hGhPmkKDuppPh6Wam5bz/k27w87+8hln/TpCoyCmgKyIMiy6IkdcdXRyW6zIO6VNIR9zg+Nt8Xhoq/4nIEYnD3rLz+kM2YkiCgPAB75JlAov/H+aYpggv2ZeRC88JQerZW28P/U3vxhhCP8EAp7p6AtSzfKQR9EO0mk6K5z1Vis3n81tHgUdmO+n4fNwn1T4Xvp4f4mPHyvTbEKnJ8OQgHdITn4Xw7Kw89CEkIJepXDiFYlOSGp7+JT6fCdNkx2eWj6GU061u0t4BgpKXm2VBhTmoqtYa7nHCOS0P8SRH0hdBJ3CF2QY7wcEjEEenxMPN8/ErDvlwaI31wdkqKTpVKCdRfu7Tcx+d+/LjPv5Q2z/36Sx7TDg/Q//M7D/0mjJV/Xa2A56uphnIszjz4dBOgDhjSK770ymUOHDOCzh3vjGPorNeLR//nvPgn9+azKlnnD8TKJ9rJa93JgXuZ4CcDMGH0yJkIubJEExhcI5sJ1iAlnqePjxndcx7FZ9rmmPNX4rmWkxRKsEGYj1i26T7PgI/mQfzowR3ggPPhGi+54dfJ9g8v5c1sHPX+4d/7ydw+e1rJHv6lwH5v/H1V4OBbYGYnRI0m2c2YS6U6hEYFPqQ80b09qDDH/3h+kB3ZzYSFyQi9D6oJWdqZ70Isj6mwmWpVE3KUmDRwmXJUauRtsVMAFe6V5pPla4wqLQx6K0HXdxHDukJwBBxQ0Fz8QXiCKSWdHYYo3BeVwjUjDOVP8cU5vM7jYs+1KOYC/+3iM3nPcnMVTRAlk+ZvX4IOgkohsfrjSyUai7AWZY5AclJ+QWAmxHImHXzDGSSM9bFHoHJ89ekDEsGmKzxnq5e8GET5/ucm2MeQZz3T3XSYkGrzeFzTnalIFnGECY9FoAg3b4sIZkQz2Fa3YoTdjzpPjhGxlE/71lcr0WWq8agMWQ8skEmXRwfzBDaGIgNXNK8SSMsh/Cv0EaPboLs4+8e2pFztsT5Cc4YmwrgnMxoWaP18BEYFmg/nCIbXoS6zFkTH/QF81CySac/gMB07ztNevKNpxkPNn/ez/UnKdyzEUWR+Yymr4dqmNFMfV60Vk1ND4RmoKK+EK2b8uG5y4e1+dvBYzL3zPy3PnUq4YFgMiYejwO+ataUBz1BvKdZjcxavjyA6uMwi/Wo6YhSkrHUD51CzP3qeb0+D+EADx8P8umwKv4x3Ac9OhMEKYU5LS8+y9wLD0Hc6c6ZMcnEqbWcK2YeHeV8lxlXwrZ4WiwXFj5K8D2Rf2Cf3G/2gBsnCH6czrH6EwiGc94EN36+ecnBTCqSego5DaqmK+BHthE49SZnxUUfDN8EX+YjZwxkAPqYiJwA9gEOzgUjATEdIXsEMexkAqJrZ4SexyzmeZifydy5KRFC/B5eNnHQT83QTMQsQaTk+RvPMVx3MzZnXXoCfDs/apZh5pb0RwzOR/ZgiZLtMJnPIvnFCQw/fuaz5K0n1rIP585/7+uvBwNbjKasVSglqdMMJGHAl+KeRtJLHqYoeWGSC+UBVWZ2/HjQ0Svp6awbtFOhU8RZClwX5Xkz1ipUcUoavixqqDRcYxhSJ7IvV6WjNANEGQKtK60Igxj/2gPmxXJVTjQ5H26ojsFVCCOafIJ5TYJgOo+5PM10Iuu5mP3jZeY9+fiNj4udB/CbLMIp3o5D8XQnnC/PxBDx/WmGcr5evuCDspzvKg+APg9I5pEb4E0nEvXpFZ/UY9ZEHx8/qFubQW0yfD5fKxbrDHrxFhmweQTukb//CBxi/+eNmbEoA7AZZ3AO/UZQ+RHrLDdEWvQS4GXWDuNXD/McmZ2/+exkvuYsE8DpIkYApaDL589GHbJn8ImSzgS9k1nR36wFn0FNcu1gp1lTRra8Z9n6KkZJcGGQI8MfB4fPDMU/EoMCrqcATEbe23JGm0dNWDK7eiyoE/zOg34CiylkDFpS/7/tvdt2JEmOJChQc0Zmzc7/f+lud2e4q2IfRASAOSMqmefM0xQti0WGX8z0AgUEd7irIBCVQRBQ69syiZ9eA+j26YY0baL3RZJvU7k7LBLcZwEhqKMfz4YIz4JEwiZb9nEMZpz6d8M/SAgMn3eorLpOyFJcSoXKyXdAdwU3PEsYRtP50LA/MwRgar8eZafNbh3D5k9N30zblq2VdGA6sz8fWc+w8lM0qN+YPGkebdgK8XbpjIjE+LU6z15XWzECxdi8HhqP95ztzJmayHvN4EQNJgcQg8FQoj9AuxH/fVRpM9UNkjE7lWZtfjksPASMSlPPSxlmphfH1GQtEbGKAZ5AV7CzYKSLXakTbQLVqsprV85M/n9bfIb7Y+msICkTYqyleAjjONqF33EKg0//zfVlMPDnn4HHY+Hjg20nSYQKcpJFKoTK6etMMF5HIMGH0wixiGBMDGY68jrFxnUd/Hkl/tcP4H//Efjff2788RH4sRKPR+DHFUA+wfre3LBXyhR7/aDGdoAD1h14voDnBTzXwvPnws/nSz5eBtF0motQdigtcdEcDI10RDCorWTC5YUhBqEkvDIzRv3fby4LzrOG71JR/iuYJhSQRkhztk/pMYCqEZqkTHBZr1nkA9GmYgMG8P706Q+wVmWdQ4VMQPYjAbLko0gJ4nJFmBeF3RUS6EXLWq9aTXKWaVbrtfE4bYzsI7Rgxsbuew8FpG2baMVgDhgh7g5pZvAMEXNqkcfMe27IfIlEbKWNHvlf84VUbYkTAgZhsE4AHIjSCjrD1Yd6VVDTEbimdu5ApVMMj/nqC9UMKhS4iwTUyY4MtemMVRadmdGCvGhMStut7Ld34ljjQxepC8DBaSxEtIB8IFVeeF3q2gTnR3sTbZLuADICE+7yisWgPrCYC0vHsslKhAEQg9OcmmWvcyyDyyH4HPNxQtonwPLH4j05/KtKu7MFRGhXlOUxW7EZJnvLoKJd8eqxhn0cs4FJ9rlzcCObNKnGYwnysXzZoLyOZNFZgw+vC3BGzFUWKIOERM6xIdr66G9EwkXZIAATXiPw9dS6DvlujteucJhOBkjw2U+m1FqhATy2rL8p3odLzIAgouKfUi5pA6lIn2kJ/jwM7s2sRlWO53LGCa3CacyEUvjFjxYC4doKordzwODTd6gUgJs9JXYFJ24pKNdi+eAGWqV+wa5PbhUBa5+96PHp25267n8DlTmSR67kg69cX7cM/Bn4eAQeHwvXQ2CAgZ5Yr4V9Lpo3M/F60qJ+ibgamNhtoJ87RUp6sCgNFjuZfTwSf/5I/OtH4l9/bPw/fy78+SPxx5X48RH4uD7I6ONCBhnSCywfi8UiMD9fTPXayWSARyz8WBf+WsGqY6+NfLFk7HHL3ujqgksR19cYa/m5IRNrAE5hNLEkskyuxQRlvq2Zh7UR/fuIp3EpFL3tdRzaX5n8YIBYV5kF0RBgosN6ng+79wkYRFnQoIsPYcnq458B4/S3CwJl8X2FiC3rURjfixqQodQSZ7Hp1Iwu0ZakCVwILKipUWhTS3wJzIVcJEWBTq9S7XS7oZxfbMBSplsQ9L5S6UrnheuE6plvnPPCOQQEuNgUirFyND3Tx01XAkKMZzCajjgf7pX67KAPQGNVsRvpqg7IDROOXDaGgoBeHjCR/4a0Hv7bqY5cz1N0FLrNLlMwBIxkigwCQ0h4X4+Pvg8As19qtoJwzdEr4vtSui4eKtfrKOoCiygLjBvFOI9QchY1WX9jYQAC0gkFv9bb6XLaI9euN6jlPzwO+eLLsuMNIhHyjHFe0+KWokFbR4H5oyHLAmlzbyiWIcMgQa6AwQdakIjPBOBYALVrQoP5Pvtda+E0X5ZgZhGzQW+yMPS/AcfoaODoTIJAV4IkbdZ+yB3VVp4p/b16pLsj0N2abXFc9LUaFaDdl0eBjjgbm2W+4GC/Vx5R4inAUUthjleMrJ/r6SV8RtRl8wC5HGdB8Hnb1rCl1f77o/GtDvZGC3GDAvKENWiIwPGIV0/g5PWzlavK8x/zU9VOOP+HwcDH4+Dj48KPH8B6iPEfCatIvH4wXuC16TZYTwDX8IVp5Qv1wuhrUEXYj5IANlYc/PgA/vwT+NfHwZ8/Xvjjj8S/Pjb+uA5+PJIteq//BawHGNH8wEboB3hu4FJZWAaAscpbXg+JFR68AyZinBc3xoe3tHovOPp1M+UsAHFwYilsgHnLLx3uUl6GvxS6V0k1L0PeCRFCr4ft+bRUHA9qVLRNYAKBqQHg7iYI3cNMj9olvy9dX6ZGoeWULy7jhvQTABS8xj99MIF7kAxkPTCT9BH0mk4QQjTOz1ZIuP6d9ZpftT8uQHS/k+b2qHXVcQ4iZteCOC4XWut3+m/73Q70HWkTZ6k++4brtFfwE6R1p7UU7vWuwVOAsIkSTZmngFNWbEYzKe8TV8blsPmBY9GAECgg//c+DuFf9OuljGaC9g2Z6Yk595xapqxQDwi9bzpe4v15QvyAX8rzYvW+8wKbF+16fp0B0eEx/W6fkwSSxV3IN05Vj6NFpsFFCFhAQIVUIxDhKpYnCOKifajt51dA9DIhttDn2o/nODBxHNkS0qLde/67AYdjL9Sdb/BnxzJYAHK9DY0XAa41+zoHt9sPOgdaEH8aKEGV/11xBSGftEjDoATFVYr+UJgl3CgV47gOi5iBSzQBKa4DB9Wk1fvg3zyF5CGprpHXOxC4rW0UuGNqoEBedjKoMwi2uFQaSIqvYszW1tuy6L7xZ9Y8UCdbHAgfYJXFixLbtT4MUqr/BExaw54Qc/EH0NKy9eNttY5mDgarOX5A8LFPu0O/cn09m+ACHo/E4wNYDxGmGMnOxPUBPF6Bj73w8+PCJaHqVFEAN2K2+QnZOh85jg8cu4h9XIk/PwJ//pH488fBvz5eBAWx8eNx8PE4ePx4yLe/kBf9lJvRBni+LlzPw+YwO/C4Eo8F7L1wzoWdF/WWuFSksrUVVyV0mse9QBDKdIaliOi4sLVJuRZyiwFYQBdNz78/XzRb0c9bBc60XpUSaeEcAGRKPsWsJ6puBD2eIKJpt4eJLzLofojT+6Xn8142A8tXDGsYHSRTVgMDj0gFLIkZjx33lcDdtOhxD7AydJR+32SEZggsROTOYxIM0oSYZnQqUKm4sn3NWg8zAUd+I2l+JAiI8oVYAEQwhc+55hboyOxCQQEGWY19aItAVhrYEbLHyVL2YzGo9losdJRvW2r+bDorGSBQQo0v7+ZPaNG1+OWO4LCx9yY4l+07F7oeSLZAdzO8Ext4WuAe5OuJvV84+wmaD47cX86f1hlyFbfcwKbbhBYhNngBkm2Y44XMJxJPCUu6JVeaPjuOt/bF/wncmZGGmaajzpP69LXC+JdrU25L+fuLiSduh1h7XSI5m6/7XmV5SA40dD7WWmAXU/IRC6O33W2LjelzvP3uF25je4xx5O0dvh3ookxZ9zNteOwjLrrWsrWWXoqQtcCZEwEdMQNUH4RaxfuzS4HxmA3WbgPrZ/W1AOw6QywtzPs7g8D5E9x/3SObboZu/vao1FqYVkggJ7ftnqisOM3GysZOc64ok/7Eban16TgLFP9uIGJgVe/CRO5iYUUj+m43irJj5O+vL4OBXFmbvi4RsWajOjxKPQxcHwfXE9ibH3CucF0moGSfgaOArAI3i4cc1wvrQaDx8cfGjx8v/PHHC398PPFjvfDjOriugx8/LsTaWOsPrOvCiY8CBH89LsS18PMFXDtxrcR1Lfz1V+KxgcdeeJwHE6B2YOcTr5YLXOCzcFQ212Z1AgFGm7M9LE1SJwLHGhpQubomzDrmZmCT8Qzz6TEST202F0Ym2ncwYQZFct56htfULUNtVogiGoMbErlEO8N+EmiDoJ6NByI/sPJDfUQC6ahp56Q53zuTpi194koHWMmlYgKHTd58RoEU5d9bI4paP61hggBjHGIRqog/NRaVGErUQdkCA4kNx7kknJlrQT6EpGquh9wD0H5zFdVOVTEkajOl59t8DKbeaU9QNLQELgSgkKiWzoNfr1g4cVQ10KV4ew15O6ZDXmi/dVtGqNX7s4wZGDz5tIWolbfDQjXOTlj2ZyYqPTjY4IfeC5mq80VL2WFhoPN84pyXmgBxLsw8UF5/pRumBOJL5vtLmT4s1cRYjCcOXjrrBAMhJ8QCYWrYNZBLNEL6YnjNwpVA5sE62q900CVYP0IWhpRCQhradcIANYsSMzatkP4YSHnbQ06aICy5siklwmZ4C/fMXRayPh99xt8Fga+yQuk7w4CouUR9ZZsmQyZsUZNX01+aLtwyNAlMzdDL/qCzCgzwTvEYBqHuGn74eIV3jlq6MxUSkLvUhbMDtvW0e8BKD2mS2VKsZLlBly/niAIBL4zsNIROavPjdbO2AnUYBFYiVFhKQjrAgGXTtV0oCbouXm4gJlBF0nKlUCstac+eLCVJSg5trNmaUly93gZRHZTvH3MHKSunZdHfXV8GAz9fB1gb6xzEOaziJZqPbVbthy4WkHkAZys4ag+zCLiVa3GRH6BxaAdNuBFAPjbieuKsFw/NdXB9bP28cK0XrgV8fDzx8cf/y+Imi6VmGNh4AfnAH3ggPh64rsR6vWRO3Th5sVhM/sDOjZ+bjAxJxsl61STCFUwp9OYBJFYyePW0lip4VqqAxcEzDoAL50n/cgSwVgKqIw4JXfLV4eMbvGRDwvwE4noA8lPx0HW4m6vHOQ5gakWVgSAIXKxmey8YrGZ8Xru4LlVl86F8AOeBfC7kIlOnzY97F7mBfIErIKQrTWFjs5JYXIi1gLDxzymHzOc96ecZ7UyYAyAPVjJA8FwXmUDapHo5KoUHIQ/cYc6fMyiIYL37g6eyhmTNEI54/VTQXaayOmj1uHLhwKBwujBYbRAI4GKQbVyJuO6rOl0rJxPPv1jAZxtj1AAd4EbN+ap0zoOPHx91J7pkuXaIg3VxuPkSTYbdmdQ8I4NCT7U24C5yTS0Ehsm0zL2Vt//B9t+0kACxLvr5lQe5z0FupsJB6X65D/aLXRKZWsw1z5U8B+Xot+//DJcKuxeSvW19b5eSgLOxgqDg4Wyf5Yj/hYeyM65ANUrLDFzxII2kmuaocRYymXEhV0GIJ+V5qRbGQgRLO5+kq8eBrjTfXYhkCuI+LoKm3wImrq9Q1rpMnFQTrUVLG9N1UbzBrowl4VPLo/ccw1NhduFoebn6UNKKHTmXlJbcCpmVJSoedc9TmRQ8c4/FSPUV5AeXaTj7sQUEgLJu0dVKcO7UVgZgEkSeSAXjSvGwrMsAzlLK52KK6yLf6J1pC82WRZJthvicx+Pi/HIj8ynLwMZz/8TJI1DKuiRLWWIrL9UX4bjXVfBqHnP+CvbEeGlHFwjGXwrrOYcxMC91CLXF4/LWwzEO4x7hoPNS57Tjohvto4FhySMzroRcl9rTkzivrUZlf399GQz8919c0FDP5MdDubdqAYvsoA8bZBjUBwoj3A29To0xU0uZ/EpoBcFHsF+xcu4P/1awFJW3RAQZ+rV+ItgAFufauMBIUoCBQxvMKDig1eLarJFwPRYe14WP66J5SeenTL0iMMc/hJA4W3yOzxnFAeWbLA2jPlBxn14IlM+ngn7MELr8ckrAl47cNngh8NYMBOELPxdS9D55DDHHkTU2xgoYk9MPTuG0EGd1Hfwdlf3Blq/N7KYp0geBgNr1C0KWAqVMHQVxaQmOy1JmwA7N6DsCYIEb3nkNyvL6KTegLBXt9qDJTvRXDXf0rNpLAzUTApl59Ua3CVXzqr10dGBnI0kQ9P5TDozZmLHX50rU41a9cfV3HLyKsc5MgdP8I+7xbsdr0yDRGor8C03H6UH1Wsy1Pcrh5tmD1vvQoodNwC36jMgCAuEaraaJVPbDsAD1dbAPizdhef824jrITUvDWWzehEz3RNU6bGQOC43W3HtUdAXITMyMhQqzLEnH95ry3LNgLE2uXq5sDsflU0yMAjXhc4S+/1cu87mOtNf5tsap19q/P5wZAZUelxUgfTp6WVxrJLNjWP7uWuk04LbajROPeVqhlczxHJ7xfp4zsUKBM6ylEML1TkmWu2c+p4BQ7+lcm19dxftkYq/R3mI9cqw7X9l2D4srH++p5sa4pbD0q58SI7VOWX/3mfRrYL2I6HsxALUL9GV4h630+CGSo6KEFCCoVKa/ub4MBv7rf/5iy83F0r4fJytI5KhFrhtwFNIvf7fNLadQ7D1YayyRU01i3zRLRFRLyTJZLRQzoj/0YK0XED/BDmkP1s8+C+dylbgLDwB7Bz524nkFHoudhR+PC9de6mlQbAs4TGdabheaFD8nabp17/gSxQkwHWVoOrBddlgESgB1NKi12mbAS0xHyNp8LU/dY6SzIwZjdxBVH077+HOQ3lz7IWz8Dfk6GceQGl6b3eukvJ993T/Fbsjo2Uqa1d483kvBN0mAdxYyH2oe5Wj49k/DqWZ6JAsxC35K+Ix8OQDJFsqTw8UqY/4U0F4SZpYNjq950p9OAONoCzfxocVJwlG//ePnlNZfggPKSMjBJHW4w/QAuOMji3dNZohBddYuCJzPEOgdFd6C6r5NXqvPm5jel/Gl6n2QR3FYRybfTYAYkJYDYEXXWABqH2cWRVegvAOkp+KRkEf95FlrgYWx6BBLpPzvB1D/jMt1+b0EjofwBocXwS4oC2m7x7wWAjFaQ+SldTytPU+QV3Si3+ZtnwTsZ+bc62uIJ0EIn7Xmk3ULA+cSihTMV+3xEQhsBSJvv8/9/tnjKOAcvzzYpoSejYcVaCF14xWmd4NAxRgdgwEOem0fBFTIhmNK6gF+ao51r7Hqu7ANznLmFFzs3W1QHRlwWWY+oaucGhT03owgzLyqgNNaBcX53ZrrqfFZVbZL4ETvZ4KWA7eOdmbUymCr4yAt4yjg8w1AO5g5TluMjjo1fuX6umXgf7bSo1h97PXBTobAwd7A82VXQHJRVzJvP+h3ZABXgwIkS4xC7xEEJE0zUiBYOXuzqQTkC0KyIY2tCjapq1tX4n9gvZCyNoHrDwQ+6HO9pG+/EiGzoyvfrov3Wwlcdjvv1jiYisZdswksjxYfiVylm4zfDJyCtOb+AVGe/eTlLxchp9A/hiY3mbUZzjFRoKwZzuaBnySpxF7pbmVbOkaHK6C/I5lGxp4OsGniOyx9SEQfwHAyvl3O59eBlKl5bzLdFYlONTuIa4mBMttjyfTJ+Yk2rCFkls9sQQGBuo5iGBwwxOXSnPOUeXM6RIlJTh3g0BfLCpMB5Max11RrYssXGVdxtt6DID1sQfiKes5UWiJGBoaZMdR4CQK+q5oMoYesPRD7Uk/0o/PljnA4ybQfgyoDy9rswWBlyYjj+AAxzyGsWYE0NB4TB4XXPoojyACWyxUXdNLcREOTiQoU+P0EsLeKwyy5glL7I5dUVGUrjhcBuQMmuBoAy0ImfcqyItXTxxNQAC04R1ckPS4/TuuYVrnow1peIqq88vwPMBwaqPMmTCfyvK2WhBTqGT64JajCa8pCNyXcxiI4PrbXPpWOayUu72vlsRSR5PjhSwfNQywmjXcPUtZ1pdaqUdJ58TPVh0NZNLd6HKd5TSr4JQ3YPjGsLDQSM5/eCsbtMkgP9dmxahYKsujdKqGOVeAXOusA3Yd5BHxrZ7ME9HZRsyoixrWNterOXMYU1QBl/aAjsjMdUjxbYAJhgNIUROyXkglJwLDj9vy/u75uGXiylOPGCzuBHy/6J1dcOBt4voCfh6b4XKC/dKcKNWxN+aVNlSbhmuMDEKzrYiG/SGy88HNv/LUP/vsJfDw2PlbiWgf8GNNO9hH4yBfOBk68cPATJ5/IeGHn/8Ir/4WND7C6PJBgwZiTR0EWW37IgTBhqnBqyL7Vez7KAwbIC000NKGN61PRBwt/wJHeBQyQwwzkQ+ZocGmLpkmP3c62IdFtREbdQ+Aljw4oD5rPFt/v78ijWofF93N5S2vEazDxX103LSQpLOnHTBW1oXWF8S70/S+hmRWoNqGF4CHBIxASheCfrMg3Dpr3b0WonHILIAtLx1j0eEtmwMwNnnMmoELHkE9YkhpOaSOQM4Mu+VIg8uys3F8z6yzLgP4WzSSchhqj5gXnWExtBAbaDO/sA699RFZpaCTXrGho2XQ/aQd1/yU/P0ttEClcuJBrAY6JUKElQFkcEHCwlWrQ0S2N7I1J3SrRge2dXy3F6ixCrhoWUyKt3kzps6BQiskOmpjs3kFrwm/8Y0MxOWB69DGYjrLQOXq9JbM0Xzj/RGV4dW8GmhkUDSoN1HfrTYPQGONOyDoxPoMJLWgZcR3Cq9bK67ZhS1MWGBXwzRZ6Ravaj+xHjY2qIdULU7TNhm3HFuPD0tPVbj7bMnDLoZco8HNT5oEGKVz7cuPCVmHzOPHuyg5ywTFFGYTpOwZPARDKNEDU/xeFGJTUWpP/AIuKoM/ZAAWVWjjpXMjatRRofGRAqU8h+cxBOtsGzH76EHg3P3LXWu+ZNo57ew5wXI3w8zn73fV1y8CLojxjIyPw3MkMgosI6fVi16dEyL8vs0tAcQCnlrfBwEaFPds6sK56/5WJv87GXzvxXz8PrnXwscCMgAAiL2qtubBSleGCLTdOstY8uxWqV8Fh8Rc2hHkVGNgJpZq5YYoFSEfAA8B5mWAgIUM/RVn/ueNvv3+3EcKDmTA+bTWwQkZQeVv1kC2/PYrRlDgIwNW0zJBDB4iEL20UXS083oY7zz2VXAqXK8dMwkIedUh/BwcmgwTQ1qFMVGcu+bTiuoDDw2EBQ1ml4KIwKEClhnlpWF1u6xk1eCAD67FwNi1MANRqdNV61ViHemg+Cu1/W1K69C3X9cIVE59nrR0wzM6UYbIAuBhISSsd8lNjqHsNE7p/SokMYBAe4VsssccjX7vWwdUqM0vTQAEKlRwOAqYAhf9adHTZPVE1+WUVqLiIIHDcsQocdmU0PXP4et9N0bMoyrRauaqj6S7E4NmpVGbfkDgIr7cj+rU2OQWVhLDo191JKw07fR990oFxoyBQx3rkODzo14oOJFL0nCrMO039orkbeJ33lACqJmgZ9Zp3nFUnbQy3+Rmorp7ZQJRgaQCIHBYUfBYaXxMiBpK6l9xbbohEQKDum0exQOlnH9UEQIFS71KYH76ZwovoahKnxjHjTkbWIwwYrIFzmaO+M6GiKy8C1sTRrp5emf6VZNHMhs3i3b4MerxSdrlNYJI6fC7wtPS9gtKJkhXSX6jcYIBK9JqeZLrtlRxTfGkf/wkYeLIt686N1wn8+JH4uJhRwJKaAUeibvnQva3cV0Ula3I2rbq3Ns02oWhop3AAzwT+v+eLloArWaBsUcC/wM5wz+3o5LQygqPY0h1ss3rygedeeG02gHmeF5vJnINXOugji4hl/2HZXaNnpVQWspaYC+UMn7RJugPpTuaNie9NX6d3lebPVcIDKMxJUogO0JyfySPUDa4XLiiCGSIsfQeMuXC2E5YKnCAZ7X083yNNd0nDLgojEYIulOu6ivxc3c+d3c4Qihxbwo1zDCCAlDk/cOUFuKVqMujrWqpnvy5cwaqWnktG4LGuoRWv0m5YMbqNswhlq8Sqfz/Wko6gdqGheJTS/Icb5DTomxddGy6tKyhm06wR05E4Tih7I8UIk02HzqmSzVslsAsQCEB4q83QirFl1P5MoEfQ0sguFrUWJ4jHtXs/y7puS8sERQkceuOvRzBdC1kpgOUSuhJxLfV0ZtEgRqSE6A6IdECsRhXNsN81lvnvAjAYGln0cve90P0MDJYScJ+ECP0o0Lc1X6jGxEbkhUc7C/Q/7ysR1zkKZBbN0IetuKgSbCMmpKhQlpVIRfMra+F2vN6FsN0zOjMK/mt+IWCl+cRxSuxVQI2xEwooltsH9tDqLBuMWkxRkTLBT/Cp13SThAGjs6kMniVAFQvANUaZys+hFZNughwZWEDEUm2Ng2vwwjSYsYs1gbVOvecz5LNOP3+pnECmWhm7Gu6SXThMUk1Pi6XnOxagtsOPltWu14eyrGMCqiaFaRy4xfjYtD/UjwLhRffjN58vtSCaHxk/FaWZ5szHZJF6vVz18GvXl8HAXztYajaIlA6AczHwjgkGUZu/9wGjec2Ix8Bh9NRNNAvfRCDB5i9b/35mAC/gerLXQejZzxfw1z74YwF//mDg1PJYNEZH8rP87At7P/F8Aa+z8Hpt/HxuPHcqxbByIAo/ltnSC42SjQzWwDSga5LRTWNyMJQIp8EJSsI3AyqIaZJKrRn/Md+tKOLUeulT3Bv5OaOJzkRvH6c1wtoTCekEgcXSzfy61yLWQtdXB+wMKfP2MtyzBUJCUwy9CDi5qsjuyOYysVRiX0gs7Di4FioFx617U4Kp2XYCqSp8OOOA8WDure7qAXTOOWoNuQ/sN+Ar54Dn6IOWFYaHQs+lwK82z2baErzIRFbwadT7KcGFSo1MOATXBuWVchEgyNACThiTwBUDwjBjm2ZGUOC6Nc8SR5n0UTTPOS4QSC2NKUKxAo77CCBqTXTmQMtAmbM1lqUbV82Im0n3fs1AOs3iNs4sionaR0A+cgRwnMJBRxds6kZUPRBTu8mb2pfOpC0vkCvMwjxP1zC4ndE6lbrrAFX+bctodu+SxhsDDARKu6z5W+1MW/muMVcx5ONKhaQt58vPKo8GvTXOYYEpvbmEs5eigYkB+P1QGPhxVtvraV7D0JXuVULNBZlMF8yinVXqNIE951Ec6vDMkfeZRs2LA1UxIHpdqctRqVwC5wvJFFQMrdvCPQdwyruQnpRnTsb3V5GC3ce1+7W2qDoWeVu7z0CgyCmTRhG0YlBWFvS2TyZV8SFomfJFg0BdX68zsIe5KjSozcqE14VaVNdk2Qma5COrcUsFuuj8pCZtxkmhAri8L4y4sYB9cP6y6wD47wv44yfw40r867XUwpjjsXZ8XQuxLlkrNp77idfz4LUXnq+Nnz+Bv57Acy/slNYYmNXUcSJklmHzpaMStM1M1ZXdu6M0qBPJeu5wU5dhEit68FG0gBRQSo7fWWr9eUjI+iD7PwXKrVC71dNmWQv9wQTdchUY9x88mOj+FDNl0ZSA/XQFciaBF3NxhLJ+Vo7Sq9Pk1xoih6n3duKsDeCJwEGejev6kMAMnI9s5ifhVBHDxdx5fx6mRULVSQozJc01luNurFlkaXufL2UxKD6ANcZZwTIQbaKt2sj67FmKS2EpY5pKxeDNuWDdjtoJ948RLpG2+vBzVdq62LCnM4BBfUJ7umRr8po7XkRLZ8tVBKrxzwqCtQzgulwXhMRis7xF4zH4CK1ltJnaIO+2z29/f75sXYAYY18rF+udCKDAwaB2HR3m/x+DBPlRfWbO1OSLbggYjzm4xufsDLrn5AIVJRztIe97VRxOlzzOETtErXXpvsWwh4jxPhSgE6AqC4tBiiThAmuqLNP5jCq9cw6UtL3Jc+2PgcLbV+ZZuLmVtO+zPxRAX7dN0l73OKGS1wHHSTnWg0zvIJSlUXuBnn+G4lDUbIzZW0BV3cszQ6U4snDzKsoVsTAg0W5ez92k4yXoUINexuR8otJVQZBYSzlotebFq51ctarVappiSue7ggU1phxgJaBqKb111ltqPHI5huoMuHkTJHu+cn0ZDLxSTWp2FPFkAPskHtvIkSf3OP/eQy0+rWhRoylI61vZgXnZgR7afhw8kGdTCLwILp7n4McGPhbw345feACPFQQnEfi4LqWoge6A1xOv1xYYOHg+A8/XJZ8bBfcRo3Pwjg/9AfBKpYHJ5MXgMwqFY8shoD73Foj2b42J37ZVmpf/TmkzaeTMlTtARYenGuwQBKjmdnJ91kqWZEZlTTe61DoftAZaaBuS+8Wk0K6TOdps3Qxvf5/T1p4DBQ5tAoJfXacpus//YroaI+83CxtlIqXpRYBdv6D4FGttZqs5CT/q5j7snUctV4kjcPXj4lGfr7lfomXc2a41FceWuR69aaW7q4mhIUGTrtJEpWVZ6BMEoIDGEqO03AtrTxYuaF99mf81tiWO98lMH71SEcA5Mm1nKlVKYVUCTq3tR625x1l+hBBTDQe2rN+sqddtjGeu5RB8ZMZR1hjvKaVtAJtzP6cFFV05h+/JLJ0nymQ9mTnCvuwpFyXMMhHrNDgP9aqPM4r+bFQLc92XxYlO0R3VjKh20nPu7+tRNRlyye/rVOIs4X+S1iKWqHE9hKLGz0vuw677GBDJedurcQNrp2MS4gAhNx0G2DOQlDM7LMi0wIwPl2AyRadPEkG4pJZAggfrl/m5adnMYwtT1D2qCFsCSxZkV+Q0BS7LIESBMmi80F6Gziufb6XCp/2gx4xPe2dEXSb/N4B1syMLPRSY0ks3KBcopbl4T4772oqRyWZBaVDAedql/ZXry2BgO7gmoYqDEmOZOLQeq/a2US/KajEwjoQaVyl9D/liIhLYW6mFwRnnYiUpadWRB2ez3OTPlXisjf/aNCc/rsDHFXgs1bS7GGzoimh7A/sVeJ5QU6WFvZcOK+MPHHdaEbHByM6TUKUrCpBUqWXuhw5P9rpUYKS21mkj3nR+1SqNBdiICrQQK+KDoqyVsoJN1wf8c5DL5WhnHXRbX+TGQUexLwBTdg6rsoiOTC/OhmvJwyIgt8CJoYKsAFlQgIwmsiPk0QAFQFuKgGruxBgMAyR1CIvsgkZPgZ1kBTzXLDhxBsOcoTXWbuJ2inw+SjtLFB2abUxxUWP2DqefUMbyouc84+uaaGcMAG5KVCInrcm76E32AFcCp83LDOuIGxC4+1gNAtoqMEfePMRm1ez7CmgggZRl7YDWjDYRd/8Lx0LkSkdhiHHGGJf6e5hRD+b4KybVJvOQQEcLHWnBSFoKfdrq7ZXVa+DYYnRCLiif82FV07NOtGAy3Yd/JxDBtEa6ayjdGAVuwdrg3d83nPbOidiH2f0Oyj67TAiA2NfiKiDgVuLuX5IJfcbx6FPIWni937nBZ8I8oC0UcyznpEpSe4f5/hoCsXmCH6ADkIeZAnJcsC6pBavjSc5N8PavtlTdgMH8XWNtHuqhdyw+C5lVxsIZKZ4VoKjzkjQTVlaiQXmgrDOBVe64jrHAbR9v8S/rvq+9Yvp3tpvFt7OrKILAJJe7dL5zI/BsQuCIgWT6CVTm7f9pMPBKsCNZyswhBpHnIBdwxYW1JlprVtpsaMHdpIwMp4/ZPeIZM0firiATFVI5J/C6Dl4BPBbwCCCCzYf6R2AgmIEQeIEWi4O9nU1wqXY0n/86iec+BQJOuMO9GAgaRTvIxEt88oANtmQa4y7DvpEcmsAkZP5bjMeoHYeC21pIXhVE1WCAlgCDgVe+WO73WtRPIpAXyADRYICyUNqzEa8nMmm2/KZ8phOo1npgudUsZCEpM33Hgfg/p1q+W4NIDdKskwyrmGiSplD+2QaQEYHnM5F5wYmlDBI04/YpblsG5xcCCjHems/FYI6Teea4n1/xoTRg8BtRn54CDYDyflGArFrnNksTb2rKKNeZGAIiJZRdya+3zKykWOK7XAFghmnabVdCj8E+18rYsEn4k3bTplUKLdz86Sbl6AX5BASg+/+WUaXBkW5SNxCoQ9wydiego+mZQDpPYDlIs9w1cvd5L8WLXFEUg5nTxJxykbEPCeMvnPlh1Bc1zxNAxwdB2rUp3nvRAuRTnEQJKI4pKpbFZvjpElAXRIOw2lFvwPg750FvLdOcGBY4ObRmAE6dXZEqQx9YuOgGG2f0JqiT91nlH+b9XlLwGjmsGqLBmGVDxSZFU3oD6CKiT3RTgja64bctFQa1dUTrexrjCbk7/D2ftSHNtPYrE693q07tVNZc6gqe/8ft3AHG5LdZChSE+OiJt9Oa1vW44HYPsOCQ6e42w7+9vm4ZwG7EfwBXBlJMDs5is6IlDpABxFqVGXAURONywzlFR+KGTrvtcSCXjtBBF8rYgdcyAGDK05WJx6FV4KE2oSJZrDi45Mdza91zZFU5CcTBa7PTVUoyJ3+x8eriYWbsA+dwKhmWbNhWkGW3wDHhSqNykyF9p6oNwsdyK8rfBGitYo8Dd3DOi84Bt9AdxFaMyHsS1nR0/kCN3kFgFkrW+XwZjB+ZxuyieJyurW0G4n10Ln8iGS+iWZ1M2LNkY0+xeDNcj1FrWAorfAjleTtseMIKkaYjayzW07Umgw5pIkZrb9HgroSZnw3nygNdydCr671zNrc0UFWbtOEhRa88i1m8ONJNbhwTM9xBBmZeES/GAbAIKKM8TlEL5WrmJoArRAQGk/rjSBBM20fJh3qytNYak8ytyQwGf2fFAJLFyFaP24cn530xTKbaG2tPv9Vc+ozU1ypF8dRik3+QN+GoZLaAxk4WS1tKS0mtRUbHEMS4T2V7Okp/AYmgIgT2ZDmOCelF1nBzxBJxj0KH0nvnXSjB69D8WoIoxeIWLJF0BbjxT0QU8jP9++5FSRImSPMYrRsYPOPaEKWQIEnyi2AKkXishccCPi7I+gqBgZLfBJjHOTpZ1kZrzxIbhC4na5RLB6bqgSbgGIA0EADgzBAriH0dHc/uVOA9cXM391FwaieACk4H7K7wkapcgjrHrn7r1TXgsrLWFXUhYd9S3efFwBoCbQesYFrp0WmXS9Zp9noBqvLZh1XjM4MhWKArqasjeHOsZH/l+geWgaeiPC/6zoQeIxen5gOlCZBhdrT5WQd70b+dQtWn8qrNFIB1fdAcL4vHXtzYdT3wysR+bbwi8HEBP64Ljzy4kmDgFYq+To7LuZZXMBqg8qszsF/cpRUJFiDihrlMZuZiUYfrqPHH6U226UwFfFwZ377ApbKoPCj074fWriomfrLeSbBEUFAH1/GVKZqXNpNO08kyA7W8inJn4ADH6V8wwz1wA3vuDoPCJgJO2eYiopMeisCeuo9Zx3AJbDsMdr/mJ4VQ9rJvWb47rdsakdB5/FmbVzVuEBxe6wLOxn4mcm92ylyK+B4WAWvzBgMFGKIZIwMWA2XsT5mBEciz6fNXlFSsHHEkQOQRRJFQJ4WVyd5DT6huRWmKDT5asIvZKOOA69OFVRz/Y6vbOf03ELIWBC7dW1Pt+SfTphJy9/nsCQwn5KID6l5e+xXAx9XlYJeaQ3k89Ay2VrrV7KsCyUScDlqd5vmi/KIpZ4lY7i/1ekjkQGxMK0vxfbkftUYfeSnQy1ZFc6RTTDEnUPR4ArArz8D0AIgdZa6tQouRuD4asVJr1ilaQG679i6u8VYg4Qfg2is+P2FSTWDlxW4b8aF+IJCZ2ZLHVqE1XuuUbb5koWGfvXisJlWxMdCEAHbFfG1Nh1rxFbSsfqzAx0fiYyUej2TDtyC9rA8GTa5N98zanXlwMpBXUkvcKZBFPriyZ58J5KbVkZYANr3ayg6KuPCxfsDBh6cWzOea6sBa2gP1w3kKZK1YDPRNwoINfUbggDobLRWp9EoD5ojFlt0RDSJhOceBW6E4pp/oc20QEOILfOXgmQdXBB7xIM1rbm6SROo4dQ6Ic6fSs7XvJXDFbVcBG4INgbvfgu379fUWxnAm8TDroxQXuI98vT8+A4Cmbaimdy23mYAmmQnGwaUyEaB0RgV9LNXdXtKwT+JcwUjnpHl8HaJBd2dbKYNyiEFJ4DDV3T68LVdL8EcbWibvSG1B3kRghlGuQYGYCVpzKpZ4248o5ov7y1yHcLIPX2tB1sTnFeTFfQmb/uVXzJS/NrO01hqUhD7+HZ1oPCXwAsXAuPxdTujU2vScm3iyLC4d7NbmvLt25eHNgXnwShOMhYyrmNuydnWr9Oh1ul/kiT5Bnn94hdtyo393i1HOusx/tb9l0ESMiUwzZBQIMDMOIwV4p8lAyOQNyHoJokABGzlpBHZDDA17LmUZEDTeU0KhNukX1+c34lf/qqM74mEy8bkRT//O/tLb/o57/oIY5jkyn6i/y+9UqhzK9/w2rwKB8+821X26v2mFWQWQYCAoYeGv9vcmmPnxie+maSUlLBrwFeAonJP1fBe/iZOl5fI+CzHOUQmd5DNW2ArUVH3jt5H16gwSyswG6mvhugI/RgO3j8eFH48Lj3WxXe+K6qjqwN4DAqMTwa6vIO89udRbgnZOtxSHcYv4NXP3nQUlgZh2s5rreNwFJ25vocbU9GKBjGj7QM41DAhAvrkXewvF46azgGArz0GXizZfBGjN6AyjyiBpht6yAdxHpsX6Oje3YQ8ob4Ob5Htj7bWzX7++DgYyqVFEyPysgjrY6mZ4saCKKDsjiZAroKJLsPKAzbtHHUC2CAVbbQaYpxpB05WEL1YitlD4BeQH1BKTBKUMY7D1QeIKpWjJpBv7VMe9QrKYQYPsod4NTgQBkjWnXTXsyGdoPYBWu9Rfv4o2/eL2eJ6ANj57HJGoyIW4URUaOURRhqOmEVC9eQW/vH/1bZTvYrRxBGd7Oyxlnng/SEMgp4NrUNbPwiMlOR18dgeSa9zUtGPAwLx2MbRyUs8rVfjDDEj31bpUVHkkZrzIjLC2mwTIYer+lUyd4KIXuCw4kOXpNBRmkasFcZZa2wSGsPdPa3YAqtiTa/uv6YOPZhRetwLob/f555ehqoO8LATfAQDQCHRS1RT+idui+jvBs8vqf3YzWJvXnQIjNoe/J6C73XK86PX037TANmiGNLn6zNG+G4gF+7GYFlnbxFkYvqdAn55t0/cZz80xrgokE/1HVtx9a5X1HjBjfkqwFij91ZyznuflDu1kAzhqoI/rwsfHhY/HwsfjwuO68ON64OPi37YeMYCR+6CWOnKhpoL2EhEMdk6AVpYFumO93qWQmHdQVkzBT+E6aKsYWsc8VRjCCNytUt7qqBrqnBcC0oyNAN2PN7oYgFVr5fTjglVWsDQe06RX38GlHvVJ9Vmpz0thA+8Ld20tUNrrktHuFo+vnlP0FMNSrBgSzHX7++vrYOCQac2COifcjpZ5kKtMu05em5raKUbYbLTIFpAwZvEfKPI9sA30qxEJ8FoLsfg7M5lDfdhickXnF8dRpC1k7vGK7uj+SLSn1IbRFExT3jlJhHtoOdib1RVZVctayUHGpYPbHMQbcWeSzeD/ZrVvAtUhi+nUxkKw/UO3yFJeb2uNTeFZQXkhDWWA1NtVwYtzFMEUSs+ndY2ebx2OEmj9btjm/WYZ8IEsxiiU0L6vwvI1zwAFkG3D6XLF4yDf5mMyLG2ct6t6DWk/fldNrICdDl4A5GoyEw4x4LwdvqjAqkwxsrFV3o6Tb8KhZGYWk5sRyrNkLwDM8sS+dij98A0IaEgwEDpjff+OVbzXBZhXg5IonuDnJbo0bj9ngoAGrN7n23NrHlqPtFVxjLqqDvm+cVvT+2Cjv5dFCmPh3z5eulVnFvSi0kKFTFuYsdZlkTeeNYBJ3gVICxWMwQCQq9AC4bG68RBEa6H0Y+6Bu6bazI8CIe/ntB9TCw9nlFhwXlfgui58PB74+LjwuBY+roXHWrgeF+MF/FlbrwLAusp1uVXdcCcoaFUJjnEOtA14PXCL8elz3oDAMUs97gIx/qxjWKSRJQCsdYvHcLEvVqM0H5qicsGIoiwzKu3tsZ5xamrfoumvXASIdkl5AMHWVgZyGbaqR4EBqau8URC4pOaVslqj9lHP9HM8xwIJ3Nf30jb/7voyGDj2wcC5/w6GApRnh4SQloTVBAOO4KU7QQtoTTJ7QkfmJftf4E1Wk5SDBDawLzBAMRWgthIrWJilLANHqBDABZYoRfL182JZ2bVCxWuGaDUzPiybuffBK6EeBgQsU3NlKlMUGEiAZS8HscUgGv77s9ASndzMQ11bIIsZ8gC0tQAhIcRvSMnMPiAmHh8C7eKIUhkj8N68vyZm5u8llDb4nlvx/re/q1v6zNd46oXB4AjIDEiaaaNMjDFuHOlSyu9QwJpDqvlJ1P5Y0273htxAoUN/ZQtRZAnqQCooyePq+VlLmFaHk468XwIHo7ARhl/7nR4sH800JWAP2r/vq8pBa0CfNOOah+7xRavAe8XAfk1DRrHjwSR7fK6vjkQF0JXorXtECbF3QJCWi5Pha62qo5uslMQFUcz8/XSZDvgr698JPSMT9kvnuVvPasA2AeocsAY8tWDNBFUGuNS4XiUcuwmiXZA1pkKDQy4ms6VSmzjoPjT3IwuCAVDHo9zPI4XPtAj1uQsAD6XpXnIRPK6Rqi1X7ONithYL+ITKfyu26CQtqiuxzsLeXJtYIEqFg1MDezHJMPMFApxJFHPHBo/z/ERn4Y1L82udIYEA89JSJpRvX4G0tZcG84P3mXeLDVZTpeJ0Te8FwMYZQ/ZZ8Dr5dSsGVMakuA56y9r/KIvnEe/io9SwvaxORdYFeD4DbXzp+mduAi9DKve+WGUgDjv4ZY3CVgDvWRYD9mv1XhL5e/FQd6DgAlC+QZ+LnYG4FgVkLIKBtdjFECrBcST2YgR3adfyddiMJbURuN8/NWcCmM1YgnMxu+C2uC4+k+OgtrmuEH3NebKp2rH7awXsUx0WCg70HtTndKiHeSnH300pAUcEhjJ+f7PTGFyvn5Ogxqz5FVMcJv0JC3oMY84RMreHOXDRqgKjG/XfaDhrY0rHTCjK/pTJ77oJk/F3HZg7g89xyO0aOKBVIC4i+RRg8de6M0OvFq0coisejzqkPuBcE7RbYh5izboiyAG4tY0tMdB37E3IsBB637k7PZ2Svvr3VzmDV3G6HupBpivthecH7XuR5mCxLmaE1rTN0BacJtF7ZmHtG7jQYI3LmeTR9DgB4u9mOWME2qUig7z4gyOjALDLnmZnn3pRuxpBUcFJOOK7SLsYdpuzZ6ZGWyf47yq5G5AWKCsA2jLgH2vXYZAwjtvdqsLn9Nq9+aIFuq+Lz74W8FiMPbgica3E42IA4UewbstC0lVr2jCNR4rgqAFv1ahgUDPFWMjfQiuxrGdnjNcnqv6WS9QWwWJHWUGqXmMz7s5E6FgNqIaAl7tjd3pvWqLbbTfOq58DK6spGuLK0tLnQObP56L5c01RIVQaw/G+3j/vYblbLWVl+0LKtTXp4wZkh9/kb64vgwE9GTaX7HAoCIPzrCXGmkKK13FaT+Ie9JRoYVJ0sPR9bmD6IJxxQIOEtN3WLhJxqRnF6iJCTOXqOLEiJh2OcwD3tr9p6sNMa9fG3nIZSNjO83QY2MBqeWBkaysFRt81AgpFndip5bHZT+KlDASTXoGBaFjgCGE2KxFzUMDNyUCcXVodS7amHt0a1kv78omZVoBONmNNfu6CBVkjbZrd3iSTrjXcA9N6QQqRqXs5eEhkZlprslMQHnBdjzowTn1cRm8Yc8AQSgaSIgyPfUMun3AmBxhGHUv1FVL1LcQRwsd7izYBN5pCHuVei6FkjjW6r9lOFEN5vVkG1nqUldABu54c02LVGEqNWdhAKGovpuGzfYzAWKI7mNHzZ/yBadHvv/ueKYQXHEDrwxt+aNGO9g48swUq0fc04O58bq8zKtPBbru5yQUYIwocEZhP1t3XwNf1vqdlF0ye6OJQDlorvqS9EhPJJBhgmWZOlMHIR659u3B8/m06jhLn/usmKEiEsjAsZLYVZDL8Vsy8H1EfWVFUKsCR4hXKIuESl5clQMvax2Ph8Vh4rMDHg+mEH1fiEYlHbFwrCBRERWHt1fuQQKzAhQuvncjn5r0XqoLmTsoINihddS6qiycIphqEJmvPiH9xCwjcZj0f00C5HqQNVvGzBIAFVH2Jq+izMrP2tBBLQYWsKqL1I75RbiPRkE5oxYZEvRrAocVogWm6K6PiII4ApPtJkC4F2LRX5wC41httmyaufo5BUAZY8On3Kt+vrn9oGXAEuQQXDq51T+PxmX/DA4OhmJWLabz77MKI2AIOPcn+EAD6Ko2W3MrYZtiVWTECKxl7UAE5MAp3ME7xYgGB3mH2WnBwUdY4EhiHFJrL+NHrFrQ5mYNP45h3F3zpA1E17k0E0c8BEpUrHUF/vrWT8RnAniex68wOwspx3+JHWX+3iS4lBLR6qcC3SsNMCafenoZAkwH23nFo49XaANNE3ASKl8rNXiJYJ8KC5oDm+1om7Y/HW/c59z1i4KgOvxSCED3H8RhCzvhRa160EFD0drI99irBL4GS3HsKthba/C/UsCUFEMm4K6ZqoQizhTZHzeqLuF3WXGuItWx5Oz/vonIKZgPI38UHYOymd8mdClF0NsG99lCBgK1Jiq6AG9Cn9UjPPAPcDFnZ7avzdm4ZwBZ4W5bbnEuhuDFyjWlYdAzoKnG4Ds1pUB73+TBgDrLY+P498AoERNs8TQcOCHQ+fcAFe3yrCRbGpALNJ12lE4OHwXYNjRFAMen69MEVwCOW3ALAYx3VbAkFYAceAXzgkhAOpT3a/z/Xh1o8Y6w2ViauONiq3AiNIcKCv0foTWkwau04cWV99b7Hok0XNyuRUnEWd4q3taVpdFpTfUudT4yzqmD5WcX1/cqx9lY6AdZXOKHsAoVDdEaan3CPFTJ9nQjyLSRuWmg9tIGA+TQVwvP5s//m+rplIFuAnJqymJPa1LqVbwi5R+/KBFHDF6lbF3N2t/g2gVE+XXC7XGhB0p0n0mYmVe2TKegclHCYh8EM6L786IMr4cpxkcC2AEHthVUuabwOGFuLz58mOyNnBxpx/s3cqwYBwIO0Uog2gTVAxUFlasDj1w2N1FGBnVx/n5r012qvzg04wAKo6KxYpvbGwTyrhGH1K9cyLLUlNtip8rW1rpAVQLcq64hnMI93Do3De8U5bKHd6hCIBHIXY+2zskpoLKfspCL5XbI26lzKnK7Tq9iAXF4brYbUkSM6WgINy4IEtFihAKSZZNJfnAYENivS4sRls0/1AEsNclzApp3q9bPPoYHCmnUkcF24iUKtH6fe4uF2/YKh+fO/u9gpDsWwemSBzK4tki7elEARTqFpgz5UxbQo3y8A4S8eJa2lAaqItQFLA+0bKP3F5cDOOvbZ5wiyChyVcm2xygyiZZ617sCffntTqdduiT1MZlDldRAIbLuCAFknV5eQKivAqnXqyoOezDi0ZrW1G3O/emzmByxaE2UheKzA42JdgUeAboEV+jdjBz5i4RGJa20kFvKS9dLmdgtWkD+s5VoBp34GIaA1MS0ApkBuvii4pGPSLtjiLWPGJWNO3zH9ueAekC2ZV9EC4PGXnICltumu9fKd/ZmbbI6O3Vh6rgvJ2aKWmcjTXRbb/W4HXtyBgOXVyXJDTT7Q173J2rLS9/tj/On6MhjgRmizdNBZuAKoUi2WP6cFvRvfWLB49Vog+u7mXP7h6y61GdnaDQXkWEytUR7ILS5mnkmiTcMXM4K7xlonBKsCTLgp3YVxFgmKX+1FojR5RqOHAIIE3cEtRy7TLXebgUTQlFddG+ugpOInpY0uqcSH2lEznbwPMBRoEj3IVHRbVwgwKPLhc3BK6m+qS1yV1k+KUL3+crW4lep9b+e+YYBAlEXEOuVtO6b1JEHAOYDavHa6RWwNsCwDrNDVe1TNiRQA5V43XqFGc85j9vydUQMFjQpUnCgtYJ2URcBmYSB3ttYJBaD6P6UZQhpSLBVXQXKfa+WaaYb8mTZvL7V0tqn/tt4x/v7llbWYv4oPeHcT1OKXcOaY+khk04vPvmlk7FtbI+RGlOB1t8aYZOt59LYUDs9oDZu43PEuv5mrnn3OmJfHIgB3TsKVBMuL6/0W3zqSNpSDvZ8A96GdHrpPGJu7bmU1wW4B5uqlqwWcT1zkL+ZUhHPqJlx/1PqZ5uo9j9NCKxh8+bgSP67Ej+UqgwYEiccK/LiW/s3YMCDxio1jLaeqPpKGrkis2FhrsyjQ2YjYvwC29zWoWZfCKODnldTZm6DXZNF3Ng2mstLGNpuvVIwB4zLmmtR9wzEHcitHlKvFdNQqSTSDA2M+YuwHEGhZ7p01CBhuH/+VlUAucDAnAIxZ1Vjm2eqz95lsfnf9IzDwfqUerF5c5duPpbKKFtJapGm6vlsF3p/kN+P2CoMBsxinD2KRwyQ0H3Av9umUQ8DsS9pEupzwKcbEDmRk9HYTuFTrLXepmL6+J1RnUy+NFkyfiaRmXHOnul5mWQOsHS7me18WM53ai5lT61UKCq0CNDdB0gz7wL7+1GGrMDc01aqmgivOSW8prei0sNBKyjIUPScfhrjvqZGxxxQ+6aKJGu+g5wYiY/knQ69x8t8GA2V3GAKZzP2ucXpJEUnNyaZiAzEiXZxlRH9agKSBAXrjS9ME3QESkvOQH/NxWQaWBnFc53vSgWj98ZggOG9/3+hlks97tOHbmnotf5VBcFtnb1ha87qzscp4mQwJjLfhOON2v8zE2ajn+bFci2E9RFaMgvlOyrVynE3SOsQvr5sbb/xEraP4ROLWWTDEv2zSzsgO4kwQ0FWnUmCtdhnUnBKqjtoCHmF4LQEOnRt1XoxE+X7yk6I0XCS/nWutHNcsmva9TBEMk/lQ5sDHFbhW4uMK/LhSjd+AH4vt4h8OIAzSPzsFBtnlCUBN3di7xtaAA8SGs856j/IXmlXeeAEABiv6TOX4XPEG0VTx3MQ65mb8kOPGLLRv4CGjlb1B57VmiXIXdKMrvn6L0Rnrb5eQg4DdKOmmHNfOkAkY73VifvcSqQ6vxaPvYMCNuDj8UMOuX7vMfnd9HQz0qezJRy82wEPhQEyApYAnWplgoH3ovGlF3FLSowh/EK61gDAVW/5lv24mUrAYXvaN6VtBjIY7HqcakdAcx998j9+5MOcj6orbJAFp2VhLcRwSUGIkkahYu1hzPWQZOPStIfDLjeQ6NEjyzcsAoDGkhPsEwRYQqcOWAjZRVe28wV4XHuQc6xia77QMcAq0KKxPo27m/272EzAvvnC75r+HUDQJzVbFqecbLS/9v1tq20M70bUP8xb9lhkvIMtWFmHFaYBX9QfSKwy5CrLM3RMIEAyMv434a353gZ9+JVuf6zdJF44bsBZGEmiQdls2Xde7cNdvC1w/t9f0fUNubxZI4/yjrFkWQEjN0SldtsaM9balzvEUwcXWshD4F4cwr/HYTYfRFfnamv557O9xEQxY09n0eDIKEDiQ0AoAaUNgqcxA7Wvu9DQCPFLcjOR2Nbo+uyutG0a9TxCQsOss8/08jf0tMH/fvHfcxt+3A6WfDhatJm+jBwF7EgSuUPzASnwsqIT7wV7MrjJxp9QQxnpQ+NNtdJB46e/PLsH+KzFdH3dAqngMKwqWiUD1YJkLcDsHyLLAJWraKFkwecv7lZYfGLE+Wvsc93xjYJmtqxk0UF9prZ/TVapgfW6cJZ+jT89w67i7/DAguMm0f3B9GQzY7FV+/PCgWuNzHqlndkT8USMz4QYcjT3JtTTPOjCtOZadDQu5NrACsXLgBsUoaHAMcEzYL8a6CKgxrSHAyQgYjV+R4+AGHmuTBwqCEuN4B2aJQkEnAu4WFM66CJQm47gKSp4LmObgAKpSjdeq1kC/U4w+rGmFwyxa20EC2ENDR1lSXEYY6uaoYvc6jJwMZSGZUflZoSA3weXO8sBg5iYHWScq3XThxMaqLH3vr0x+g3JLPBb9AGlTnl/3wSzGYeYmJi6a9OXx8+9ABQelmar2VmtRc5HbpgPl3FaWYztp+Mfvu+CpQSSOW1+fOqDOM5/72nMnaE1EmRpJF334j/MFi+kF6TdEqJ56yaFfBBPpTGBN7UHCx0VtSki+MSO9sNItpIaTZ7h+8wwgOczy7arT7RQI7DMKC+AAaqXedJEJijOcdaQ3jPvBAeUgqKOzO1O0UoejzrlpwnuILua0IpDrKpqN0wV1zKdsi3IgXY0kKOjN5D2vGxzUuCwTvVae/dwrfzEdtGLTcZ1/L4gL2KDOToB1Vh4l6BcDBeMQBOj1jzjMJlDK4bWcQr7wIxIpnzib0b1wlHyb8SIPCPZ1cYnk3kXRcqSq2vY035UD2XTrjVoOa50q0ON1ZNkD8sW7bmwqFm3DZ6fvmxoroxtsjaJ1tDT1Uo5KX3iDAiiXuTWMGRAf7j7Kp4Jp+hq3XU6D1dXvHK9k1ANatLZc+qVb6W+ur4MBE+bZEnyLw3cHLUuqbFP8tgaMeyR/bnYT8yHyvSLYcTCFvsk0Ja9ys7rggpqXgEI0AHc1KnZ3MeXKGgyjzrOaXLiKXEeWA5kvtLnIWhcsdekTfl1D+3rbfgtToIglAPVJKD0d5mqPxyVKklYUfZCv4402MdbRITGWnx09jmCgkbVfazNLGlbmweswbdGm3Kuinknwoij94pzXWegOjH6iqPxYiKdim/KmzbGeOxkG1KkLUcMXfCBwMvyr+9ekOVEHkbV1gRqHXRknVx+2gpUKFrJWmquZfc1GAW/H9MG5rYdociWwDjLYWyMTgMy4R6yw6pJFqhNmMD99Q+6pRv4wTU8Bmx2YxrlmgTCSVt+/GDxNTdTKdyL2LprxAjuIMxSMRFJm4GboHq8S5qsDbl8H70yUgku0dg4Ddc2A/Anza4zAWwOKfTS3Jlk/mftNlm9Qxf87uAvAHgISrJEvgE13u2YRAVi7WihBZG/eSQC7A66KGsrtFTrPkrGw441CEAd45KVgZZ07V9lbwc/IJJfRmvCxBe7YUcQ9CrCPSpMD6SjyYJ3rFkXf10ZiM0ZqHfKROHUeKy0O5j0XrY6HwPYKxgJ8rIMfS2mFi6L8Ryz8cTE+4AHVGLgOHteFxwrEYvvwh2NiFrva/szEcz+5ZxewPkBDz5YtcF21CZnHLet47mTarRhxaPElVMuhUvsMpdALCOlgu5fDwlUm/or7ANf2bILznepFk3LdKTtrB0Hjzl2px0BHxpS1SGDf9DPlr030lwrfuRTeOiSETCqNawXOW2p1xFXKYpx9Uxwyx5kyXdS780p8KH3yq9fX3QRp4TkgupGaDlSxr0SnEvnjU1XJAQPN2AQZGgPXu2JEMT6qqPQIhFrh8SyqdOcwRbUItok7CtX7mn7XT2MNvu/gOjOq2ohPjrtaGB1sCiqK8gqlV8MdEjK1oANaN06hyRuBKVDQxo8SZjEeN4coJn3sj9K/6js1TrPz8b0IMfsY66U+gzU+dAwLAntbk0usi4za5rhMI3uZWOEDqsNKrqjSnC0AyhVT6N2anNH6nZnb2NxzOTW+lPj237X7YaHm71jQdwCQx3LqfbkHxmdSDKUpxw1dbQreejbaSqHnuiTspLkwcAjSbQwp6ufwywI8fnCM9wDEoBskUBUEB3NMMHVsZkmkpabPOACb8F3spU3P3hP+3b0dvDYdoXOv9nYnowIV3kNlv0QvSykarrjoE8UmTuEtLhZT+ee3e080EnW2egxoy0AdsOIitW5QfMFabRVABuLS5yebiQYjvVZRQ2kwbN44n4m6iQVjDV3v2ITtFVXljLEHWeumsFpcOEwdBF2gEa6Yv8mNkzVTHmvhAq0D5LOKEdP5PnJRrTyknTyMkTlxcyUWD8r2i/P/o2CfOwT2wuXtl/fvSDImgIUGPv6slUnUvvvzHkUHB1KJIu2fcS9DtkpZLDNo0/+qZxTyqGcB6N4wg8k0QLEFcRBBb3aNzW+m1pYNeXYFbXsV+sv83Kuo9WvXP0gt7KAlD7yJ2ofTzLiZ49iHumJsbNabxa2okYYNP57m0vmSGTfQwXhyBVTgGtadgfhHHJGAMvtgjt8Y45/jrjz2QjuDKQCfFt17eE5ilRDyxFnieC0dhbTLQ+i2W12JkfN5ZdYWIGrM0SLQJrCjeXoLRoYv7q6HZiz8ahagsO8ydACWFqQ062wmxGIijEyO5bSq6A8Oxhg+iLBrpw+G1/wmMLQv3KMRtlZakH4HRS8DRc36DQLWjWHXfgy69EaaJu1u8Zq3EO3dTshnnonLZmetKxCizxQjGt97Y3aZ7buHtA4ppbgPcow5QG7jiO4Rz9GBgFkAICKQ56jzoe52jixvtkz1GL3vXK4RSCqGZgZfYigTt4ZPogvus3HXMMsWUx2zK0EQOGcX1Ub2Ge7iSPPpqGwKnqqO+K7gPqBiOSDa1YLr7yyBbUHD9Q+xW9qjuktrUhkRfRm0rWXhoHuJT7M4X5a1IXRvV0CUms/nCc0crZ3p30K6oFe+r5+BGedCe5asWhKBC64wSBDAFu9ZqZOGu7Jx8Ccsvvy3J3fKucsAbO7D2Qf7NbKx0oGaBvEOTo43cFSe9prc/YjOwMHep/fPtH+/RftBVtOpTHxyCR1b4AawuilK4XlYKAx5CPPpGsLYH52HPHKj5228M75hZvSUklo712s5W23/qrT9ycDOKWv//vp6b4LdQmBl89TStTSoLWE9UZj9z97YVeTjQLLPk3FbTB6WwGWjrPqbrxL+LhM6GO1p8ejFv/1WelkLmdPRms0BhnASUU6/b5MvRkRKX4NCi/nddKCgABXjy9PWgUkpzp7gsRMAkIk4FMNwy62uw+GmF6e+n+h9S9jf6/d6wM67HZABAWdE5DBTkXAtnnGgXh867MfZ1633eCXCg4pxGAIDCb8fGK2HzYweddkVxfzNmHSvGJ+FYFneNMHWYvs50YdewYNVYCZW+QLpmxTMkHAJ/XRALJqhDeBZTxdtRDEa3pvyIksYmzkbwEStYu0s10LCH9nmTCC7Y2WEQ0Tq+RlDrCbZpltfF0A0nIwbTLPIbTpIri9jKMWAC0g6zbcVhVqKGP57Xa3tNu2Q18gHW3uCf38V7z7FtKrSoPbEigddCra9WLXxLK9mMwfFgxxvsAQEzomi73p/gAorVgQOsma6Kc7peBRgVXaKK7CQzvh2lmIyABkcE2Qz/OkYoexeeVeo3HBQ86ebUvfK6Bg1W5JOlqUolAITSqE+JyX8D84O7J8b+5U4e7G743G2FpByM1dUfu2DkfA2gy26nuXiuXx9TgrQv1l37Pcv60PKYqXnnhKmqx5XWQLiK3coMM6sCXeGaUA8Qp9zie0GZkwm5VrK7RSyKlk5SbP2lj+ZLormJYmxZl4PfVi0GeIjrMkSY+z//voHqYXCxR1fV48hm03z9n68tYpEDb7eK60WYlyecfvb3Hwky+TKMrDMiV8szGLok83knQPu9EbvdpTvGOPHSHXMavx9y4AYJmU+UsR6Y2JG1WjGUySlD4mJxaFgdSBkzWUId/uxq3lSgSAJO6pL5R/O6FKXKWHgtGkqGzGY/5hH9LyO/j/QwsQdvVzr4Pggv+9nSmAH79HFoVYt7S0XXkLLhM7xnAHAJlKGIsBTwn8QuRgCac6UaPqxZcCUemcuLQqHC+Ak1s2F0EzA8RS1js1NxPTe2EgBnjHv8eQCXd6DQXN0HSVpZoCSGHOo9wXCVgT9ptnnY9mmO5ismX1f82/PGmBZ1K5/cYoRNQgoEGrgaqZ7jvzACpjKXjP/7bRaGOx6ZXyebyPUf7Im/Uor+t01rYFQfFCZ0rVHDVK4brPMbzsJ7A5dGqkFFoP/2JAIrGAphuiA5lmwyQKAezCDp30fr5Un0BaKGjQStpoS3i9sPOFgNxYHU2lyyJoBtnR3VcELkJ+FjKIUhpPIF6N91iXefhb7DskKcsAuhc+deD4Pfj6B5wt4bSmQ28KrzdzNeyV0XV/BCz3oz+uL8S/Ahbp9RnCrA5OIynIw2J+WgnOTAVmm/JAw75o2WXQIP880m+A+HwggT446aKzOsml+yhevwZ0bfXpP6C993w4NqfnPv+3SjJO/Sqz57fV1N8EJuAa7nzqiBBQ4JialyTno2cR/M2YbBn26miG7VWfAFgg3J3F4mDU/YcA6PHdW62An53PFJARvUI1xHFLMFdf9ijD8f/6GPzIEUaJSC4Gp7VnTkMtD6X1S+BG4SviLq7S2oINKa0DU3lReUt2ZkRM7Uzm2Ufz/9jNAQN+Oh6G93iGRmiyqk4Fp3ksk+zKM4EEGQXEtgqUZ0emkNoVmM/Pyk05Bjtu/Uf/O28vzEHoMPppSyDj68lev1ngmKB3rArTmWPEaFgU6cKaW8l1ng4Sa0mDmWWPxGqH2U6Ma8xijscZR+2fHuFPDGuwMEX4THHUGA+XuqQBDOM7Gj877GMT8e63Ut6FOHs9Z0VIOzU/z9DrVv7MiWMaY75zL7rAcwzB/8D7UmMP8oD/DNYs7s5yM2HvsMRTQ7U/cizid8rlPkz5pOdoKYMtLnVF9xsIkPfgoAijLAHQ+TDMWPvrbvLBwU3oXUHESrJ+vnhup2AEDQ8cFhH+yeivQhL66OU9Yu9yM1U66MMmrEliMvH9l4vVKvJ4Hzyd7xpy9kDs7zqx6eViQ+Xw1H4kc1uImDBThDZu3a/qbR7Z3a2rSfR6qeE8pFompaNTzgCEP+nzUnXxoR22ZdhUPgvRhGIff1qL5TI/p1rPn7T2DwFqPEwOwxF2MFp1LXv+D6+u9CQ5g9CpHKFBIT5MJ4KwxMbR/585serL3WUQ1pPAhNj9aWGL07X9cY9IJa3LW4DwCEZl8dWwWwbncxSKvU9T6Nn8wYtbMpkSGGOzk6lXFMFFV6IAm4GbygENpsFH3ieut+5W1fn3HdQEYzCPjsTTi6R92yVtrbq5jQ/o6zWQkLM9pP17ATDG11i5kcRO9ula1uObW5a1tZ54Na3NrWWhJa4kE9ZRzE9x1eMX5TPjODUec21q6SJDXcGlegLrlJS1Mpw7p2NvodEEzTsx13TaP8/VwsCOasW2py6tyUZsmGERqQTCZUY4aDwM0KP4i65zZhAtUjAfoCKIQER2VdcBmVHXvlIUootlViiYsWucPaa4+hRxAAAE6m5PWk10BJqAVaFgOLVgzcAdJ9XzUPtdDE4N/aJ4VC0QNnFXzmD2yrBj4/VgEyssnhib/z1qb/+VYlLFtmPvUgpZAil1RH3HhHuiHKhmbBlzHbyXcPyOWgMo5dV4bNCxlyQ3ac1VTubykDqGr5nNtzzk44fQ3r107l0KR9+fQwkNeqoyrveEWmLlP9dh4BbBUrM3Wxa0YAeAgz8HOg+c+eL5SFoHA6xV8LT/w3Il9Aq9MdXuVazHpWihgKNftkpVgZcv+ikPz/2eivOiimVzRFT/VaIxrKJ42zgb588wmMa9GmfpNL96rRgo6a+UTW3U2Jo2FmKFLohdQRL9GmrGV9cCCvec4+IQBonhIzTUdHXO/iN8fGCjpb69/AAaEkqpijpGMZecdRdf3NDCujc1r72bavqyEaBtgPaUDWwKMwIf6ciTU0fv+UIs6EZr5WSnqE8SZSYux/wIL1OeKi3HGutUQ/kPQTKbjLlS3qPHb7+5HHwpyAdB+UdTCUOiJ+F0dz2kvcw3opRCjM5gFxmfTw74RHuWOKVx78LtFgVjTDEBL+aXdtQcA4NzpnovXqrrfketxLNbGS4DeA2twm8PQhTVX3y9hZtICxXtnH3yUC+E2KTJS389EmFB8R5Tp1x0VVzLArGSnUf2gr5oDxlxszai1sSBLmK5j7FzNd0pvDJeSyM4prQ5MnEAgxu+m6aFNm6RpD+Vo1JHPwr2i42PctXFyPwxau7mHGu9NLqddRlMbm/vR92ngSWAA7229HSanWsv7vSV+A3AsCZC4UNER45nFupueCnz4zZteSLK0b/t90WvJe36194N31FeaLMZtmPMBAU3SarsSW79uIZRZYbT9jHKTkpY3CABWEvPty4AAKqZ0jyV5ncTewPMVeL2AfRZTSrcARDKQbZ8jTXtxPGfzmbY0HigNt1mk3S8E5gH3vTjTWQ9aM1w/JrXpjpFwPFDHCggUNGEOMFgH576XY1/uiPFtP9+ucmm9vdrrP26fjhvqf99+z4fMtN7bARpP+YdWAeCfWgaKSSh4J3IQnfzfQpsxCP9X122B7P8DavMbEBTuMN+vgMSlA2MzeIqACiv5BPiJLfVYW9zm7jJ9/37Ac1PMUOZ7zApYNUadF3Qb2vo0KM3Rwv1tRU66WMsdYNn/W6Vly2uT1VSH2maHjZRlAGP68LqYkN4Yrz9tTvimSfVYJ3crjlna8v17B+csXBekKQMrZmOdgZbNoLy2ZbbrAMLbT6YCS9tMfP/pIfZwPd7stTCgG98a512KnqQhokmrhnE73fW7BH/0nPqLb1cjCRap0RRamch2VUXc2rh6jBbW/l6Zj/WZa3x+zrXXoMfA53FcM0CK9zxwpgs/f2536ykZyjj+x//tXgHJifrbDwFK8K5YFXxs18YalhozXlvJaoXnJnJGMFD066GYGFuoSvBGwCDMAFBDGsDDP3z+jMqf03lf7flyA7+2ttY29Er2929uGx+1gj2wC6uizt9Rxduo9jmMwUIw8mCxkdL0PuaW1VHbTBdB4PkKPF8Hzx14noXnJih4JZv62Fh29Ld7vWT691jMSRDFm/yyhfsU5vNc9VHepx1YCYMAwYg0r2z+Ur75QDOKsAsmapHD5z79OVhf+sTmHYeSN14woahffnNHvQEByhS9dhR03lr4p+td3/y9VLtf/6hrYd21XFrNUCtu0UDg75AAT1dJ+hb4dywVeo3/kMlae7YyCtFnuJhLH3SbS03A7ihYRoAqOiTz2W1TPp3Em2zsBZl5WrxxHr8+2YoPu0/TrxbEh/c0MxuRMVwumRgh4LVQJvrSfjJLmz3j77wR7ARsdyScQEmOEZ9ZAO3z2Ps7HEOW9CkTJSmakdbFSX9xuwIE87CO5c1fQRuzilWugXz7oT3epnd3NLTGiM8Ryzfm2lvkz5x6StPZxsFS5HQojaizlRvU3NY5UeeF5kD9PQI9Sxl+45V1D21UmYcHr/lVTMiv1/0XsEACvlchbwRRRujinW8WvxyU7bPwFoRbYxnjLVOphWkw7sT/WfAuLDCQeBUYmLMoVcX3PvlpfACQW6mIOQSHzP1hXlcWOrkiDAKiQYD/3TfO+lwvyCBmrWlpeAp07eDLVOCno3eaBsquNVyy5fg77R5AWlv2CFdXwwQqtmh4M4vHvsTVY1s5m6G4NP/vZMDgz9fCzxN4buCVC88EXhkq3sMU053U4M+Ger74TId6fEQBx4q/EeF3Rsf9xJvPZ5pSiShpGbCL4JSCVRYA6O8z72FeI3qXVO1jm/XwqBFUMRW0PDTN5z3I2gcl77z6d/1AAI8VmgswA95/G3gIY/N3RfTfX/8ggFAPCghB6aQHuVkKVTq+NovJfb54QD+/eTeoDC5WWCAKveqxYsZRB4EEzuWwnzYc/MKhlcCei/ppcUcnMF9Zg3GBFh2MKa1kwqlc1E8MOG93m6zrHV42g5g3kBg6I8BwiXnZ/zy6nk03wW16kHlb/so2+sQtMvddSPz6Wsjc3gzY1udUN6fCLwlHJtn4M+9IPwbRv5nwYOtNQhIXvaHWLCxEJxhwaJkZi/996nklpKJv1/uNGp+ZaISPwIiLEUOq9FX0UJtEcvw2U9KTxh6VMBw0U9unsVlwNo4etSQm7f6b7bsDvOJ0qMHP1wcbjvF6jEG9k/tdu20zdn09fjfHRJkK1pIAFhgI1/GPihkIAQIHJdZ2z//0LDNiPnfhWipPLjDDtDTHs5i+OKau6jjBwPx7nntT4Nv6flpTGbNHeeSm+SXDi3nbDDR95xeiG3kjDSYLBNdrUa4Q3tMxQuZtUI661lp0hs3z6y6frxewk+6B5yvwOoHnCTwTBAogoHilYgSOqv+dICDYDQKYUWDg0ktuurqBWnQMjxVAZz7Sn06FKoqvn9pTn0cg5Zo4BN7+rk/65C83i3uW2Kv19jinzJjxWeD81/ysxv0ri8D73/iFnJry6hOISBPDLnD1levrboJB416A2xh0WFIH3Oj+d0O5vT41xbrX22cHU2lXwf1mU6zUsRvC4xQgyE8LXIFpGBrzbUhZL/K+d59M6p6+PzXY9RnzfFqQt0mIodx1mD4dmVAZS5rMK081oUZRLVFsKDv90v1+tT5+bs8wc4AzS8C/AwU6QETcoCtJcQ30C1z3PUrT0Nz/d4L/lTC9/yQcE1IU8svh2bTsyZY1CxDDHOCk/j1jLMwwoMONjur1GD2xsW4517vm8NtF/PUr3p+YlDHsE7FuT3EQ24lfVsF4u3kLwhbyv/oNdE/1399vYjQDpb4c3/NG4UJXIZRvK0MFD6pka1sGer/rM6F8owCO+n2sWAxKAxCPhbOlbe+Q7F1wKb0pDDYr0zMgL2UliBQggWJ19BruoACZEqRnUhjuK2HR3u5KDtzvNoj/O3ZugZOew+EADai91h3EbUuif6ZFR6m3KZdOEiSwyBIgbRDIwGsvBgduYB9bCvTaSewgWGBqn+MOchTOAUEAFio740bE+h1NmZWBkooLCAtbrsPWIaR11hY58uNE8zECBK951nYUgKr1n8xTfHZaa+uW+SYzzK+zxlD1OxC/UZRvKLkVBwRY23zIrWqA9zted+w//61S/uk7+e850/f1fX1f39f39X19X/+XX/885PD7+r6+r+/r+/q+vq//q65vMPB9fV/f1/f1fX1f/+HXNxj4vr6v7+v7+r6+r//w6xsMfF/f1/f1fX1f39d/+PUNBr6v7+v7+r6+r+/rP/z6BgPf1/f1fX1f39f39R9+fYOB7+v7+r6+r+/r+/oPv77BwPf1fX1f39f39X39h1/fYOD7+r6+r+/r+/q+/sOv/x85kGjp5FQgkgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "" + ], + "metadata": { + "id": "IWVRhNbbaZMk" + } + }, + { + "cell_type": "markdown", + "source": [ + "Кажется, при распознавании кота что-то пошло не так. Уверенность, присвоенная результату, довольна низкая, но тем не менее самая высокая среди предсказаний для этого объекта. Давайте попробуем посмотреть, какие результаты даст модель побольше." + ], + "metadata": { + "id": "pqzk5CP-alj8" + } + }, + { + "cell_type": "code", + "source": [ + "model = YOLO(\"yolov8m.pt\") # берём модель размера middle\n", + "results = model.predict(\"cat_dog.jpg\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DZxAVfU7ajmc", + "outputId": "a556eb1b-13a6-407d-ef37-819071922c43" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov8m.pt to 'yolov8m.pt'...\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 49.7M/49.7M [00:00<00:00, 327MB/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "image 1/1 /content/cat_dog.jpg: 448x640 1 cat, 1 dog, 56.1ms\n", + "Speed: 2.8ms preprocess, 56.1ms inference, 1.5ms postprocess per image at shape (1, 3, 448, 640)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "result = results[0]\n", + "for box in result.boxes:\n", + " cords = box.xyxy[0].tolist()\n", + " class_id = box.cls[0].item()\n", + " conf = box.conf[0].item()\n", + " print(\"Тип объекта:\", result.names[class_id])\n", + " print(\"Координаты:\", cords)\n", + " print(\"Вероятность:\", conf)\n", + " print(\"-----\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2hicReOqag16", + "outputId": "4aad665f-8c13-415d-d0e9-61e90db499d3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Тип объекта: dog\n", + "Координаты: [261.099609375, 94.08808135986328, 460.95501708984375, 313.6855163574219]\n", + "Вероятность: 0.9449876546859741\n", + "-----\n", + "Тип объекта: cat\n", + "Координаты: [140.24435424804688, 169.66156005859375, 256.37750244140625, 315.4378356933594]\n", + "Вероятность: 0.9130966663360596\n", + "-----\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "import cv2\n", + "result = results[0]\n", + "res_plotted = result.plot()\n", + "plt.imshow(cv2.cvtColor(res_plotted, cv2.COLOR_BGR2RGB))\n", + "plt.axis('off')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 373 + }, + "id": "RkOLfmMwb52R", + "outputId": "355249ea-98ff-46a1-9a5b-d73f1fda8b43" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFkCAYAAAC9wjgoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9abCua3oWhl3387xr79N9Tk/qUXO31IiWBEgOGhBI4MgCYUcEcFzBiSupVGKCq6hKUklclPPLcaooXOUkVNlxXOEPTkEqVTgOpHCYCgwyk9CAQANCE2q1elQPp7vPtPf6nufOj/u67vt+v7XO6b0J2D+033PWXmt96/ve9xnu4brHx9zd8ex6dj27nl3PrmfXs+vX7DX+mx7As+vZ9ex6dj27nl3Prv9mr2dg4Nn17Hp2PbueXc+uX+PXMzDw7Hp2PbueXc+uZ9ev8esZGHh2PbueXc+uZ9ez69f49QwMPLueXc+uZ9ez69n1a/x6BgaeXc+uZ9ez69n17Po1fj0DA8+uZ9ez69n17Hp2/Rq/noGBZ9ez69n17Hp2Pbt+jV/PwMCz69n17Hp2PbueXb/Gr+NJ3/j93/ceAI45gOMGePBw4OZm4OYYmGPAYNjL8fjxwqPXbvH4csGjRxuXvXC5XOAbMBv5BRgGf3YH3B17A5fbjb0da21cLgt7b7gbDPEZwGA2MOeBOSfmBG6OjeeeO/Dcm27w8MHAwwcDz91MzDEwYTjGgTkODJ8ADNsdj/aCm2a3ATgAx/YFwGHG3/fG9oWNDcfG48sFtxfHXobLxXO8YwA35nhwM/DgMDw8Jubh8OEYw2OsNwPzMNhwwBywDYyNMYAxABsWY/EFmMMsZgwzmAHDDQaD2QH4gG+Db2BjYfsFbsB2w94zvtxw+zjW0pfHHsBw2IABiH8BM0PsIGAGHDYwxsC0ATODu8PXwnLH5eK5X9DYRrzPzIBh+bOZwUbM0WIi9T6g1tk2gHiP2wIGQBKJ5+c943nujrUXtmvfDENz4GemaW7gsx0Gz2ebOWwANh2Yzvt7PHOc5+du2Nv5dWDvGzh/Xyu++44VhQ+4G+Lj8X1swxQNu8F9ADvo/tGjx4AXKs/1sY05geMwjLkw5gXzWDgeOMa84LhxHDeG4xgYA0FPWLGWPngv8pob1vLkMbiRpizozjZsAGMsjLljz7Axxoi5OeB7wGye1k/rCyBpYl0AYMYcPdZkY+By2Vh7Yy1gXwzrYliXAV8D+9axVsiP7SCNG5Y7tgcfujvlxgg6ccd171SzjXE4cOxcR+c9PIg/f9Z9AcBtxGdhsQ4G8p9jGHAcwbfHsFhnN9jSXvppLO4GOODxT/yO+PucErfGtTEMl/zbIRJG8H3sC+BjxV5MwxjcryNkyhgOG4Y5g24dC3DHYZPyMtYk+Ch4xcaufR/FH/PYGJRLY4zGN9pgI11bjn+t3ebv5BnHmIY5jc/ykHfYvNcBYJ43rq0HhUDeb/mA7xs+2+FrY62NtYOWHY7Ldlz2xu3e2Htj+cDteoDLOvDo1vHqaxe88qrjtUeGy+OBx4+BR69urNsY1r6NuWwsOEgjW3tIek/9U2viwRhtHqIpS9q6vhzAphwLcdlk5fZ8V9xbNATszfdwJAMGc43KYD4ox3WLCduWY/n//Fc/f+94+vXEYMDue81rMthS6BtrL6y1zkqjKZ7zXbVw+nswpoR6vN/uXVspiDEGxpj8LsAxqYwM8zhw2AHzgX1xKpHXuTwY3gspkDCA7TuVQjE/4L5CyM7B8RjmoJAejjkDDIwxMMxhIMEBsG3wILu4mRk8thdEUFyeeB0kBWyDb8PewHZgbQtI44blwF4b2wduH9/G2HYQdIxhUnmCEAClSOGYNjBMaxnjcDdgG7Y5togVtUdW0qMvZhE179+7X8fvAjxoCtST3jz/5ZqbcbUIBKzedU2lCQJsUMF40kwIRoIyIOlNinUDSXs+ODeLnRn6O782DG6hcON5qLWgchtSjhbr6K8vL9pMCFisKS7Xd1BQiBZFswkrcl1BEOAe4NFd+zViLQffw2UdqeAF/Cz3Rft4HqyftyAVrUBRgTaI1jm//t8mnfEpFH5FZ/q8lPz9UsnvvGr9VS8Bn6u8HU668AU4FdgwB+bk+8h3yfjW9qKUQ+gHT+WVdOsidm58+ww85IHUzQhxCsAJCmpGZsGrI0ckBdCUkHNPcqUFbK9+xzXL2tXaeFt3gYuQOxB45mt7a8Ra5h2TGA7sXc+2awWqZzVZn4+nrLRLrr1bEKhxutvjMRuG5SNkoQ/c3joua+H28cbjRxu3jzZuHxvWxbEuI0E8KH83HBi1pzYLlJTMyMnlEHGayn30eL42Yn9l6HWxaUML2PQd/zYGlb/F3AUMaky4+nnDTfv5BoKmXU8MBl7/ik3cCFTWvyQTDKMk/r2XVkELL6ulIdH2JWEeX+MKBOgrPm/8G4yKE0SVJ6FUlzdmCnDjWBS6lw2si2OvayEgRD8KmMyBOeL1OYAxaT3zA+YhhM09BR7M4BaCKeTGJCyIvy8P1h8wwActU8B9JCjYbthuYYHRkhcvDgMmKXHYCE8DKXEYShiNWLtp8XrIshib5mAWClAWpqhb9+sYGamsHIZZL44zoZYlQktOz3HRmQSu/n4NAqRGkIofAgGwE23Fnxa8QSwY6J3xoJ18foCEPQzbDHtxuqtRjVMgGuk5tzTGZgRThYWumbQrt7CoxuBrJ3ovK2y7hVPlmnZPfEalLDBwej7lNIIeB0q22QABRCi3mktba7s7/u71CSt8wTE4ZoOw4W7z3Scl1fbUCKhTkfOby5NkyYNdWFuuwVne1Bg8dSY052LBuNcGnKDeN8F3XyHOI7/0socVByd4b6Bh54MaIEjAFb8Ofg+BH0900m8tu2iWgJ6A8wR6tD+5BEU/sTSe/CYPQVvB9r3v6aBcosdrDLjv/HmTYCQ3xwAXpu/raj9raOHtTdAhQGkIdJabExsUSpPgwC2AgHl8wbD3wFqGdQtcHof39vZ245IeqUUdZUXCseAlg1ybXIr7tIb62Lw/0u75+c7nYUikMULeDsqyNDrNaSwkfTtGA2aDQMBIjuYARtCRnAtOak3w+QTX/99gQN6AvQQAYgEHBnwv4XrkuN7gMgpj8y60y9LJBUa5g7urZSTE0iPj93ABAb4M+0LPxZWFUjCvrF7AAzisEGyruYWLYHYozjkwp2GMiTkHxxRjGwZMCyJv3h96zgZ8l5W7JXDJsK6Nb8LAAbqpgb1C+Ox9wBECZzkIBoB1KUs7BLzDzYGJAE1J7E2R8nuwZ4zLTfcIBRRKMzwvRm4JD6kEVwx0I8COhIjeASDuI2VZsJhL6ykTRNBaN6eAkPKzttfx+VI0eqaASgcDuf+SxLKmTG7awUdbMJlzXcxD4POxtsEQzGgKwikHxYwb4R6l0PMznRUdElDE4rSQEmp8pD3fgJtRPVnxCK3r+KXzj7wH5BUzYGz4NowR9DQQwtXcKOzLC5YrbE2liSwl4Kw/O8YeQi5t/KJjD5tMe1YgX2ANbd9qXbEt9amVNEe/RMl9j3cqKtS8LOZb8tqL5jdwC6dcm9hDXglgav+81jVCBEba0F4M7vO1OzkmJHzg7gxPUDnzLZPeHLPg2+0EDFscS4+COR00jn3ywotmFCbge5POtB/jtIx2taYuz0ZKCNCGs5xa8NqAYxcgsBrnic5Pl6hD+9r+bg732xBeUNhyBF84eGeLMKiBwdwBT7AQwtC3AQvYKwyo2NMRIB2iZXlHhUWaHBl97Pp5lM6pAceYdjc3r2mzXpd8GUCGyPr7DSWZpQsHKmTg3mG1+Dvu73YNRt74eiowYAhCpPc7HuibCsnhe8O2iHMgYljdxSIV8wbPMH1J4bumidQ4J6JqBKuFlNKwWODbveF70bUuF/0VGCj+zNcqTty/4h7x3nhzAIGBeQQgOLv1yv1lZPrtTqFT61Iuck3JkOiR74nwxMCCw/YIkLIJBi4j3GXuWBtYGynEZLb4jhyGQPOjls4BuinuXVcTCBtS5lTCiJjlyUKUIm9rsJoyMWrhYLog9ZPLDBaCya4FqIa2mxKhehFEhkNmjnIAUtY5KchqPVNpclZj52SZQ+En4WwLCCPR6TGp8cWcB0M3QSc7YmewjJGGIOmu9zaxpuzRlOOGYaNcAE2pZ/6Bt7+VJVrzE9/Uc32MfE+8HkvoZjHJUfdKIw3M8aEioT0DcScsQiqe4aQYWiiHCY+ZpFfOBSos9LtPB3ZycazHKK9OXmPDEkydea35WlNeLQE0AuQe5gs+Lkc7LGFo/LdDue7lOAYJl7xg5FdZdL61ZmK5Wr8Q/F0oO5UA5ZUT2KU3ABENpPZ3lNwRghhm+bNoVGM/kZa1Z159T09IkzXmUj/8KD2ZwndavDEIpJoszKlxX5N2JLeZs3B9eSo7mbpSZItfE0xsiXFlSIwARLJ1ONwnxpjYKSMIcVMW7GAnGUkISzxD7LlGpPrZvdF9Qcu70t8PhAfx9XTwEB24M28rPjNG0U2CrobE09ZNwGbYNZTYh7Fzj/Y1HXyJ64nBwOX2Em7vOSjsEIq+Ycj6mYs4KslGhJEDlxipdSnhwxvqO0BFBoGMiN9LnQuF7rXhRyRwrbVzswcmhV0lRG3zlkDIQVFQaA4Ri0dLfgpFu12EXkwxhzFEUG5zKaOwEi0UceK8IHw3hQ4oREYJPvcdLkrsq8Ww3IO1eO/NXAE3rL0ZNrB0X5q0LdfL3VNuhnLfiULl5nZUPLpihgF+rpWrc0dzizvgyuc24WDAnLKm+CEJuyQMUpL4QYzHFxXPc5eAKcs/R+SlGMLt1oCKxT6YpPEVHYsOkDo61miYMXaJHLuG7AlGPdcjwVeuQVh4vp0ueMeOzAP0JEaTeWiMGfI1JXgVyi73uyxR7Vtaa82qOwEh1xqPsD4lP9yxV617rOvM5+krrXVFrrWODZBtKocAruRVDzoLfRa0GG5NSkQDYKtNkWE2emmGK0dGSoObtGM1MUpBZFiAb7FGF9uBYTPutUWxnsTom0p+O3zMCKGZ4bLpvnYpOuPaB3CofIukPoZ9RNfim6J/0Xm42ElHmzlEFtwpT1DwEGWKg5ps0C4H6bwJXEPKo6Cx7omJh7tppJavF90UgPLGqMlp9OIa863iNTF8yyc4ecRKfgDAWguRLyb+JE9kAqLDtmHbhhIOY8w58JAHFGyOADEJeNyBTSA/hlgap1wieSpHAQCzek9XrjJsam76S2UU9Zw55ZAADjvtuQHb8+/WIUJ3VWg3Cc72CW1cIY+mn14Hk9y5nhwMPL6F3QQzOJVNxG1q4a7tuA4GThm3/Me1G81bEMtBphSPOZj9G7ICfM8WyEAkzPkK5bm343LZ8IFyh1I0R74AcEp6aku2d1cyEWK4vSxcblcI8XynFxGNARvKUTiHLKSYVrgkUrCGO82144kr5aBPfbi7YGfOP/MCdioVejzo9VD+QChzJ9Ku0EVYPxt+NjVKGJDgt8t7IUVZyvaawDaaBUkgULasQIz+pvlwaxi6yBi5LN1wMeHEgRpoQpey5NIbAGWeF0PcAQKgZYUJR1ia9Ls34OppJSG9EdaET7l2nfenwZ7qUqCgiK3i1qqUYQoiVGHSKxs49ASc8TPKi9LBChVsCZ2gJQGm2gs77RUQSjaEjAYu2pGwbZ/zyqwWDaVaSOXX94y0KkC9Yt6DY1Nipo3ykMXtREGaT/DZhCoVzla+S6jIkkUBACGSHgiL94d3JcDKJjiTYguFu+h980EgPA1bSKmFYQSwehiiki6N/H/NOWc5oX0TZFBIMlzg9KTJrTyMIIAVCDYYQ/B+61AudrbIT+MwwH0BPpqle8Vzksdev197tyqnZIduUNh119vWLgu9j6cMqzI65CEIuYNclwB8+huBDT8T60AggAAXYwJzOMGlYY4JO4yVL0Hz6Y2xCkHDLO+vNZNythpkkn0HnWOIP5rCRzxErJ304R485RoE59xATkcdMoyLx692ivIrQ3h33nH/9dQ5Az1ZJV/bjqV8gchi4/r1kABFo4sBu8Aq4rVB52OGF/g+OysuYCaBaEwS+NoYhfYDudDNTsHk6x4XNORaB625ABWXy6YFzqePc4ZpKP8qr0uCMUOJM86DhLB9h9LIRDW9z8q60XoBTaoB8q+KyEKxRPVGlEKW0jVDJFEaTuVJGMDGivXjOGLM4wTqYguoWFNB3UNeTBTaep+3WafyoNIoEyiEFMupXMJyILLvm6fA2t4GA1Z280grGiEYMnFJnz8LnWsrWYlhYsgwZpwJzJbAMKoAHICUeAEL3IPg7yyRbyqKmfkE10l5IYN2rp2IQ28rKx2xiS3UEZneNaQ+x3pGWwsg3K1JfEYaQgIio76J3JL4w7ABb1aupyepPddHAsImFpq1DiwJQtGUodyiILCSZSehzIeMWfOpkViuEUnhxCfhTeCYGWuFD1zWxlIyZoL40Xgy4m4blmHAI8tpuQ8ai4eS3JtCm+vmZrRwy9CwnN9dgZ4UwcRF69u3yYcrwOjEYOiKclfp6t4WgWDq3tAb7xuAQbkDVLK0+AMchtc1DP72jOGR55dAtytBhe9kgFA+oIfxpGybJW1FJ5VcyIRqUykxMM2xsDGhYJwHPprAnI5xbMy1cRyOYwJ78rkOWIveRSBhQ4BxKD6vMRl5JeEkpz4sHVOly+lR8qCv7g0xF28ggYHWSvdPXiL8SzpOYq7QU/7cZRx5qQein+R6CjBQjHsi3l1MmwmEuItXTt6BFMa8LxcACKWUSsf65+O9SUh6yHBU/TOF+47YkZIGXCVLbozrORXh9WUZJpCCXZeNfdkZn8+EvgGE1aV632axsbJAlrk3qaSZL1nDQBJ3CIfwvIgClPx3+nwSC0gEYeUrF0KrCkOGLeaM8QVKDiJafoGNEZZWQOoU6IvrMZRg42B8kIzRdq9vYw61I9kkXiR9BIPRWnWHbee6eSoEMxAYIgGB4mDuBoyZ4GvYCqhx5co7K2drYyiacwFJA0rHiwlH2B8aN+vvfItpZ0LjZNDGA5J1ApfhuWJapRvdwaIpb/TTPE8JCGS1jMaHhip5o+cARQcJUM8xsVwb7ffeBIlSiGOTF85xZZjyKWKGrsRLukO8BV7ltUrvVcoA7anG3IG/xCzSk1aWn6M8NxrDOIEGeTy6cVB7HwpR1n+kdBj2JejdGK8N78sEzCvfwDcGoprIhsNn8wRehUhSGSrs4KGAlHgePC1AKYWHNAoS+DEWjr0pylx/yDUaI0DVmMj+CIcPgllrnp6WIyRt03JUDOWRkhyDMTmbsrQMOW4P6JWTbPaS83sL0Eo+xcbs9DZ5ArcIBfCeO/pbOFGkOxALJ9d50fHg74c59oikznjaBo6NcVk45sKajnnwa2/gMiOXN5VwzGUsrhkqGyEv8kWCZwOig4aglowGB2xgYSeNy2OQz9O+5mtNHjUwbEAAMJRMLGMGp/W+NxfvHpD5RteTg4HtKVhAoRv9TcjgctP3yTfhWwyi17u2pzBBuMDkZN7uzA6VcFMsSkLb7kxaVoiYKASCNmZQWOFurwEHlIgCIBvK9K+9Q2EOKotoFnTOFRhC0kAmSKW7HlKSBWoi/4Dlf2Zwi7IXWbqjlhGFCvv96RIbG6MRmOSqPAFjjAACU5nkJTgFvtKS23pkNH6RJ+h1SO5LXrH3dkXIpfDh7CvhDrkzc5+3AVOW1C5gZV6ZwFzzwRizSKP0gF8BhLaobpXIRkRvAHzG/S0Vl5WASghkKQxizBT8urvXIDKvZWs9yrMBY4LTMDZqAcGlZ/hJ1SoFEKTymmtd42jWZr339S5j3TgDdlJYy1gKF+tnivsaME0WFNc291Fj8bxvzlfPaquX15CYb0AAFYNO1z4zyuURiSWIBGaVGA4ly7YclzByg3rTiyhw5nzvRjaaKYs9LMitZED+bbjh1mtfVI5ac8cJmMfcatbKBC/Vdp93oOhTYUMgxrhHJGaD4cAxw4gxKe+FLI0FVwys0roTC9RqjXjKQKtOMIPZzpBncB69rEDK6utL9JjGkMACDcdiblDuUAGna91TSbpZeOxMIWfTh6CVGQYc5vABLN9Yw+BzYx4Lcy/MDRwLuLkJuW4ejYlMXjXqhNl0kpK9hbtiqEJqMf5tDDZxTuUN8UCXCmGl3qMcPCl+gmN0MZUMA2Dlex1nMACM7O+A632w+/fmja4nBgPdwOpxV7QBqimP19L1O6AYRvcQCIi/x2S7BVEo85St2p4djHU9Vs849FZCiyMsAgrhdVqojm7Dk7D3xmWt+NrRm8B2kAtmxRSzBG1I8FIZUYuvTPMgKKF0CQ8IN0wxMFNGQoEBI+N2F5qhoUKE0BozCHN4KPBJiwkIWVvAxRiXa2EUCr8dkiaeR/BkuTYIi7UJvL6CjjvkWLikIVi5TstHolABBTYtE4WJfOwcT5RX7fiMEs4mMbwVI6eU6aio0wYXMB5nkDvUrbmmk2ZAi0C0aTX2BDQSUqXIajFKUgRZRn1zIFZZlmFdZqmsvEy5X3baO08rzk7PqiRKT0BwCl2dQClyXEpUVBisum8W8Er+Zf4Jxsj3VTIaTmNKpbAlDSzf717BxuCZHi4jXaCDHnUuHbxnJWTWs3Qpui7PhyV4iO0nHTcr1z1KfMX/IF91gDJoAEQpYoxrRAMKyDsHWIIDtM8GYC9wk+tVlFlf6QHSmiVaLfBCxkrgwvltAEZv6PC6+8jk0EanCQw8ZZYNgtJ05SvD30IemLwBBvVBKdnsbR+upL+fnxngXiDfUz7bLEAZHlzDYJMjASB1GjKAYRIk74aMctgRXp1Iqo6mbBcCXNHSAl387BA6bEfSdcqpMmJTTTdwCoIPZ3jBE5gPJgcjjdOk0QQDbd0oktQV005ggPNM4FpruWXkojBKykKu3dNcT+4ZMCks/u6mqhZOOBhcWfqSdx2F1tyLCeH5JsQTiOwTCNQiGF8vt6LiUXWLDho2qU6eAceAOsXIgVXjit9UQbAX21wu4MLSyV6+K2a1Ua74MFgGnM1pwvkkRbFr3m6I5jsFBKTYwe6LqQw775KZ07uAUGQY4boc3IfZlG2u13C6/BBJRlRwwMicI/eYZ8jrUcsqpaftFyAQTYDM2IBCw7jMB/RkCmWXK8Q0gIzRKwSiUqltwNgU4Mr04dZLcScBNOC+623xEecONCCbyihpsZSYiWH5ri3FBqQVqqqLu0/U36WAexy1Wc8mRUy6tw0fEfMc2ZaWLuDmhdqNxvmEFK4JTF5PDjSiF705lSfYplpEtzVPhQJyeweVzyC9CpQaqn2heF6bLWVfbvUEuvm653eBmgI4V8OHmt2QPLn8W/Xn5pmJH8NxhnZiP0r3Kr4bPLgYDkwFKS8IUX4+nxlnzhBAiJrdPifg5TVuerCSrwzIsl/+mmGC035dgwvW8ieNirgoZ5piUi8KVTO93hV8XFnwkGzh6+4TlSvjkKXeAQ934DRnz9nVkms9g2Yp67hyAt+aty2DZzdAi8TQdF9aem/CQ0D5CcM4mLRKAHCzDJeb6DEAeD5iDQMWc17WgO3o0eLYrdpHxKc1Fn0hebG8H/wumafcAQ65dI3oMOhkAEkv1xa9QTos1lu6olFW8bB03mjr/YTXE4OBcQxgRF2jD8MehkfusEsQ83LHto1b21hYzNh/gLWib/S+AOEaLVd8uYq9FCocay1cLguPbldkHqMEyNoLhzmmGY5pmEPxIINNwCaVPqIcsEPI7TrrYOFmTFLiDFHM2vB1ibmsi0di0Qrmg0XJXvTtr9CDKXvbyXRmWDaY5DvSElaWd4CdGdUPKCsk1sFyjdMyUIavlRsNVPZuHgzuFyxb1NbVoRDGzNm0ruIzy4HhE8Oj5HItNlZKNNsFQ4xFvf4vFybbDbqObQEGHMeELC3fFjXdO9qDXliIfQIDHsIzejExCZDCLNzzsW/DCbZmKEZ4ZAcfQ30d1OTJYXaDdDih5OOW8sl/gkKi8p2W2qASynDAEZ4lClqP7YTvkXSrOfhW6eBkzHEwIckJQgxrW/Tf996dYAN7Yx7AYH95DIcdBjuAcTjGEYJtzIj5bnOMeTRrX1aDnuXZQ2BrH92ZIDoSUKemoCUYq7KzSiWU3NHq8kULhmMDQ+EMjSMVx7ryWsTPm50whytLv+4ZiWBgS3EJeIc8QJnZ74D7JfqagNUV7NlOrywBFaCWz44BmxNYI86z2Eb5Amz2uHewOmc5Qw5JKAC616/yV0BQ7cZEYNuwuYIeLP4+2dgL5L5g79ZD3h3bV0rsCBNNDJvcJypNjsSjKxTGlkUcxD4EtpyJcATW9UEOmvtu7F1Q1UWAjZFA1OEZmAhVmMEwIpWBrCTjl/IV1Ngse2yoCUNYDuF9NKSRIkAgr08289LlA+tSQKuHGXXmy+D5Lgf/vmB47dEFN3PAD2OOgMEeGm6m4bXbjddeu8BtAOsGl2XwS4xhX1bgDKLMtQog+dp5Hkq2jLay9O+7ygigwbcc8HkKtzoclwYe74KBju29CTIBg7bXMqY30rvzpJDgycMEJjSy4Th4+7AMNMAtwJ1r44lQd1qp4CQKTZFOOBdPpSIiqrpVJJMAJBCeZRALtBLBAqHUhZhMFrTtdDmHrFb1APsKuECAMr9rawZA93+5Rbs16sC5CQQYp8PZ3eTigFjYnI+NSH7MRD4oFkgXoPvp+TaFGoHrxD4lwFRf+27piziRNdR7K7myQJr2xsDaXgwafuFhcbmHTRUMBlettccuLDFBhn/kHguhogNk0vU4yvqO/N4SeA4PQZn7rWX0tBK0J5JdAgY9DyHIjAfTOKVZ/yPnnoLHGou6Vhd189P7g56yGdT27AORa6s1sAhXRTJVhEvU0KiSCJECW+Pz8nckgM4Jk7S6VdoW6uo1roVe5fi2DsGC5kEAJKt2jnyOutkVoGD4jM+79uzlWqHGmYE+EzhDWtt5/5wnEDieliIMuPSpDSxbCTjVzyHzNTZDDF4u7ZBRkgOkvR52klDjnAzNk8d52Iix99cAq+9+Ji9H2x96QGQQ5QFCBB01c2MeSUusZC6HFHvIyFLkpTy8vqyeC94n3mptyn6mpUbn+pJHCm0uSROuPabCzzmjeI3fhUtPACZmhZARpC3KTz0v+H2VjCP/DUQpoTv7v8wA2wfpYe44BExt6c2BrZwK3V3yLJ8r73ftHmCnhNnTlXquQg5BaSPf7VffTz93WtG8T4+J51Yr7+sx3Hf3N76e/KAiOz8sZKiIvwTn6T3N/VYuElkxlgsELjxA18sp0SolIb92MU1TyOUQriTGtRccC3MyNSRhMJWshN+OZkKXBdxe6tTE7SvnFdarZfzd+FVNhrQuyqRF8Z3LA1BCWpnGilHKXQZiGevQsTGfbbmQR2uMQftWgof/jXTlNYZOvqbnZFswhTfBnR4busgtcWhatRLazideNOXd+hzsnS1g675tPI1QRRvGX7qw7AfBKFlTXxUTF522e9k1g5zXNLwrybdXDCg3ehP8fv573oV0ulnC6gkEAlBGnToSCG3SvwRt3facGxAWTzswKmkh9q8G7ad563312t25FzEYQ1Xx/K1EOgcuq0BsJJISmLoj+yGoAkJeCFABKOFQfJ7kJyWPtAp7/MmbO16H9HSrPMMsY2CvAJA++54ZshTW5fHazfMlemxKTR68FNoKtShkwd0x8TugUtpU4rTqpQCK9GKP0iC52oEUYZkjwuokgp8Cx0GLQ/lBHSyyZXWtpX4XovD6nvlIPZyli5UWgdODyrbGwricyhNTQUkJx3jOeqC9/9pCdXK7AAesIm0nGgeUbNtXzhKgF2jRHhnXc8B58mcAWtgIzyhGnIjLMGBWma3z/ogOwlsksFhA1gBUr5bzdZI9CaYMJUcIljsQS4oowKNltHueEWDTrta8/vY0QAB42nbEzTUJnIn5+j1mDB005osxV1lFV4xAuNA8ETyYzIFafLM4cY8nFBr7/VeDFtWxshKBPew3dibEaeSbUi6BwGXHkcQEA2HdFcOni29E3G+cQhu8K4FATygbmqP2XEIxQVIjLikmJtMJbCCLeNiwwww2No8JjfuqGiHXCQFcjIVme3ucyLaDgKM74YLvgcWktu3aC64rO/sxpTD+iwylkjGjaxxPL8PeSsgCwzXy9lTSy4l+KLzC1et5z85TIXhHxs91CNWg9dSF7bUiNJlZXPtktxSa1hRVwB7tDyh49NnuqqxZEARSeKwV4ZdwRwPVppixP3eogF/jzKqIVAqMMd8B4n61LnpNoKm/dg0S+o0MyroHl3w7eBCXFXhZeq8BIxJUVTc/SKemveKzszmYozVJqQ3VWRead+cRwDIcHXuO1DvK7AfABmiW1jFOhgZYBbR4PLKOcbYWuuP67Gsl1pSK2R1QMgZgClEOVujMsPriw+d7KUfBMKH4r9am9j1otKpI+MexS+nYzrGMSKSB+nSEN6lyqSoBUN4lHidspUzlcenyKpVLrod2SWCg6D1zZ6zRl3c9oTDAzDm32t3cVAG8M5nr+QtFKXqA7uCn15PWzTFGhJcnywoP9/C4DuABDLeXgYsbJuk9zpby5gWspm7KcVL/CNDwshpOW6vc1For5To0lU6tUFMQIOJfuUtBAnjj6+TFanfwq9e+1PVP7RkgtMth485wmsITovIWX29gIDqPVZwpM8433XewtJCC+eIsgDEVz/MU4JslQ8ry1LCvTxxTc6G9gcvFo8vgJXIF5M6OeSsBLyYYtfox5pFWQU2+5irmiQd2r4h4rWeDxrNQ8b8E3epjsBP0hBXhaU0EEhZIad95nxCYdNkTeMUZBrss+a3fJQgFZmKsw2Ul7QStCrko8U9uNE/3eFDH5lr0Y6FrXUqIbDAJqNOUXKapGIxgsLtGmwWXiP28rvmQRpvSXG79s3T2XoOAtof1ebIB6WULaO04NTKOS91hwfawgddzkCBZ9NbmN3aUrjUQ3vMV7oAfescqdJRTvLpKUFXvDZy8Q5kQnLwYmxG0tKq0jBZY0Fr4eQ3Is9STl2St8h3GoKtpw6zNazgz71tM2zhivi/OQ1nYPuiBCTq+rI2LowEy5GFe0aIcp/XOTbRaf6AMGtHYnAE654z8lTiLBDhuDMchBehAtuRtdxepufHIch3opj+Az9zsZsqwSCbMUmlQmUeYRDk78qB48oo3rwUfjMydSg0mmtdA5Y7nPmRnQ09gF+NtGbxsWtbJKsNx7I4oUBpTbYIyjQPd2s9bomekd4OfqmzfopcOviQrRhhPYxhuJtvRD8e2yN+Zh+O4RMJpvFd3DYDsKL6OrTLocCPJ82EWxl7P8tbc0uIvXypOz6jXCipbkzcSZP3v/fpSiv7pgADwT+EZ0CVZc3cAbWInIICyyFqcXDfL3zO+akgrkuj25EKdqukXEYX1ueFsfbroulP3LvVDj3Ho7PS9gctmCeHyRqDcrmzwAlRlkymcFZkzEmR8joRo1M2PthZt/ZoQTqvOeGLcqPj24LjNPT0BAgI+mFE7DEezXMwM09gpTrRKAu3HxQbq7Qg4xpik2oA/bYGsZ3bUIRuRNhLJkwoJ7bbnkDsk7/b6l+iqMsklaAsQ9Fh6kqQp9l7bd1cJnqnWk2poWXUmRlf497Fj0Xc8lKd0qjX0UrwdyPPtGSroDK5GOirVGtzPYSQtqyO50yWZgrOy8nsybrcrPBfk7vhjbsrzCDRgCvE4CiRkAiFzVwiEZfGcGDgXfbTnlOUer5DCRngbREdnrHi/hOF2ZAhmrwDwOjdkrc2wjGMvnU9gULnwiUA0GpM+LvlVQMBC1kz266CL/uYBMA/jSaXhqYtwX4SyKtwgOjZAdMBWvRGmou+OlmOGrgZbVOtfltQKOESynuf3U4OqrvjlNUkZKeUpxS7l05JL1ftfwOHkJejExPW0RmeVWZcJnEWRaM/knnv7fkLwjQzGfbx8z2VSp7FWIUdGlksObJ4hs7NaR+HO0/P69xMdnscek5K1XyAHQBpd11esw115kq+YpR7R7fzqCX3CpZOv/uq484wvdT1dO+JunexIaU3LmxvZjz3N9W0g+Lyrmownzem4YP0tjsCsHQrLKVyoKrly2yQBJjhZMG2OF1zsBgYWM+cvl43b28WWw9VZ7pStbZFNH9ZBCOtJAVGeB1ljFcPZ0El4FTdTJ7q9K9kuUTIrDtR5WYK23OAjvBIpAKg0UUoys7ENgC/qYWn1uN/m9u0EaqU+ErG2tYKXdb+1oIYS3gKxmrcjPQ5WTz/RCYDa+9MbRCaRQT8lhEcTvC3xKUNNXjQiAX9+jQNtTCZa6cdkwwE1hKr32+kerH7OsUvJx8l8I6ooMu9lxj6zkqAWbRQIsRAoEQILZSnxoOxqS+XPo1fRQCRiXbL/yNUeCj/E+iP507djXepzAWIt9281jwe86QcYMNjlzph4pRbK26syQ89j9npuRYKo+Ll7FDacrDKQr3obN3MxIsF3MBQQh9xcmiFR3gLxI/lZkxBLAOx+CegQpBM/WYUBsoPnNByTnpuxMSYTa3VP5Zk00BfKYdbvnJOw4BoOW569JSQqo+S0xl8hkZifsenbtU6QjFAHwVMyqmBi47u7IQ6Ns6uUphjdEUeJg2NLt4S+XQF3PhM990MJeF0OpQSCWqSD78/QB8ijjgRg6b0VeYKVQKA3ZXiGK9VYSYdOGe9ZZ0pUwmkXTmfvuFz/5+OC+lq9njK+gzf0u/I9cgH6j3aSsfdBg/uf8uTXUx9hnBYKBVsfYKDpAcXOG78nQ0oQuCOTwSTM3SPGp8+pOU6ECQC1/B3TiMod8wC0JQONaYY6VXNZ+A8NIFw2sC8b66LGQiwryvyFYPrYBoYoqIymlFM2F2kLr3kCqTzj/J2Ra+ZbSiGEU7qLtZYc61DDnQGciZLKcsQaKZcgk5ssPB/mzjyAA93dJY/L2Wuje5+JTJbsTilJJShPRwfJqhjIPBEjsPe2ROf7SxFqHWUfVX5AgZw5lSNyGiEFjyiF96LQK/o8r1/9YEgpacysP7n+LEDHadwzwzOlpKio90iF5EvKsDrxyVWa3fUSTAKqASllbWmlq0eEeEJoW0I37knFIEmScrsrZqBb+5tlpaD63lLWmfQo2lD+Tgms7AUhXW9Fy0U//EzLIcv9IK8tyIsWlrIs5MgVcFhzzWZS5pLQLg9MlCEfqJMbHd4Eehyc1okveE5AwODIA5vkaWIMX3kcNpxeghVAYETugPhP613WMIGq1qbtdwIdBJbaYMIjw3+u/bSikL6vkpv5epJ18xQkuLyWVYzTtyqJHJgAg8bdn9HWT/lR+pDYKEjBTjQyBoGttwextFm0HrQSRGc8uno03nNj91e1R+Z6jhZKCXmiBlUCFkYZpM/xfUqIdABbYYDyIu2rSoHOr1qnvZR1o4UrXjq/xjU/ATDOrfGTay35s1m0hI/x8tFpAOGf6fVUYEATdAoMpLnPy4RfzooGKUwklM6LfF4w3YoMRuKfx8BxDBwHcNwAc26MY5wIX7dygY42cAGChUB9t5dgvMsyXJaONt5tGKGoJ+oQIsxoKOTTgAE2h5GliGz74J0hnGd+exDzdpXL3Y3TRpKQA3OHEOI6mkcOQMb8pxKZLBKZcFTNMKERvFU1sLcBcm+swMid9ber72jCAGdhUUSR69sb7IgOdn2IsuwEeUUeOMX+0XR0+nHr9x4myHgtZGXWYB3IQ0eu5wWOrSWzp5Dea9XkOgPTjb8cUKJaeAKAvSb2iiz3TYt7XzwTCF212aTVven+z/4OlmWIe0lBBg/osKDsyT8Qbn2dDArtafOjJQiq8E2BwHKhx98pvBnigTuMgN45V+1zHKO7MYzWk+WqpfV2Jpiij8QKLVSog8ngURK2mcS6QnZDMWGNfevQMFc4RmvM0mCFELjmmcy2d260eMUwcBxcu9UzxjUfMCxnqAoKWui2oBCO8nfOA+VeeMinRVmwJaMg8BTSY/G9zmTfwZCc8fPqN24CEH2ZG313i1wgMZc/N6LJ592y2lvToHxQu/cJDIAKinwb0p/KkEDLlffgVOkJtNFocpyNFYFHj5i+8gnMlHOr3zmPzbUR4DQuTte8OjCIvKDqkjAIB25vo8nc8vAaL8SaePt+XmbKDR0hXVwX38Y9r+FK9kGhvBiXnCv6TO9CO1rycw+7twlej5A9d578eop2xEHgKeS3R/vGXRPoorwGraQRL6V8HvLpeyhXISZLRTAPCzBwE808wl0uF5GSjeTqMhK+xhtK2PfGhQT4+PFmvHFjXRgLZ+zbGrMCAzoI6VRKpcRBzVczaHo10rkKN6bFqVp8JpQtlT9th5tj7B0nah0SmLOUuxmrmoR+DTb1lMpS3lnLaW0vTNIciYgxyKglkE9AIPd1UzZs3CeFmkOjgT75bKSozziiXmh2d1P6NYIOAAi7ul9UiZW4O643ZgfPKgytlcatQy0t/83YTasZV+WAEwQAaxnWhQ2GFgIYrKA1UAlXlQCfvcK6WRcJODWlUbgjhM4YxmczrDAKSOpe1cfBU8BWlz2kEs3mSQkMG78kYCjFWHKHvAKdE6FFYrz8at8k6oI+LAEN2ncdfx1d3diOei+YTZ6v4xDKVohtqTqGc1PDrMUTCOu8ggAWmkvRn8a+MQfF4FAyIqAkvAgLMokXO+lQfSFgiKoWHRSEAFPmkb/E9hxIT5NpTREKSuGmHV6RbREuuHgk0+qUxFAIAEaEcsJrKC8RkDkartyByicpci8AtrXOem30vA7Fhbx4NY2Hope9o8a/PJee6yqwFe2bS/APj4i+L+3lQIULdFAc5cWIBL2dch5oIj6rJxZ0ngLa+0aAhgwdEWQRnG8mi18uwOUWuNxW6WmG+xWCVVfLk3Iv2s+sgcI58RppNmWanz0DCdQpduWo9P5nV3qaMbn7ileBJgv7Vtfx6k8KCZ76CONCQcqstBrQlUA+nwVkRS95NaCg+8itJcs3Y/QMDzA0MLIDHoAxaQGcLcCOotZ2hgJC6T6+je6C+7KxL7GLA2FlxS0HFe6EmTqjbVwrqde/xDycJ7VlumezmoEIVaciDodNS+Dle6A8BygXtBrDWFil/UQ0Da8sw5HjEThKC1NyNvm+xm254VTuqRTuzr08AX76HvBB3eqqoXMn4KQdSWoLYZxHptqTIeG4BIhU9w84LuhCrMbMdfCaH6j8TqDIKYXcMlapO+2NiLu3MsKoJAB/Dy9B9dmI50Y1RAAIg2Mx9LQHsIwhr6HyOX5n1vgYVB55kNE5/ltzQyrdoB1nSWkp0TIEJYWCF7qeHw71FIWUu5SQVhhAHBIkv7DVu2M8DrUH9uYudvesmgGh43DDNAnh8gLF++NEu8jBMFr/MdLyeNW9SUxobNGwqFAUrdoBKDylsuKh7H2BAWodG9HxU9acEj+JVblnRSMCXskf/BpU5NEyeEdZNIJWduYDIRVuAAJQ3nnNqCX8iY4Npfw1ezlufMtjBwLOBgbkoezW28nKFhg4e2/jyzNcoivDB1J6dxSb9rFoE5QZeyDaU/IeJm8J3eYyzpjCFkmpMoLSO+TpQVrLcbl1XC6Gy61Hx9kL35c8qnWJSY103/ed4zVLk1sLm5omHnfKj1bLIdIGdWaADm3GWbqZW+SEKvSSXuAaI67uqyq76i/xpa9/ijABf/aIRysvyKycRDkgWdNt8LhDoO39CEQHob4xYNMo8MIbcNxEqGCq49eOiFCY0rLqY7RyQy0w0/iysfeK8wYu8X1fNnw5dBp2ejkpYOI/uRrlOnY4413AXUH8uuuXLlklN226POlCRrgtA9HJ50XB4CQKSLBXD204gX3rE18PtVwLzclJI90LaFQGd/cmNQokWM87xnuesteKcfpoTolO6IDA22t6nMM9OkpuDwsrSrI0Hw2FMV7EhDKJcTeXb869g0UqRBxUfAV0OqBqqiVnJHewQfFqL0/AljcAGSpY2d+BNG6OqMkLN//eBlvAnvF5MA4pJTmGdsgBlqUZO6zZBpydtXuksoOA0E6ywJCgcnfBl8D5TACqOx+8u1t9pgSjt8Xqf0MiTT8pbaRmkNu2YU6k98kdbmCr6eKF7FuQA7J8vA1ji2LxKe7M6TQ+RD8SxaOjzLm+D8jSFI2VAhrmVVBkLYfIAriFB8XSSuydI6uRVhwGVqxgQfcU/ruFS1WtY432a5FT09YMd7nqda7HKWt/0991HSLIB+j1q1yL5BOBAmT/g34pn2CMAmNzRKhkePBJ8bux7fCZBm2Ux0WgSB6AaMFiDBEY9ih95DsOJ9qL7eUJ0G8fL9w+3ri9HcmzmcxIQNS9kMYuqb2JOMiHpI7Tot/vnWxrgsqlRd93yRUTvcpbxkfJU2kWTfRMHkHd4Eq22YoH2X20f//1dJ4BL9R2hxARuDVjlzuEV3jIBtSL3L0Rregtb+WZlWvU71ExYLC5cUzgOAzzCEAWkwZ4oGZ5BuSGkyraHsrKnUctD/jF4MuxLxqH50Ee51CZMZlHBykrl9xz0wCVL1bsFf35J0Kics9s5yJ+M8gnlCAqwQdDGCKS7YDtsBT2dlwOTx9AClnWQkZy22iYVkLC2itSJdcoc+T4z+85X+Gl8CuBREvwGk3nX5DINasiJGigZB41ix9FPw0M7L2zmsmy89xKwOQeFSPaDz29vipEISUJrmkMz+ojoCUIwGzQohkB6OTyXHpdXp8Cb6WqqwV2ARZLIGE2sW1jmWFsxjmlViyEvPlmAmlYPf1o4+5CLAeNtde618Ta1tSaOJxzZEiGQK4ouXNIf62BgQy/oHCk1+Fd5RHQ30iP27BMcedIIrvbxGjQrc4n0sIHz+bYvggOKbQ9ZhWKWcjBuZ4Mv42R7uZOu2mFoeUmAShiKMUHGT4ewJ7wHY6B4Zbnc6SZnCCq8buL56JxF4YnbRYgIGg5B8qDtgpzRBhMbnw+27chnXQu8SdA14Vfk/EJuupZ7hdIoYkfjcrMmmwppefQUcoV8tM4Wb2yGMYSCANw7BnzVF4AG7EFCGnjJcC1Mar/hCunJ7wPl7VxewngsddEerevlKYShCUfQjF3+haf9HXqV93P23pqGbQ6/ZOZc9IUpINrKh1HXDYM8CsAcBq/2Um+P8n1xGDgOG5wHBPVG98wx+BBOOFCjdjoxr4E4d9g4bKjEci+3exkdrCxRjCtYEQem4pbHIc6DF4wjCV9Ezim4cENidtZO3ozuEdR56vkkFD+A2BoIC3hBezHG3MdsA1MsOUwCS86C0bZ0JgDPjaWR+cSswvD7ZP8MBpPe4QbroRkZNxW3oAAQCi0QJy7IVJqGtgsb4gND9OfzBJuylijiQMYjsu+zWe3UwhgiHI3dyJkIPoTTMUqmXeAATDkYCk8AUgpBxKsbHP+zl9hKBcoVHKGwXIZrUYw8TC1dTaue4sJklPcLe5DYBSVJo69LwEQfcThVA6WUseYTYLExUBUlqQ2V74ESjmpdXBYQBEamuS6xaqMlKQHTok+ygtYy/Daq5egN2cS4fYUROEe33BcUshFuepNYGfEEauOSGhdN+F2twHMbVWCOAbmESVjk2Vn6tDnPPvcLFwFAZac1SurBPaykvkZMvA8TyI+F50jz+5R8HmD9fbAmFGzPSbj6YIuzdp0KTpbWaUQmeU6Irv2RJUD24FtGxfbGBbyRIrLoJJjo1Wwgwh0Zu2Y6TI2tRrOmYTsclkcALBj3yKBd6a7f4yDtLvowidIvMQhbXMDN26RTDwWjpYEF1Z9HFi2HNhr4PYxc0v2QnoVsSR4cu1yoogW6dVsaOM4ouGaT4KCEXQ/hjolAvOmjJLgCQNs5xraiJLAManKLLymBUqKvs0sxxqHcnWFFSevOsg68i5RNtS+CjwYbnn421qIA7WmRd4WYp0uSwfMhVIfHnLJLCSZzdWysBbWjoLyqLIZsd8wbB+43AKPHm/c3l7w6PHAa68ZXns8cHs7sS+GtQbWCtB4HDxx1yPPK2SzB4o/gYUOBpWcfAUGeqiK/1yD876KVx9GnK+jPJugBb+pe8ZPcXLofd0z401R9YLTWbtvfD1dmMBrIIle7iTcMXbSMNNwJZQK+QIqDTlbXigXkEAHFfMcUU6oWl/nc8ckt1ndNwuntdQCvTG6YDopm10bEwrqzFhCEUqWStFIEGDthWukVzF2WSfltlyXzY5/O9GfnpcraXUnZRSny9QBX45Ft/HOjO44PjkEy0jraze38AbyqGkB/S10b9ZKahyym3usU8q6AK9OussXqJRCCWtfr6gJAgewsgKKloCeRQ4Y69XRPCNCyGAJZRGSCze7PEYjratznNmbcorXzAZ0sBYnSznJdZ21z5HvER0H4axg1vmhCch6dzfL+aKBoAJLwbybm2O0hCLPIPIbxhZItTzn3EzQh95BrltRRdsbWgzBMiJkEgM/pJGL4rVbolOdeX+q7GiGiui+nwu/uS4CJaVFaq2uE+2iTLZkSYFUfaxACoa8SwT/cAyPw59ikWqA6brnx0c+QWMo/2eJ2iC+7QbbYQhsj452WBFEzFvQ07O2RYhyA/AJnn2M8vtqsespJxmSlrhDicd1DVSZcLntuzeokgRamCfd4kE3vmtuSJ5Tro4mBFQ799wNxCrLeo5+/5b+I+vTumd2Ncz+NneFEqjcGYuXw2MjtxtA9ZKIZMUIEz124PYSX5eL4XIZuKwAAHvPOp0TG8AKmTkUvT/LMoHwump+lkCnj7++GwpPNGsl18FOFNbXlP+K8Ub3AKE+YyWpz3WLFlUyVxT8RtfTVRPkyBrh5vhUViTitpMCqGx2TwUbG4n0NoScqux94HySVzQaYq9yuubHVLJPPWyYlVw7cU+dcLi90HnMg8p2DLYajaY32ftec4p3w12HfNbmmCxo6L1Nmcn64teFXhTF0a1lDee6Sdjyv2EzPAUUrovJkJH3qPXTqLKpZrjClmdM21NZaeTIcWavgAQxEsx6p+V7UvHKIvBOF0Un2dAk14tgJt2JOP09EjVHCTIoLhkSYRtgPKRmU5ButlKWsg32CDU4DwoUKv2oHokSz01gsS963EogJVUa1pSnjTOcyas+s6xtKXtdiq4xu1sADAWYlIgaiVYCSwNdqIhWstLBRBLO0j4KRjOoy5wO+VFLCGTJYlPufhLVufmbQj37Q6SiZsiG25YtuE1APdZG+5qtcCErmeAts8ZRmf4C0Ck843OZgNbwU5c93l+jQhvDOEbyynYsutdtSxFagY28j2HXQadUTIRP3l3EnKEPjE2nrdEz1DxFyuSPnB4mqK0AjEmbySZPJqTbbiEt7S7b+LOaEGH18VAmJJ95WL7c0w3LmH5GKfg5GVz1XI7DFeRbp+cDSG9eTa/FLE7v7fKhgGUTfgA5cUOKkfvNM943v4eIInD2DWDi1h2PboHbWwswsMLLshiOUChCBpFBfWXi2cnD5nFU9ikpsn5O2Z7zLf5JAyrlp+6tRW7KXjczpCcLQPa9KUq5Uvq925WjxmFtPnfx173XU3gGzoSb1sEoJbYhyzoaZ/SBSFksD2I0xsLivI3oJhjvr7rg+i4a8bSkPE16bpQHIy650ZOLUQPhBsef1Fc7NkAegeM4srtgAYGI46YylOU8SvDHnWrVM9kPgBrN5El2q4R0zKpRhKxPk0LlWgsY8UnRKIY3GPryXK+BtmOuBK6gfDvtS/CPTpiUcktFSMu9NrOYuCv/+5O0UPuneVwp/1o50ZFz/0YoOXlBPEq1xhgRKnFLQ6Us4BphuGnj+1Dt/kaWk+7mVdbrFRCnW1ZKwIAxZpR6kQ6HTWTHPtW5M1fm3IOdYMjCZa169Dk997WvRipnR3Sk02YK5JkS0zrVyGtSyY0JCdMqr3wdgSaFBTYXMLsmotMmTyy0AkjKVK5zJLRsfHbmbigkgEySzc5ubY1Ee6GoLOXIXSHWwmlZ6okWumeFAYK/hvZcMXOTC3lXuZkzT2lczbvM6xyjsSti0OTmaoywKj2UoMayt0JItLypuM48cE4gu3vZ6XXZY+VZ4RrsqMIwQxoKCjnG4WpBR9v7fhlgk5a2w3CReDxRLq7pU18kPo+yhNozAN7ASM2NsvNqqjIme7J5hIDEGwpRcvddMlFyeJ5lD2XBZQ88vgUeX6Lc93ZHn4flMgA876OzCZSZUwKycdgps7zWUPMs5e8JTrqHRjlI8d6+rg0UcTF81L38qjKjPtN/is9V+JlrOvyez77+9VSeASXjSDGH0IyYfrmconPenMCiYisGY1ensUPOw6PPOdCQaXe5XC1E9zxkKQxjwaf3Kt7CezhQ7rkJYJUlAaQ3YIyRMbkx6xyEenRqXURyD4eSAK+NgfGyshLLKxCbRgsiW3qGYLpO/jw1U1KM6PQkWuQezDGoPLbGk5pSSkpCE/RMEAQ443issz6PgWueT7YT0LqbgU4lrKx7CcGrPSpSHu1ziJwSCxGVaBeA0xsg/tmreTFS+PVnBy1dFvJ9vhgy2cBlG24JhDYPtAGMexASbVh0nJxU4g7gSHqzU2mhEwhk3fS9e2kJfCQ8r+GRA3SPMr4tFy8lqY7fpmpm8yukopfg6pUDeQNvr7tyCtr6kBakUHLtJYSV52ECifXlfa+4BgKYGZ7JEq7YGzUdVvUHzDNz3lCH9mRCF4FMgX0PdzL7Nmwg+xaoXG17CeBIKJtY6pHi4V1JUZ/rQHrP9Tf2dUCKlOxzY0HD1Y8+vI5BnyErBt0oKudzHznX5OF7LlmeSHoWjcWaJs84qgbfy5hwi5DGGErC1LkJNKrMU5PL+uYImzokWuregaRHMWNbi3IXcxL17ZxgrSsOaFKX0b3lhQvDcNNvZSQwhwErxrQBgiFEojSnc1mGxxeL8t4dIYLLLjDQxCEMeZ4kiuK7oneUFd/3yTGnuigSYOZ8i58A7xGqN7zkCNTaVnL5tW7h2pvex0hC+8xp8Z/geuo+A/3mckENxXE3mNzFAZkERyCxJaXoYVWk8vNSFEGQYpBiTuB8elspmB7X5vs3E30asBCRinmOm5HPGWNgHhPHVPKQ2o/KfYWEsOZh4Z3rbmtZzmq6fpNQloU+RrhUS9B7Y9KRhr7yLUK4ewvbUWmZFRgxIDtfiB/lOqc+j5rgEMC3uVZWfQ52pVx0IALX7xREnOGZWGshrg8ael1q8lxaiAFToGQopq2hrM7W03zvyjuIo3Vj7dWV8XFkK4Xw3pOWwcbyETHdtVuXwNhjZx7KGFEONWd8B+WCcbxqjbspnE7NWbRT1l5LOpQX5PRWyFVeC2/nvxkYWvM8TybKBMPGq8xxNrbiXlkqYGOyXNGU2g7vBAhBR1H22MaUfLCgklbIVE0lZ1DSmXsp/e1R1ZI5BPJOAEyEInCwjTjytoBdfgHILnzNolKuTyQlx3w3ADUQGmpo41HStphHoJi4TlAso6UrunIZR7MfvWfzGSNKGZfAkyNPXU0RyGeYZSMY3XOgyzhdiownBeGU4FMuSVTJm0GJu74GdGCSGErt2rU6PkjvhjDOPMJBykdKgeFkSD37JPcs3+NAxadEg33sfS7J1REjNnqIMUOhRdhiNMMmcrYS/wFwm0H3cGD3MzXCC3a7DLcEA76jjPByYQKkDcrRXUaKhXEEkXiCARpYZ4HK95XBs/eAD+VYeALNlM1eY389eVgytHRC5n3c9xHKZN035h8PCs/dve61172eyjOw9wYWKqbeeserF7Q8BGBMkaQHuciW08XpGicn78pCVuxSypgLRaJyyU8rAKCEt3BJ7urop7rvBhKcGdqHqb7XMMbEPOqchO6e1/dwk1Yv7b0IEhLM5P5otCFscu08BWu9UwlYzFeY3ixbVNMlUzIcihYdSJUsC84AV898mdQCPFRUaru8tg5MouucZ76HK1drTkS7kaGY7VdCioMphVdnpKPtk4DKqYZX60qmUjy65wrIUsmyOSlAKDZHBjRQYDCRaACD7WMVUtnNTe6qQb44T7kbUGY9XAmBkRsQ4SPgmNWLIhTJbhYg4OrVnsQtxi6g1wHPKSdJSjXnBsa6qRW5iJHljLSGtkD04PspryzpUIqQXiBWF0hhLXpKtM4hvEoh6Hc15Ol8V01NStDpZ4HfSOwsEJAjS2ApZSjibkp+0MU92oEyXN6o8IgFnAkYxAt+ysuT27WE875yatwFL8E+PWFPlQ/xkUkXO3xkORxS2VKOILwbURdewHaMZqRwTcaQzNAa6h5XhxvRq1X8lMsQz2UpqCd4CYVgHnuuY8KjhNWTnkVDXQkqZyDWo++VvKwNrGr9LGgzFOy1LLVcYyOICN5i1cXSQGY2RHQCgQQYkjPunKOOqWbXUGclwQVYe2Zy8NoGB6tsqPzjUD15pJTMm7sU40d4cKuRkryYkrIx8b6nVf7cAYx4iouVLF2cKninzZYuCV3aQdi1m8HSW+iDQNssy++f9Hoqz0AcfkPlMmYBASrRkeBUGnLAccn2jlL0EPPL7ePlBTgdMGESZlL6IbwDYcdmbcbj9Pd+dOxuVk9uOpiICCndniR4d/VO5X5WyuQMcE/bmIQPCh61SdWYRCiS2hFqQZ7COAiu6lQtpIJx0CKMmaRw8zSl8rimWkf95g2YrFCie+vo1yh7ApQzwLUCra5TcmSuDjRVCePOLGXleyvXoiWng3qGLMCwCMbQWeJ2WlNQsEqpbf5VyFsd1VJZbCV2bQUbYSrHcc0dPL3SyiPCG+ognKjnD4BgGJjGMyIo+SrbumLQllqGl+ufUnhmQJ3up72lZaIs8fyoA40v5CGQCxxLSqUemye80aK7MEHA1cufCZdrcwGbYN8SViotHEX/vcun2SCAL94qgV+5CPkaZ5mCU48B0o1aFT1OMFBAZKC8BL4KdE4JZo8Euu0FPAjFEjgqLJKxfCq38pgYMi7d5gTxIa9pR/CpElPTujcmbvH5NDoGrXPxRq4XFbt7pdn23gvK0xBwN6M7WPX1ciK0kFx0F+Ufadnr2GT4wt4Gs91APyI0dxJg5zF0gOf9fY5O6fkZEWPwd9s3eM7fiNaOY2ARBCuGPzb7BHA9fGhYJR9Cdjm9eyHHwlUfHj+VRMsjNixSHg0BILftvE+U4p1mkWvQ8wU6uAkaLmHZc9w6OC61EtSePUwo8+p+zUNkiRdCVrTkRjRKTD4yyfcAVqcBPOH1lKcWypLugl4D9hLoM2qju4svkEKzLAgKDGRSxGIcIUWYbyPB4eni23vALsYGQcbknHLLKVmpQgReY5ySqVKyA3l2/LxaYM5JnQArjIGmnEFw0I/iEWIEAaxqq3uDISVBAmaLSWUUrvweBrKAABjbK7SY7uy4G7bvKDODYRxybcXaFDH6GVj4LtcaFQSoJEXUlfjiV0QtJql71/cuDAEdoZrHEZvWvGho0JTbrpbPVveTi/L0+vlSrNsMTLrZGEsyckCiVsJhpeVFtifCiD0a0ZzKQ5EMKVWPv1/kT9cdt9ajt1vu0kDrshMApYDpJmxIZSCLBE+IM+8RPThKgUZvDd4jMYPl2rkPrFsKPhZ0V4trrS/XpsmcqhKIFxz0PHgDXVpf26nEatqMxbc9DkDN/fQW5KOJO4fOHgmADnkkEghwT48626F3dNubVj8KnPmmot8WceVNnt2O6EWCKBXcnj0rThrOJKvO29UYou1VA4iSbWGxEFD1dTvv172U7aACjP130mB64gkELPdwoqIDo+4BUjszu32UzKT2qHkk/WjfpWjOZbk1+K6opNQi3GMbqcjrVEoNSFH6WNQxwYoYAzbzyjxkqOayoS6kVPYKc7pniEDeTWF75bnRHOD8N3XPwLBFGdrnXT/nXt2X73DnpXhf8f/1G4wAQMCi6Sd5ek7ERzk6UOt2/ThH0bp0lzvsjgfhja8nDxNww0rBc5GKMzghFJMOw5hRDjek4AddvfxET9gZ27HWZvmcjkIOUb6XIZPcgSgvQSiyPLCktfntSjfGpSoFjg1VvtjnlAIy3nkGP01A90WXl6Phx1y1feqGJ7QZ0mBQuuh45smGNukRoPJT//w8nzuZDlB53Wbm/fDai2FUNhxLwRRacpkjUJay7wXF5evjpYSk4PPKcRaS1vziu1dFRvbSj14xY15/dgNZk38WMK9Hlf2ZYX36CQDJ2hhZv1Y9EU6lkLsS59RaOfacAJYhCKwQSCdF7X3nY856RW1DgxadClaKX+sn4BQWW/6xZ+vLJW87Q0dam93GHhYjldKW0IyW2+n92EWPuyRmq/eO8U1631KoNOu3FIbWoQBBxj4pB7azegJ26suhz7sO/DEma07F2JGvK0wgWhrkDTMQBIOCUSEQOyVQ5jkGdLPnGQd0LZtagjsSTOQ+UXsbgaGa0J5otPFd9ZRQKImu9Q60TnRcculk0blRuSmsahnyUCKjcVxJD06FeudqsoeKU+G20Omj7d15GDGPwYoZJJCsuXelU653VTEMBzKkxHhnV2yuvZ+Aj+gvgI2oppH3hrLBuH+gR5j1keHxWswbAMeomzMskYmpDsAGFkIwOysSqui27y3lRII/O70lIVxfL6NHyIIv7uyEnz1s/Yb3eaczbeP+T6Dr32icZSfg86TXk4OBlrwmZV9KMSDqKR48kP5fKdtBl5+moeltE8b0ZOZt59hzfYYEQCXiDvgFtHKFnksZC4FJ4eo44nHKjj1f4cY6g4m2Ejn2JJImNFLWkVsKmKApZoEqCkx6U8bYkb8was10/8xo1RCAtLxSkQC5XsQZXKr4QeEEb8QTY9U46yjR/qB0Efq1i6/Jt/vWqevzzA0QOFBiZgmoDgh05Ojdy6++Z8CgvcUlivO9GzvqqzsQ8FgbnWWvdJtIqirGn4MnV+yynC3J13JNYo9W7k1ycIbN4suYF+HuVa3SZYyEdAccOedyySvurvnXeQyg1at9M5jr5EvkHtu2sJD9yjjkuobHKhSNyhCxne5xbWxtsxMQaGzOdYlMbUtPVwlQfv4oYhogYMr1qIU5l3dxPVxyY7f5Is3CrFygV0C5IgGOQlYMegsiObivQQlazuA8/pOw1V5zZOTbnVo3ekzk0MWnCbxL1pmxIybjrjknqPV0fSlMoIoS0aVoX7xqpuTSuFl4xpsh44A13k8wnXJMXgmF0zR/yuNCtzVe6sLt8oaBMMrOPMFbncLCm/tNj448vdsYjia3VsWKwJ5yxMQnuufIx6bMRAGnSJu51jW6rvVEheySRgwnUHS/so/NGqNCP9fXNRgIDOJXf9PnRu5z6oQkgKcDAsBTgIG9dyC2JDLFYsIaV4JFKAwniu9AYJBgyx2jJilCN+G2UdvUEty91M0oAKSw3Q1qX191tH5a1GibqlJBKzDQkmLOm1v3PwOSWviMRd7Ba9w4V5zvOqakxMA4AtWsx0eVNyBkqftJ6ClsIIZC4D/zKA0alsSQGf8pQFmqRzQc9+gNyq10clvtTlgdBPS/VxasXr5/TZKp+PedplmFCZKWJWxSwF4zQv9O5Sqm4V/CeHJ6SxgLTzAQAjr6/AeInWbwGWs7tpSM6J2xPrti2BMG0WAFEOj5aMAy8HH9DiBBIQkbbdJIQSM6AFsyD5bT8e8S5Nvl5aGyk+VrFKhpLQdNbVmZfbcs8gCwwwqGOUN03O9ZvJlKwDbB6LWVSFcwE23UKrs7xedQ+1Up9AvXcgI2Bb1PtLl2nSBqXp7ALZ6WElEpY1byjFyXfG1XGOgu+Ih5wC9iuSt760roZm4NaWcHXWYPijsyWm2caceljKhKjnN1VcjDMRjCEm+KpVHAocC7suZDNg/j+gxnyMFzr+4LVkg8Zqgz87CUi4C2dkUXRtAYuq+S80yZnKoQUBWMZC35xNlJ8hgH+rk28jAF6NNeSlcorLxTPgIKq1gWPGQVhtYbwUPn6Z9BXwcLysGoxGl9u0sh59cY/pKM9pIxb3RVBdfp1fZZu7qfw58SEDxlnwERQQnIeu1KISCmP9NNDJZD9cxIKTQg218E/zAzOnIDlMCiLnQqiUlXYFo7UuS6N39vAjoVbTY9CerwM23gHq49T8yRmrPEttYlIQVwIjBlDTvkgo5nqrKBAn6AQjj05qm8K4Vvm6sZxjiiRIhWt/4zLrCAQQqMGAXOigea2D2WPv/qHWjlQuQnded4ZriAT5/JA96RsdTQUy38YMDZY1DTTsX4hvxjiVyUztemJpVKMFJMHuuu9UUmarqvTDJyG5gWGd52UtwFBCQQzTpfaB5FD5oaYXBTkdcOvrOfwDeVNdSBkQBF7X4JBDZj5aVoK1EuEzG93Z1C3DmGLBx3NHDrPJ1voi9ssNwZhMe4tNdKHtMTypM1aSlVmMojVGPdOyR6Jd+q0gICQhKEOpjLa9lVCrwBV+WHwEzOWb7Js+iu2QTwms55Xr1L+6aSy85boaiNTq+7MhJaO91DckUuexTYEa3uFjqMIpeSNZW4iQRobtHD36aWtMBqjHkk29RFIHfyTmjtImkPAsAttOcObBiM3TyzedfQUeuUxxCA11cYaY4VYEDdYpl7sE4j48oYPQLAGaTs8ACHtyoUkHEPtctNMpQEk7x20Zv4jnkH3g3A3T5tp7W716MNsr9ZfjbkhLW1xf0XdYE3ysqxJzC/fk0hxye7niKBUDG7iTEmgikXy1UAIBowRBMGA7Aw/BbHMNwcnjW/8yDzYqB7AzPph26lqHtf2Huw1ju+X5pFAHdaNhWPE7I0+QrNYT5ZR0sxNNjIwmZk0QJMqHHG2emm81BYKqc75pFkLD+dExTooJcQxIyZwTD8BoOnv/mOZMJ5TAxnouVh1ehoGGysOCxJ1iIPc/F9QFnklq72aMoCi9wMm8CcjjEXovB5Y84R5XOXjTg9cmIDTKALgDSnw288epCZV4kcKl5+Vvy1jgIY5SU599uP8c5yO25gYWPB07oF9di2sM7LZ60M352/y5XoCeBC2cxxg3kMlpby8ClyyHLVA8ez1g66vXgIVcAjCcssw0jrspBhK60VLGviBbIKmDEO6OWhkrfHzeDmmWmwdY8EdHwvFCsngKNVqLKw5QqtAL4cl31BHPIkhTuh09oShJhip+DPMZbovOhYHnsR/DdSeYa36cBaC6NZ3vOgEtns0glgKAlWoS9oX0YK1zEGZnpupDwQQpeVAZMHLG0DLraxfMP3pd1r0oI3jPGggA/XJ8AGAY/roKiiO53UqF4bg9Nde8BNB545Io4c9DMNrGIYPLJY3jlXTmB5P7Pig8DJg85CQUeXVaPwl9tc3r+9b6lA6eGhZ2ML/1DyOBy3a1GxGtcAiZ9tV+jJkw4NNib3iuEwdt1zA2xsXPwC2ypURXq0tGNwg1pWb2MOxkKEXtyiKgeO6BHhcKyY33bKJE4j10yBWnqMnJUkoh4DbubAHgOvLcet38YBXjhwgeOxb1x8BB0TmKwFotsJv0wqcOMcxa7WdLNB5d/chjTSHIMeZ6eOMOYKOeDss4EduW0EEbslNp66DBl1EZ8zrPbnDALuV9zFVzFAS2uTe+gB6NSPQZ855Rw9wfWUTYcsLXAJyZ47IHS+1sJaK8vXvGVRT7OsAKBJ2JbAkQ0sYkYpiJUIclo0B+QCDT7W4tLupbXpEnQIEON996H7kYlx3pL0MuQ9ZbUZmpSt+6iREMHHSI8F3UoaVxMGPSEzMu0FeIhoTSPrYwXMVgANE0hAAgzjC2aOzUQehWVcGqU9O2LE4TJXks8pUTQXvEZRV4fE7beW1JRb1uiz3Oqgi+7cNz8VCz0d5VbUP6VQACC6J3YrxvKZe2vl6E50R7bETQusvCnpW2kMm7SQNFrCW+vQ3X5RmjiA4eC3KOtyz+qV7t6VJ0EMrsmWx8uv6L9vjlzgtKblWq6R8T2evLLdQpjCYa2jZ/Bk1bOHkCF/yb1u4XkYrgTNAZ2GlzSRAES5BJ5zMnVMUsvpXAMLkM6Nc90HAFRjjzgVMsIeAgO0buVMcLDbIH/eciGjZNVW9nmRqcYo+Ke5mAGD1mFYaOH1Sk9FXjHB7TuVQ2Bkz9ay3WgM2RWDLA9m0aro0xKIlwfJOUaduxEfH1id/rhvOrFQ81k8DVG/D+K2gbO88XoL6QdFA6TnAJWkm2BcOGbI/W2nPDHr3hHyTnpIHee5G2Cqntkep626zi0BZeNI+VBj29jrKIUoHZXsIsV69oAeE6mTgJCDVT0BSEKkEgbQS9ad+sj7womZTbIl6LeXj5ZMvNY+tfS9Osm5WI5OS7WGfXxPcz0xGJClqFIZY2wGZkxgZrMLDyv0clnRDGJLG1u6+F9/oAnZYtIZq5ayxynulgtp6jfuxVgeVszJncfNEnHUKPz0u5hIClHP6k2QZPEwx6UYnsI7CcNBZS0FHko7yuzU6dCzx0C3NMR8BsUQd1YbmCn3AJFwNS7QaYtj0hqwGbkeyurlwyNR0cT90aBnWCWJbqS1WYDlesfO8cUSm/zN+RkJ3hbGUbZ/udC5XhQUhpq/BmGGooH2xAxfwVP4Vwkn8j2WYSi5u7XPlTQZe1wudG9jByqBLp02fs4pUbJod/Pa3sCpRlhNYWTlE/W7Aay/H/QmGCxJ1eE8vtpzLXoypwGlGPV1zWXeAIHGmUm3ScShhJ1nO4wdlRYWrcRt0MvHPAI9QtZntdfWoNgmOOVcy6Pg5Oq0uHPE2lFKR0I+Mr1qjNkG1jfL2LqcKiMleZEAovqP6O9JuXdouie2AZBdgko5LTmFrPkhYMj7Gmx7AEPHKT4tT2M9oxkHLRcr+aTt6znebLmPHQZmgisVoGhIOAwWjXvGtPSkCChoX7KT5FLVkRFMhZdJtGcnjR4CcoURDViECXKd3DNfWLQRZGEFyI1lyObhNaS8GywJL3EebvFNOon5sg8G0GQL+5tA68R0QANr+VsYiRUJa4s86DEVzzviCGRITgQSjewsWv+nREmFbSupvNPmXcrLXcYoUYlOAdlxtDIj6a0Infw011OFCdzDfX9RxjBdgz1zxX3jcnFcLp41oIX+9HU/AgrFMRJBhVIx9EYT+dYw78h6gxsWG6hNG3S5ehKzledEpS4JWykImxIqq5h47lpSJDTbhUypkFyubiocoeHqawB233LWVcu9x9lLODigDoPyJsAi9hde1RDQPle4swQEhhLWjLkWFF4UztnL3kMZjWFxToQjzhmX0M7vAgQi7teDdO11V24HLfMTuvU8ghRAjhG7UwaJvAlJT+u4gIHK/jeiNDUtWI0mH1sNPyoxy1rZp2H5Dm9L5qIg80lg0p1+ohOBguteEgDBGq1tWddmCEuNbnuFCWb4pJEtfcVfAFSyFeMQYOIzTHPanHevGoGMKAikgbyTCQfQPqSI4botYDnGZH7B9jj0yQQO4ojesYJ25qkvgW6lMfIZZkU+gXKSruw0jOD7vR37Ire5M+FTycakhbWh1t5gItoJDOSeW9FGAwLR24JrJYASv6SVrPQJKYNg0YrJVrc+KROdplp0vAd45DTBIHQfIK1qLRPzV5xrYdb2nzwWoaba5zRGCTZzHZXj5zTOCAbGZlh2IyxvB/IMCCsZKDlcaxbz3C7ZKkBeYVPYDkC7mTSbXibu9yjn8HDPxL6Z8ys6tLHDyCFNj+kYyzNEClQuCiUlhi0Am4DBIe+KnfYauRawggfKh8j7OemUYbT0sPrAWpda+wThQOYEJFFXfsG0Ahzx2S5H78pV43vtCt67RTKv6U2cVIEt3LnXG11PDga8+rBnWdSMBZGlOmcMRCUecjeqGYurB8D1kYY17dIjEHHxC2y5KNAJCQewz/wOywFUhhQmkItehwz5gJ0W3/N+QC26tYx++TLk4hf42TXcJmgGsqEJ5JINzSTLf8zIgZjHDlAwVVEQwkVtOSXKxWzyKmTOgKojpgcImJeo3R9oBD+jw+Jk0hG9AJshgQFgStBLaGwJ8C6dalfa4O7uI/VBWjlU0gMhiBSnNe5pVe2ww9oo5ubCImmaiiWFDsqCDwuFfSZW9wwoPreTYTeBgCyQOjzKlWdG4RcKM2/F59iuMRZYlCVRJX4hSCxc8FNgQOdSAFIzxiZJ5gM249AWG3EAjzN+H4l1qsSJuZf3psUnFe/OPAsAFm58gcxhFkcfn65rkC43fgdO3b05Iq9nAGvEmEG+aVxR3xM7XQunBvCpwNKTtGccLLVkXBAMJHDQHhX/qbwrLVk1GyoiyvIzwItvTaE0eQObcja5vwEZF21Cgu9prFRvAakmuoh3hVsClFPZ6f6QRWypMCe0Hm2LqeQLdOrZ8fOcIftcQMsBNcbaBL1jkN/UvdJYfp3PEY13L6WxwyvXFAdFgvjQanctwiihzAHfg20B6tjj6CHjPCci+n+ITgVgDfHaGAtzAxg78sjMocONe57STJEv+RfezqjeAj2nIK2ieNgMDoJPJ/AYsfYMeAgTMO8p1mdfak9ce9VoO70xnHTs7+J6Iveweqv0jQ5aHvBqwMSt0VPGBPKPSUd3fIJPdD1FaSGY50nEM8V8Gz6pOAEi/4jPp6s3Bcguy+neOkyQXwsZorninMoiFr0W83K58L4ribcM11EH/mTsnrXgvlNpmbQKyJwOGDYTyiRwJYiIvqzluhH8YFNZ0DJ1nr7X5AqyC90QcUq5q9af9+oCR535Mj9A5xcwEfGBtbLELoyLSBheSwtHiSk6HyAZg41rSl9QmDtd5Hl/zss9k3AlpA1WiYUuBZvDgeKhsvKS8V2r3EgAcr62F6i0lQ3vFHh54BK5xkR+LbFOfxtElt2dLAdf0E8voeP9HMzmrzBZCWR+KWkNSPeoEsnyTqSDONLbAdRRs1TxSPneXNz9fAutWb9fPLcJH44zefHk+SJYz23mb7zPyFlQObpFDoQDOplv6YwOeiNubq75Wt4PxMoyxiJcEKBeIUYjGGDIKvsCLOy1I09g14hNoUH3tMIjW94LCFztH6SkvSnvXEOCHou13xY9EvQOx8DmGp5EVKNXp5WbNA+pAINKJhO4oHiwUUwaPOlCd/Q4Sz4nvlvDfJzPbnQbpjdzVQDlbqyWXBbKxrKDp5180oaIcQ+UwSOwZnlI19ppTqWySsC2gc1kxyX54wQ6aOuncLB1rwgwbIfyH4gcBAPBAOVUjBDHoOzwoA2YsWTRmTBpOA7Lzqeg/DXQCNjKM3FcPLzc5tBBt+H/zVJVAj5hG+53ArUTs/M9JPohOuzvr+1oHyq5MpcjYaXuRzrIhO3hzAdzdixsD3+C64nBwFpBmaFKY6FcSVAei6poYfClRIkYXEJZlu5urRwUIbpaRApWTd5MrjcxuVd8SMQva44KT0QVrjASkdB5W/07MeZExE34isQdrI5wHlIjJtxNABmyltVRzyIK1fHIYs44w0CxpJmWTMWgN0p5S3ELVGwiXwp9CRNaDyahw+/x7E0hHMw/p6ei3rsTYq2LhFR6DFLgNEJpFqcJFGBxLoHqFZ0JXUrwsx1QDwrzq+iAGEHLKeUf44uDhhieQe2ZlLHoogMBgIIJ+6Q0BiJUkB6gpkwMVOqr6MOSNq2AbluQjIVbp+eiLSnFglIKq9X+sbAFOokTokGSsE4NVQ+DGlPrusm93/QMDDO4Vd01YFFRASbKoeLVEbONsW8KTSI6hGKpfQFLRTvglMKsqynp3fZmG/wCXC6R4LYu3NNl8BWn1GGL37yQeAKUiH1XgjPannvKoVK6WvONZhKTfqJJULhhPYGjmCBEWSyKozxRvjfWviTQSeWqz/StzpE05WmcT3tPbLI8T8jnlZnRkYlFjD7pyFOBpm3GKWvzN+SNYmGt9pfyfqPyarYr6dLiaHC1Ai5YWrJV8pOf33vHeSH0QkYOTtGvxECVEVKWkUZljg0w0RoRS5/D4Totd2glnCDA0iNg5pjDo+pqgL1n8t2sSojD9I4GFAQ/by+emyiwWSFsQMkkQdJNaGiPiPAWwUDwwVlZ+4kMQ5ZEErpofLcqziugK/AIozzFU11PBQbkNs9EJQ7WlSREqZCZvimwNUnBXCJ5U6sNT2ZkmxOQ5HNNgv897+WZRNSUk94r1A3FPsMNbMtY5oVgrtcBA+dGQ/z7LsXu2Bky6Zm12AUI0lSWok8JP0ohGwoQkNGyXzok0Aq0SAmCjD0mExHngIW/Dw4dXRkroHMGouog7hLMYdhjQQ13xgCcOQjnGFZdBtSZB7kWaeNr8XK88bgmFFIQh1DH9bNS2CEYOV23/F3IuAn7KP2sUFJRzsh98EY38YaR80wAJnoVevCmrAFk1csOd2+sY1PqV3M5/63WXut2TmQt0NC1QLdqy3o1CiAKJlbHWPJWV8Q1jkHLe1isU9CDpbiH1RHhgwV0IwUryuugUCGoDM3UdJFJvOWKnbOvDSgPSytm0hk9AXsD+wJcbjfWQp08t2iNLUt3t2VulPicciOt4h7ekZyqdT2FAhqgq7+TjqxkUsXnZcluJpsWn0Y59M57yCBRZnsqcxRdd/mQgACAKhUzVWSgwo9y/6PozGWAtbwxcY1kYYDvVcp9U05QCQ8mYEqHbS+DqsBVfdZzDJ1OC+Jo3eVZVum7x1ZB0xX/qmGW1g6U7+GVsrbbRiBgckQzBELIwLUdUupDPW/oSZ0jSh7pBdGzL2uHcXFE/wvzld7AW5a6++bxyTy2vHt7AriP6vWgOdJwK6+QOKu+3833s6Jbhb+kL/36PBykTFB1nV3f7ktcT5FAqFhc/KOyGnfWxLvjOILYIObMTOW7M1W87HwZrhF6vCzCDxCgmFz/s4Rd9vbnYPfeUAMf5T2YBTrte9FHMxA9sAcD3E40srxObdThJ1uJWKqucCdxAyeQ03WlHtq/WyUt6QyGc8qIpGmELqI524xDiQ5LIikQYwmUZOTKvWlMFATA2HQQ6XBgUwkksDVriifxTYzISnVF3NVqXYnSXR9ylFCE1igUqwmkcIoTVBJAdVVkwucYB+GVlt0qJHMlrDwVjn7meIRPHJFfwPk5984IOBIA6PLwGFrjhSLD8tiUMrecu5LYACQNltw8A5xTJUW7wqNVf69nUUTKoLT+1UEJGk0EIJ2tvDIP72r7XGGDpsQR1s8YbI+r+fssqubejAFWQdjJ6M2NoNXjBK57Ic6ev6V3gHkCilVjKyiMXPywwLl2AMokcnTBe4Xv237lxHLZ9bG1FjZlVVUABC260SBBeQfyP/O6V6swMIge5SlDnVcB7Q8bccEagZUc0Ty901mTJy5FpA+IKIYUr+i3T9gAWw2wl0FRvDVq366uLeNQoFFiLZ8zArTzIC6HZO4IzwSi/NGBeI8j3wEeIsW4I7cg1kxhxjz+nPs6WgO20AnhiT5u4lTJ44aegdzvGPdlAZfNstlhgMVJqbeL+mtHVc2+hOwwljT4cizvgJOJ8FovHrh3VoVnlX2vDdZ0Sey52koH3YfM5jZ7rb0A4NNcT1VNIAJRx6eQpuA5AkRhJhTDGHeWWwF+32xNogwQcj7/MVko0FBayg0MEH37VDxJhKHjbmOcIRyDmmxFhqoUV90rFnmzKkHMJdQXrTcGLQAKuh5Dyi8xgnw3rb1wrodwXflzzslJZw1c1qEIHu2wH7GO5XyqXahCBLUG6TaEAEEiBvj0tMBCOMmC6wKxLRikSEPLJhFevbfLEYcDu0IfMQ4uDyJpJ5hdTBlTyyTHtJor3lZCq4UNqPBVby7r/6QDHEkrloJUYhDo6dhngFY07e44jgNyhKRDpAERSbL0IuxS6IX+az0D/euYYK97njfgvL/ckuxdRIRQ4QoKwFEnOWbMOi2vnFx91uslrW9n1kiMlACqYF9Ygp6gzjJ5BMkDBmQsNsIDOxplqTpDe7m0hHSqSzGowoSyVZn3vSw45mk4l1uRD7WSkjVtE9deBESyrBmCHDGgBJIJPEoh0tTOOEuXXA4mo+Y679wfz4kEqAj9WcoktkoMPIqGxQMCvbBQlqHTCPqDnuKUU3qV5GnKvZfnA6XcafhFmMCbQtO82szo1atVttADOnaZjJFg2uRF9jytVvLPEVUPtibj86GIfdGQEBWbZ3XVMMAOg9mupO0RIeLjBjgOwzHjdExVskgGjOk46KWKYQ5cbjcut8DtBJsb6UA8YPiEGuqtQDIAgJXunCIFCZ190oMFCM4eg9zp7GvRYEPwgEWvEINkLz1Afr7vk15PDAYGW+XGFYH8tLJplfs2+JBlxr7pUKypx0eaAsjVuu+pjcBOjCZFgWBSEROqbO6UCS9QsJFZtGNE8supdwAKhY3h+XOCGSZxmHUgEPPK0qfmtfA2hyLwK8uVaNLqAydwUpeUeWM2fciMzGkJE52EKfrqFiwlPIUMARwTfGItRzO+tG/lakT7l3oTjTLib7JuTQyv+VYiZM+ABhzZQ4L0YqOURu9z0SF0rXUI0e2WAmtTCS/VlWfIKgZUqrde17KGLrhSui5XZGfmuuR+7t/TIuYU45bMv9GimfIPaJnbgDpIlsZDAlWVodUyWCrtmbiJQrERtzsPDSIAUwVAHnditZ6JOTJHoSahslkfg1nlDBFgwtYJKuWhQwFoUF9A8UHmfBh5SFULsRZU/eyFMZAemxInpcSGQhxV+VCXPJVBpdE3wdCoNvcOYMcSJouKNwSGLfenKUIpwJHqNBOFExjCFFqWZKr3wtNSzdDKYCKkeVYv5amEw1plBFLJdBZJgMhKBiVQG3hqX+xSL/Uv2WwCBaXuN8esRL3gs6pgoVrLZ4sagrd0PkrcZ+qtJK0FYLqfqsYMPLF2EdQ7vUSLgHTH+3Q89mTvlXF4gmKFrQaiQ+ucGwf7vGQzLI/NEq2ZGW62YR3AgwcDlxU5A4unI144J/U2WWtXe2bmQQkbSN5p29ZJhnT643VNth5ZV0kb+c/GSDDAnbQNQfry0z3Z9eRgYMzMrPdU/s4Em5HkFK8HkWS2aENMNdtCOgoZnNBl/AFiGSm+ECJFLLi6R7TylZV0fb8AMQ4kEMj6do2sWXqy5AsMNKHjISjEieE5WAEG+B7L8q5BYqgR63CnAFSB8LuiOl/x+zArwUKhth0Yu2LLpTBbzDTnkKwJQCVmiMQxR7q8AgjJivI2Csc1UKGczLmNdGGXpHZffI/X+E4Uf5doU+mbVKelbtrSXCe4JeV9DhHsrd4DpMtWKig7P56HJs+9SOZqfGNXS1obzP+Qhmvu2ozl9nV34ntvICtj9eN0v5iPvEqWINjc4CbgKXFJfqLyD0Bcv2s906vAvyv3oA5wOoOsShTt28XxuKOqLagst2NZhOW0YsPjnyGNPThir+eoFFSdOgXGBoWqDMps83oVvrE2wG3hhTt76TaUN+Snebqcf4jjl9XP/poOa93U7pWBjf5OCLgp7g4gY9ZjGLCrCY6dBJijPBktlMZlFmn17ZCqzBXgGAWs+jtrLkHzvZrhNHYvb1s8e0E5TrGG51M/t8bBuKj+u+5iWDwm+UEekOzQ2HJ8TVE6sC+OfWEsf4fHaF0ECMo1P+gtVavm9FZPsG9DGIOTXoKsJHDqF7tEy2xq3bkDXDx4cGCvmbksewGX6dhrp/dqXZy5NDs3iiwSezkKHN01KCiv0WjtROHx/i3+Jk0aS9EHn6XDVAzOs36e7noqMBBEKgEViiJQ+JWSkvJp9mIIjEAtA8watXuiGna1SJUima+leztpmWRpzDRlrAiNgfSzWzlcyvKvUcjFNiiBci6MV3pjUsXJTAxiih5KVVkUIxlgOiHQ69nyrLh5udAEi66tZiAbFukV3UMMDAK1YC7LjyubN+WVOxt4hADKcDZBXvWi0Q+9q9zJkcxLDCA3p6Ww4woh3fAmpT2CU6zWq19OzW+NMVIup8IXE2leVKBbb3YBaO4hMr8g9IBoGJkEqtPrslStkaNU1bToE4HteZZAp31re5iWrZ/pTSV6vSrBEIIrT3ZpZbWqM3QICIgKFErY6IBYMKFTUYplkYZMT6jrvASz87Uq/ur3KFrQJ2Ks7heur/GsDz6CocThg/0lSgEEoGAP/6aIIls8DoSKpQqPQaaL932RIjQw1U/AoHgEnJfmFvdDeTZR8us80/voU8rNzp8R4B/JxVyaIE5ltlvb1g4wKilbm8Td83bAjtv5w21klZdSLXLvchaz8F3Dcg0vjA3XJzaU3FjJa+t8P1O4RkZDV3Lsj5HKPTwDRTda2dj/TCJMDyC9NJg8R4NljD54JsIub6jGnHohPLtqvBb05Pl6hdDOaxOl1wo/yMvsOCbw4MHEzSPgmI7LAczbjWXAxTeTmOVxEi9oKzinLL0sP9D5KoPuLseJZoOnUzzQxZTvzLCzlsX7bb7k9RSnFgKXS7jGzBxz0ooR6hobYNcnOjVwuybWMqwdgk8kPdg1yaXR9M0cc0yMbGmqZ2/0AxiqPC4yn4d1Rh/R0W9MjhGozEsKatvRaQehvJVRq6S2iOdyI8gdwya6Y3mz0QXMsS4Li66cFfsOh2O64zlr6kzJbTsOD9p747KBuZ3rWMI13bVDc565Tr4N+zKwEKGZKCu0k2CrnjOy5IQYrZpy8F7DDGsgWkyPmGudXx7rEzsygHFTCBwIQZ5gSMPnH5k0M7aYvm9qJaCqwUoCPTOowjsjBxTcWA3o+BG0SGkQrlQGDLSXO47Itc29Js3JGjAjoMraad5/NXpLABrK/eDYoh+/8jY8gY3EXND3ZvUBCH5oGzJ2sPfGmEGr80YAavFZB+OzYnLS7L6ksh9jsCIFeDAch47DNlXlxPkDNuJeF4945mIsXqETI5oyqFGMVQWNWYFZRA/3SbqsdrlhfY8jQhxrLcIUZm8b+U4HU+V6pGM2bj5jXjdzYj+OsA/4rNh3p3IqudH3ehzhkYtDZqI/Qe13IkY4FvII7T1hNnkmCGUT90zVTlpLiXBfKCAYWaWkgQ01gRlURhgL2xYOP0KOUDHJeIBoEUx4lqcIhr3qxNZN2ldTt5RVLTdI6zKGLHSruDl5ZYA/WxjB0xwPfFZXTMq8svXlIZhsxAPmTQhpEQRI3rjD1wKyC6qnHNvrEkBkjqwikdE4YLjAccl8LSBqTR9i7zjS+XZvrEvQTlnEUvoeG5MeW8c4gGE7BaJbBEkcFuDUAGOd8147w4uXdcFaQfeOSzREGo6bg03KLvQIcA/2Xkx+dcBvQ16rsUtBOerv4qW8TgCpdHjkCtX44cBekzxuwGLir5rITeXgRP7N01xPdYRxGyIAubWa+7Ghw1QQjXDjXVRMCgFYi7FiyGXQngUyljodFhCwQYG8KxY1bGJMxY7C6tl7QMmH3BIWoNRGaafKfamNUPKWYdisrZKSIoEFE1G4EbUlkqfyUpJYKbPa+B4LP1VKIIhV5xjUWgcCTclqNW79Uv/SRiThSrnKabnrHaC+bSEMgZFgsARlw0LAI+akw1GCbGM/tl/TTU4RCQRgKXizE58p6uXJrGL2gchn2AhBtjZybnCnhROCLvZItGQUcszAFY2dXJe1V7VmSMVd92s9z0+0Wl6rrCQQ1TdDoFa64tOZEGmbilmdUfr+cn1odWXYaLBLvlH56jn0+gwAa+8GUIqGNYUAFo5MOAw8VuvCfQZYokUAZwRxPUQS49WES0ZEmGjX+0oEJDmbE1xtB+aIRjItmVX0XHwa9BM5JrRmHVjmae0u0lm5riWLGoglSL4WPW3TUmDXxp7nGJMUKCRnGWSCILrvcd1ljsuX6OWBWK618kju28YE5cqxSHEhA+Mkt0R7PXSkFu06DyX4J+rpGfhyUWbxsv69UlHIjVYOl/axiJ6vXS1mk099wSvpsR7Rgc72QWA8kTTkCvPZ+Rm5/vHA9Eiiy5+ip3x9x6cyYdxRFn/mJigc4ZhDwE3ChmtlJXmrsVVpnJNRRHrIsJxRbzRWgoGVAjXX3OcePxKvWn/vfcR8//UUHQhXusTKtdmJjS5irwHvdGeer17upMtdzk6cJpFunmE85jcs/zlplZkxsU9Kc+I44n1AlIhE5j9Ll/Z5URPU9u+g8ju9pwS+W/8gchOzhMtr050gIM4fFzNHO+AhV5hieK61FuNWQmScchdvyDCIQigmrwiKMOFFYGSIO2BDArztYQou99PeqkmN+Y5WyhO0LEKQXDwOjFlwgEl7MXcySIZizsDAnQ2TZPVRgE2euJhrqqRQLvugYA+4R6GU4412pc4SzKRhNzY7YY99gUBUngG4HynfAVS1h3O927qlwI0aBdmORd6DoZ2ufO38hdqjIjvtL+mR++EMOwkIpNWHmnvGeWvqUfvehLjktrXpjDF431AeXfkKeAYGqFNIu3CK5auQHRD0ES7aahlb5Vx8Ll+MRNpQfmaGKdSXzc2sxpO8Ku+VQ41tIrRgJxp2PtCIdKIbYtDdJg0nvbd10yJa/ocmcK+vq9dkLGnU5NkiH3or7igopEKyFW767gE5gaFrRahHk06zfDL3NWTbGIBN8UzbZrQ9F7+94dXfcw2S7lse7Z+C6MHQDj+Fc/SBrKpRNYXWId/bnmhFiwl483l8Tq5jGxbXtGiIyYpMWkygQj00RjUt6gmiWtvKEZK4suRpd8faVelSXUPrPmdQVGtxvZj355flB9MQu9a1r3c9lWfAXf3rKXDzQJwigsorsLTEncLDgSTOQuBUqN4UBuWm7j8sLP1jGuZUrejIqoHNjnDRyGdgzMlsYsZz1sBl+Yku0u14z2Le+4oNNvowDTb+QgJIJQDdm/pkd+I1+GBTDZVnMst3S+XcCYeUYpHS8ZM5JWJVAw1AHgCdDljrXKChrAr9Ke6XFpQXsUm5ZmLN8NiLITcqEO1+kcmjxiS3Ilo+I5dOh7/sHFcqH5fgGrW+prU5C8PcIQo75acktmIIYAxjO+pA+jbPyYR3KUCKuq092holnXQBWH45y+qbQTdlgbMCOfFV1ogUJJVGv7fADsrKNouM4QQHZnAbSX/Cf5k4hwbwEJ6XkeW4FHQScJh5IlteNLGySkGeKmcXOh9YuOR+hOCcmNMw54KNdW5aJY8bz8+NCqRMsUvsFUTT1zloo6zkKvcCG4INB9RgTIZyrefAQFQ/OCJ0ll5GLbceC8aPCYTyZk04V5y9EdOJZ+NNhkuGFvKDaKCKfKjKLACnfJfqRdGUXG1Oo71ZIGAYMoETqXbrHoPvEX9LaSVEHad7ny9prpLbp/kL4EsGZeb+QOXDSACdq7C0DiLizRyBzR4A50RQyTPKzpZvJUDYRGDcB/LW8X1ZccSwKHMU4iteN57Dc0xgMVQ2x8AajjkjZBA5GJZVTSfS1dMUrhKhkSTU5fLsTRHVjtNNcn/vXPpsLvrryLi711N4BohoJQLtPKDqTngWkxI0m61Oyxois3rRDVzNcCigBmNfA/QGBBC4uRm4uRk8cAKM+UkAVT1/lKiEgJgQYAAUv1aMWJclmAEtMSlDLioAndtqZsmooDDpRBiPjdPcVMoIRzazUJ6bbcO2OslK9+6gKV5W/JbpeDvim7u5UL018AGfb3JdNeAVaHuk4ZlKMZVRrUkyXAr3cC3OyUQclpkOvm8gfs40055wjbOnyPcuOWIxRfUQL4VVgEtKsZSalCJayZeFV4CWZuQpOgFBzG8OdfCLtQdIo7yp2ajkJEhdiy4txwHtEcMGg2UpAUxmAwRGYbfbPc78k4ot8EzEoaUWT8JB4aKRa9Bdle7liFeOxHWoxiwEGYCMG+c5Gc3SKdDbpY6xYgcJDuXdit7u4l02dzkOzLSg/MorEHFYEXmW8bGqRUZBqfKmSFNxhvUGA4byPXKlIuoofjMpLmP2EkulZRzElMoL1DMFumyIP4dP6u4lr4tc2CH4TbwCT5ArXs75Sy5tAQIPfJkgoFqvd6+S594qzFMyViGDCC1tyLPUk+uQeykZMxrWWMiE35OH7ERSSRvF0No8l06CqJIPbFpS8pWGAQw6hbLyeHYDRHVAWc37DIyyx4rWS2767Vjw1uyMYIsATGXiUa1gWNuA5ckGQdfSR4Z5M3Ag5PH0kCm+2f001yQJGQYmHwMZ9gacwLobCv3aOB2up94xd97nbZ1L1v5z8QyAhHdfeIDTzDEBAvVUlji/vyNcRcs22aVbxWNsto8UEAAePDwfOJH3JjE6n+uXMFUVU03Kd7VUtSbnRo5blr4UqUBQWeQkoLTiQxkFuXEjcuGQiVoFhFUDTeJJBR0rJWstLPS4ifsmoKhN7m07fRtdrZyD67013gThAh09BgkUc+64XyQsNUI2YB4WiVaDfSQc6Eer1h6H0jq55TQ2tHHoZDMyWoBmi2x7KX2+OT0uOUdPRW2lnwGLxMMxDLaBbeotH2/YFmewJ3jwyCcwC8/NdfnksJONzjH1V+peAGOwTOKLxE8/dR0rj0f7PGqtUpDfY5GZPk+LdqRgN4LTGKBzz7fvqJpoiifc9hFemtNb/3Y/Vazc3OSMa65x4xj7KMtjb+6DcgSNYYc5MA8qpJOgE0E0cDQCEEg5jpu211QgCtksVh9soU5X6ZVotdEFCPbOuwolTXaZE7K5blQZ4mhjJSB1y/ANUGNF06UFZCOxMLBhJa9qTcs7RGW0QjYMdTYFSk5oNJpcusFQSthEZ1xO0onCA5anpYa7W7KtYu2JElI+3736Xl7Til639har76cvga54lvsiGBRYa94+l/IGXm9MtUTi5cymhs6oSZe8PHIbUD5XNCkz7LWzj4N58A1M5yFsHAM4ZiTmzgXMZcDw6Lzpkcfiw8+rZMxn6/pTnhmN+U4IarBibddb+MPrK/pa+04zb3Q9lWdgzkCHkT1J4QEdxSkUVmORi6bX3VZeQWMivjbNYDqkh0dOzjlwHI55GG4Ow4OH4RUIISZ0VYwHVAOgahykZyOR95zM0BVxYZ9q5GPIo5KqgGqpkUCGRCx3uYPxTdaSpkApHnUHFnu4RkY2XfBEzL1jViL3buFtnv09pDj4Hlr6Wv/BBCqNMX/UWLobyytRxpn42D0CYUmMtCZiToxBcwzZ8KQniIkU+JxAy/WZgG8j9y+dh44IccgL4+XSk6wOGpGgl5JS6AcJCJYZbK1cp5FezxDSmw/2RcYSUGIr6gQbo4MCZlYmEIhxVo5HPEyeArjRU9E8B1Z5LbKK3ZgMx3VTiEy0m0J3e+ZQyLowWBNqeWQYBbkqX0hfs0IvUWpFEJANgoAsk4PuPZp11vlX4wvQfXOMFJhxGudK4CHBr4+NKUuYQTLzRjmOyTwb62ugjb80WUMraKD2d20my3Gv3eq5JTDi01Mt1FMvOeSZUE5MYEkqJ4Agj1neXrIo52jAOEazwEflWpzYI/hNTXTUCyOU2GxzBNRIqcebTzIA3JuBNGYClDoT3gzzYHhPCYwmw2XkMxTSdQZTej/9FGvGEIy2RMZSio0rRW9WlVHcLxPcdQDppdmAzzueEMmpazCQhhqtcv2epcEWuSdqSKfKMl/5YN6TBlULd7pbhHGXwO7InJkIlQ7MtXGYwgYe1RZ7YzLk0lMZNffe6C7L8scsnVKEWHsPg/us34jwPK0jTz44g7Mnv57SM6DNZ3/m7eEC5MZXTEuTOScb3k1y66glpPKwA2rcM8bGMQduDmAewHEAN8cMr8AI4TPTrWm5QGuFNTgp2WzF+uqAFTSXvsoIZYVVf2t+jSZwSYi7tZHVlT2qnS78PIqrxYLbWkZcsw6HSQEyqIAMVBahoNViVefbh2xv4zjFE+nOsqsubIlfFI/TniFbjKaR0XIXcv5GF52YCJUrEfMCet3r9Zx7wot5y4inlWu8X1KH5JUh10jyRQBlDpTVQAaWNXZpNs0JDGDQONslzLzmHmVj8QfpsMxHyYkJ3e/8rnKfMUbGui0XXnNA7k/Oif8quVWfqW50BBEusOUlCETH/Hy62pX+LBA1Iuw154hyq1nloWYhyK4bWnl7ttptB56TZ0FxJgIXOMYxyQ+ygtmpz8qLA7T4KKgAGJIwHZ/N99T+Fy3BAZ8ASEOa6LawzgzF24zOnTr7QfcLDY/uFfT6IUv89Hu55bdYLq/K5YjEZtwTdslDodqn4t4yYPR9II6AH9r0pK0OjAqwnxWHmtqEAl4JKsd0jMMw5SEYDud5BAo9pQLzcKf3I7OL3rrn0hvNiJ7vKiGVbI6hzL8GBPI9uPpsA8sJSK69Au2ZkrMm0VsyTsAJSRuo9wNwn6w6Y+iYYRp3NcUqehVtzmk4bMOHYZljj/AEgDkmcdaCNb9Ep+NrD3t898b3/aoTQ/pXAaTekbbsuH9OYEBu3x7XSKWuzNAkbpAR1U2MioSSV4NMMSghDAvriJMdY2AeA8cNwYD6Sh/hWonEJMOcbIhksZFzx2En/ghpzUi5JoptSBcH4HsoX5qGA5mbQtRGNUzJjCEmAhqVK/0jEXcMSQrDguqK+6aHdJGFmVqai90ZqmJdYIawvAzxXiCbT7jYgusoCyjvZqlPwfchmWKcmKwIqoE1vg+qJe6DSEXfBYL2+ZwrYDmaeO8UAPAKE+Qyty89RnIcpruwFpsMf3Fk/XaexLaNbuiY087OIxS2oGXGtbO9s+dL2BXKime/TWMy7QDpowRkWvFW+2ooYWSgxUsADCBimDp1xLWnHi1/HUyOBIZP2LSMJS+GigJgetE6643VZAXumQU9Z3jZ0qvWvFGxW+F7j5NKg+4cWnsJ/aahR7hFVYarP9lQToIQZqWxwZHtUt0OcU7SuAHRk54/Jz9psJvQkf5/ySU/jMets3XtjoE7BK45FAFw/ZzGCpV/A8OZjyLPjgABJ5pAEwRUE5lfo/LL+Psk/yhhtgA40OPjBUDU9bVCpzQATjLCEuQAcZ6CWyUNRg8Ty3CSU2lV2+HYs41gggCWSshsSkUyQU81MU773ay9r5g+25CjrOL6G9fUS7kFUCAPsJeJLkP10KjRFIgzry6Wuj9jQfmergcEGjbz3WL+MjBigso36e0qpm3cTMrCg/KLn70wJ2wlP/tZd+RkvHSAlTjvV9L/CQC1v+e63vW2P831FB0IiUyv4h0Azg9tSXQqU5L7/Tx4bUhZsxvBOIrnzhkVBGMae0qPrCIYczCPYOI4Zi7IXo7LJZh6TnY+nEWxhQQdp+xvxaubkAgBSeKVC/CUoERAEQHq1O0VFdmsSR0nlFZQSDsnxaH1uaIGfkpEi1R2ha5lVQolRjMRY0miFKjUL3nW697JS64p8p3sMlJJhwPLN4FeFdOFzLVqZCMvQ2fu9jiBLrneA3y1NXDcERoV9rCy2qzAgOY/hlORxIeiwpBnFkBGe9vLHegeEvFe/g4nOFF+yjRU9vkswW88GjV4wzOOfaIUPvPBSy/guc+/A+Yz3yMDtIAjeagnC8ZgUUdU18IYwCTOsNrD8qOAgAOsL8cA7BjY0+A2yJv83ED+HN4iVTTcl/tx3py0qBn/FF7YCnfdI5fGeXe5H4TkfE7thGE8dLzpQ1+EPdxMBmWYoTW5P0CvAxYWE2iH4E1zMTgJLFzi4hFLo8SY76IQaOhejTj41Qi4CwRGPs1gSG2MHcBNOUgC9uzYV25wa/wy0Et+lRwqICBPg+RmKXSIyWFs0mb6z1D5AsPTa+O28/Ohr9S2mUczb+WQlOfE6gfugcJbRRPXCatFI+0nq7CCNxM91sDbfa5p5Or3e3/uv1N+IQVbY0t5RmPxIil7poemN3rKI1gpzMIoCEAQXiq1pIukw7kHLjvYYbCF8oZa1cvdLw/FTpkY/5/1AZr35e6cRQe7vSYEcuawL3U9FRgIYrx2dWkAEhqeCyzh2I+W7FfGfiRHEEJVSWtKbpnpBeDv/B5egslz0yt+JkYzC6+BhJcUYDz3Ai2s5GGzW6puW3FyM8BmJq0hE2uEqINR0zITqDCca1GDYpriS+hYS4nm6s3KB7r8yTeJXPXV8gXMIi4YAVN5TYIZ0juRwkgJN91bIoAmNM8x833R+CesZflx3NoBQVv5GEyiOXkNaoyyBa0RubnXO71RlpfAtVyjAlZh8SDPmsh+8HL3yV+sVZUX3ZzpFvHcKcAx43OGUqqysnX2RYEBMGYc+zjGoFdGYFFrD9geeOEjX4m3/eL78V/3Jfj7lI3JcLzpBs+/6wVcHl3w6mdfxr7cl0X/+td8MPH8u9+CR194DY+++NoTfy66IJ4Vwvyf/Rwevv8levlYqWODig2wpuCE4bcxB2hQ0ZvxpFXSI13XtssDIu/ERLYXrJwBC+HrphMlmVRrgNmI/va2AsjBU8h7njSkEGLOlITc+kNcueNThtATFUyn0IRAoAFjs8cGK1eABiY93xvAtw6p8r1oEYdXIEO6DZDpXmBpoizRvT28QygZdFbkFLDSDa1stpcTAqgS7JMs0j3aHSVI82qK0qRrzh5JPSV0jjXZB0iphidZuSyeiYUJVilwzcNTeLDx0ARwYGAacLsGbleQ1WVJvjls73Do0YhLg4z5CoMVd/Kgn+GT6EWv0TRox4fG/WJfqlX2k19P5xlIC7dq/AsEvM5n7rOMm0fh9GWgOzQQ9JxgmMBwHBEimDNCB3MCxzFwczPhOts0EdXO0rsxrB2PxRr/PC40xuPcgQQDvI2SgsKiCmSveJy7+uxxU+RKNHrOuDZRv82WsQIEp03y9nVeH1y9TS7EqrdVTO/08bTEkpFpxUwDLeCI/VsSeEfLZG7b6K49xYl9S6BqRUl8dEstfn4vntOQ0iFHB9Vth1LdCQw6KLj/ClBY90x7FBWKsKS5OWuttxtAoKD47NoXzrOAiqGsNGvSzdjrfJj2lEAxrTXPvU13aeZ7xO0jP2XA9usjdhuG933LV+F47sBHf/jDT614/1le4xj42u/5IL7p938rnn/XC9iXjU/91MfxY//p38FLn/jCl76BAe/+hvfhW/8nvwVv+6q3Y90u/Nxf/Gn89J/9cezHbwxJvvI3fw2+8fd9C/7m//mv4rXPvpKv+6O+dh0YKn+gjjkP5UXgNhhCkWJvX1JHjmve66FQ8jcsn7fTu4B8fp7SSE+TGNEsOiGige9ejh0lf4McICEh5aaukxXWAVBz72WCmQtA5WEGo4cyQb6XNanE36Xuey1HoMtpu+LLNDBQIbZzSoT1XxqfLj4/3nNvvwAA177yAgQE/n7ep+srw0v6u1vOtUISlGBcKsnROwZWjnVAhzeFsbhhx0Q0yzTsaRjLMNfAvACXxdw2c2AZloUMut2e8sqMgNcK4PgdY1tgQPJRg2pVaVC+UFcG9yjlN7ieGAwAJVhTQUiEn9wYQB5+gXO8K90gYsJrMADGXhGEesyBYwwcgw2HhuFmjvQU3BwDx5xRAuITW7EdH1VTDGtuQiouxLqmtcByJmvKq/fTFl9mM7th4f50EIGPZIzwCgCK6V0n/XRZY0A0wvEghNFcWXxQIkd9IhP+sklGMYpyGuQOdSZTnoWILGrtn8QgGiOc0bisr53u+HhGVDWMZBYp/zy4Q3HdIg2YlHXq/TZft1w3McqJnh3oh+cArNpgJn4eYsP4/pRnZwYYmCPcfptu7GEDFwqKZcBcyEY1EXduIIFZ5ZUj0NdVyVoFME3KBQ7FieN2b6zcx83E+3/7r8Nzb3sOn/yHH8Pjy6M3fP8/z+srv/39+G3/6+/DJ378I/hHf/bH8fx73orf9K9/G8bNwN/+438Nj19647F92de9Gz/wf/kD+NWf+QT+4Z/+e3jnN7wH3/4Hvxtv/cq344f+47+B9ehy7+fe8uVvxXf9r74XX/vbvh4/9H/9QZx9CbSEGBoJeuT6Img3vVEC5M1jV6+NkkfqGdCUzMkaFS/HX0KBm5Rl1O/r1umW138uS1rN0ZD8HD+PAhTNM6DP57yawWD5YdLgUL4HPasi2573oNVLY8aho6iBcosnnxLQ9AobDph/r/WFCWQHf3gFyts4Spb0S4o3DN9mELV/UwRmKEKNtahQOYZ219A/5pl/BFeYhjPmZ702O71QyuVQkm7dWvOKMIs5q9JgNC4YLmRIZlxAEVuGBgA83htxYqgGY8izTU4hY+OnWphRM+CC5F9D8PNPQTteQvaJricGA/NmAEw6kaU7xsysfOSpY2xGM7prJWqulejXEafah27fgVR3nDU9b25YORCx7wkerOEjKgxmuGSwHMYmD3sB+2IYPnAzDuy94yAJOKZFYtRm5Gaz3OwYliVdQVyrFpYb4m6wHTFA6dA5iahRROmiSQsigcechfR8RTXAGMA8eBDPLTD2hM3YxDgAaVNphEJSI6e1NoEPstVzlsQsgRLOxwe2hSfFEQprbS/3aCJI7sX2U9KQ5g7jYa0BiFPobKHU1caGULqOyMwNl98GVgjL6A5pmUMTLYdb1nuOvVkOLLPKumDpD3Mm8cSibyczGnNURgC67Y7LvmAOJgYZPSoEjjYOwOMwpQjXBhiY40iwhbTiLKtXKjGsCbAumLwdxmVyFJLh3wCxmwUgmA/m0/DxP/Pr+Xe/gO/8w78dP/sXfhI/+if+FtZtWPK/8kO/hH/5//Sv4df/wG/AT/w/f/R1P/+mdz2P/96f/B/jh/9vfxP/4E//vRC0f/Gn8TN//ifxu/7o78UXP/YifvI/+7FsJa5rPjzwLf/Gd+K93/wVePnTLzdT8XxJSCuWHseHA44j8ndG1OqNaTKi4uSWocgu8y7Mo7Rxq8+J4ssCHAIEAoe6rL7k0seiI2AwsTiesZkAZ732F8wNUJLcsvBchbWU9DakeEzN1Ph0Q8hfA8asxLEYjvib0zh9Lsa6Xcov5MO+7JTfZhZH0zN3JlqGcwxD9zMAk2Bm51oC0dXS2WTrbFjwxEGCnO4V6NVqBY7Kaq/xD4SwRBmQ3E/ld02syN2AZX6NSqe1jmst+F7slhpjmz64Lht+cfganFqElEcCJK3BwAWbDeMcc28ce2Ntw16G2wtw3AKPRxyW9uhxHJx1YzPkFXtJqEuk0wgedEtHxdUBd2DtWyDXi0mPYGJ7/AQl6RssjFTlAD2hHHmKagKhXhHqOKGufF8C2NcXeHG/+EyvnXWEghj0BBzziBPSpmHOTWt9MFatZ6NO8VqTcR5PEDKwGTOUJRuxHEXUEn2biKWPvXNRIXOFAUQU6flgnam5R/a6dcbp1QT97sbHS9shLN2sUec3P/8sQJBr76Xa3XlcjRE7Dqfr3ylE6l41Pn0vN7wRVIjYsITsa29VMLY3S2hcXwxFuMF2nTOgioE81IPCqvIKCJ22V+dK/s0YqoD5Xdmcwpnd5ZoVZWzWFD9z+MPzEJ84uRGZc6AONYMAwl0NhIxr6Od9xfmqeKjle97oevM7n8c7vu7dmDcTX/jo5173ffPBxLu/6ctxPDjw0qe+iM//8mfvxNQBwKbhHe9/J15471vx+OVH+PTPfBLHm27w+OXH2LdPljHw9ve/E8+97c34pb/xcwkEAODFX/oMfvlv/wK++fd/K376//Xjp7/16yu+5auxLxu/+F/+49MYX/7UF/GZn/9VvPtD78Px8Aa3rzw+fe793/NBfMO/8hvwc3/5p/FV3/mBe+9dlqR+p0KJ2bOTXMW2M0EwEwD1bgLNZsQO0S/Q0H2zWptmFdCTvCuvAt8jK9jVk+AMwJOft+QD5yKrFqheG+lpRCp6YvW8ZwxFiaDyrknpapw9pFs/q+HP9dhiyl3Wlez2DHdJZnibp27ip787Xdst0pf3aDOJz9TLCbhUI2EyJLgFEbqjfJPXhPdKSeCGy2Vj7cX21Qwp5b1COOxe0WFUtBCYpzwhjruZUqE7WxnPBWweWijac4/8gTHUSAqhP30CCzCPA8oq/6PRJ3DStSdvhdrs0wgpL/RM4+NLiJ+8nhwMoGe2jlKjxZHtoRKC7fONic6ucy1WEIoSv6KVaXgGBg8migSukUwd9OXYy7JjVGR/kiFZBhdx6UsyGEbkI1xnq44xTs0qTvHDpndBzK/EJDeLFpPORzYXZTQHUihFTNXBBt+r1ySM1KBHa9OUrErIsn95Br3IboyLh8XkgG8ySrihFNbpSTjxzAmVYsbwKpKvwd1NDEIxOIjAdT8Hw0VIIdprlVMgXLdRNlZLsDXxsGgEcgYyVotFgSxBmTHjdAmfGUmg4fDA/CHTPZ8RQ1S5InK8EjRyu8Z4aLF9Cff/+ao1fNtXvR3f/W//Lrz9a74M+7Lw6KVH2GvjpU98/vSJh297E77tD/42fPVv+QCOBwdeffEV/IM/9ffwi3/tH9/JK/imf/VfwDf/q9+KcTNxPDjwsR/9Zbz0yS/i5//KT+Ozv/DpJxrhOz7wTqxHF7z8qy+dR+6Oz/7Cr+Ibf++34Ob5B1gvvnrv59/6lW/Hqy++glc/+/Lp9cvjC179/Kv4wPd8EDdvfnACAy+87634nj/y/fjJP/Oj+MJHX8RXfcddMBB0tcVojS8UovL2e30GCHpPTC0FDm3ddfxaiXyiF2uJXWhKKgg8AYp4t7mHA7gDCsvVDUrxmkhZCgctOZAJi5Z5R8oTkAyVTAnvQx1fLW9f4+mu8DXPL6EsUg6m/BLft6ZACGPqfFWfE/FiP++ir/e1vE0R6pbW/3nctT5RtbYzXJLHcNP74pArPSoG1gVYPBI5EZUBaympnHA+3ZHKJyEQyI6d4TEP0RXGz94Gn8D2iTERbv8ReQC3y3Fcdpx1AJ7nkco8rm1nGvBGXwKkZ2+K6KD0S6wnG5btplu+xPUUnoFqr6qNLUIAbNvrfMagA1sU65ESOlvOQMRiNpO/VL0g1MeTohQXYUKYO7J7V3gIRGCFC10Ja8NYR+vAKDdWXFKSWlhwjDW2LgeU9Ba0REvcAWdlQ888Vta+CCiTi/Ju56twlZUgcR2YgexSlsy0LVPEzZRRryOImfFLMWij2gRnfNN03DCuhKzdGRcaSMnX4RlekOMuhaMxdkVasdaDoc6OuEusShJqeVDlDYEzIUruxHiyURrLLlD8ODpbEs17uILNBy4IBnALEDNMcdOQKntHh8LsAqqSveZhqZyStqdZIoccS8SPQbqIV9/ylW/HD/yHfwAf/dFfxo/9yb+N9eiCr/7ur8fv+CPfj5/8Mz+Wa/Hmdz6P3/a/+T4897bn8IP//l/GfnzBl339u/Gdf/h34OFb34Sf+s/ivTYM3/6Hvhvf+Hu/BX/7j/81fP4jn8ODFx7ie/7t34Vf/wNfhs/8/KeeGAy889e9B5/7pc/gtc/fVfaf+umP4/LqLd7y5W/Da68DBj79s5/E8+9+AV/29e/BJ3/io/n6w+cf4p1f9y4897bnsncCAMwHB37XH/19ePlTX8Df/7//Xbz/t3/w3vtGOJANkcCTMpcOKrqbWCt36pmWlcAVCsLcTxTt3lLfqAjQWRY4lYubR+5PeMGap0SyY8e+x8cHruk9Pl/VSUFObKGuPiesZulJyKGcHN1TgLRaRrjBUzauuwbOPbJHPtM2uxzv3Xev9ncBgnrn2ZtpmYyff0MH5wLclS+UybdqE6o5tzUCIgQcyo9+yuEwTGJ4rodbKGblDTiwXSdkxt5cljpEdg+4fAtc+8EquRHKejZCGB6tzuM8mhjlzQ6RuReiTH5EaHNb0J1v0TLXwiJcE/H+HWWiowMA4VjlEXCOMFa5cEcsZJym/yTXU3QgrI2s18RQKOtJf0wlX4TVQQSAU2e7IIRwAU8mC6rUIg+jaTffy6DEHPeDSnK38Yh42FTTwENLMhAMHXmaxG6qNT2vntzl8Hb0JOJo2ihp600wHJGxZgQCQLjtxYx9Hl6faVZCHbJRgCssDiMQAEFP/G48nlljHRaZ/IqnAkA23XFgL7kUa/1lcfluzwRO4MDgpNUrlG5c+/wbEs3GW8dpbml9b2OdNtGv1kaMOzxckSPmGQAiqGybhIGUq5/oQ6RateWaZzGMGaJLoQOmPILcR7YWth2yCBWmyMzxFMrKcF5tEicKKnuDA5s3E7/7j/0+fPInP4Yf/GN/Ka37z/3SZ/GW97wNX/br3oWbN9/g8totvuFf+Q148ztfwH/57/0X+MJHXwQAfOIffhSvfOZlfN+/93vwiX/wK/jMz30KX/cvfQi/4b//bfiz/+afwmd/8VfzWX/pj/zn+B/8538Ib/3Kt99Raq93PXz+Ocxj3GV6AOvxwoMXHkRew+tcH/3hD+OjP/xhfPf/9nfib/0HfwVf+NiLePD8Q3zge78BX/cvfQgf+5Ffxr6E4hzHwG/+n/5WvOeb3oc//fv/E9y+cht8ZpCp15RK5L5EC+Oo54le/gtrReqMgLK65wmmhtAXMC2rdqIpqTaH08/eeBR+Nrbc0hvgPuBrY3j7vI84wOl05zJCMtFPlh4NoLCZCAYyR0V5O/pdCZVxL0eVBsorkKdWCjN01j3Joo526nXxjGcOQf4FmSabmr+DCGveAjK4o/YATK51p65nwjFlgMB703o55uI/wzQZkeUxOUYZni75uCL3KWRf7yMgZSrPTRmuAibZWGyiejaYISo9tIcKhUZvC+UxHHPgdsYBb8cYWBaVJZEWVuYCSSmu1iveGZbQehoNGhlYPVetSsgjP2r0e36J68nBAIXxcKNbLRL2gg61iVWeF8JzohCWFrhcZWqzK0EdhO5ZzhdHqoZLf8iCJJqTsvEdCYPhJYiOc07isXTxjCQlxbh9eIYEYh3t9P36KoVJhQDLw08yacyMG0clB2bvpmtcoKO1Cb7jwrEoPxPKFlj0UPq+I+dhsQOdstVTWHkoSiUiZZDcjJvYs6YN1T0SSTXyZGiPkGg01rqvkAAPsp96zceKxPsHYg1TjAAu96lSvo3nLxD1LnkALBhMy13VEFfuyxR6ZXl0q2iwVXSeaJfChvJqy/3v2JlkoHv22Ukw6fPdDcy91BpckdWb3/U8Xvjyt+HH/uTfPbn5fW/cvnaLL3zkc7h95Rbz4YH3fNP78Jmf+xRe/nRz2TvwyZ/4GB6//Bhf/q1fhc/+wq/iPd/45Xjxw58NwNCWfN0uvPKrL+ELHzu//kbXqy++jJvn34ExB9ZVZ4IHLzzE5dVb3L5y+7qf32vjL/87fw7f8W99D773f/8D+OInPo8X3vsWvPrZV/Hzf+mnsW8jmQoGfPm/8NX4lv/Rd+CXfvDn8VXf+QG4O77iv/U1eP6dL+CDv/Mb8cWPvYhP/sOP4ouf+ALWcoylPY4471qOtVkeR/kg4CyL9H6+DgYLRW0oG9DbO6y9E0iFBMDSitabLYmvW8ggaD+5GNIjFgnD1VZZEkqQ9irPSHMxAYFGf3SjXS7h7u6ASCNGM8ZySVKR6w+asfiphV7ulMVGYnbNua9FrVStUwOYnqmEVP4jP8OZo34732nC0ZswpReZeQM3NwUc4MwdXdRJqVx3dCvd3LcMm9Y65RpZk0H5cwDSPjsgvJYX3zTaJuBHgAMLT8KknrTUpW1m7OMgAybXsRmhqXMld5VAlQOx/Mg9jtzXvZ48TEA3WMV7vdVh7kza2CJWj/KsPPwHxStJg0Air2ED1WI4TjqLwzUcxzRkW2BaV3IBZrKQkDcRY6UNOSJDI3r7GwYTOA8y4cBaK1H066+c50KXQDBms8fabLdsbiPWmhiovtr3gI+AFUiL0rmBYhMvl/veOztiZdcySNBIfGh/KNyo1I33L7hm6OBMCX9a22RkKdP2OedYtMqxrxM16tzx05xLOZbwKTduvdYtd1VtBq5pno609uupJno6jaS+ab21/nNw3xDnXOgUx80Arqp8Rtfm/PlsUXXg0WVdhZ4S2CHCBQ/e8hzcHV+8yg24vsYYePiW5/DZn/90nMLZrttXHuPVz76M59/zFow58PAtD/HSx1983aS+p7k+/bOfwtf81q/Hc+94M25fPY/xvd/85RjHxEuf/MIb3uPy2i3+3n/yX+GXfvDn8a4PvRePXnwVn/zpj+M7/tD34LUXX8F6tDCOibd8xdvx+V/+HN72te/Ab/zqbwMQ5YXPv+cFfNPv+xZ84aMv4pXPvIwvfuIL2NsSCAe/WMoCOHjiXMgevZ4lcldISPu1fUOnZIL/Ru6LVBU/nwbDKL4w8TBdvpRn3s4vSf6Vt49JdqqkieTjAcO6UsQR4JRBUZ7V+jmPKM/nn88TqJDV/fPPUmqCCTvRdsln/bzz7IuoAOuyuMurGEt9Dl4Qqzx0Z1n7el5ZsCdKeOrYhG4MHMfAPMI4m9MxxwaM3VdnlxdRabS34eZm4LIMDx4Bjx4vPH7sWBeCyQQ9BaAGG46lXKKnBhZeQ7iaTVGysYKJgoRKL8IpefS3I9qPb4aTnWWno+hMvkSJYRtlQKYHtsnp1Fz6/EBLOnwyC+ApEghLCeeA0v3EeK2BTW0AaTW5czc2LbIUn0GereFCNHSZmHPiSHfMztbDsgTuTJAH/kzT4im+78iGRD4xhmPvFfHmMdM6FpG/3pqJ8VTbXE5fWan0bgxLYlJDou4F6D22rxNruHgnqwREgYkOxVyntde+lNIWGHAM+B6w2ZB1S140K3An70Ul+LX3oL0PBrlYt9a4mS2Wc+LvJw3dhLKHRWHWnlvEloI3vK+8H7N8JWQTcLghsnnb0iWtavwogAPlexgrByIEBGz1fKz9OVNC7FF6C+ipSBBj+czrk94SCPD5L//qyzAAX/ltX4tP/dTHcX3J+luPL3jxI5/DO77+XTjefIPHX6za/uff8wLe/v534kf+xN/Cuiy8+JHP4Vv+h9+Gh295eG8s//W8XvddL374s7BheP5dL+CLHyswYMPw9ve/C5/78GfuVALced4wXF67xcd+7Jfx8R//CHw7nn/vW/Dwbc/hkz/5MazbBd+Of/LXfxYf+9EPY8yyOj/wL34Dvv0PfQ/++h/9C/jiRz+PV5iI6BTqUnKKLcsrtffGWpt9IqhoE/CycLApQYAKTvsXbwx5IHCQCdOlwCoTqfR3GeBnOZd8ozwfgdfs6OqQV8xsphfUYVhyKXjly2S+kuIFpP3MmUgs2Pe7yeU7ZKBMn6uPnGRReRQqYfAa+Eo+qUS58QETAZu1kI+K8KzXH9BlCEvVEa2Cp6nr7IjS82kYc0cTOoUJhsNssYPthNqVL/YCWGvgsY5vto1bW9EpcA8shpzc6UHkQMMYYf+AKVAAjF0hAwNLt6HOrA7sESEtxu+Nstalb1yhX0+ZpBy0pK7chgBGeaIi18spnx1OQ5dyxtrnnuB6ipwBWaLKFq8mFUb0qi5XJld5Kttg3OoDHYtbYQJ9BQIaY7LD22bi4ODxyTW5XJBUphwnOZPRMypFfnkQwIYFqm2uY13Kdq0kkvqKmPJANOStJEi5uKSzNxk90GC5obuC6CGKGD8JLxUWv/eAj6v9qZR6YzIvwgjLZSBj+6d7hAUA4JRh3M8Lv1+INKGGQdumBJXelj/m27l+JO1YK0ckHymZULi2NeJoN3Kz8sBL8DsFt8p0zKK2VspYHOQKU2keKj0suhG0q1wAzxJKy3vGXHqqWVln9XvRtZRU+6z8jmZ47XMv45/8jZ/DB7//m/Dzf+Uf4eVffQm+Hc+948145wffFRU1NxOPX3qMj//9j+Db/uffjfd805fj438/lOq8mfjQD/xGPH7pET724x8BHPjI3/lF/KZ//dvwgd/xQfzcX/4ZrMcL4xh4+9e+E2//2nfize96Hk96fe4XP40vfvzz+Ib/zm/Ai7/8WTx+6RFsGN77zV+Br/mtX4cf+o/+eoY33vIVb8OXf+tXwQH80t/4Ody+/BjjZuC7/pffi0/8+K/gw3/zF7AvC8fDA1/zWz6At7zvrQEOqLAfff5VPLpKVHzpU1/A5bULvvCRz+GLHy8PxK16idiEeCaE6TmB8ATst0JjOIGBLOM70ThYpx+lYiE3nF7E6P0wjG18U78WbQn4Vlmp+D94Uk1/YIgcAfe0eGET0ea4QIfCZVJO2x2m9snLU/6pNfOd8sY2r2Sq/FhZ+deMV+Fc3e9sxFw/I2VHAwjnK9F4+85nm2SCIw94odyI0wHjvdPYbG4OzGPiIXvRqButzrExW4DdZshZCdJ7R0horxG1/zYwcMGAYywHLgO25O3wACBQ8zILF/+gR5H5Gsd0hgCCDlUiXoYKDR/nIqXI9LZWrMbK8Hd4G1yAIrqmxYq5ZSJyyhOBCjYhCqPUcRmocTzB9cRgYO8dCm9zoAwTWCOWyNInEQ2LGDfL9VS21xPW7hoqVLQ2mS9gGLOaSZToHpG0tynWO07QQgNQG89snEOG2b5wuzcVxTmerMSbSL6LpkF6rLHefNio2PkwmEf/8ujP76gGTNy4dCGXW68K3mWhC9ycN86aghTwMDg7aDVm7p/LngUCGWj08EahED7zCmBpb2AWMUNbfA+TCzObOcbvuZ6VmXvKvIffs/fNm6MFB0EoEC63oaTJIPsxtK5eVlkTwjWfgerVPWoN3GAIAa+47RhxrzlZIeFsO5vmzP1rl8lKud8EBg3zBVqvnIsf/GN/Cd/1v/hv41/+P/5r+PAP/hxe/fxr+Ibv/0a860Pvw0/9v/8+Lo8ugDt+4a/+DJ57x5vxvf/uD+Af/xc/icsrj/Hub3wf3v61X4Y/+wf/VCrSz/zcp/Dn/q3/B37Pf/gH8NXf9fX45E98FG/7mi/Dh37Pb8Irn3npTpngG12vff5V/N3/6K/jd/zvfje+7//w38Wv/L1fwpvf+Ty+/vs+hJ/9Cz+Ff/I3fjbmNA1f+Zu/Bt/xh/9FvPqZl/CFj3wOn/yJj2HfbnzsRz6M3/7v/G584Hf8Ovzqz3wS7/7Qe/G+b/1q/Mif+Jv3ekP6dXn1Fq98+ovYV02J9msGvDLhkw1vEgywbOz2qmunGSt8mvGQLlxasxuNnhGbln+nPId0VHQfHXYEGM5EMhTIhuShhWUIkCfPYGAMwOdgf5IN2MIeamssOU9uGFZOPDWUGRyU+il4yNj9evzdng0D7GYBh2RQj4V33jl//LocO/5Aq5QK75T5HslmnMU+cbejEnHjXI+4lC8WuVnRbM4sjMKb48DNzQ2O4wYPbx7gwc0RXgIeWDfHwBgLwKNsEJaue4KBy3IcAxi2MDFxjInHtxtj3OL2EnB/XyLpPBoXTYwRDeomqwliTNH8Tq5/38BiN8o9DHs49pzYO/RAglaFI0VfG+HxQtGSSCrozoXhoFh7hglggEcIHMyP2Txg6k6l55e4zO/d3bvXb/2Wd1wxjDJqSS10C4VVzw6FcwIzfj6Oo3UupBeACvc4DhzHgTknbm4OPHhwg5sHkTyYCYQZfggu8OxwB50z0i6HcgeMmabABdtvsfYtll/w+HKL7ZEncLlccHt7m9+vwYDGvJ3dF80wfZL/mcCIgUXLf+dGW4SLMIopspKB42yWpbb/zICVH7BZQRA9FSrOHmGOPv3qYz5n1Ltmck0ynece1HN0z+skIa67y7rZ2HsRIKKAiPAH72sIb1Fl9iI9GgoRhHdhoXcsA29pFmBwQpUnjnnMLM8RZqm+CfXsDgbGCLBWYJJ7gwH4wfVjvFWSH7IyKxs7Vo057E2ICYyKRjM7mUpJxxW7O+zVA2/9Bx/Emz7+XgDAzfMP8KHf8xvx1d/5AdgY+PQ//gR+5Yd+Cbev3uJX//En03q2OfD+3/5B/Lrv/yY8ePNDfOGjL+In/syP4nO/eLdU8Ms++G5867/xHXjzO1/A7Wu3+OW/84v4tn/zt+Fv//G/il/4Kz9zz97ef9k0vPc3fiW+/nt/Pd7yFW/DenTBp/7RJ/Cz/9+fxKs8L8CG4a1f/Q584Hs+iJc//TI+/vc/krkE88GBD/7OD+Erv/1r8eD5h3jtC6/iw3/zF/Dhv/ULX/Jsgje/+wW8+9e/Dx/94V8KUKTra16EveX2tMdSUieLn7tVRMHfofe239M3hPz7lmLD2dLNROewDq6MlLpn/tQt9St6jfXrnj7mEOh2fejo9N3gcpK5B/+8wZp6+9cMsHd/EeMbPw574VUAanpTxlGX010+nFTGKRzW17cDghxhzZH7V3I9vuswPJ0rMwy4mREqOOYNHh4P8eDBcziOB3h48xA3x02ElY8D85iYNjDHhuExeXTDbTO/IdqkXxxYt8Djxxuvvbrw+NEFt5eFlx+9hse3t3j8+JZ6IPj8OGYcjDcH5gHms4WH6OaYLGmkd2ZtrIvh9tbx+Nbx6muG1x4Dr7668dIrj/HKKxuvvAo8ehV49BqwLwf2Zn8b88hDMNFHhI1kMN7nnenrLeMwvKRWRhqAH/yhNwbfwFOAge/6Te/Izc0PNwXk0gtsOzzmxHHzABgBEOac7B0wG7HdBQPHMfHw4YEHDw+CgY3J+sy4BoAJXyPLzJS6drY6N9H3jtaktrD3LS4rwMDt5YK1N9beuNzeEgws3N4+Pnkw8pAhM9gs19XhMY/hjNPvKB9adENuBNrzFQDqWgBV298zY6mUKF/SMa3KjHZk7XC/pxQPIVkq+UEkq5P80sV4ZeR2Zs9Y2cnCEAINwl1b+Q/0DHSD3OqT0wyHHVUOlWBgIS0aXBoYoFuelvUYloo/5qDmUwWi3AX+uvUvSzxagfbeFgV4Jgw3XN/dTlhE7tFe59cXAUNkMDN5aABq0329niAQMFqgD//Je/GWn/oAxu1NvnccAw/f+hzGHHj1xVffsEvgc297E2waLq9d3jBmf/P8Azx48wNcHl3w9q/+Mnz/v//78Vf/3T+Pj/7Ih1/3M693jQcTD194iH3ZePzSo3u7HgI4Cax6Ebh50wMcz0W3wctrr1+B8Oz6r/l6eIvxnb+I8Z2/AHvwGuTJS3lnCp2NlA0CzecjiwGgAwC/+p1/53+9cuv8rPpdrevnAN70cGCa4ea4wYOb5/DwwZtwczzEg+Mh5ryhbpmYY0beGRzYtxi24bgA2Ni2oEOSlhv2HlgXx+PHjsvtwqPLBS+98hIeX27x6LVHePToliFjT901DzBpUZ5OxzGrxHxg0oAYWMvw6DHw6isbL7+68dLLt/jCS4/w8isLL7+y8dprAgM38B0VMWpDnx1OLXSL+RmsAq8DBph/B4SHYNE4MwB/64c/8SXJ4SnCBEp0oaPHW/SUxOEOumYGzHU2fL/L2X3VUWM5RWgtg4fZeJx/kD272Wo3zxGH+k936zAsArm8srnJcEzfwAKWOaX4wrIdvazN04oECr1SpuswU2TGpyuxKH4fjBkKn0fDHYYQ/Mws/fxpxS6BABA2ryzz9MC0shx4meGQK8m43oXo6wbSnKO8A6rOuNqbRJf5Gf09NB+DAycwICtFZX5xn1C3PUSQmcSoBEQ4j5mW2zafKUXf9sGZLT28xtGYgO9EhSkCHFVSzWCIhT/nGk2e81E0CB1T286HjoAT6+OdIYYEI1ODPpltphwCALZHAgFnNvnaG6+8+MXah9P2a6/iXq++9HLt2HFOFBKNvf1r3olXPv0yXv38yzAb+OD3fwivvvQyPvcrn4aPdUaBaHzc6aC9uPfGq5+/rddntzGv76RX6waPH72Gx49ei1fm9WfuPO4Nrze0XBqZ67rvvl/S+rn3Dffc/J/FdbrlE9llX/JWTzI/2wN4dAO8+gDkGILaMEjSk6LXUtlY0ffJK6B8MHrF9D1cowUSM2Sn9Qx+M4ZHxqnZXHx/+OAB5ph4MB/gwYPn8PDB87g5nsPN8RBzHOmN1jklZoDfGhyLNMnKBotjTKcB0wgchuMyF+ZlYe2FcTsZIhq4XC5wj743Y444NfcID8GYhkhqlJEyMRD5Db4H9ryBYeNyu3DcRg+EgQvzRGINU67kcpOf3RSB5VqGHI31c6iHTsjRNj96nU3r77hqcPfG1xODgctjji7LLFhalkouXBrD4pB3t4G1LmWl88tdBxbJUtNgN+AThw0Md/jFIzbnA2Y3yYtjHJFkeFA5uTrZVc2pntV/3i7lPTBs42Y8wOP1CH5xDJ9xvK8Be8Tcli+6lhgaoEs5QhSWiY6GGWECt0wqhEeJ0wWGWx02xB13MtKcsxAdeuayYc6bUrZsXmRm2JfNA3kqMTJRNqSYAYmF7ZHwAmO8kT+P3PU6ojhAjkCEKhKoNBM7MB5rTOjcUp1d+Y52oEcQ6rDytAAj3e6TxyTvfcHyC9YmPXvFFgGLToFHMKQb18pZ2kRAs33CPc6mUChV3SuN+S6Dlk5YEDNUukeZ0rg5Tu7mzf5Bc8Rzlm2O2WE6ElvH1YJgTDkfrPfGaICYINpmSf/Pf/PPY73npZN7Nw9zIhMPv8BsRUyUIPGFF96K59/0PN73jnfhXW99G54bwHTHZ19+GR/97GfwFb/pA3jfB78LL734It72nvfCHk78uf/0P8Bnvv1XsP2CYw48eHjAfGPOC+YMXplzYMx21HYKdqR3Chu4PF5YK1rLZpMf0v5y5oyMooFhhgPG0zyN+bZxlmhU98Tx6A+PB7jhwVHYwGuvPcYYBy7LcXu7YMcNhk1cLgvCkbad3iQHtsOmSodpXdGdmyXH7lg73MZZkWMjDhxr3Qv3jvwfdTt0ge8R6uU4Bj1WnmeaFayug4CWD/JrKVUEC0W4i3mQBmXCU2aRB+a4buwkmud75ZXimsOAtR7RRew1LvG5Ocbn3gr8+W+L9Zubyao36N0OVcoNLDg2sJSzEOn0Ju+aK2FzpHFnNM6UsIeUD4MnN1p51rJZ0CWSA28Yn58DNw8e4OHNc3gwb/DweBNubp7DzXiAOR7i5ngTHt48hzkPqCV40ewKf4DfkjY3zB6kBS/D5mYccB+4vb1gPL7FtoHj8S2mvYY5X8Hjx48z323kfg1+WRhVDCWYt0RChpbdDxxHaIFoHT9xjBvcIID8zUNgHQ74gShxZ8kpBGpkGBNsyLCVnHGGjrFx7vESc2420hNdT9WBUJgjxYT1AfB9HCtJBda/CksEMjLLv4WujNK/vQa2BXAwROUX6D5yGxgVGAAMOA6e3jVGxuCCaQRAPNole9SQm4UHY9qBrezVAeyxMVi6EaLKywsAKUW+5qG4B+RKMwwcGR8OR0oIqvQUNO/AfTW1EnBrFciqXus60zwIIxkPE6BSBZiV3MIE2cq0udqNhDZS0DRQIQmqMZVRHM/fI8cTssAh4/2+CoxINgTK3RgCyR3Y+5J0FV8DqtnQTWVx6NyAnizaLVGVVsHjDtLXjgCJ2f9iGJMRaUkMw5jztKYKeeW8UCdqogtIBzIWnPNQiQ0FcSqKCo3l9ZYLLm9/+dQFU1bO8kgCejgdvl7FxsLN82/CW9/6Nnz1V70HH3z/1+NN8wZf/NSncXO54PmbA+/8+nfha2/eg49++qP43Gcn/OZ5/JNf/gR+5If+Il586dOwd5AvhsEezJjXvGAfPMdiIhQCrbJWeh/r64hEp1ud6gb48jypMvJmNhUG6YHKeQ7DK49ehbvj+effjOPmwLpcMNzx3M0DvPnhAzx3c+DL3/vl+LK3vR2f/cxn8enPfg4vvfIIL37hJazXHmEcN5gP3oTDDY8f3VJB7wB7UrjsHe9q3SuhbUx83sHjyAqE8P4QS2AttBa+POmze+OkdI7wTko2D5MtDACRX7S2Y+0GBly8xHyTafADFWaapYwFs1cqL42h5FrPN/AxeOqmA7b4HmWjS24TdOQx4OnX5LgJMnhP03w9aGH4BMZE9HUh7/N9i8mZxc/AuV1xaAOdtDinR/hyAjYWFW1Y1pNn0cRBdTd4ePNmPLh5Ex7cvBnTHuCYD3Ezn8OcNzCbYKAWadyYIYi5MTIkCyZ5ctKYG3CPJD9/CJg9gjweZgN7X8jHqvqoBnryjpvW+f/H3J8925YtaX7Qz8cYc65mN6ePPm6XmTe7yqyqTEQVVQZ6ECWZqUqSmQQyjAcweML4B3jgj+CBR5DBKxgYhiEwIRDIQKpUVYkqKfvKvHnbuHEj4sTp996rmaPhwd3HnGufE/eeKCrLmGEndr/WbMZw//zzz93tDqsDTAh6DeOQ2K4StW4YQmKVRmoJ1gtDEEkqSO22dMl0W1DQ0+sw0wbOpC5ZFm59PtugX3R8DTCwdPozyv55R08lt8XnoL3Am3dh0p8FfVntMBaaNWQwNxoqEVVyzhGxeTUaKaZuaLV21xCHCUi09tiWez9lzUuVYk5APILVdIE7X78O94/uspbbyPNFQZwl0IeoQMBIm5N82uk9FbG2yLYANXo6FYz0UcUdZfdHgS+MZZ7Pc29apqKjXH0IVJ+3vRAILSsqQOb75JQJZjqq5w/nPOJSuLJ8nQ6k7Jz0dU1kqeMBOW0pLP4u9FkPBnqboeDOLvanMT/X6gMWujfXay6lzNfbhCaRhkaj2sMizj9r9OmFPoO+itat6wAoFZ62Lgq186gNH6wEsBwja+ylUaFzpBdMy6BzJGZhaW2NnCshiaqSSyOlwMN7D/j2t77Dw4fv8cXnX/KT7/+Qm6fPeHB2xnqIxM3I+s4FD9//gJq/5I/++Pf40+/9hUKXnMHozgpMx6Kz2ENcCFO9gYqLmOZ11izSVVGs2HAwW8OW0/QSYl2OYmvH2KohUjKkoCLhNmU4TmxXa945v8tv/Mqvcb45Q0pls1rz/tk92i8lPn38JT/48Y/5/MunPH91xdXLF6S0UvNrDkl6mk2fv/TqAKGr5EOgtcIiOF98fxk8LQ2qg3B3fEsz+/Nt33zMvzfrfHT/IY1S1MqEgKUIDWAa9Vt9LbMQFnv5a541K16N06QRk9eoG7joV1d7MDcfi3ZizQIHpKe25oqkSIwDtAQt2jpVUKw6KYtET/LCHvnNny87BbodkhCsPNC1ZVotoP9GVqszAwRbYhgJsmKMIzrY3tIJxkK6sQ6SdT+bNsm8BoI5VSIpJN2PLQGJaGJEtVuVeGzkrM/A75gGUMowS5unFvYpkwY0dO5BYBwCm7Xeg7Rq5GmgTCtcuBxkIIREDAnvxKqBgz1n3hBg+V01O9pOnqmDvH4yvO1a/WcAA7W//tsijp93nFxgs4mMNpVPpOnjNjrWKXDpYCAQRVMHs6PznHizKKzSYsHpcBCkBKUng5eSNeqibBAJNkhC6AxGC1pWIpYy8IfjzIAvEGMJarUlE+bWwp4iaK1BcAWpGRwzSg3wGdYN3SyOGLNRol7FoVenIZvnxMXeM3g+XBwg2SaM0hXwnkIQpFO60o263i7pjtrec6kqtqipncxsEIueFn8jjnbNwdp44iZKo4fgzlWA2EFPXyNac4Ni8MXCXhieaueDb42mA0O8T1Vr2DAYfb4SrIRVAkLqzx3oaafWm9EEXUcOAuot7YbMW3AZGOm9sDsoCwNrR5BACGkBBMzNVBOilsa+ZCQfuX9+l/cfvcc7997hv/jHv8+Xj59SS2U7DDx+8ZIxwPZiS331ildXN3z8rW/z3W9+izplvvejHzKVpjnQIQLJBKyBGpI6HI8gzaK9trc7+JO5Vrpi7Wl9PwQNq5d/a7dpKpk4JsY0QKu0KXNvfcEvffgNvvPRN4gV8vMbvvjsc549eUpaj8SLLb/0m7/B5fk5v/cP/nN21zuG9cjLqxvSMPZ4rGMBe+6KQZZr5fRiPMJy7crCx9qSmiOtEzFcM5AX7Ocdv752s97wubNh+pVSwqfAWfeUG3t9/7KQeNh27sGCn6Ogr+v6Ve9xEMTf34GE9yk5iWPNmerFqwBPy+lmljCqjZUVMOI9TEqdqK1QKORWyLWhbIAyG2FxX8TOJQQfRY99jv0LREmkMBDDQDIGIEVNCQzpjCFtSXEkMJDCCk3Z9uynGYqi5yuFJpEg2bhGDcu6Bi0kQhjUubdKa5MKjbGKrzYRpZATvQmRVmkpGBKU0nF2VR9L635A04+RMUXYqDB+XYRaVrQ8Im1AQiSGgRATUQyYmO3sdrQzBKEvub6q3A7zz+f4Wn0GTpDp25yCLDYNcLoxbJFan2hXhHt5l9RqjlXz78UBQaM/jCBRRYFhWOTgFvkjo99qLcigUVmQRIlaRlhro8YZvXpjCgmogTS6wvOerh1QlWs00UgyVsA+mswwihrOFKpFMXovPJqs5tidcp8rA3TYin+97Do2JFhGwg4wXIU/o8fYjYyzJUrNSQcDCgzCa8hTc12nLEHXEuBgofXzr3U5xtT+YoFIHYR5pObNfDyy01tvFFmotl7U4fi1CaLaCdwHL9fejJQb7sir9nyo+lHQcgoHAkFMdBSTAaXUaThPDWgkKEioiCl9q31PK0TavGaNhYqmafBL8GsPLrCsLnadDx+kVN0ZLJxRpVGniW1IPLz3kE3a8PlPf8b182s+/+wxx8NRQc904BsfvEcNgdVq5PmXz7i52vErv/7r/JXv/hqH/YGfff6YF7srpfeth0kIUVNSZX5OGrHO891nEG0OtkHo5XI9xNa0grNW3mZXXwHQDqTDKjISSS1w7/4jvvnwA96/vM+LTx/z+GdfEASmw8STJ18ShoE8Ck+ePeOXf/XX+d2/+lf5x//l7/MXP/gR2/NzjpPS++DYxB2gAxsv5TXbtbA5p02JZsr1TbFNF7waC0moPycKuh2hcevzee/6XpCin0uZ93T/Ky8r9kgx2O/iz0pTIO7QdSmZhiEso8rW12MQIEayv0oIxBR67j1YwCNRbZmYk4qyIsYNQUYw4ewhHyg1k+NECBMiE9pPptDIutd9mq24zXHRnVdqYRqBZJUBBgLSSAojKW4W/9Zq62UkMOoNifQyT/VLldomhEqQSCMifrX2P01zJISBIANEZTpzgSBZqf1xRKQQi1Bytvz7YP9GhAEYVBNhjIiDfhBiTLRhoNSBsQ7kOtBqotUBafr3ygoO5r+UWe5P1wMqw3wOrJYVO176/PYs1c8/3hoMwGyIHXA2fs6+8EMWBt4MRV/cFnEp6rHfA6UAekMRoQX7KDJHIhaFa/TtTYrCojuUnmSjmgEOpBh0YVQFBt6tzO94sqi3lIZGT3rNnkON3nBIgqpRCURjBRQoREV3TRXryXBie83Q+8ZfAoNbUa452GWfcVlct/6dTyUr5Lws2Zodjm68JT03g4FkQs43lRMtHbh/bp+xLDHyj8s55be1EMtz0tdQPcYMBqC1QiPaunIAOUdovi66ovnWob0dXDthhkGsMVEI+to6cgyJAQmabwwxIiEifi8wKtyfl+sEFCmSLLXQQZifpzSrAvGcuy1vBwNGe8mi/FBzndqCOjDT3nr5QkiJSOPB5Tnf+OBjEpF/8gd/xKc/e8z17si42nB2uUWovNxPTPmKs82K7WaDSOYnf/FD7r/zkN/61V9jf7PjcDxwaIXYtMFJbTDlitSpV3zM/SjgpAbcxECeR8aAkT+qHr06c2g10w5EQwysYiQU2A4rPnr0Htsw8oM//wEvHj8lhUiuhWfPX3B1fcWwXjGerfni6XM26wt++3d+h1/61rd58uQ51/ujnitKANMj3WZsizqFnlo6CV5kZjVORFf9px0eKOhX56H+26P526tvwRLRdJ29Blr9V15/TwfXod+91r8/AzJLvxgb5mkv79Iaut1rCmDDAgAE3bsh6NwXhoR3bohRGAft6yIeoYeABM1ji0RiWJHCmhi3hDAgJBoQ8w1TPZLzRAhHQjiSs36di7Wfd6AVBCgn60tLxs12h0SMKg6Mca1AIG1IaURkTQgjIa4IskKj8uFWNVfBO/sEon1um9BYIguP9CnLgIQVISaQSmgN8pFg7ESLI0IhhkB2my5rAiuEtbEkA020MkjvXZt3dRhABkobqIxUS0W0NiJ10ADFBPeqe4jMg/10jXSWDnpHW1sYuMC8p0ZvHw4m+qr+xcdbg4GUUm8002kmM4j+hqebxHM04CFd837fdl2C2POrZqQ9Qq9IKwRidzTaq8CjXm9KEUnRF1Ow7lOB4Oox+psTWqSIO1Pd1OOIvc4RmZx1MOrKeli7KCWIGJhwQKDRZJTBFoqxA/ZwtQ2xphtm52b3Ab3mHkfI7GwbyoTU5g1vMESiYEDzeOpAFMwUSilMUzD1c5lpfsCpvxhsCFQKWv4ZnUWZNQYepaY4zGzACTCY45LbgMDLcDpgtGuadQVmhC168VxurRoVz9GZO3xbL727lomwELwVgd8XhRcOoOanPoOZqE7YQEHDAYA+w5QGa3ft1xlURd6aTrcMfq123cxVEJ6nhWZ9KPQtXaiJBCKVQNVGUXHecuLpCpZMj/59EmEcRtargY8//JjzzTmPf/Y5P/vkM673R6oM5CbkGlmvN7Q6QQyUGri+OZIOhTIV1us1dy4u+bXv/BK1FD5/9ozWFAju90fiKlpjI7H95U7F97PM5+pOycSTURbpL3SPjKNTna2r40V0dGvdH9muL3h0eZ/dqx1PnnzBdHWAGsi18Wq/5/H1NcdakMMO2d1wtt3y5MsnfP973+eDjz/mO9/8Fn/4J39KGgYIiWPVdSIxmeMrxg54tGyq+AXQAheR6X7XJ64ANQTMmFtgUBfVBAtxqEe1MZj2yRGGL0uxVWn4wNmA2wBb/8AZDKxM1fcQdKGC/b5X6nglgjcS8xQgUpBoTlecCXRm0xicNAPSGCOrcWQcR1OrG+Nptkwj1zUprEnDhoA6tUojDIEpHzjKQZv9iDBZdC6iwVS1ANAdWogKVoJV9UQT78aYNDUQNoxxrYLBuCKFDTGM0AZajRATMawIYbQ0rq/QRKNoUNGyAgbQ4E8EVbuqhdFnlxBJdGGj0/RkWlNGJMY1IVSGAVQrsSLIhsCKIGtERiSu8EqlGHy/qJ9oMlDbQCVRScBAa4nQkvmxBRCwNKnbLd967h9O2/HbmmK2S7cPvd9zAPY2x1uDgWEYmCanpE8ptVmsM6MRX/Kak6UDg/n7LvpAN3Nwa6g0nFLVVl3ZNDITi7Q9SgnMCyrGoJ2igvX3NupiHq+pTlKjGW1CFCPgk8SaC+EasQZyUXCh9LtebwpOqxs7EC1V0azEUFT8EmTQiNNzF7LY+LBwkI3bTTc8mulK54Vj77llb71aFAiUoCKZWivZfu7PpaGlO33Kl9XL6rANoxoXgkPpYOBNhstp9NcBgSpv6+I+ysnvqUGcr681KGWiNS1BnQ1goEnBm7Lre1h6oXdxnIFlp287oJjRsEb6sX8eJCIhgSQkDCpUipEhjcRk6RGUPq9x7oY4X5eVm/UOjAoGdBaFNR2S1qNhTfMJgaJgIFdyjB47m3hxnp65HO+NBDbjmov1wHvvvMdut+eLzx8z5caUBYZADCMtDhRR0Hy1n2CdGKOQjxNn2y1JAruXV7x77z43H33EfjpyNU0cDkdW44o8HYm3g9Wm1+EpqtBzmWZcLOIL/ZnaszbnIwaGeulQq6QmSI1crs4YJfH5p5/z8ulLHtx5CCGyO+zZE5nGNcc6MeUjbX9gyo3cPkfiinfe+5B3332fTz79nGdX18rmNE2q+9RTrCS4t6peOOF5jYd5H3VwZ0xb84BBHUfx0i3M9uFKf2tfbU6f/l508KFr0QVerh63pIbMjKAHMr1Eu6/nGYTNtLrV4kcT4NnHeUofkDJBlmVw1vANBRNlmBtepRTZbLas1rODUhCgqVgJSXP4ca3OUbQcr6LRdLByCrfnDr5S0WCqlIx7bG8A168nRlI0AV0cSHFkCBvGtGVMG92XxgT4aGrizFqAzFipzcGAMoS681QjYHn15p1lZ0re4gxO5uRIBEZiGPvva3GssQKsEVl1MCDiXVGjPXFL70jsQKAxAOYrZNDf9WBS9DwxWxK0dMPAgK6FaI7dySF3CzUXtT+L73l2vjdBe0s08NZgQHMoQs5u6LwDXe2LFk6dis8UeNNH/xxmowNW62zxWxJFu1Esn4XoPXIYXfS5eTmWWLTu6tHa5n73M/lnrYOalYxEiG1gsE2ZcqCUIzFY1FpVMStYhYNgIMRSBf6+MhBkJMVRAYHlpIdRuzCeqvXp1+vn1yNaMyJLR4sBINU51A4Ecs7knNXwMVCKzgxwMKAXqEZLQYADAgUDrpw96bIoDsJeBwOO1Tpkbco61FbNYcjCWOrviT1TBxLtBHhJL90xToTi9cyUvrndgDe7Bz2lYuDCF/tSGFURK/O08/X8pz2XNKyMEYikcXXCDPRN5CxOmwVkpVZKtmdQVZzkNewhJXr3MOgRdqgZqZP+bkx438AUBkIcaMEmpYW0iLIjmzjy4PIuD+7e53t/+id8/vgJcVghJTI1gVyZipBKoNZAY+DqUBlT4Gw1cMyFq5evGIJQy8QHjx5xvdvxT3/wQ6Q2hpA45ok4DnOkbIZMep5czNgFcxZYnto1Bb7vQv99399zNr8wtMbl+YqL9SW7Vzuur3bUFjk2YSqVXYNdCOxCZF8zx9KYdhO7Vnh5feB6n3n03of82m/+Bvfvf8LzqxtaLgiBQevTgKb6D78SxScWIcMwjBYdW0TY/OxKp1yr5fDncEfMnRe83A8quUw07U4ArVJLprVlqaxtE7HS1qp78XY9uH9wSt0ZMz//GEdz+nZfOxugggPXSaVBo0cJlZj0d6Kp81NKJPEoPJA3224eVsOG87P7bDYbvCOUC6Lp0bXl88Oq78MqldAKzftv9DLBRkpCzsnSl8d5v0ohDfT3CCFa0yAFAimtGIeNNRTSpkIiUcXcIlQJClRtValddE6xdZCtzyzouVmax8cth2j6oWDi654yayARiYPG6VatoOc4IuJagRVBRoKMiKxIw8aQr1bI1VpVX4r22mkMNEk0kjobiaZ7cFHmMk1gKQw8wHEZqYuj5x/5xzZaxd1ySTUFhsnm6ryBOHjj8dZgYLvdMk0TpQwaLYdiKksHBTOtrI7bo0PbEIvotzseZorRnaIiLO1nH2PoQj1VYzel103dWUWbn0xTplavEze1rBtwPDoNekMXXKyIdo2SqOdXaqAEKCUQs7IDpU7UWsDrTfFRy0nPzTcJiZTWtqi1LCbEyLhaaT3ywtkuDxfhORugUa/+bAYDmGpWF1suqjaqRu23oPWsLnLU8dlONan4TQ1GNDCg/bVTShZV+fl5GmJZgNRNqxqBBbDSEjyNwlIKPY20BDFzp7EluFCDOtf86nMLTrO6cr/5fVDqrTbNQQdciDgfgvR+Y0veqoENBjH6TlxFrGKlYdDBJ9Hoe3Uc0Zz/LTAApAolKjNQ6oCTyEi10kEL6hwUiFYxhCo0qZS54xNDStRh1Nr3EGmL551ExXZ3tufEEHny5BmfffklEleE1YqWG8cC1zcHqDrJjTjw4nBDPBxI6ZxcGtfXNwxRkCt4tB756N13+OSnP6PFyKurK7bnZxbFK1UuzSnwGSTGGBWQW0rO6djgBi0M5mgGTdVF0+cY2A9UNi1zb7NGWmKfj6xWZ4xjosYVu+OeXYaJiMRRn16GYRu4efaSII3p+Sv++E+/x3e++2u8996HfPnkObspk0SQmFTD3hrjoGVl/d6bswwhGBjwpmexg8nSdDbGXJlqzZM82pSmds7WpYrVsrofAwK1TJRpohSbZWFMgkbOyqaIL0hmoCK3AqU+d8CW8DgOlgLAUqCqyPfwL8RGGkS74/Xe+cn2ZGJIg34MVjoXEofNqm/DYdhwsV2x3p7pvmn0EHPuKmhVVFZWpwC9IAwk0eqBUsTa9AolRZ0BUzI5jwuRm56rXl+YU6rBegcMIymuGeKKFEYLsII1LtKbN4eN8/72j91WcmpzPG3TmO85Qh8aVb0JVQgIgzr/FgjW4EjBgFUAyGAplISEkXF13u1Xq1VnE1jZdJMEIdlHBQBIJA4jp2nlZOdrJaGd5Zz/zen40+NNKQK9wbwmVv5Fx1uDgfV6TUqJnKPRZfqwm/Xo72I7F6RhNNYi8ozBlfhzfl8vqM0I1kSA+s/LTlpH4K1VSkabihjqTinphq1O2cLMOMw3rVaP9lH6WKxsrNNbyjoEgYiVlbVKUVIMKC7hI4WgAryooCCGZJtPW2amOBJSJA0JXMvQo6f58CjfnagCwhnM9J9J7UDG8WMAu0eBKAOlGFUffcO5IEwZFmUGohqMKF/JDCxz785KeFSfq7NAnAKY5vqFeYjRzMrMYLG33ESfcbVrDaEQmzZD0SjMAIfnUEVngoNNASszu+CnKd2AN1oQc86BXmrSrapu0mBNTWIYO4ruQ6lul/v5DYlCSlDa6XwGvTRjyryphtHBkUCqSq0eFx0IY0zENOr1l9LvpQBDC2zTyOX2kpfPXvLq6pqX19eEsRHXAzK4kQrkCS3HDYFji7Rp4lgbab1itRl0L5TCq2fPePTBB/zqr/wS/+SP/pjNOBJNKIs0y765rFFU4R18Zsio5xtnoZqmxUz4FVUVPQyWeolJc9itIS2zqTfE44Grqx1UODu74JiFm2PlMDWOWd97iCvSsGIdNxxlx4un16yHgTisefbiFVfXe7797e/w+MsnPH/xktxAUmKyToHjIGAOSoxZTDESk4EB8Xxxby5ujr65RpRam63japoBjTurgSC9V0ca2p2olkCeNJb2aZehmNapGjiVSM3tBAy43Xfg5ecsff3AkIZ+HcFy7g4IQtSS6jRgrXJj/zqEwJBGVsPIMKxIcSAZ5R/Ws9lPYc06jQzDlsbCeTQHwfO3dKtJX6MqJNRS1dgrVCAXodbU05hz+gPTcxmFj7NNsZcRRtuPQUaku6cZTDSxSNj1Kn6y9lnVpE8/1yUgwKxLWzDGXYRHg4CtjYEoaxMyblQfgPZYcNV/sCA1phXeCEVF1HOvg25rogYf3mUpWCdNDYYGvCT9ZOT5fLaLe//m46sAQfuqH3zF8dZg4PLy0mjpoxr7pqpR1xD4JurxZNPaziCzge3DJ3zKVHRaSr83DIP1DbBRlGL1r56OqNBKBhFqjVSEEmNXss+CHL1Dvph1MVQT5en3FOUqFdOqdnhqVN1QbbC2t9WYj6JABDp9LpanjCESUyKGkWEYWY0rxnHFkFaElBbla1FzfRYSiEFVn5xYLZ/YatNLbS7MO5Jz7hvL72VK2mgpJc015pyJMXadgZ+j5gydSgydUuxq5DeCgbl8pVPxKJCKRcB0IH6OTb1JFzN6OkNrYPUeYuLHXkfd0HbVWn8E3hXNHL871lqb0ayyeJbNcvqcPHeN7Gw92joKoo5sSKOlBZLmmvuaTDYoS52Dr9OvKtlpFhkVq+LwSRT6OJUh6Ndhfx9bJrZMDRWfiA0KYmUYWI74dkO7apE755c8uveAH/74e3pPEY45M9TKMCZWqy2rOBBKhlI45kZNI9TCPleaRNabLanpgK5nT77k/M4dvvXxx3z/xz9haoFDEQqaWguWShrHSEyR9Wpled2kUZulVYbRJmGizFgKozFkidWwUoAQvN9GhnIkXn/J82df8OWzV6TVOevtGflmoh2ONCLVyrdahSFpp8ubLIRxS0uBQ4GpCo+fPOOjjz/mg/c/AIkcs7YpzlaQn4agUXurRrNLtzVz+Zy2f6W3154BX6mNXBolq/ag2DpQgOrPuzLVG/26FFpNlBQoKXYQPGV1Drmhaz9Em2A6H7IAA6eppcUaieMiPcCsFUhKx2s6wMSExsZoUBUZ08g4+JQ/6+NPoqwCoFMnFQifE2SN99mYAbazY/5R96o6YRVlg6bGetmpCKkKrVbt3liVivcg0dmi1ivGTG9lqYJgWp4YYq8KmNm3xb9be7NXERnr2FNUzkgzA4FSVIcUukJfmLU+kRBUuDikC2LYKhhomtsPnjJzMSYJb7kbiUDRrR9EHX8YIGk6UIOQgKRk76OD0mZt0zKSdxhgc1DC8mfz8VUCwjfZrl90vDUYuH/3AdN0JBftwFbKpErS44FSst3gapQuGsmXIz78R+lDXRQuaknRhkVIsBnVqUd7PTXgj9FQoKrwtSKghkrNhePhSIiBUkoHHEtxXr89RsErbpOFwfbqCEWGNKHFQqyJUrLWq1p7ZMQXtlOpHnko3TwMCgrGwcCAPXgto1Ekv8xLuzZgWbd/3B3VSTZlMFrLmiYICSikKOrkYrWIptJk0t4MC/5cRFQlHCFFNZQ+jrOXGlp44vdNLDKs5pR849OEUkGKo3qs6ZA5bNGZCaphiL0Fq4IoK8liBhat6cQwFZ4lTliAUKFWWouE4GBzZgJO9RRmvMRSCbUoKO1rKJKS6wMGpVCjbWZjdkK0Ol+nxqN2j2imSl+SdjRlM0LVwSYswICeBwtjZdddJ6Qe0U6Qs0eIUdfHXAVidGCDAeHy4oz7D+7yh398pc8jDeQKYxy1i2IIpGFgNSRqPrKfMhIDIUX2+wO73YFysUVa4bA/8vT5E9ZnWz6+OOO73/kmf/r9H3CxvUOpUWdipEgaR8YxMYyJ9Xqtzj8NDMOKOKxNY6F0dUTXoed9gyRSGi1qAmqm5gNMhV3OPHn2ghcvr3n43l1W23OO9ciqJbIMlCYc90dKLZRjZcqZPFW22wsO+z3PXzzncrvm008+4Vvf+Jg7dx7w/NWecDwQxkQpej+HMWi/Cqt68nSYhGDAci7h0jXsz82YxdbIpc6A1srVmjXTqaj4OFdrVdsqrRa1gTlTcyFnG3zjEy8tHzzEAVexALSgO6mJPn9nCjSo1d9br9ddGBgCXQ8goaEzJRoxFAULEqxkT9f6mEbGccNq3JDiCi0LDKTUEG4swk4gowprWdgA8RQfHQA5M9vsmmorRJLtD21T7ELqFhqpl0UHXNc191bBAIGAd2/t6SavaFC7K21Rdm4MsbWZxMtDl6S6pjIs+MAaolmqoVZtkexVQ7OgVBAiEW0AFOOKmNZWzbCGDgac5dV1k11j0lp/dr3VuwQkmY1JydiBoMPrvKwwuHDTQaoHYmbv2mB2KMzX3y0StKJB98n98WTpX1aa4Gx1QV3pwp8MCExlYhpt/K9RxK7KDNKY9tdgDR88D5lCYkhKsUcDCZqTNPI4DYsHFPBWp6pgDsrCGICQGihTpTYtHynRh0rMIGD5sX8/iAp+HOnW0nMyviyKJFJs1NSsnjWS21HzTWHA5LqEpLXq45DYbjeMw8Z0A6NSwKYYD9Go8ajtWL15Xo9qF8LAEAamaaIdj1AroSnFVI5TZwOWyK/USlwVdcBLJ2lrwcWCcbAyuqQAxgffKNtBN0DO2NCBgG5eVdLTnwn2dWuNadIoP8REST4/3MlBXZzVQr9+r4Nu1lqHnl/MOWtN7oJm1MhZ/yYao9MJIzMEqgoHaaYyxiOPoDXLYaVirBiRFJBBLJxK5lgjBCGkgTRo6keC591m0OPwoNqa8a3X8UjXGsx5vtYGpK6ooRDTATjo5hvXyFiJ9rvi96Y1zsbEcBYoHCmh8vTlK47HSg0D1zdHHp7d5+LiklUEjntanoiSOR4z6yHx8M49Yojc3Bx4dPeMMk3sdnuePv2S8ycXvPfOPQ6Hd7jZQ65rqgRaHImrNeNqZBgiq8EGq4xrxtWWOJ4RhoESCxIyY8sMomWQTRJNBgoJSYmaD4yxsBkahQOPXz3n2dWeMJ4xbi4oJfTSyKvdK3aHTBNYnW0ptZCvJ8KQyNcHWhbOxjWH6xccds+4evWSOw++wd0H8HL/CklVQXNJaMVhndOQzsQBMQ3mMMLCJUPO5oiNndJ9mLtItLVMJWvIELS9d2sbbcfbgYM5/1KYjsc5XbXoYxKsjW8/rNqEBTOwPJo04hgJi/0aU9RhWaLlqo0jIllnrUQhpKBRaEyqzk9rUtqSkqvyhRDmniQSkopSU+y2c45CZwfkrKX3QIGJVrVqAXH7aZqApoFC6Ll+twEoQ9L0dTwVo4HbaUCi9mai2s8a1kGzHmgpUJMQZMBz/8rMBS0xbVp+iDUg6t0oW6WZcDz0VLLetyGOJNkQrP9ACmtNq5gI05kMsbJkbXgnZpcMoFTRmRWtaYojaD+TkAY9r6jVGZqiDj0QaSZsdn2GtLkvhtg68PvXaFbZq3YmRWHuqeBGe/E96MzXLzrevppgGI19r6Q6kFJkKBNTnDimiZIrUynKDIggVMYhIi0bwlEaJootbMu5a34x4iVu1ambBl5jrmyD3wz/qIsgNJiOR0I4ZQY89XBatmeRqEerNvBDvUiwB+A3LvQF4Fl6VX06K+C1+Ut06aWHFn2EMEejnZKXLvY7LSecJ7jlXImG/FM0xWuopoLGDNdsPYrlyYoZMRe/6aLXcq8YowkINe+bQtQGTU6RdYoQNJ86U6fq3KRvYvDKAqVVPScYK9TYeglVrd5rYtlvoHSHp0yQRlW5TExTJMZJU04FYtQoy+c20BrNOkZ6q2hndOZ8t6UTMIEYgRgG4jAQhtHAW1KWxnLi3hs8RCGmQZ9PXOo8nGJslAalNqR6+kP1MR7NCbUvodnAm9BsygxDxcHAOK5Ia7Sla8m0WjSqQGcRbM43PH35jOcvnpNz4ThlZNT8fLX7mWJExkg5VlaDiq2ONzv2Aep4gZfYHacjQiUfdjDteXhxRnnnPi9uhH1dU6xMkaRCwZSEdYoMIaiuYhgIg06R8f4Ug0QGKkkCLYwUGQhxpesqCavaCHnP4XDDzdUV+/3EZrNWMeKwIiUIUvT1U+Y4TUxTBYFhWLHbq1OVGrSKqFamww373Q3vby/YXhTqGJEhqynLI8PQCLHacw29hXlfJ/izCd1gjtBZSCWzlPWppZDLBD1FkLWclAK2jtuiDFjTfYWyyn3/mdHUFVLmHhnOgimrZM2oDFUGFxQEVNw8CClF3bMxWD27i5qPQCYGFSuGJCCBdtLEJ5m+RNugxUWfAUW86SSFu6TPT4TYoakGQlwcmVBmLFrpt6YJ3DFJm+2UxapqakXvtHTWxRg0wah6Y4JrAFSztfCH/XdxxtjtwOKQXhnhjEVY7FStMJifDxbwqV5Aqfu5SVnDStIJ3R+0br8T3uxIgwHTSLRgYEHZGvGPFsj2BmhELZc0QavfK14DBHZhralejoU/++d0vD0zsD3rlHQphVwHcvFuU5mcG1O2dEHT7TcMFZoibJzmpWmlQAgMKWnrx2RoNIhpMQTvDpizLpzWKSd3UKeG902HN0ha/gshQPWJhPp7fcHKogeY0VjNF8uCxnHhhzaqGEwR6krQuSFSDJE0jKop6GI93diCK8+drtRhOCI6/1osN03T1pZ+LberEoxQogmWrpnz9Z1qEgwMBFNWW05xGMyBnYKB1pGlb7Q2G1IJnbavpXZ0H8O4+L6BhjY/85nan6NfBwM5T0zTkWNK5DxRcqQUrZyIMXdhZXeyONhdbARjfPSmiDH1yhCIJMIwIFFpupASQ0ykYKJV+xctP67VIJZOMdpS76UoA2Yaj3rCJqm1midEWs03AZpGlzk5M6DHOI6M60AuEznbvAzRapohNs7Oznj14gVPnz3vZaTrTURoTMcjN9dXpLbiLAnb9ZqX1ztGiVw8uM/d7YrNOhFCo7bM5cWW/fUZx+MNLx5/RvrWR7xzecH6fMM155Sw0qFFou13QiusEgyi9dMxRS2/jigjFhOJRgpitPBIDSOEEYkwMhIPjd31l1w9f8G0PzBIYExW+pcr5TCx3+2Y9gfqpAwcpTHlwuF4VJYsChK1njqXiel45DgdGVcjm+2WNkAYM7REKyMpNWLwiggvd51txrzp3aHMab/ZbrigN1PqZL9XKHUi5yOlTJYi8NTOAjRbqm+hAcTTS9NxBg+zA9NfdMZSepBhX0fpuodkfQN0bxZtNNUmYEKszDBEHyNtavVgfU9EywO1mc5y28hcFSJegx96NOn7tldoiTMDAWrq90anF2qXVhfUzYzI4j4s9qv2mJuFug0flGU9GETFp5qOs30ts928LXBcvDgzkX76fe1iaqfoKSKF30jQckGl87VyANEBQj6Vs5Mc4oy19cKxMkBpixRrCAYCYg8utBdG6E3QQgj6ew423BstwIDb+H6fFn7wTRVq/6zHW4OBi4tLmimoS8kcp0jOiTKY0CYXplK0BrspgxCj5tqqhXrN8uIBbGEnhi7usVRAcBW91nODlq0UCl0jAtDFfU1zvgtHeVsr8FpJY/AaWmtYYq93QrP4Bgc8r9UrJWyjzUDAxR8zonbVcrIJXDHaqE0DQj0iEBPJSNUKDIQ0rpBSQILS7hYZRxe++QKQ2dy4eM8jmrnVsV6XCuPE6LhEjIlxNfb7M6Nt20bNo2F9fc/1I6ELB0uppoJvxD5rQU4NXmtGfzelW72zX6usRi1TzXnqucISj5QoTEWopSgYKIuUg6ijV6J3NuBaMGB0YBUFn/15BGTQvGgVLUVLRqN2AeFC95HSwLAaZ+oyxH5bYq3kWmx0r52X2LPsn2ubav2zQG0TJR8Q8pyCAWKKDGMglIj3dAeluIVCCErrHo/amSCIsBoGWlC1fyuNmgtxXLEezzjfXrI/HDnsXlFz4M7ZJe89vOR8HSmHa+rhgi9+9pKXn33K8dmXvPP+x6zHBzwNFxQZyAhTbZSWCSUTmRikMYRAHBTcEiNxXKnASwIxJAgjxIEqIwTtuLiWAzVf8fL6FVdPn/Dyy8fsX12zGteU44E4DowhsEkjdd1IMjHZOg9ypOSJ7WZDCJFjnLjKr5AgjOs1q+2WMIyM6zWshDAU3c9lJFmtuwN098jGk7lBoA+FQbqhdcDrZWLNctMSoDUFBtN0IOcDZZrMBs17ZckIOTPrqYLWYEqZWqCLXJcGNugfanpqYctSQGKwSqWkgmoqUKj1CG2itiMBY5UCTLV0dizIYLYuofNcEkFyf9uu6nf71h3S7IJObamJ/9AaemXoIi58jSGBBQXike7CVwVm56UfZzvVy+dEK8harwyIi8DJgqDW/8dsd+0dHOSZ86dfY+h/O7ejNhFjSEhYaROhsCLEtZa5SjI9hbICSND+AcEZ4DTfL5vJEWoz3OngztLaYWaVVdyhzLKCgVlAaNyFnqgtpNrXkxoiZ2taO72/p8fXAwlvDQbOz+90SneajlZmeLScmlPURWnjoo+xtuN84s3zonqhmnL3UkJnBmyuelMAkUM1+r+RcyDn0tXo6tysJIOlQ5s/usjvhNa3BkDNuvbpIJxm1F/tXcl8ZHCfhdCc8DZggOV+0L7Vqky2Llme+5FgjW+W6QSxc274IqVHudqJLqUBr/uPaZ5zvTz/uT0sBp4yyzp/j1IVmHBrUVoEkHz85gJdypyAUBwwA4LeWatJj4CcBSil+B/g6YRaNIJxStUrD6p9nUJEx8oqqxIkUGIkx6ADQkollXLCDISQ9HdND9CvU1RIo2DA15ymCSD0vF3V+iHSsGIcRsZhYDSdQIhRBaDjyLha6b024wzaryC2xoAyV21RcaB2zcrZxO65RZ+tBUoUgky9nwFAigPrzaCgtqytSkfXYagTu8OR7dkF4zCyWmU2qxVlmrg4u8fm/Izz7Rnnq4HzVSRJI08TmxBYbc+42Cbu3rng0aP7XGwisZ6zTRNjveHp559x8/gzwuVdLi8+IA9bDiSOFWLTChdqJrQjo8AY9X7FNBLSqGyXDGpA4whxBUFFjdIKse5YlyO74zX16jnh5iWpHjlfR+6fb9gMkdoyg1SGIFycbbi8vIAQOR6PvHj5gmnas14PxDRwdbyi0QgpsT7bstpsGcaR9ZmQZEUciu7HOtpeR4sjFyJdk43ZVhN8Kp/g+o856tIcs6nCxR1UppQj47DR4Tz5iHRmYI7WpC2U3waY1S5WYpid2JyuMEZL1HljOhURoUkgDamP9g1RrHw202qm1iOtHqn1iLSMBI2sm0zWodOd3YCL6tTkL0A0kRjnMr4+4le8smXRvcMCfne2QbSiy0W+ItogTj83pufWERcOfY7smr2fi/20h4z2dxFNldK6rZ3ZCmd0Ftdjfy997y/TsdpnpKc98PSBNhSKcY3EDdHWusTR2IJEk2CphLk6TiQqE9YZDqMcxMuLLX0sEZ8K69Vk3c4uZkh0O9yWYMDuD3Nw+lq581cef0lgYDtuFQzUwjEl0pDI2WjdklnOqW9N8/nHvKcPjGGmnvXiGklmZfs8JnZ2HEEqMSajzydCiLOjI/SoTSzvuxTA3E4NnP6sIXGwyFfLg2rLtFaM3i74oCT6hmrz95pvLG/CEU6NyWuPYqaAMIc605KL3BW6GVMMVIkIi9pzmXNEM8hxlFygQgiqviXOjmgZ8S+BhFKQqcPKXrlhLEKPmHqqwET+rePWxfP2Gts5l1Wb9eJvuQs0a6u0XKwkr5hhs+tuAwEhi6n6M5ToAsLmAQQpqmEL3m60O9wMLasRFI/YvJuhAh9Jg9J9KTGklarkreRwSAMhRYZxZSWiaxMAaXSpuesZWJ4wH3gnRvvcn7otH5FEqokgB4ZlK9hxzXaz6n0xWtEqnVImpEzc7Pa88+Ahq9WGzVRZDQPPr6549/2PGWIgibCy+QWxFYYqWtYcGpt14vzsjMvLC+6cJc6GxkaOXKbGJy3T9tdcPXnM/Xd/mctx5LoKUtWJKsUMoWVSEIYYScOKMKzx0q8gcQYCabTWqpDKDtlfEw83pJsXjPvnXIQj71wMlPvnfPDxe5xd3md3aLy4mYgxUIICtf0hc9hdE9C0hozClCtTniitaKfIYUVFBZ8SsAqIAi0iZWXrYW6i1YyyjhZ8uOUNDqgRPHXlgYAvSpOmGkibTGzngrFZM+D6GGU9xQRnChbzlFVgXQpD8giV7ih6ZUvQ0tbeoNAWTxytS6aVJWtp3JFajuS8p5YDUgdanRDR6oIkA1V0/2nsn8zJJ6WoTxi1QIpj3/8q/jZHGVQUueTb1eY4O2Dpzt5p0hkGu3c9ZJ0tYYpxZl96ZI+GvjKnI7Rff0FENRo9HUOz8c9F2eROkJ4GNDMgMBvbg4doQVKYAztLp0hcqeYlWg+PMNLCYM2I3E5LtwvOGoinrEX1bU1UlH7KWGAAYaH+v63276pyOL19s42+7Qt+/vGXBAbSsKLUjLSCJM17HyelrzQq1Ryyt02s6EZF5uEfc65HBVVRvPEPuJBNBToqxNFBJ4UQK0jqynK9MXO5SowrvBTxTdUEtwGBiBCHSK0aTRO9VPKIoDXxygyYw7eNjZUWVgIlCDnbg42aEim5kqUQQ6EObe4foHVPtoCkr/+Oi5up8hEQjZaRoNffTHFvEYs2YXKVtDZJUYVwNGfkaFjvUU8TGIPSWtOoSVT34M60dx8UrA/26wupVS0v9NVaa6NZVJDiaS6r1kINjdYStU5mMAtVAlICrQbbMCY6CtCsx3pv71syQTzNpBtLc5uB1AdWOSDKmkOtuQu5qpV2pWExlTCOhGGwao+hd4tMw8gwWgldSsokOPq3Rxaa36egaRFH7/Ykkz3VpQmozSLMqOLHsGQG0sBqfYbSu/o6eZq0XPcAtMpqvTFBX+L8/Iwvn71kOhwY0pqaJ65evmAbL7WhlOg93e9uqFl49WJgd3/Nnc0lQxq4vDhDDme89+5D6m4H5YBMN6zKnhpGJA0csYltQdNaycbbEkZIa8SbD4VIiyMtjhr5SCO2A2ODMVZ2V0+4fvwThsNLzjhwuYbtozt89P49hs0Fx5q4d4QXN0eevbzh6YsrdrtXHI/XhNC4f/cCWQ28fHWj1R1p4M7d+5QGq82WSiIOA6RKCAeN7mTUfSsebvg+UYFeTNYH3lT8IovcstP9CxFXpXUgW9qk5a5SLEpT8NtoSD2luYPmFTR6DRkJmVi0dXIjLhqxmU0wIXIDpZ+XYCANBhYUntdaiHGklokgAzUMlHKk1IMGMVKsZE0BizIT4AREC/M1znY0qa2RRdBi8zJCiB3sOEPme1xwqiN0RkyCtmub5wEA3Smj7JH9rgaNVi3Uh8uJMrStqNNFCFYF0GYdseprgupYBAcpi39dQS8WrZtYr2uWNJef0oph2JDSRqciBmW8gmiVkeACck8xG+iwSpUQgolC5+fma6vafYqtucyyi5xnu2usUAc1nVRYWt5F8OjPze3eV7MDv5A4uHW8NRiIwwBVqMXz4Rot5xAses8UKT2CqwJxsBavDgaC0zNzykCDUb/6Rq2mMA9Vaa+gQCPEW3lo8QYxSbtV9WjgVDCo73+qJQhBa7FrjdSqEeokwerTCyLeJCcRgzoqpeDnyL7VRsnVwIOQcyCEozqKqCkUZS6OyBQsF+i0lkUgmBHpD2/u/jfn5TQPP485dro/9vuIUaKhl+3JrfuAggxvoCKCEHWRN+kL2KMWsTkDwmLBojRbNDDgTZyaq6ibR1F1sUA9gtAOjl1pbGkEp8CaMQpO8eJOtukUMV0fBmTEylHDcAL6VEHZaEF0LRpDIA2GYPK+3uPCB6MMHRBoLb32iIhWE6xlpJrf6wpvfE05Y6LXDfMmFnE6V4eOeNTYS5J8TwWdkSBo9YiYRgEg10IYrPJBtPLmvXfe4ThVdtfXrFdbwmrF/uaaqwCsR9pkLFc90ip8+cUXnI2NzdDgENkO2t52vVnzanfD7rDj8c8+od00hjuPGM/ukVZbalpRRRmYmAZCHCGskGFNTCubfBmocaBZe2WpRyQXQt3R9s84Pv+M3dNPiccrzlJl+8FDNo/uc7aNDNtAHM95fnXkxc0r8nTDdLwmhMpmO1Br5OLijLBZgSQer57RJDCut0gcuLx7n5BGBhkJsWh03RJS1yYOU7q262oEcxxxpmssCu9P1FJ10h2l7pAq1VispA7JU4s9KBFNb3adgVcs6bqIqSBSibXQx9YG7zkSeyrDxWnae8Ad8lwR5e8bpdDCQJAJCNbeeqdBSp3QiX1qm4VCa5OKkw0MLGKRxWFs6cJmamSuItjegKupU2rWeCh4u2IPaINR4ric1tmVJYgIdmkWHFYxezsHEp7e0HNK2uURqOL2zp2g/luyAx25i4JBnwTowm5q7OmDKIN1z9QKHYWIC8bA+tDOwlNjk4Jfw8ya4ilK+7fAW1Sx9eFnuPD80tMJtv78MvpX7h8W6cjF4Snc28fJ5Nq3PN5+auG4RupEq1pOIjlQKUjQboAapc+RexSnvsBV9MsSv56Lg/6AoVHz0SoWKjXWzjr4Iu2T1HqU7yUh+oA95bB0hF34t1Tii5gTy0ZRzW02W4Ma1ckqWFBFeFku8TbT5MsJglkyIRxPmh9hXfQ0fVSpEntp2LIFaLudOlhsIhExgZldc2+c4rS75dRchNJZCBNGyjzMRYL3ZncR1an4EYteltMMQ7CSml4r7bX3agCn41Hz3VhHwqBpH1rRWtvWFBBELdWJUqjT5LeeWe7nU83Qvzca0udKzCyP+2k1PVJ1HahwKRJSIRDILqyKIL0ds1UPWO/2aHlwTRloL4JgEZkyNO5EwryZm7WpbVo2q3i2LZ6aP9+mrYLVmvU9Adb7Idj0smhPQQJthBSEmvfUWnVc727HwwcPWK/P+LPv/4SWM5thJOXMfrcjFl3H+92eKe9IsXL1qjJI5s7ZQN5EnrUj0+4VX/z0U/a7K+7cKaT2CfFm4qwUtkHTAUM6Q4aR0qI+u7gmpC2S1kgYtJY/QAlG1wNSGmOdOF59ydPv/wnXn/xTrp59Rjq+4nw9cnmxYb0dSKmSpFLbgevr53z5xc/44ukrDlOjSSLGwGo1cnZ+BuPAl1++4PrqhsvLuzx4+A7vvP8Rd+4/Io5nEJIxhwFpEakrW5vWpKUDYTfkcTbSC6u6VP73SBJrXCYa02kqIRrTU+3lLS2GiQRNe6CGSmcyaIRddWda0xnv8++sADK/J0HMEes5ht6+uvXUQ6sTxcE/xj7ZGGpqoGHlkE1Tm+o3Q7+mE9dhgYapK07sjtqv2Qn2P6n2ulVBj89fcp2V5sj1ddyeaoZ4TvE6U6x+ts2Aw/ZAb8rWc/EKrk7TpbzxaJ1daKr7aq7LMhbEwYsktM3wQKuBahR+cP2Hl7vbWgqSlnJLCwMMyBjb7YxRj4pF7Wk/r36fbY32r/3fVznxN4f5Et5cUSGL/7/t8fZgYLVGSrRmPUUVthRKkJMSPgcDYBSXRVWd6lps0GY1pq3OIhx1lJUYFAioTmB++LXoyhLxMhht1nAKAE5TA7erCcD9f+3jItW+197wQetotctYCe58Z8GQb86uqg9aipSLINOM6OeoUHODjQEJkD0XbnQsRpVjW6U/VEPQfj5u1E4rJoRi/Ry8/rUrVGvRaMNfBxPhWa4SWQIo+rk0ZtCkZTER7aQ26NpH9RbLzolSNc8opVjZnYKd2gakVYsqLE8bQt8vrfjmMGrSjaI0RLL2LRCtRnFwN3cLFGhB0ydBe6IHaVTbriKNFBoEbc28HN4iNqAoWomrdm5LSHLlfNDnYz0jnFQW5g04g4Fu8ToYwD+GoUdSSzAQYrKIxZwPzcqdgjYkaZq+uHvnLi+ePiWGwOX5ORdnZ6QA4xBZyRmH3SsFo7lyvd9xPFwzxsZRMs82iatXD1nFDT/95Ie8evmUvL/hvfcfce/DD7m49y7j2UPa5py6EghKNacU2AwrG+krhFgNfDUGS+Xk7sMqUg4wXfPlz37Aj//iD6lPP4HdNe2wZzdNPP/kp9wvjfsPI8ccuJmuefL4OU+fPuPzz55AXFsfiJHtmY57TWng2bPnHKeJX/72N9lsLhjShjSeEccNSCKEomu5JWIbtZLFVN1dB0PQLJM/M4Geu3cQ2tx1LcAAXiGjAuPWgokGvSveIniwjnj+JjVUdXtWVdIQZZu6nYp63g66RSPWPiuFQBOdVqjv1yzCz7aPq1ZRCPjgKE0JNit7DPSmBn6lHoCczGxxRkNZSScq1OnqzXKmQTe+vxYzgeegpLoDtdRB1x6J2lbsnBYBWRB6p8+2ZNZ6D5RA6wFbtj4Fp6DltcOY1a7AZw66JIjNfoG5Vtb6Dxib2IGHInzTuy2YUlsjAchtWrAUBlz8PY2VWtSrnB69U+mbfnrrez8HI7wJFLXFs3rb4+3TBOMKcqDEAK1QAqRWNJFa8nxJ4ltKy+LEKeww0/UxBWMU5mYdvulEhFAbJRQ1xDWqEM02pkRjEnqpRjRajRMgABZ53Wo8BP4w9TP65ypW9EoHFeoEak2UPKGT0HwIj1ci+AazKXYl48j3eNxbBCkW6QYrUapILORi7XpDMRFktBHJujiXAkBH5t7DftlSVVXHpjlwCtSi2CbBCAGNboN1Q9P2mFpqyIKxWTI3uiEtagnBKFXNCepZWX9vqdSKdvbr+U6gzgJERdo624AkREEReyhQQx9R6tUX3nGr0Uy7aZUMDhicZbHqE4DYhNSipgnEGpVI1VIsYxpS1Ol+yQZISYzWRyD0++qReojeQSxa5zADYpa/FFM1O0vgTgFBwQHL9WabI2nfgr6n4tzpEBQg5lKouWpeOSbOLi748OOP+dmnP2U1rkhp5N7lJcesWhRpMMaBmo9MOXOshaloKW9pR65f3fDky6dM+5EXr27Ynl/y4a9/l2//8re5uH+f1fqCMF5Q4pZj2HCUDS2NhCGwGgItQ8lHWi2k0BjiRlNnLTNVnWvQpEC5pk0vyYeXrFeRs/ffZRMfcbi+5uZmx6urZ9x88lOePLvm3qOPWJ8/5ObmwOPPv+R4aNrUE0gSkDACA9dXe2qFDz74mPPLu/zwx59w7713WW/OIY40GWjRmCQisY2UUAg9zWfGUHTNee7ayOW+jsUYwVPRsH/mg9lM+NsCLjqe0UX3OniQgDlzsOoCAwAzsyfmLD1nr7bSvKGFBK2vdwU5ti8EZZPSgNAobUJq1L1UYY44rWFOL+31KpslK7tsI6/n7Y2q5nvh2oBO49nrzALnCoQu/DZmowMCev4csPTbDAiEYIDaAJWzOQau5j4fc8+SxQ0/PRysiIM0ux/O2vmaMAajWeSvCghNrXiUr9VlOinV7TgOeBAqlVInenqggViDpPYVtMXMDrzN8WY24G0OkXlZvu3x9gLCcaV9z0ug1ayCKDJ1qr4HgGa9682B4ag3dNpZghlBGwZTajZhoNFyaG9xKZEghVy0tbH3nNfOgSYWtPxbimk2vIuPt4HAbJyNOvPzbHorYkxEQ3K1qZGpdXHuVMtHC6VMuFmprVCbWFWFRYtBzyF4/s7ErLUWLXHzXH2LaoyaissCaG4T25C+aercSEVzn9qMtDQFzSpA9FjclMeCNoixXt/OloU4aDfCwXNfpq62sGAWaS7zrjIjehwwqMHw4T6tGbruxkaNU22WY5RgAqa5RKeFiEieozKxKM00EQEgFMs1nlJiYl7W66sj0dpFaImbNM07ljJ3R4tBx+sG62uhI7KtC2FMBmpSBwPKong3O4GajSY15qM5AheLFvuy0Psa0Z4UWF3+iYAwsVpvEFvfvU8Dyg4MceDs7Jz33nuP7WbDnctLtmcXvHh5w26focF+v+dsTJQaKc2YppiQ1kiSaKXx4vlL8nHgwTvv8O1f/hbf/O632dw5Q0wE20IlrhPrYU2KG2rQUb9UTf3k/Z7DzZGUVpyf3yG3zJSP5DAQxpE0BKTcEMqedx7c4Z3Nr7AZFPSXY2Z/dc2zzz/hs09+xOPPv2Sqax7IOVevdjz58iXD9o4yTjISok6Ly0V49vwF27MzHt39kGnak0vjG9/8DuvNGYeiKnANXiNiQ3O0rMucKqeAugVndlhETWrWZ9vhAcK8N6DYdE3w0toKM/qzKoLSwId2uSGfGSzNQRNmXY7qDWx8rZji3aJpMQfmqhQ/XQfYYELFMLddbswOoNu3E4dge3OxiRQMNIvKPbpdCogNDLh16ToBq8Rqs3OeNTSveyF3zmFhn12wqDMLTF8ky2fRd/ri32uvfOv35o9uf6uzedDTD7UF5tp+1RaEoJNU/T60UnolgVhQIiyaFjVN0TQxFqGhjE1ToOEhu8OqJstzfNtjtqVvOr6qoqC1r/7ZVx1fo5og2ZrVlqcpW+e5TqP5EvKSCt8rlrMmdQrInROGfTXPpDlYSUopKfVYaEQFB7VoC9iqv+fNe0IIjMNwcuEekftmlmWUZhs+OoVo3fYaOtWsiRBbJZZBU+piLWebEKuL+SCEZvkh9Qu1aFtg3SC66IJEivUBn4JucBVDVstDRyuRs6ihVgiePQdnWcBSGWAAxza/IYAZ7Dc8zPRNq1GHOjiaqfS9g1yKMxjoaQfXJtAXc7+vTmMujJ3blRAStWaCJKq0kz/VK5zV9y7M0SEdfs7BXrXYy1t7z26IpBtFj+yWTI8DmgaEWlV/IdrGtrYJ7yGmZIgQ7Vq8XXOfRBY0Tx69j3gMCg5CoEWxRj+upK49auw3orpAkw6CvQSqtdvMwMBqc0YQnU5ZW9OW3g0bsNNIaWC9XhMCrNYjd+/e4e69+6yPhauXr7i5uYJxRYoJ9j6DYmQUYZMGNpuBEOD+/Xv8ynd/iY++/RGry3Oub66pAuvNOWFY0STYWOYDrRVCG7Sh1H7H9Pwp18+uiC0SLu5yOFyzOx4Imy2by0vCxRkparOgO/cvkbtrmPbU6Ui6XLN6ABeP7nPn8oL2Z9/nejfx2edf8PLlFTqCOSPJhLtNKKWx3+0QIg/uPeTe3btcXb/ku7/66/yV3/rrvLrak9YX2lsK04rYSOLa1PgHLyttStX39rFwSto2BRO+UrsDFVtXQR2W+ihvVBZMPGd7oFZ1CCLKlFZlimwRGNOkWpUmnrKbU36d0u6q91nRD3PevknV6J9iezEhUsypGSByjQBzJN71Anigs3SgmgIhWNmlj0e01Nhsw2VRLqf2oTQX6WlAGMzmziW3CxtgNZPqA+ZAwqyHsRGVLnxrS0He6fG6aM7BzOL9xEEMxrF4woJ+3zVFMNBaxEFJd+ANBU61WifEZj5KmSEtW/bquYU40FnqZjYKt39iwYmfe7Mg1P/ez21mPXydLu/U1zu+HjXw1mCA0kgh0WKitUiJiZBG5JiQuCdOE7ntyfWoiKotaK1mTXZaJLTINGVzqAFshr0b5qqrStMKsSjF3GwcaJm0ZKyVTrOFqIrnmToyByrSW8nO0YE7z0orGW3jrYhfAIaBUnRBJxHaFGk5I0SG0AgUglTtkFZyb57jHrn6RD+j9KdpIrS9TjCzDoxDbcRUdTEGzW/HKLSYCSFBLDSmHoWLK47FUg0OYKrVvTdR+5OzOUjA5pZH0br6IFqapXtcW8Imm32OWClhp+XE6ng1a4YLjppyDq1HLZ5nNLV8Fbq4sEVj2WSmYA0olaqRuv48QEuIjDRRulPZ14IKoPQ9cvNxqEKMoxomcbBjSn/x4aEK7mKolgZptIz2ty+NliukCqEiSUcKp2DgrmoJVUoqFhJXfMeg/cMBbFRvCAI23tobPnkbZwcnMQ6koGV3tVVC0z3jRxxWhLRSRiFCSJVhrFr2GISz7cB6c8b+uKOQef7qCfcePODO/TtMT1/COHJ+/w4vXj5huxqRKAwhEYaKlCOtTqxXI++/d4/f/u3vcv/hXYYk5OsbhpRgGGhxwxTW+JCeREHaRMxXkA/EeiTIC9bhis9+8CmPc+Pq5gWHeuC9b3zM2fgx4/oSEc35t7QGWSPtglCOtHyAsidsRu599CG/utry4598wQ9//DkvXj7j7Gwkrc501G9o3Ls442Z/Tc2arrl//yEfffgeP/zhgUfvfszm4iGhRLK1LlcnthDcSjJD76yW7316++iTCFJkAaBnw47ljWvtklw6MLU0Zdc5NcuLW4mlWNtyTw/6+1SLFmtnGvW9mwcvvYJodpLNRI+tqg5mdjq6R4KMxFAYpGhqjEpte2rLChp83VogF1NCwtwSG2maenXlfvC2vAmvDAix0piY6kF7HGgbRWrT1N8sE5t7bgDWYr3Zs3D9QLFrMRvYLDVo9kKbpBi7YmC7LtMcXV9WZ61aCAYuWg/BvVmc0KyKrVo0b7YHLxvWwUQSBmRcq78ybVPwgULiq6KodqlptU+rjVbUBncWMC5BhadJrC9KbUirWikXg8lEo3VLzSphMJDY+nu2kxX7tY4OuN4OFLw1GAjWklXxWtSH6qp2o3qxuv9aHNUZHu0CHBOZIFafjkEwv1gvA3EnZJvPWJfgn7dZDOKKl67c99fAItleKuLfFJBCQLUBiCC1UgNEQ74NiLVRI5ZLC+p8UyV0VK79yWur1jVO0W6DPpFLmo5ZRjKhBJtIaExDsPyzGAuyyMU3r+l1gsDOey6jW1wObqbmIRyag7O6WotCvKuZU4ti7ZEVAwRcyNYACeqEnVqTjlvl5B3nk5nxr27iheDI737z1whm+IIBCEfhRr9a6O91yvPIUxciCTVgzT3UgM5CpTn+waoQFGgaN9G0uqHWTLQS1vk87c4Zw9BdwCI1ovsq9OgGCdbsSd9HBaF2/t4O1/qSR0Hz2XFuOuTpiNYKgUGn7dkmkdYIYeB4yLYFGk+/fMyDe+8QGLlzccl+l8lRuLnZc7i5JoWRko/c3LzkbCU8fPce3/72B3zj40dsNloSqNesIDmmEYYV1UY4axVoQWqmcSS0CdoNkT2hXLN/+QWHqz1Pnn5ODZkP379kLQ8RWXWat8WVGlgBohp/iJCBNHB+/x4fhhXHFnn87BU3Xzzl3vpcSyzTQJ72lDyxWq959OgdQkoc9jvOzjdcXFxaGkhBly4lMfFdNZJvpveXbKDge/n1Y5mi6i2Iu824bUjndIH0dcMcc/r6WaYm3Tkut89i58wv/abz0/2s6dHQNTTge8QDKptFIBqweYSjrKvT8yZoXryr91/QfgYWRPShRgrulZUFZOo7TDVcM2vBItKf9Qml73EMCMRwVFvb6ryPmveImQeknQxEW6Qi9AZUZAkAFzfVf23JYDZjDmZCxNLXYdAGQ3E0sXvsP/NU0xupdjGhIRaMIWZGHND5e/hD1z3dWqFFe46eDjTQaYp8tbi+Pt7ej79+iv203/4F3l5AGJPSb3i7W3O2XiYTB2osUCJVtDVtR9T2FGrRYRoVkIIuNlfbM9e6er5DFohdwNTiMz13Knpb1p/O4GDZk0C/b7WnvXuVGe+ardNhxsclexRcvJ++VErIavCzUGogtEIp/v5NFwraqa80bdPcRJCaCTURqooMvUmFRKG2iFCJ2qqJLvJpy7qCrzgcEHeHNVPenT3xf1ZBEENSvUUvufToyGjUuHDAtouq3afWlnALECPfTqKb5ek1W4/LDe0b3JspzZUZjvyD5R9r38Riz04BZaVpRYJHHeLrA9XBkwABAABJREFUTPr9xZ9tEGMeMpQjlERIkdgi3pch4OVe6sRN6WHn7vSyrRlbi/Nhv20RXNfK2H0fhoEQhCLFGjr5nvJ8qd6fYTBasBZWKXH/3h1SnNiMGy425zz+7DNePX/OZvuAs9UlgeeswsjVi2t2Ny+5PLugThnqke32Du+9/y7vf/Aed+9esN5uVNAr3nEtzcCkFSgComm4UiekTohoE6cQmwIJqeR2ZHfzkmPeUQ47yuGGoWzJltIbwqh2NEYIA4ERpJAPN4gEhs2WB6sLck18+rPH/OyzL9nfXDNsdLz59fU1abXh/oOHDOPA9mzLdrPm5uaKPB3Jhz3j+X1yk24jBG+kZfbD9/XCRrTWug14fQ8tv+/Alv5ckNmG9Z+f0NgaES9FajMdPIP5+TtvOE4M/7yO/ftLYKGNblxfMgN6BXgJmtbmg1j6Yu4h0DhtYBO8nHRco1VKA1F0joFbcGVBM1Jcy2S6okWqZAlrTjrRWlmtppIrNUwoIdysnTyL/bIMDmzoWXX2ZWEHuNXOfZH3p1cKGIPZwcCpL2h4v5F5SNkMILyzol6v26852dkWdtDWQwd4KsbUKpDW74c6ebXpIQwaHFk1XQc9piebVxnKIv0zAoKve7w9M5Cs+cNyYSJdgd1CpcZIM4W23hZTZtJo3r1PVRcmmnPBlW0oEW3S0tfVfJOVlqtGRdcFAtTXW6JIfc2w8EsWKcrsIHFxoS3AUJKmJUpCyqRGE6FIogSjuMkdrDTLv9fmIMWb7Sgt5eLGDpx7LmpenCKaSgk2Sln1BtbquAXfFd2xz9eGLSb7p0/CVtCpEVxGKC6qDCac62VMIbBE2p4DVOrTzrUJXrtschnmymB93+X9dmx02/q93jFroXJmBg+t+uvbOuvG1MU6HpV41S99Y7l6xWyHBvDN5ijInpYEyQFJyQYnmUHC3EC/b0uRkW/6aoLShVE1sWOtDYmiQH8BBvzz1ru8+S2ztVjp4kIRdDBTbUgLHA9Hhhj58N33qLs95+OaSGCMidFEiW1qHG+O3HDF+dmG9x69z3e+8S7f/vaHPHh4l2FsDIPOWogxQRr0nGuD6QA9Z+xttTNSJxBrYtMqwxi4uLtlNQjH6wuePLmmHm+4efmMi/MtNY1IWllnvGQiV5tdQCNtLiiyIx+1rfjZ+RnvvPuId372mC++fMH+eCQMR/Y58Oj9jzjbnJPbxMX5hmna8ezJl5xd3MFZfakG2sRAQGuIR2u2D94ECN54uAMBW0/CLNyyinJZRry2O2x/ekOZHog0zzEvWDF/1gIuTlyug6Xjn12BORu7DhUFzzasmQhZ1bNBS2IlaXltaFBqF0Kf2APTMQFIiKRhTUobwKpbbOaKn4FW5qbFPAdd37W9vsGdvge/X/MEWu0XkFGKXm1e7A3BZp1RsYqtUjxV6D09/N5EG+egdlIFyRYEmF2Y97G1cIoBn2eARNPyDNqmvFdzxP76MwjQ+ywNWlg8+6rtq5chgdiaaLResNEWgsxeWt2MGbBrE0ujt9iglcV5iIc1/0KOt2cGUlI0nEETuwGx1pxaM9tMdFeoSRWrKvarRn/UTo00cVfDjLoDdCQtHoFJd6RKwVuerreC1Y3XxGcj+HAN6ZtXF0DskYGIQAy0uIieaZorq4UQdE535ogg1kRIHbXnhmaDINYuuBFj6chT96fm5FUTEOd/aZ4Hr9UV87n2PJgtulnWtAASrdGn8rmgstf0M0c55pmF2dicNl8yoZJ9nAU3TkrOqNZzgTqPoVi+3p33fLxGqZmxbPb5EinfPmTxUQ2rbwbXBITZoEvV1sB2vW0R2fksuGaG0z8vLVs5Z9FnnwJSBkIti0orvdOhWR6wA05BTs7Qf9cNvkUbXtdtazYsQFytbZGztlcIkRgSVbSdlfZySMqg1cpms2a6egW18M6D++TrVwwtIzXDYcc6NHb7PaPAxWbF2fmWDz58h1/+1se8/849Hjy4y+XllhSLAhi/nqhVF0zZziODjD3XHaj6nGtGqOSyR6Rwefecshphd49p/4wxNsrhBsqk0VVoNs1v0BRi134GZHNGTAP11Q21FLaXZ/zyL38bKvzef/aP+dkXz8kcOJbEex9+g3EcOF+tCGXi05/8kMP+hvv37jAMiSlnQlzNYNbtvu8TcaHWKc37lUb1NbDgv9lot56ZfnvRW6IthF/+nrj/bp1Y6BvFg8lbZ9N/Z8Eo3Npd3fEHzAaKc3QKWrU0ulLTSquUpBDs/DtbCIQ4awZCSMRkTaVaJGAapRZsz2uevHcltXHHNKGSzbZquk2Fxy58WwQrvYChWtk2NstkunXPFeS7Fmseura4F/15O3PslLsFAA0FB6JlwcuIX0GF295kQupBKz1s+mDXbVg6UkyY3WdWiAKeZi3SPXXtz80D1eznLf58gjHOxkZag6JW49zbwIIKYicjuG1S/zKPr8EMDFrX7KpZvwMyozIJPi8g0WJVqtFR9wJFNuvl52U0YKR8qycFFLr254jVaa4WrGOV+GvNd0xzZLqwZjBQWVKEYu+N1/8C9KjCWIZeaqoottkMAxrU2Bbo16kodd1eSqT141q3GkJkGGxUblJRGsHzU9jfVxXsUQmOFt3Q2OIvJszUn9UOBpRqny/OmQul+N1ZLpxY30gRVzD7x2bgTBl2C9H7o/PIhL5pOva1qHJpfGck/7rzbx453WIw1JhGPLNphZLMDIZAs3tkQLPPv7Lr817ioGKtiqZssgn9Qo7EYjM1Su1lfYvwcF7eSE+Hvk4yS3/z16pZbl1r8ZbNJxGhlRpWesQHDYLW9K/Pt6Q8sB6Fj95/wHkqXL/a8erVDrKwHYWXz18xpsbl2SXvfPCIb33nGzy8e0mQwnHaIWHLZqMtj1vRaJFi11p07akKvtKiNvtpklFDPZGiCjsTlc3ZSJbG9mzF5XbN/cszZAwKlmsGaYRWoE6qEQiCC0GRBnEgrde044GQ4N79u3zzmx/zxRdP2O0nrg+VWBIXZxvGFJCW2d8cSNL48L13OdusOR4OrM8fkPOc2xWpcxzVfG3eBm+3P+e17/f7r9AMnGnyOjIWwKA1XJOiC9UCHLmdQrLURX/lN6Uq7BnMGMT/5xD/dI3Zfqk9+jXWoUWEgciKUCPFB3aJioTdbKe0x/elViSsiGENaOtr/1loLvb1aDtaz/5ip1EWe16vTruSZuu5Ml+HX1xtwehUoZUJUE3MaXzQTmzYfN0e3MRuK7xqrNsj0yOJpQCG5JVBoc93AWgyl1x735a5TFjfTJrgrZDV8PtJuu2FGCzF3cA1Y9IqpXlwaL1KOlhVmyrdwfi6CjMwqlaK/i8SCfA1wICWatVuwFqr5FbRXv6B3K1nBMkgWtamHQYXoz5ppKg5W8/tLUU2/WV6BOuOy09Eb55g1LyjQbu3vpCwMj6Pwv1PffRk7WjNKCB9ikiTbqDV0ajwr4gQ0qBuplVCTfbeM+UfZFaT6iKzCoQY5xp2a3QRQ6K3FfZIfXGeJ2CmyLxbmubrWjkFA7XV+RnZPRCx8kuZAcBcZ9s67Wi90ua+7DLrp8VLfopj/pl+9zI/kcAcXttrcTrdb7nbu4ajaqQTLb1US+kDTPo/E4YFiU624SkRj9f7rTGmyMu0fORyaY1cK7nafPTpAIcAsiEmrVBppUGqnZ7Eommsk9zSWKtIjNsopP/MwbEftUePDqD0iNbhMC4AGEALhSgZYkVCYTUKm3FgK5fIo3t88skTXl5P7OIRqddsxsb5xcB779zh/p0ztpuBdRo426wYopKOIQYVMU2TMXa251rVFGBo1GOmxQENkhqtZaX9UQp+HAMhRy4vzkgfvs96NcJ6hZSjph6mIxIitRyoMhG8YqWL34JVZkTaNJFrJiTh4298REgjn37+jE8/f852FXXWQcskMuebkbv3L/U8TI8Qa6CKTvfUkGIp+vt6R299+xpzNQcyfZ/VNtPQzHZLDAjMoLavCBzR1+ZR87xWdGxvOP2bxac+z8P1M9aCD035ecGs2lnEonBGWogQqgfbuupE06Ihrue3ComYNoSwBtcRNdFqhDrNPUz8usUanllHwUaewV6r1Dp1jUHrIkHvFuvjor18ubvHvt8FBxcLts8iZFncb70cDbqcyq+Fbudi1ImkwzCa3VUb6/1Y6IAi2D6Yb/xSANkDUJz1MxAo2ku15El7EQS9BdW7QTYrwxRlctxQ6Fa3vinN+tlgvo5mZfWaHFBtw+vBxV/W8dZgQHObRr0A0KglgyRddGRF6UFRGbUQUlOnhaD5BUPPNnpYbeOMbpsZ2OXmOKVoHSnPDqMaQls6kBndL3OBdJSp42ZhFrxZFNqcJfAmOg1vi93wlsLzv8DScKjBjSbU0/7jOk6290SwyYWNmUGZo+OFpuEkunYWQhZfzykC2gI0RBfStL6I+pQt/1rmvFozI9VvmX1NZw/0HvVmQphgydeEv56/Bou/5/Qa/Dzxn4ZAM8qTGKmmZZAQNPJobd64zXqSi6C1vsYkyfz6Hkn4c6zNA+BmQk79uraG5AzTRAgHhnQkj0d8gqWUjISJWLXpUDPZbFeOd/DaWOzx/jP/+mQDdxYkvGbMOhjsr6PptGisUikTtR6pbQdlx5AG3n/ngvKzJ3z2+VOO+6fcvTvy/gcPefTgkvUAq0E43wycb1ckqZQpE8MANVNysfuoQLjVSj0EWjhq5L5Rw9lq0aueMkmakUeNFIXx/IxtkhnaTAcYVnDcaQtnCoQBoRhBU61Dpj7vEANNBtJqZH2+5eNvfcyDd97l/PufkPNfMMSClD3rdWS1WRMDXJxtGAbtKULOSFjj5WraZMpFfL4G3/64vd88Mvb13Dv4VXrkqNMFFwLf5eN+g/Hucf6tFNnrv3r6c51mqCzoPM3QOoLayGLQyXh+XhHUEdf22uupTRgXX0dNuYRxDhZqhaITSjW9ZXoYc26qo5mnu6p5aiA6o6Vaya0OdvKeHJpq6D1MOLVLtXpULj1g0+frN9dBVTdUM0gndh+gjlW1D9pefJhFwSEtgLrZLo+zGnrd9oUPgPO8vn+voYJMxY8+3yYSzIjWlg0I2NN0f9nAO0zWpnNTmlVU9ZJxo0gazQLUhbX9F4AH3j5NEJO7V+vxOLfvpek0uNaUGteF2mhT0HyoRQUuvogpqbJ94fz0nw/TWW5OwGk0MDrHH04zQDAPDFpWE8ydrU6jbX/4Wvdp5+qiRgMfVaxZSZh7i89OW6P+JW3oYrEY56ZKIUAKi6FKKVoUYl/3QU5h4SjeAAjmG9G7+dWet3pTXlMWH8Mbvl687uKn/flaFNwFgkv7GBQpYwNAmhkBarBfnjeC6hfekHP1eyaiI40NoHnPAO/pre1AG9q3YbFO9ElqcyOjMz1yrxVrntO0EVQVahamKuSKdokrDcmVKUwcpz3jtCaXA6FqH4zakg6wMu2AV1VYhlAvrVqE0Fw5bXqPxd3sIC3MTMbyaGj3TP92c8qwFko7UHOmlCO7mytaeUmYrnn1fI8wkmLmbBN4eP+M9dmKe/fvcnE2cLZOrBOElq0MVijTgakeaHXSdJexMSposucY6XPtaQZcmq0H20Ai5us3G1LTZiytZDgeIO61fjpBSBu9oFJpddLBYyIaJCT9J+PAwDlnLfKyXjGu4OGj+3z86hVBMokd5+tL7t2/pN67y+riHjWtEQdhslzbbQE/T2pd3uJY7o12+v1mQKHnyx3pmZMKp89z8WBffxdBdShv2N+z83nD8dXbB2dbXE2veW8d712r9WjpJ7OoIIinYEBk1edkNCser8sa/9r674aAUQ1Csc6gzf+umsagZhrWh6WWHoDUGlj4SXtN9SWeUtQ1aV1BmXUKS9TVU7l4GnhmQr3bo7d4DnHQ+yKiqQGvmlqy0Sh4ypZ6dqPnzIDucQM4ZES0ZDLgdmlhF5q1rG8asoQAjbk1taYd5yBOHGQ0D/jk9aX4L+j4GmBAHVcFqI0EtFLIrVGlICa0qy3hs1haC4Sqo4hbLbja2/PqFqB0GlsXrCsp9Zi36hs2nt2wecbBnMvXZ9gMdbqIJlr5oPV+d/q2NUKdx+r252B97ZcaCVfyBlfjg1Jv4t3sYp9GF4IwBLSW19gQ8dydfyR2R2a4tiNIPxcHOL0PeGk9TdDBgHdKWyjf5yDEz/8Nt89/STxHL32PiLB4Df1G82cR2myoRHRQyyJCP3lAX3XcAoP9e/a0ddJh7ZUF4LlPR3MGBos9N6NdS2nk0sjFxytDKUKuqgUp0si5IjKRjgdyPugExTRR00homVazlghVMXZE16YCAgU5CopmIOBpMGnSy2AltNMVfYsZCCl191WtsVKjUQocjhWJAze7HS+e/ozLASiZabqhlsQYK/fvXXL34R3SEKFO1OlAi5WQBlKoDKFRA1YCO0GZeiOUrpROa1KM5OOB65sd42bD6s5W11autKkQatbI1JxPDYmpHGHS6C+EG6pkVptRAXst1OORMh2oLZPWa8JozlwEwgDDSFwD13tqyNy5e843PnqHF09fINM1gRUpgITIekgcg6K9UvLCt7nl1FXT1+dbR1JudxzxeoR2+hsYWPUIWTsTLvfVovSs/21b/HxRiPYaU3cLDCzRuX1xwih0tlQdp1YvNQ0uWqVRtFFQg+VQIq+oSmm1eC1tX+09XZwiL573NgepoAEt4UTBUKmTOWPrz+JBCu5Ui5Yk4ur6QCuLi1sO6mmABC1rFB3spbX8cXEf1GbWak62P6aCa9c89etlgyEM+Lj2ZWWQ2vH53qjoMHdWtXM5DW03XzOtTRok2CRUpRWc2RM7t9JbsCNCIiBVBc8zyLDn3ZRdCbVapdHCJi+M7//fpQlCUmYgAkhFWtTmFr0MJFJqMaeiKYUwDLoYq6knaQvjb/4uWF98j5x6hElfmOBgwHJsTaw8o1qE6kBgrkud0WIlhGIbw3OL2sur1dMoQqk133zFHmzuwj2lrQ2Fa45A782iln+uHNAuddGmNWr+NM3X38WL9qDDwrBUuo7FF4eyWNVSBIZUXQhmEYwamq9aPEvDdcoFABbh2xrUkFB/01/P6Hltw9nMMQizcKf0tIM/O/H9/pbHfA3NnIY729b7D3S9QMA6mYH3dnANR6k68KcUfWa1inVL07VVrazeJ02WMpHrkVgHYjlSiqV0nP1owapWmhqVluiUXq3aS2JRUqURQ1UhWZXeD+GNz8TSLC5OqlXBXimB3b6wDWuGYcuzqx3jWtgMeg0lHxmHxNmdLXce3KO2zMvnL9ldvWQlZ6y3a9YpEqVpNI/mc/O0R2jUyQxdWCNFKPvCs5c7nr285u6De3y8/lgBxJSpxyOx6hxIL4vKLTCVRjkcaQXGGJFB+2W0456aKzUfEQpDFEI+mAG1xR0HnfkwDAzrNdc3N4QI52cr8nXjcPOU3cvA9TjQwkiLI7IZ3nAPl+t5EVl9xfr6OavvK77rZXCgzZp0pbk+Z3nMGGAGBv4RBFnM/Lh9Pqfpg1l/o070dN+2k+2r1xxMia6dYKSzORbt9N/RyPk2M5AMxLjKfabGJQQigZCi3Y1GMTuc4kBrWQfYeYcc/7u++YsFYHZl2cCSAD7+165Ly2+L3VcXN7ofCLZfhRC8VLHRgnVQNaAQopdPG7sg2sVRGxtFM5dmd/tba0rOSDG1hd0Euu/KynIZ66G6NWN5icogyuyLfJJulUqsaMrG0i7iAmgDTpWFoND1ca11gHEiovxLPN6+HXGnsps5cc3zpposGpuMSmkKFmwRNWlIWIgvpK/fBSiQmR0oWLR7qijtEaNYeZutKM9ZOSugJSt6NHOS2qTDaGVH43Wh1G/0Ujot9XMjX8glU2rWaHwBTsDP3/P/0oGAVwxEAwc+ajeGNCvi7dq7Oh/6LneqzoBkZwea01XVtRLKDCAQFzRgp9Jn6Pza0XBjYVUUHmm0eT3672mXxLYwSbL4qT/QpUE7jZh+/uHCUk5QudPTrpHA1lEp8zharzgIWE4aF1o1S//N0U61CN87HLYq1i61UOqkgCBPhDBRCURjCGqNBj4j3Yp5MLoof/K8Mg0qtfeekBCUrpX5Li8unVpsozetFimlkHNGQuLV9TXjSnjn3Q/JTz+B3VNevnjF8VhJqws++OADLu/f53ra8+TJY46HPZILnK3ZblcMKahDbhPT4YbD7po87bX9shv3ccXzZ8/55NMvefrihowOk3rn+gFjakyHI2V/JDXtdxFbgjQiMZGPjf3hSI2FtNmwSZGajxyuDuxubqBmNpuB1WaFts/1FJdowyMZqMH6PbRKDI3tOnLnw3e4ubpiNzVKztp4d5pI66q19ENiem2dzSvvqwDB2xnUmR3o5YZym5cU2xPxza/gQJo3fHyDYZ+/vp0TaPSKhq42X+p+bF90VtUqveIsbF6yg0GiNR5Li3fw6pvag4AmJrxuXmYoRu9HdWBVYUGMqafUWjWwbfdem+8U6xmgzpMmlMktm9Lw/fqEnuenNfVM4jbc7oPl12vzlO48OVXwe8HCvlrUgDOPpwFRF2yL96iYn53fj57L9/vTCtorwTyGaP+dYH0f3F4F62UAnso2IFDdrnlqxFLeVOtG2HpQ59UNf/kwQI+3FxCacAIXE1VztCmRqKQ8mIMycZ+AGIU1K82tC5j3GTCRnTvoYE/fUWqrQmmz4GT+ODsaUc9oLMEsvACL7oNQSwBLrxXvUd+FBLoYG6K/E1Uspi2F1TjXYumHNtcXz2ejkZcYA6Bd5XQ4TQyBlIYT5qDnj2dEdHKXG5Xm4KkpEdhLB2slFHV00pbgxFtTLI2KXpuWP1n5iwMA6OKnfiXNWZJ2svhsPesma+B/dVLOCRopobky1Vlp0ecpFPCN5ZHLIpXRr6WcvK7ucTMfpVGcNfDMiK8BXMjoz94BRtDcpdP7dgsqonMSWrbnnMn5SBBV92tfCTV+UpvSeK3avS32Or5+fHO3+SprsbLhsnAaza9Kj6DgTvAgqtByoebCMK54eTNxJo2H731Mu/qMz39ww5PnP+Xevfs+hp0pF25e7akZogQgE6OwWickwLTbETgy7a+p+UAQiKsNq80W4kgpA59/+QP+8R/8Cde7zN2H73B+/z6vXr7k/uUI0x6mvRq6MGjt9bCmjMK027GbbpAC1IEQz9gfCk9f7nj27DmSd9y/s+Uyr1lfXhJkoLWiI5Gng1LOkhhSYAhQ9nvy/pqzywtqW3O43pGGhhRlcI65UEugkiii9dkaYTUDh7EzXD/veJOI7/R74t9cOAzMtsxr+Pbq7lDkK3DwV4GR1/obvIaffd2c7rkCNpDJHIYog+UjiLuJM9vQ+4t486PFeWve20B4CCBRJ7hap8Eqal+rVTM00WqYUjVFWhdNy2jSO8vWopNpPQ2Ss4/8dQDtZYqBGuMsvjP72ELTJlYinfEIdX7GvZyP2Y9IZx0UbCg7E+do3/pQuBBYRdB2T3rpYdB9L810jaqvqRiJZ89IggrkvYdIry7z7ooCTSpVKgUdOZ7aDBwwFqXVSovNPECxcuqAg9Lbi+IXhVjAXB32lsfbpwkwEIDQso1tTD4yNhGGUcHcFOiNB+3mzhFRAxOCBZviF/Dpg5aTivMNLbXS8mRtjIM5Y21nOcSgfG+rjCLkao7Pou1SteSRmskH9RwhRGLOlCgLNfqieqGo2MwjAo++W1YUG2pDmgpz1OnZIylKacUQiaERQyMNon0F4sC8EZc5cvuauazJ8WcMgVwyWo8KoTZaLgTvlmdgJEShhajK5hC7sdHxvROxgRQIYUVs0LI2wwhRSLHZuE5UFOgLHy2PcQOh+0WHakgAqo5pVorcot0QtaQmRGqolFKZPF/YKtFqfxWwWYRTUQo9N2rR60wBSlXjUSvUrHPjhVkXMgwDtTaORSsOoutPAvh89Tl/b5tGLOYSseqV+flNtbCfjoT9jm0Tomhtcjvs7elqOZIUFb4SMplpRiqGLnRi4hxneampenm9P8o+zmCnlgPC0a6zKZgtDSmF4zEThy0yVtK20oYNX7x4QU2RfZ24vLxgN+24flpoNbG7Kly/fMU3PnrAt7/9EeMQaGVPGivT7ppartlsNsTtBYwXTOGMFtfsrg/U1X22D77BD//p9/ji5nMOrfHuo3Pujees65798Yoga+L5JVMZkLDluN1SDpmxBdZDJMW7FC54VQrPauFnV8/5iz/+Y/7W7/wad+6esSu599qoh4k43eBz4dfAeWj89NkTjocjAJvNhrC+gfCKVbpgmvasx3MO8Yw2XpAlkNrEUI+EGmisKAx2f93ByMnHNzW7UluT+9duEzp9Of+i2R/9eevNcJYv1j3U6z8DZUek0Wvde074dLT18ijtNLXQdUNUJIqVEgZ1Rs0BzOL87e9M3aQR/fL8LFYLMuiMh1YhBGrVbqsEm8UShFqO1ClTQ9Xpsrlq99mYdMBb1X0upv0KTbu4tlKZpiOlHinlQKOYMDFroFMbKSWGYU004NAsiAktkUhWFSDUjIq7bWBYs34s1QJMFz7mfEMI1oqZEbWsOn/B74hrxBzWNdNc9BTw0j+gQWylaM8Qew7DYGxqF1lawNT0pqchEMZASN7kLiBEakHtXlRWppIZY6RFBSXeLqeKXtNA4s2ragYGp5DyNR7yFx5v32fAewV4V8Hl28ssqiPqkJ4QlFKZqRZmB+hMQI+YY3eWjvpqa1SpOjTUnHPD0J/iV1yr3kf0NO3XrQvc1KBV1LlVseFIPonMUZluGv/o5+EpCmcFWi2EBt6q9/Yj8ApJzLn69WKOnyUA8M9x3YD+nYp9AlUysyvTq5VFBGQhr717RfNhDi5AVfgWRYVCrEXpbquVVbRrcY3oHfRgvYj0MqXb0Qh2/2mKlpd9BDQ35+WXChzEc+bQK/F6r/Jq97e5Crl1kIGts6Uor1kaaMqu39BzrNWqCUqxyH2RavBAqzW8l7xHBD0/2NrifmVayToBsmTIhRpKH/LSOh07v0tPe/V74zdq+bF17cPcuAS9xnLUKZFF9RDzfI6iAtRxoLYDUy6MqzUXmwc6ubNW2vHAbrfj+urA9fUNdy9H7lyc02phd3OAemAMhRhHxjW0MLLPiRJX7MrI4yd7Qg3k1X1Wdw9cPjqSpx3DuNYZByUTgCEMlBZoJVLZELf3SRIYDkdCrVoxI4mS4fPHz/iLn/yML754zA9/9pxHP37Mex98yN0Hd2khIcPIathQDpk6TYRxTZDGOA4MQThMB8ohkUOh5T1Xr6453ybuPfw2m0cPKeszjmHQiM6iRBubhkelLJ+7U/0/57idu1/+zUk0b2sfILR4Auz8YZ/+vr+mrQEJnW1Y5oFfry5YpPxoJz/zPdcrpYJaCBYAYy6xPD2Vr3IOih1sbWvfXfpEWVE7qvqc1qux/VZ4RB7E+vy3NA9vQ0xPlslFU3FT3islL+CsmpimpfWSRE8fuDDRUn2L6bdiVQyqZVKepNZAqYVQJkRsEFmz8vemqQA/3/44sWeDjv+uItrXpXg6w1jVoEJLaYP1WMCCDwvMRMwHLAI+Hzbn6YolvmzK0ET3fb3snH5G+khv9aC4/VAXv3/yuac0v8bxNcBA7Q+lG2/Lf/jNqOLd9wIt6qhiPa83L/zXSwu9kQbm+EJnEVwP0Oxrmpb9zc58vhPuSPxw9x1CoRV9aGGRn+ulfWAlV9LRey9XLBUVrbdeJtIsstHWt66psBxVHz3stBO2eKUvjiaK0rutsA3SjIabBUiz/+9CxubiOf1j3+xBvT21NDJFxTahKJ3VLDIRRfuKqARoePterRax1+x9+B2MzQZSiwkWzzWEXjvb10AIPa3SYN7U3iypqLiolmJg06k2UyX77wrW2aySPWKxe0qD0jKBSjRHGoL0tA3iCt/QhZcYNedRHgb2ai2UPFHikTIN+OCiZiWM+rZRKVFxo3Ja1tZTYP2JiMkyPJ01b9tSi0ZMRcslogtMe9lqptWA5IkxJc7PzlmFicNuR54mjtOBF8+vefrkOa0W7mwfMO33XL98RQgQQiOOkRS2HIsgccvznfCDH3zKH/7gM/78R59zc3VgNaxZrzash8S7D97nGx/e5cHdB9RpT7MmNVU2lHhODRfEzQOGGCg3N+R8ROpeNRf7K549fcyf/fmf8dnjp2zPHnL57nd5ftyQdoGzQTvkNSI1Jrs7CunTODCmQKxHxhLZtMZqu+Jqr9UerU466luglkwYkqa6RCy6W0Tbv8D5L4+lLbptp36ecEvCzOr1o51+Pef4/Ru272+97s/TMswD1mZ75IBgCVo6PS2LAtjFywZ//xOPtCRA/Dzd00vfX/P1zGzG/DpizEagtmgdBtX+uAo/5yPTdKDUI9M0afVDEKvV19dq/do02PTGPdoAyaZ4NiuWFZQhboFKQJq1NdZoUZ2sjVOv1TVr7SRgk37N8wUqO2OjyF3/1gF6s8ZJkRJ0XkUrak+UFbT0cFC77l0NBZ15IC40xMSMQfseBNNJSLR5IepNZ4AnXz/C/2c93hoMuKJeoxsbImG5eu+I55tw6fDdoPv3fcEu/y1zrf2jeJe32B9Yte5MhKDOKPgAGFXEmnwMRQRWQYALyqqVA3kEV04jOhx43Kbv6U6q1jmq9HISzyVpPkks12M13GJ90azspWGgAdWggtXZ96hTEa5vREetzSjt4p+36nIWjco9rK+K3Odcl1BzoYQAoZg8ohGkkNGOaMGHZoiq3quBE52DrhRYL4uR2bDdNgn+XBRszfeSWmliDt1ovFIzrVRqyeScabno83LgJRhoqfRyBEHPcVECuphoRQioTiNG/ZgC0XZ/a9kiFMil9imUImjv9qaVGTUXSprIOZLzoPcgqpo80LQCQZpuWqGXlDrTc4rP6UyNGOBw8dB8zLoUw3BEiRAaKQYOx4njISPryJ1799nfvc/u5VPq9IrdzQ27/YGrFy/ZXT3nbLNmOwixTRxvbhTkBSFPA+O4Iqzu8emTV/z+937K/+Mf/BG/9wc/5eVOV9EYR85XI7/+Sx/xzoN7rMct+1c3TNtKGiCOW8b1I9rqAVkuYf1AHcX6JXHaIfuJ43HHvu1J9rzi6pw9ib//B5/w+9/7jL/+Gx/yG7/yAXcfnkEQhs0ZQQKH6ystv5VGpND21+S6o8k5Z2f3GVYj0yGSDztKmUgpkoJ3UAi2/2YZlu6XeYXeFvzefj79SbwBQNyecjizBmi9+m0b3eaU3/w3J+/42vt6a91ZBHjrkMDytG8zA7dZjNYaPoPgdDmGbiNun7iL5DrgdzvfZgCw/LckYfD5Li2iTekUdJeayXViygcmq9YpVZt7BQTcWTr46uWdzYB51hE4NLOlUGzqn7OzDjx0aJM9/4qmjdrYq8usF2mXYnaM4yBSdI83A+5qj7GgzUFWA0lIUMBSjGmoRRtraQpA2zWLRfpI0OFOzf5h0yDtd2IYrARygJAshJiHJfUy5oV4++scS1b+bY63BgPTpPpdBwNe2taMBirT1FXVy7xtF+H1Wv+5/O500/iIUVeByiIFN6cVWoy0UpTOEUFiIFbtM9+HxegLWo25NyQqi97wSg3LyesHY/JCn2d/ajyULejpDeiT9Lx60jvmtcYMDBYPw0aLA9IXpmv5gQ4AXKDijGfFRYQKAvrXtttrq5Q82eA5E53Yi5WSCTkgZI2SmxCmgqSIhKpg1EYY12hnE7V8R6zlpkbR0qNhZYWktykVq8OvtVJzpOZAzZFWGq0E/Vih5ECZKmUSam7U3CgZzZcjutGLqXNlIJr4tFkuNFrJUbX0TbNnFyQSA4yDMKRITIEhWqpCGrRBBxXlzDRFJskmCAWpCcpAK4ECZEGd0jjRSrIpfNCsr0IroptfREFfc1DgEdVixSyCME31wCym9c8bzl1pUxOs6VIhxowEFSDGpLPqj7sD+5sDx5sdZToySuHO+cD9O1vO1rC/fsHVq1e0kIjjyPb8gi0rXr244v/1n/0B/+Hf/33+4C9ecR1Gzh+8wze//escdnv+4B/9Hjc33+PBJvCdh2umsw2H2BjHDfHsAZw9gnSPODwkrO4zAWl7jdQjtR04HG+4uT5Q65F79+7xxz/8Hn/8Z5/w/Kpy2O357kdr/t6/8jv8G//Wv87HH39Iy5WpHoghE2omH6+J5UDdXfHs6Y7p+hU35cD67n3Wq3OGBNrRUMeglwY+slbXhMlQOjNwCga+DhBYBjK30wynryfz9u4+Vn7h38zv7SCSbvt0H/Qfm37n9fP37y1ZhteYjNfAiizQO1/9e7f/rM32x3/fG4ZpHVPt71tbJZfMlCem6WjVWFP/W42EA8l8wPzeYg2BoLZCLvo3pWRktLk4fcZK6Pda943BGWl0DUHFKhxMx+MO1a/fO7P29ze7GUJnLFyH1WoxFtcAS2sdV8VQjYWbe89ogKBjwrXTgLIDkQQyaKVSiISkqRWsWZQ3AZMuOJbOwtKDxa9zvC5x/XnHW4MBV9NTGz5Vykuz8jRpntXyr53SN0ecs0WAtliHYbAZ7zOSdnAgeL5lHmX82oYWpW6cwvZ5APp39Lxs791fCrlmE9nY7WlOFy/Zgls5fVlu3ABWGqj2p7vwBYJWZyt46Q+99l6Q3jLVVQ+CqoGX0XZ/7u4cF92qKrXT581ZArHIvQjR272a046iIstq+fSnP7rg2Y/uQkuWwgjWg8PiV6dcXXXs/wka9UjVf454/NnY19qxTNtUl3oa7av+QtXFzUaT1uI/LwqP/NqaNqia2ajTUikfR9zcEYdATUJNSj1KCKqENoYB/xvrCaAlsHoJ2t9cN6WWgibGbeVbf+P7xOFo0Z5XPVgb1qaRjDSt0Vh2rlSSxpkuva9zm5Z6YneFhgTNfTsg8higFB0StF0nyv6aJ59+yqc/+Sk3z75k9+qlThIMjTFWNuPA5dmAtCNXr17y4vrAVIVCIq02jJtL/vyHP+VPf/CYn3xx5NCE1cWW57sjn//Bn3C+2VJC4njMfPLJp/z4BysuecD2Gw85X91H7tynjZdMnBPO7tHW96BU0tmOKEdyvYGblxymK54/fcqXj7/kz7/3E568ylze/wZhvefTZ6/43/37/4BdGfjv/Lf+dT547w5595xNqrTDFbJ7ySZV1mPi+avMYV/Iz19RJHD+zhnb7UiIhTbtlfa1IVutGftk9dp+F5d246sAgR+32YPbkbb/zunrzZqU28fsnOk25vY5+CS9GSB4p7ZuAJgjgp9v0t+oiVg42TmqgtOqI3rQpefjZX4ObBe/17w6ofW/c1F3rbGfR62Nkgt5UpvvY4j92mMaidEDQrf/qlvqU2Xxjn8KMkJpRJLqNGzP2hMgNIhJhYq9u6DZ32r/QhMdFe8W9mQTupP1qohGSFG709p9qEX1RFgr5WbAUysZdBKjA4HeRlk0JeCNjqQlZU8kEoJOStS0YKS3r/a0V68kEOR1IuftDw983/J4azCQjzYDu2kkU7VwUtMD1QVfashnIz+DAWcWfGOUUogxUkoxhXi1enw7pWq5804C2vWFANYmMoSg6uRaOuMAlRp8SqEuqpwnYwasPKZVmo3P1MXl7IBPsDKQYTqAvmGNuGnSaDbAxxW8+j65A4laqrbrrLNzDY46RV0EqMCmRxkoliul1yl0VO5sBpYKaeZ89ZKaOf6sgEWCieYNzdfMdBz45B8+4qf/+YdvvTj+RR4SYHsPNnfg6kvYv+JrAeGdwPoStnfh5WeQD7/wT/R9ZcaH8zcr7/7yp6w219QUjWGopvT1nH7SJ9jmQSTLyGP5ucczJ2DUfh6DqGbAnE0pSoBLLKxWgc164MWnn/CTH/2Ix198xvWTL8iHHednK9bbkXE9sF5HNqvEbveKp0+f8ezqQG6BwyRcHTLHItSw5m/97b9BuPwe//7/84/Z7684yprr/Q7apNRnzjz+4ks++WniN3/pIWl7TlhfUNOaGjfU4QLW58hwBlGQdiCwJ5Zrht014dUNP/jxJ/yj//z7PH92w+XddzlWyC1x595dnj6+4v/yH/5DvvHBA/7Nv/tfZ8Oe49MvSOWAHI+MIbM923I4NgiJ4+HI9WefEhFWjz5ibAcoO4RixnXW9pib1r3MqRP3/PptPcDPXxenzEHXr5xEyPPrzjZiCT7McTUro15Y9nnPL52zOqbZ4baT7y0Bye2U6ykrsLw2W4zN39f/59c590LRvzTGsTqwne9BHynsTXPEy3bBm5PUarNAmrYEL7Vpbw9RxjVKtOqxpd5ryaL4/ZjZnWlSm63zcdRORwSISFJ/4fqsir63dh1tynAak9doWH20vndnB+Z+EcEq5vBKKwf+EhCrUFNtWNJSSBGEOo9ZD9ZmvmnXQ6qnbUxH5oyBKPAvBlbc+c8hhD4nT0vfXpv+SH/ROv46x9szA4tmPth4Rryff/++R+T6s+Xi1R/r5546iDGelIyFELR8zxaKl1c4QgR3cPa6njrojjZoZL64e65m9YZIKhLTLlKlLlFr7IDCPw+LRRskEUPWB4zmx1otfR973QQGGUowiaJoqY7ObkhoOsQW5W1mgrnHN705RdMchG+OWYpPF0u1hqD9spUqUMbBkxWtZi0Jmiuo/rkeq3P47X8D/ug/gJtnX//vz+7DX/+34eO/DnGEwzX86f8d/uT/9nZOPa3g1/9V+I1/FeIAxxv4vf8V/PQPvvpvxi38zn9bQccf/J+gTKc/z3todaKVqFWRodGqrQdPmTQbQ31S9uMco6VXpMcq0JUeenjNfckTrUFomm9VIzsRWBHXK/LxwJdffMbjzz9j9+wxl2cbYlwzDonNKrFaBS3jjIH1xTkPNucMmwuqjDx/ecPLmwMXlw/58KP3+K9tLnhyNfEP/ujPOex2nA0JphdImXh4N/Er37rDe+8+5PLefdZ37iPbO5S4IQ9b2uaCMqwJYaRJoKYtbXWJTPcI22vGiwPndx5C+z6r1FgNcPXyBTf7yiiR88tz3nvvDlcvX/LZD/6CDy4qxxefwrRjNa4Yw4aLO3c4toGX13uOh2tevXoMOXPn3Y+59+jb0CYNBjSfAs1mwJsTC87QwBttj39+W8B3Wzy4/L7/zRIQqJeoPSixR35ynLIAZh1ei/LnQKP1r90D0z86E/im119+rqyh9Ffqr7PQtCynwCrz5w4OvCa8MgvFafP1t9Z6ZVCQ0/us9faeUvCKLK1K0FQas8aGwMzEziwKJ/dIg7VSiu6nugzeKjWA0usaxCFRy6Q1iWvAQqPs4GChoSmHgHVtpPub7lM6fFdnrilTZQ2Lt6EXLWvMguqBnPUL2vFQ/P1NO8aCbVayRsFJaJpCnXUHocOBmZmdgdHigdt9+2ow8PWSBF9TQKiLeYFeF8hUL6JaN7958Xj0LiIzsrSfu5bAN1hKCSm1N+dpfeLe/DehapmLT+wDFiiT/nvdUWpim5qV6iklM5Ujtc0AoTVuOf9o3bBiR83NckPCnM9pntyvVVvONhX5Zf0poZZeMqIN4os2UtAkE7qQ9bVmAdHUAc8SUEltWn7WvMywdiCgm/CokUctUNJcaWH0X21pjmj+OR9n9+Gv/zvw43/y9cHAYE75o78K/+T/AM8/hQ9/C37331Wn/mf/Mfy8004rBSK/9ffgD/7P8Pk/hd/+e/Av/4/h7/+v4Uf/6PW/396Hv/U/hN/5d+A//ff4ChpOe5E3oybVl0dzRFGbvSBmBIqZ8oUh72IwE2ei4HZJ+bZSOOx2lJqV4ozRNrBQyaplOOx5/vQJP/rR9/niR9/nfAw8vHdOkEZMgqREbkrLhmHF5cP7bM7vcHHnAU0Sz56/4vmzF0Bg9/JLvvXee/ybf+dvsFoLT64OZEaO+4n66infeXTJ3/ytX+HXvv0Bjz76mOHOu3DxkHb2kDrcpY3nSFxRY0RqpKUNVe7QNkfkPLMtkV/9K7/Ln//kKVeHP+bq+IpVK4QhsA4j3/2lj/l7/82/yUf3Io9/+gmcZcL+GeQD2+0Zm3Nh2Fywylvafg+tEErm5bPHPP7ZTzj7+AXjo6pKb2aH42x6s5Td7eNNeoHbjvS2WLA/ozc44O68br3O1zve5u/M1n4No+5R44xMxKLbuRHR8vCGOiF6ZK9AQNtimzbMgz/m6xeCDqIyO56za8MUNKuj1ygYoM9P6D7DnLjZJ8UiAmLNiFimQwUsyvf7pplgo+NDQsJAkJEYR5JNK4xxRMKA2KApgFwyLUOIiVArIWlzpRCj2mYswrc01Px4lQnvQ+hiphZlYaleDeUs9lxZptN51ZdVVJ7VMF92wuTUfp+1B48BXLE/oN1aa784f/CXBwY6BT7TOgI9QpXWjJGaRXZSpTtT1xHc1hIsKw2wV1UdQOxgQNtO1g4GPEctfvMX96Qj2KpNaVwN6vWrtWRVsZfJSl/0podeDqLNiVrU/vPOqrWWacXKXEzIFmkQq3VKChbAzwAhlIwMqZeokao25lkg1eCLz6oMRKwEsFXdbMU/Fs3/LzsuYpRlU6FRpVBFZ5tXaxQSiCiTkX++V/3/8XiTuPoX/o3At/4l+OC34D/6n8EXf67f/+yP4PpL+Fv/A/jie/Dsx1/9Gt/9lxUI/B//p/D8p/q9T/8Qfu1fgb/534OXP4Oni7/f3IH/xv9IGYQ/+g+++pbUUmgl08qRZliuBYEQzbkXYtMe7wrHrH8q5iw6HeuR2nKquR7e9bC2opUcbaIWTT0NYyRKoJXCOCYuz7e8GCMxVY7TDblEKltyzhxvVLG9Pt9y//wR73z4MReXd8kZYnrOEEaeP33CtL/iy5/8BWMY+Tv/1d9g3xJPX1xr19Cbl9xbDfzqd77JBx+8z+WD92H7gLp9RFvfh3RBGC4gbNTQRUA2KqxESC2xHc/4lqz5G09fEUPi6bOX7KdCCJF3Hj3kt3/jV/jd3/wOq7Zj9zyziQc2lxfsrp+r4nx/YJPWnJ0lLnaR6z3UIXGYjuxvXlL2VwoQnBmr8/NrNGVvPAjgNMKf19zrn98GB37c1hLcDji+HhBYAkV/kcXfn+SrZifRzK7e1j/83Hc6ATYWlbbFOSzvgdtbWYqv6eXZnhbobEg/v3qSAp7ykZyL2UBRICAjKVSqZGXJQoNibIoIWnIndLW8NJrPK2jdzFNqZc7Fa0lejCM+mVBkJIYVMTgY2LAaz5AwEJOxBigv5ynYCqorsgoQ8fsmWgKIKBgIoMGnzaUIrWpJYMxaGZEitVpvkpqNxbW1JWb3g4nhtXALq1tQv6ROtPtSDdy8PLQa83XKXumzeMN6OlkEv3CZvHZ8rWoC3xBRjESxE2uGEIOeNSlEWmw9WeoOeskEuEbAZwk4QChNL7y2ZmBAb5b/TeyGwEl5zdfkuqDwesRsN8tYBDXLbc6lL6xJA5qVqdCs17W3n10q8+1nkqBKRbBZ1mLv5448FkJNhFYMSUakJhuv6SUjMldFWE6N3ofbux+W3omvWVdCb/XZFpu0NC2TK6L19ojS2RKAUKk1cpsZuHwPHv2SYpnP/hReffH6cxeBd34F7rwPhxv44s8gJNi/VGp9fQnv/6amCj76q3rpT36sNPsvOkKCj/8afPkXpw4b4If/EP4r/y5883e+GgyEAb7zt+En/6XqBPxoFZ78SD+/9zE8/Ql936QR/ul/BF9+H/7mf/+rz63aKNZaI1IzVB2HHOpAKDotroo3ydKypRA9AnE2yz/3clAfbaqHz71otZieVfdICJHVastqGEnrkY++9U1+93f/GvHwjKdf/IRKpgUIKZFL48Wra3JphLOR4ewRF/c+YLXeEg+ZO5cDKwJxmpDjY15cvUAIrIcVkcC4DpyfXRCngbPVyAePHnJx5wFhfZ8p3iHLXQh3kHhBTGfaUriCJsaEmjZIUFHUathyh8Rv/OZvs05w8/IZ4yDcuTjnztmG+3cuKNMLhiFy/xvfYoiQtgObZ495+ewLrl89Y90y203gclOpI6Tthk0b2a4Hm4aqLIxqYRLaKlcFYhUXibFgMefjq5z3Mu/e19AixXkaFatWaJnL/Sow8YZ34s1W+vb3lhHj4sMbzufNx61KKPMdPdy6BYjE2xefvmv/qvYUwZJ1reQ8cZyOHI4Hcp7U0VYFAjEOJjRvlk6zdvYx08V+PaWj+8WHI+kkVz9vbxRmZXsxmsNfEeKIyMwCpLgixhXDsCIOo9XxWwrAubswA3b6WpGZYegiQJtJwjyRVRMtlsaukdq0EVGthRomExlmQKuwNCCIvREb1uxteY97wWMXpJv40e6R9igRiLNI85+djfr5x1uDgf1+3yP+aKVU0SipVovmTcQavdiNSAQKs5OOPgbZEGVK6aTs0A91zLU314FZjFgt4u/TEKkMKelAE+/M5pRKVQW7K/J9Wrc3kdAbqztFF5w3w5j7Sjs6V9peNQNVQAoGGFC60spCSg3EUqmxIDkTq9WUxkiLriL1BbdIsQRH6NLPjVKpeVIwUAsl67VXfDRvPRGlVZlH9krV168ANVDKhPcBB3j0y0qlb+6oUz9ca5790z9cPAiBX//XlE73wODJj6Bk+Cf/W/jyh+ps/8rfhYtH8Nf+bbh4D/4//5tT5/xVhwT9+0//SF9zeRx3cPNcz/Mr/14UhDz5fhf6zn9/o6//8Nvw/d+bg65XX+q/cfvzz80VxK0mjZwrtBqoZbL7qsIkHVPMwoLOimbxFEHTmuhipa5+eFTVygQ0ggHhIQ1cnJ1zfn4B7UCKgXfeecijdx+yv3ls1RpZWzeXxtXNkcMh8+Abl1ze+4Dx7BEigSSFs7hmIyD7HeXqBWE9sM+Zl9dPqbly585d3j2/xyqdcb45597lXSRuyKxpwz1qukuVC1pdkyZL40lGpFLFJ8NtiGMiSiTsr3n48B3K1Xs8H3ZIvube2ZGN7EnXr4hxxdnZQzYX9wjDGmJguL+l7TI3T5+yOtxwsc5swp7jCFNbQ2zcvbxg2IyaxrVqEHEHBd1x3CZP32Q4b4sJ4asj7zdVGmh02mY788/tOFlI8zksvve2grHabtemSwdIJ8yBzNfVbjEAt6+tayaMFj8cDxwOBw7Hg+qyWlHbGBMxrCi2prUMWdNpQZa7wxzc4vycJRAbyQ4QWyCmoeu5YtC2wsHGHQfRxj0hjMS0IlnpXmeowww8PGBtTavQYoyayu0Vacbk2ntLryayfi7WsbXWSiUpG1DyfF+rAR/mFId4vxML9GZRvD9vX4O1n5uY3dD38w6KfzkgwI+3BgOH/VUX2NUYrQwjmvPXSNwHYZCaCdjUqSOa50fmboISEj4ZsFgnulZ1oIM0ulJyqeD1f0rhWumJMQS5qnq1LaxDaYVa5v4HzRpuNBfQdKZF+tdiIEeV4mpwxGrSlalomiMK9tBaoWcuUMeeQ9C+3DVQGXt/BBLEWrVZEhWClaYF7V4llleKMVjzAq/MmIx9sVRHvydlZjdEu/9pbW01ZCrQClWK1vsbM/Dur8K/9j+BP/q/wvf+3wpmv/O3lVb/T/4XSteHAX7r78Jv/B34T/6X8OQHMGzgX/rvwl/7t+D7/6mCgS/+HP7+vwcPvgX/8f8cfvqHcHj1dmtq2MJqq8xAu+XM6wSf/P4sKizH1/++TvD4e/DRX4PV/x4OV/TneO8jePQd+P7fv/VHb2dLrUNlRloGq13W0smMVOvvXrWhkWWjmFsVY4bO8trOMlVvs2qnUgrTYU+r2gArSWAYBlbDwGY1kNYDcnhFO16TJLMeGlHg+nDk5c2OdHNE4sjNEa52GYZzwvYehzpAqUQisUWOTceJr7dbPv/iU3bXN9y5vCTXSqwH7q7h3v27hPEONZ2xb1tWw31WZ+9QhjtUBvKxMpUb6nHHKkEaBeKKGisxDUiI1DSQzi455yGHq4fcPPshz774GeVF5t52xWa95p2Pfpm0HmktwJ1Hqg4ftpT0BVfHxlom5O7Adh2Zhsj11CjDiuH8krA9gxiozpzZnHrvNRDwslcPg39RFO4lo292tieOt52yDWUhVBbEHroTwLffb6bXjfU/dYD9vfx8TgEANn3zJHSXxm1gcPpaSzeDouGTHPXi+zR0NK/nvfUkJTSbJtxmG1wrJatNKtNEyUdq1tQrUmdnSyBJpEi0yg8DcCEos9rV8x2mqMOWoO8rxQoURPUArtJHACvT623YtY4/xKHX9peme6UZ8yFR0242lcbkfqbwt1r/ORUxMxZ6vjK3bLbIPgS1vcF8XzUivLk/9FSuqB0+Tfe3nh7pD8mfj4E4fYQOGCqn3S3tfrXlGmoLMGwfTyptfvHx1mBgd/2EYRhJaaQEo4GG0VqCRsZhRKI2bgkBUtQpUaFqyVItmtXWBRGJsdGKiuFCUfrfh0zUWvT3e1qhkUvm/8vbnzzZsmVpntBv7b1VT2fd7e9r3F/n7uEeERkZkUlWkBRIZUiRCCUMYABCTSgRJkxoRPgDmPIHMIIJjQhMaKQQoSBLKJHqs6oiIzNaD88I792fv+a21p5GVXfDYK2tqnbvfe7XgwB9Ys+umZ1Gj+req/nWt74Vh46ceuXze70IuWTSoXYMRCpDOw49/dARywBOA4GYGQOGYgtSlfZq1FiFI1UiwhvBxdvfU9HhSRlwxneoWX2927M8giKBEJZau/KeJkR8CCqU5HScaPAeh9cuiGLyvQPm5K3boeiMbzFSm2o5RFuMejiU1ObQVsKUk56nC3p+ySOlEBbwr//PNQj4F//n6YT/7P8On/85bO4rlH72Nfjtf0NJeD/9w2kd/Bf/e3j3t+Dsff059bB9od9vnsP+4m1XlCJfYf3LF+tiA18VEJcCf/x/hf/W/wJ+/38Af/3va/niwSfwrX+k5Y+3DUxeOzeXceiwpRLNUDmP+Iwz6aexQ6BoNBhjUSIpAi6N7GCH2PoekDy1LegMhFTFR3UwV+npwo5h2FE6B/mG3F2Q9i/ZNJl1EA7OI27BTVdYblbk5ohDyQxhRScNHYHFstV21z4ztEv2oeVaBFlvSIeO589ecLzZ8PDdu3ztvfv0bsPTncet7+KO3ufo/jeQxQlNaJDYs716SUo9N9cX5KHn7OyUxXIF3rM5OcEvF3Q5slofkfIJx4/e5f72fbYvfk457OhjpnVLupwIbauOPTsIC5wPHN97h+f/fIcsB043DXfWR5ThkhIz7b07tA/eh5P7lOCtrVkHNBUE7xsaNyC5JyVGafC6biq8rYfMvurfX9EMsIfOxC9n39XUBmcckDmiUN+jOoRXj2SvUmHHsV++OvZZoDi+l9xOWsxZlzk/aRbQ6G+GcdNo6bG+RDF/08/eJ5JyB3jjCSSTCU/kGMHaXlNUYbmUBuIwkPo9Q7fXoHMk2lXeRiaVhAMa53EeK1MmQoAqTFeKGBKrmgP6Gtlg11oeEEJop7sgDucahIC3soAOiWsIEnA4Yim0QUl7JTiKb4zIp0GKiNfHGhmw8oCQoEPuyhw9KjbJdnLG6qc8SCLYnIXkHAPoPJiSxvuryaUb/QpFr3Nt38ySEW+kxBGOdmOJQh9WbPFM61oEE4SrCBfmJ2bB7K11+6uPXwMZ2GmW3ergE0CjLYPUx0CFym4vRl5DazFkfKnQvDlOKajmpGlPo8pToFlXXeelTG0uWnvN+neUYJezGtaUBkpOxNQRh46YrWvA6rVF1KlSyljDcUaeceJxOILVmYIFAjVGHCNjZGT7j/3Lt4KBWUxfIikJ3iWyd5TU4tOA86rN7r1QfGNjj7XDwFNbd2p5ozobm/RFQqesJZTFrre7DumhGiW7Hxo0CDkLpSSO7im0/umfzlaLrZxnP9IvgNNH2nZ3/untdVCylhV+GanvbY84QL/V83ntENUM2J3zS1sib57BP/lfajDwX/0fwbDTgOazP1cuweF6stG/zlGnpumwLW+BWRpnGDgnZCrZSKVJiyjfpCCauZYRmNT1kuKtFt2U1eCmcW1lFouWdtHQtgKlp8QdjoFF41gvFywWC9ougwvsusjV4YLzqy2b03scn91FQkvG08VMGSKpj6SYWR6fcTo8JHjPnZO7SMocb464c3dNaZacXw/07pST0we0d95heXyPXqsXdIcDw+HA9fVLLi/OSUMk9pHlckUG9vuO+48fs1ofk9MBaY9oVne4c/9r3Dz4Gk9+fEnXOI7CgrDcENZHyGIDYQmu0ayu3YAs2O52dEOhP0S8b1guBb9c4dpGrVpOSOnxRHLWspzO94qq1icTvPymY1SXe6U88FXHmCPK/HeT277NNSjTN2sHu/36YpmpMeRn5/HmkLi+XnnDY8rs5/zKJ74djMzCnqnkOf3GbKIbfzM+r2CdBaYbU7+naERXZt1NlTOl7+dEEVhvkHsldzqvgcNoc50fS6TFhMdyiXqFaxYuYfwgYsEA4vF+QXAaEDjf6pdrrb5enbGzji6dK4BMaEKdH0BFtGu8MS8j4SZRIENuCs4SdlGti9lj630fr+GrCNXYmaGli+JMZ2DsjKmIQRWBs4BwHBQxlX9ur6zy6m1/6yCgHm+PDOz31gkAodGSgE+NXVxfvTagJJKqZqcXxPQAvqIeN06/w5yXOOpUvTRCVFWv2kaU5kIpZlxzIg+RFAdyUYZ26juVtCQZ/0CNrYpOaF+oc4Lzom2EYl9Oa58KDdkGyYWC1Xut3JHnNRz7rPNe3EyB4hBfxhbFkAZC0g0QvMcHj/cDIQRc0MjQyLiManyk8bpOWWg02M3goDEa1GChTvvCrh+5EJNCgc1a0er95S+52aIQfr+HYf+2K+TXP+IBdi/h3gdKJpw7/dDCo2/D53/xOh/g1ePqS/hP/tdw72NYncHlL2BxrOTEm+e8PU42P8TGxNZm0SI6iCUHXIpkJxqJm5YDqFGs22AMCquqWCk6y31G4qxDk3IeGOJAzpHlInC0WbJaBEo8UHZbpGSWJ8fcffCQB+eXRH/Fp0+veHHzknZ9igsL7j18wNHJibXx1u6dTEoKaacER6f3uXfnHiEXSq/luK7f8uT5npfDguN37nB05x7+6JiYE13f0x0OvHj+hJurK54+/ZLLywtiP9C2z2kXS9bHR7yTPYtVR86BRRtYtKek5obN6Tu8/9HfYelbDrsX+OVGNQtywGVFxMR02mkW4BouLnZc32zwg85paFYtzWpB8ILkHsqBloFYOoacGaJTNUqvpF4nbzaBEz9HXvv932yB/PLnzGvvo92r9SSbPSLUMtKEBLz2sgYXl9HS1/Uz0x6RSlbFjMe0/9/IQ7j1o6g+Sf1pzGtuixjVge2TjatcJf0aZdKqgI4oWVqHBGEOUxMv73VMuPfNOOOhzFHhHG3qodm86qelCsEFxAdCWNGEJU1YEuzLuUYhQQsanGtsBoDyW7CWP2elBRFNwmSUsq+tj3rtbg+jmuD+iiYV57RUbcPFBEHyhDyNhHUY+ULZygf6Yjp7ZywwioyBgFgQkE1sCbFQsq6j8bbVdVXGe1fP99c53l6BcOjwDmLweB8oKY/yus6+pIxLRmvXLo7nJLU+Mj/RoohaztZ/WYTgFI7PZowx51fqV+6V5S3JIK0OSZE49KSkwUBOg87ONmbn2K86Jg1TTcr5gA/QGHEwOJ2+R1GoRvtm9Vwl1c2oxKWJDGZ0kVJJjlXl0CmsLIEQPCkNpKTIQwoBnzyLpsHRQFEiC2QT/7Lzljq6uKIa1UGZhK+Ak2Jf2SQuZ7Bn0XGiuWg73PUz8AHe+x1l1M8P2yfkBFdP4fQxnL2rZYDpQfrNTaJdOK8Z/q8rapSTdhGsTtX597PnLzaqIfD8J6+/N7NlZHuZwzV89mfTYz75V2E4/Hpli/lRLGgsLoPYXAcc2Uo6rg5MyXHM8uoQpXGqpGUAzmqd2URTpjfJdP2OmHTtOic0C8fx2Zrl0RI5HJRT0HU0CE27oFmuiPmS1XrD45N7bE4fMmQ4Pr2D9w0lFW316iJDdyDHnpIzQQKhaciS6VJi3+3YXm/pY6+1+rv3OXv8IeuTe/Q+sN1tGfrIpz//GT/64Q+4fHnO06fP6A4H1kfHbNbHNO2B8uySZ8+veXl54J2vvcc7jx6wOD2FZs9QLliefo0PfvMu2+vPyblH2hN2vcftM60XWhOLKRJYb065eSpcbwdKn7m7XrJYrlgsFrgcKftLcBtcWBCKp5QViUAy9rWy1I0M7Gr1fnJob9ISmO7HG5z7aLN+zbVTofxXMnEVvyt6TpYBVrny24t7nvtZxjy9ItNMC8ZS1SzzesPrvPLvW/tI3/vV1u46dbQUoYwaLPPup4qEQhYLYsbX8KOTl1peMxTASyD4xrQANOkqOEPd1FalXHle0YacVSetm90Z679pVoRmRQgrgl/hwgInrSanXnSkcmhwfh54OE1gR8hdAwc18EYalInc+KsQJCeiiQHOSuZVIK/yPPK4DqpMfjZ+iIhYC7slE5aEWgGA2i+nrY1Kds/O2WkWqlS6nSDzxfo34Rq+/Qjj0qtDKY1mn6K1nTrQpo7ekUrgM2b7XON/6o+cIqucTQLSpEWL/dtVmJZEYQAGCj2FnsygBJY0kNNAGfaKBmTDNYkUieBsXoK3QMqPHG910s7hfSG4YqIYGeeLkQeVQe5qyb4Yyx8Zaz7jRrfPlq1WlnOy+q+yz73zpOxJOZByMKXEhlCCBgLovyke50cgkVFp0DaDsyAhS0Rqq445fic6wEUE+17JJHYdpQcSh0v4wX8MH/2+lgquv9R1dPIIvvOPtVvg+/8hXHyqffsf/AO4/BIOl5q9P/ymPnZzd1obV0+hPyjZ7+WnWkZ4G0mDHOGH/yn8wf9MCYw/+c+Ve9Cs4ff+u6o++CMjADqn53L0AK6ewKf/QtfOySP4h/9D+JP/mwYWJWsb5Lf+QD/f5Vt0NbxxvbsCvlCcZSauWC3aepuJ6FAUDWqkZOp+z9O+N+izrhFDdqYrYHshkvNAyoXt9oLnT79A+jWL0nHYXnPz7AXD9QuuXjzh6fklCc/ZvTt0tPQlM2TH0Z27tKs1Xd+z3fbcXO/oDh1OMm0Ld09XdDlxs99BzAQ5wq3W9PsDhzxw594HLE4ecSiBbki8uLjg/PlL/uSP/5gff/+HbK+3HA49IbSEix3ev2C9WXN8eor4hvPzK/xixWq5YbNZ0a7OOLgT9t0lx6uW4/dOoPQMUdgPjoGGMhQIhUXQAS7vvP8hcfeS5CNd7vHLY9rNCh8aymFHPH8OncevPG7V0DhPxlPEk4wRrnvBhMjGEg3A1Ok03mNLTl4z9Ld98a8VEMxLBnWOSP39uK+xrNCQpHlpY0QIZqfAlHdzCxGwr0nwan66NUOvG3Eu/zsFRdrBZO3OJVGKQ9X7KjHTU3INsiai861OqOpUEaoqI1KJ0R4fGoJX5v8yLKhEPWe6/fWs1YZW7peVRCWrAFfN1F2VT25wQdsJ23ZN26xwfqGJKmLD1jzBzzsPrLOgihVp3/WI7I4YjWXlUyBQnesrSpUFVKDIfKCTMSCoT5QCdWR7bcEvUoEBlTIX59WdSh7Xwugz7X4VAkVq2JCptauqQ+FmifbfJBCAX0eO2EWKeBB1zPWrlDBGWXqxau16IjvMdairE61tQc7Ne1h1/RUxYR9JIIMGA+bcs/QkOgoDufSk0hHLjlx6MtE2fFYCV45TBmkX2eEUlnEFcVnbJF1SvWyxxWzaAi5bi443w5F0U6dccLWGVuY3QI19lkhBx1zGWEjeayZDIKMDcQQlwURpEd/iSqMM2SxkVwWVqgmwyNiun7iMZNM7qGiT1AVpkNUsUXCYXbDf/Wf/O1X4+4P/iXYDDAd4/3fUef74P1MnvTuH/+R/ox0Gf/A/Vcb/4hgefUtJenNdgH4L3/sn8O1/rMz/T/8UnvzVr4b3QXUL/uzfht/978C7v61iQ/c+hKP78B/+r6C3DoF2A+/9XfjOvw7f+/f09Q/XcP1Mv/+j/zF88T39LB/8A3jxU5UZ/io545L1M+4veaOxH+KSrlvioldSoHMEHyA0FN+SfSD6YIZJb0IqGizWbEuvv0MawS/SNB+jngM6Vls5h5m+2/Plk0turl7w7HjFo7M1K0lc7zquL67p9hG3OOZ04YjSkJNjvT4jLI84vvsA8Q0xJq6v95yfXzEMidVmiW+XnN8MtF5UNa0IjVvSEdlLwxDAHz0iNsccusQhJZ48fcI//6M/4rt//KfcXFyRk5CSZnFDjPRDT9N6Hr/zDh8JnD14QKHw4vyc1arl4d0jFncecXN9SVd6ggguJEITaFpHjsKQHfSRttVRru9/+A3KcE13+RTpt5RmTfYNuQh91xPzFS4tEDnCL+7gw5omQEEZ4cU7fDGlu4oQiMLgkxGfZ3qVUPer1+mve7yuWaAlypLzZAtltlbGUt+bLPkUYAjTMKapTlwDAn3E9BKGGNRSyOjkXoW+J8euREg3rvmS3Qy4MJtkSKs4Pf/6XMDIk1OQ4H1LEyZVwLZZKhWn1OBiJgqUKifK+FKSKYYQ12FKOr/GIb7BScD5htCsFSHwrWkFaFKp5MRgXQiW6eMNqXDmt/x4C+YlvAn9qOUDGX8/BniipEDVjFFsCkE7CvIUEBRrcScpf20S08s1JrR2dZPhp5Yj7LqazHK9BaqHM91TzH9OQUChFHdrvb/N8dbBAE6H4CCJIpEsA1kGdXAVMjd4VK+Jw0lrM+kxZ1XJeHlU/isGo2Qjy4koQa6g41vFKzu+5A6kAzeQ84GUOz0P15FlR/GVdMLo0EvO4zrWxWllDUFrjHWfjEM69PmFrHyBml0UVEM6ZtPH1vZGyXkUMMqlqKhMTiSJZMkk60UuzqHc9AYpAzokN+OIDMWCluTxJeipeFss1dmj55kt8qbUGlUZSSbeOWpwXqRmHACZ4gtpWDLslamXes2kLz+Hd35THfh3/wn86J/e5ghcfgH/9H8Lv/EHcPquaf7/H/T5L356e3l895+oLsDdr2sZ4m3XYE7wg/8Etufw+NuwOlFJ4T/+v0xkRlCn/r3/t5Y2nv0IBnPyOcI/+z/C1/++BhFhAd/7d+Gnf2R8ga846uul4XWNA4rw83/6B3y53lOhQ8wYeRcso6kG7zZkOu/uHtuTQuG9v/sl7/69n/M6lGfs6xTpuj27/Q27myvybkWbT1ncu8vZ/cc4Ea7dAml2itD5ljvLIzZ3H+GXxxBWJOvs2e4OXN5saZolbiikbcdue0XbBq1vFuGwu6DxK8LmjOMHj1mePqbLgaEI3XBgu9vx/b/6Hj//2Y9pfcvl5RaRln0fGWJP03jEFW52Vzx/+ZTL7SWLzYLrmytCK2w2DUfHp6zvPSTevOSm29O2gSKBLoKEBV4cMQ2kISMSCKsjHr//CcPZGXF3QfARacA1RhgrUIaeuN/iljucP0acTo3z3oO3qZ2GuIyZsKuh9DwQ4LV/z39X72Ldh/W2TY7g9vNeDTSk6s7O/u5K0UQUmIhmk2Me2xJne2c+kn1MbOpKc9NLSHUGotr6E8FxjggIVcukHsqbcmMJpXZF5Mr7clBnK4xqrsa9mrT2q3Pydq3t4ZVPJiYX7IL5h6r2WmXfzWAE5YZpwmjfUUSuiExy8d7q/i4oJ8C3ihT4hY1FtkzfMaEPFX2paECZZUdVU+AWf2S2j2cBwO2b7sZHOueN2aGJWrFrORIvU1UntN+JIlVj8lCcciUwx461NTrzW8WNgRau6GtKsWDHHiOzjzRFcG99vHUwIC6Bj+B6CwqiZud4dYRGrCsoQ18V2qpKv0EfFXoRLPsuCGkWEWr6XajBQER8RlKkyECWHtyB7A7kciAxIG6A1CE+MQ10sMVqERMity+WFHBTcDKRLix6x6ZOldpjav3BYmWHlKfsvNhY3qxjd7PX88/183ndVFkEcUk1Gnyg+KzQD4lMJBcbfoSQnEoT106HmuVU0pFGsWXMJkSMb+CE4oxroctOg5LU8Oyv/h43n3003s9hD9//j+An/4WumWH/Zmj/5hn86b+tTjYnzbzfmEnv4fv/gT4uDW+HCsyf+7M/gl/8mcoEx+51/kHs4eVP9evVY3euqoJhoZ8ldr+6TFHy650S0yFc/vSXqB39DY4n37sP/gD8dP42lJzph57D4cDhcKDrOpIIW8nc3LSUu4Gz+/dYrY7Br+ifPqFxjrBYEVZH+OUavzrCL49x0rC92XN5c8PF5TXb7XMOMbJYBLpuj0ghiOdofUopjocPznj/0dd4/MEnbM7usRsiMSf2+47u0HPYH3j+/DmNDzx9+hLXrIipkPKAM8O9Wi549uJzfvHlp3zx9DP+3r/y+9y9f8KQH4M0hM0x19fn9NuBxeA5dHsOQ+Tk5Ix2seCwP7BqA4in4Dk6vYccb4j7MxhuCDIgYi29UehzD+wJxz2uzicR8KOUbLYM2C6wfat7eLz/Yy1/1t00DxKYgvA5k3v864TMz5zI3PjKrb9LUW7PqxiumScL9l8/hCk4qX1KU5Iglvhg/k7GpMHNMtkaCACGYr3yHlJLtfqDju81BHeWkGicUEtbqA0tYoO7JhS48mWmAUhTdptNvRFXxkBEXA1GzClaZqvlWCG7YC2AYt0HKPLsnCEBRgxEGBX/Rt5UXQk1/bfsvV78iq7MrtEbDVz9y4wDMt4gzE7jkKzRUM7FklgTyssmKY9eN81InSWSGVIiVdK4XTtPneuQ0WFINrDJkOtS8lTlGJGwWULyayJeb48MhKiDVEIiy0CSjiyBZECJWBCg11sVulQFy+Y5C0xTmUDnDdgHd0aSc1H7ul0ku0ERAt9T/EBOHdl35NxR3IHCQVGCMkAzYHO2EGffx0si1HGU45daB1Qkw2ruGGxjmYW26jkLiO17ipALzqtYUpU51ubmrEFCikhKuGTT1cssEHIFCRqIFJ/JLmlQ4FTNDVdnahuBxKxRjYxrsFM3p346sdKKRorZIv8sI5XTeCaJHBdAwS13iJE7ky0at7x9u53TqL2gNa+UC0UKfl3X/ysWZbbJXKg1rNmf54bUvteXqAFOfcWw4pXH2n0s88y7EqteYdAW1S7g9jPH/90O8OUt/l3Xy5sf9+ojX3lDUheIXaC7bnFN7QyZPl9BdP571EDTuwYvQtuuWK9PWWzOWJw8YHn6iORWHKIjDT3tYoFfrCGs8M2K5eqEGDPnl085v77myxcv+cu//GvOr684PTvj6HhNTolFu+LxA6EJK0pzw8ebO6xP7jFkx24fGVKmO6jI1f2799jtbtjttlxvOzI3iPc0iwB9gjTQddcKgz79jC+ffsadB3f4+//g98Bl9kOPa1u2KRNj4Q//+T9jv9/z0Sef8JOf/4K2afj7v/c7pJIIzuObJS4IngUuNEhcIaUjDx2573S7sQBpKa4hOa88jjoidm4E52tidIwTgfNWBmWPnTvekfTB/HXmAcFXH2+CZ6szGmVqGeOY8Xzf5IrmfKup+W+il916j1e2y5syQ00i5mFH/fnVgGc6xzI6qTw9B3VYzoNHSbM1enJO5/6VCm9bAlaA7ARvzlC8g2DJjgVzam+zBm/eWrmlBRO4EyPQifgZSmNnZEmSGDIzOfeK5M2vR02mlLQ9ogW3rt/ssfXajUceY0JtpdcAIOcq32w8gazJoirTpREZodjr5WJt74xzexiDmUzjvXmPbEVuvSliSoiVqzd9Tef7hg/yS4+3RwZCpARv0HxPFk8swQiDVYDFj04PUxp0klCYqBh545WWGLFWOBvQkxhI9BTpDW4fKNLre5ae7DtK6cmiP0NCJFG7GpBiw1P0Ooy1F1OwGs3GDBXQ5yYozgZoaFkALOqtjiiq05esXy5rxFZm311ONlQo63rJusl0wRcbWmgwv8sQyjTsSKrOehgFKPSWO3XyMG6qMRoEbcN0QraeXT1d6+yQTCqB4qZU+51//H9i8d4PyCi3QWrAUnSwkfctD+4+5sG9x1ACF+c6+W6XtsRm0A4MF3DSYHmK8h3ETcuxKOahd8IBiVQiUnpwAyID3kWCT7Q+0YSCdzpXQbek1gy1G8KRUkNJLX3fEpOjXTT08QrcjsU6k9POAjJn982CTgrBi+714sjFE7MjJ0/JBmOqLJCtXw/Gg8EFhTHdNL1SBxJVspRqU2BZgXcNqsuuJNGSAj/+Tz/iX/4/vwWAD6/kfuJo24bFYqkdAMMAxbFqW+6c3efO3XdoVmcMZYkPgebkIUf3Og7X52brG3At+AVRPNvDQb/2Bz7/8gk/++xzbnZ7vnj2nNB4Hj58yMP7j7ne9xxtNpzde8Ti6JjtYc/N7sC+G3ChxRVhtVrztffeZ7Na8/LlM0W4SqR46EvBS2GxDPT7PUMXWa4a2taxWASaxtP3AzkVjpcLirT84MefEtolu/ML/h//zr8DwG//5ne4c7riGx9/QAiADzqrQQSRNXiH5AUiHUEG3MKxaI8pm3tIu4HQkp2iaa4UJOVbBOvb19r28/SL2W3Qvyn6JyPMP/GBLC+f/f3195j2uT1JTVx9PWRy1pN5ms6jTO749quKBQqTsx5bWcEIf3kMKEplp91yDq84wVcCUnVS+pix86ooUvommeL6OZ2IEcBrbSDfeltN1ue2XqbWP++R4HGhMc5AZd8H+zxGSi+CTh60oG9GXpyz8qmIR03+pQaAMiPsTYHfdIFrFPMKsjOLI8vskk2E0OlB+nddP0oWLCYMq85+moWj19WZ4xnXigUGtRONrKJ6xelrFJfHNVg7+PSz8dpRbq2i17tnftnx9lMLpUeKECt8Y62suSQar7T7TNA+0hKopIaCU4Qg62CTGk1hUFIyUlUV1Mn0FhAMZAb9WXoNClyvAyG8BgOlDAhJnWzNLmeLokIBghsjT5FK+ZARJdDAtbZJGjFvRAYm4oaTZJ8lI3niDIyBQVHGKDkjKWu/aU0DBILTQMC5ghMra3hR3+LLuImL1TgV9hcjVEqVODBHUMsPFXES8EmfI4JKM5WRjTsPBsLpE9r7P1VUhaLiGaiEsiueu6cPuHdnycO7a5bNhnsPCs+fDjzdXXDOSyIJbDwoRbUZKvoxsqKLXqMi6lR1poSSTsUN4DqcDDg/4FzChUzwRa+RJBxpzORiCvi0gnJCSEc4t2K5Frb7K/r0nOVxTxq2lBSRpG1DDq8uWwpNcMajEO3qSI6UzemLA4I5+YCUxn5Wx66658F00bWbgOKobT+C1S5RERRtI221DpoaVqczBmNdk3Y4aztsGiVXqYa70LQrxDX00XGIDgZHwFP8hvXpQ5x4Ut8pAteuKX7BkISLmy37OHCzP/DZkyecX13Txci+67l//4yr7Q7fXnN0cp/7R8fce/SIdtGy3++4vt7Sx0JoEsP+QOwGjjYb3nnnMU9ffIlKcNt4Iif03UBJhc1qwdGqJYSGu3fP+Pa3vsmibTkcDqyXC3IRFqsjTs7u8Nd/+Sm/+PwLbm5u+PwXnxL7PR999C7D0NE0rTlgg41DQxkcJQ0ILd4nbZtdncLqDqk9ooQlxe6HDaqfbZD5MbPs43acZdxW3pxmD4ga8dGRT059ziZ/U9AxZo9SE5/6UM08q2maXGutO9eegNto0/y9RvL1TIpYp5zWjHF8EpMjmGeL5rxuFSRqhwMz9M5+qmWUMSCZJSH2pVQDZw5RnX7toxfrRpiTmsWcv/MB8Y06eucpYzCmAXxtyROYCH8it+x7ncQozoxgpQJUmk91uO7VW1Wvhczu0axX+tY1e/3nsXW0YOddFRWn9nJK7RuZgimpbYZJfZCelx/X4hQYGjejtiKXWRAgNRh4pU35b+F462Cgj505mITLLSHpkJQ2JFLIJBLBNXjnCKUhE0xfwwNJa+JRI5+xtlUwRbcKrSTVByjaJphKTyoWGEhPkWjIhHYYKNEw6xTFukYcsyjRMl4x8oXIGARY/ohtU4vMdRECFgQYEWlUh1KHr1Gu9b+WgniLAHPWlsWUwZeJI2RynUp0Au8s+BAtOUiYRbfF2Wvbh3JugsEA0A4I3Q1m0CSNyWoR7ftNoiJLRQqleH2MHcUNIANu1uZmcxRxRWgEluJoUqHEHg6R42bJcHzE9eEFXX8g50jMAbKjaZfUlKyasjHAyw5yUK0DIjAgDEgZyK7X+5iTrq1SDEaMeG/TKFMmJyH4lkV7h+PN+zSLY5ql5/MvO65fPqHf3iDlQCOBGgroJD3ROq23G1whUqf3VqifX4WuVE1Nf1NdfR0/qoqahjxJtjbbgojHW+ohRds9SxUEGaduTq95O/ezHuKi0GrbLlk5x52ze5ycntKuNrhmjbQbitPW0+VRpgwDJXSqxxEW9Dj6ITMknfq53e/ZH3r2Xc/20NEuF6QCLy4uCe2ak7O7vPv+19mcnJJysmEzB1IU0pDZ39xwc3lDSolPvvEJnz/7jM+fP1F0s2R8CMqTiQOb9YZV61lvjvl7/+Bf4ZOPP4YCQx9pT07pDgOr1RFDjLx48ZIf/eCH7Hc3bI423L17ymG3I6UItIjzJHFIQZXrwgLxYUTikABhQ/ErCEuyNGTrzXbVaFIb8V7PiiZnb/vAMndtiZ8CgXnmX+v9zP5Ws7vXbbG88vzpNdWQj6vK7I3leG9K8cbXmwXXs0xyfIppoNSFq4nWHBWY//NNDqQitfPHlDFgELOjY0thldgeSQZYwmUuqjpKjDPgsrb5eTGhNW0xFBcQp+x/6mAgy7brPqlOz1mHgIgg3kIpMT0PCwZqlUHnGswCAcZboXvzTQ7eBgi99vtbxxQcvZndgWmMlFGcTksFphxrazhjMsyi3WoT18PpGOlasiloCcG6T9SE1aDgzWf4/+3x9nLE6do2X4PLDcntlcRXlsSyJMmS4FtCCSRUJ9pLQJJWO8iibEkbXVyJJoXKHtUtnFD4P9GRZCDJniwHRQVKR3YHCj1FNBjQCEum9W/Ro7J93RRNafo/i3CnG1uwGvd4dc2rWuRZl+U0FbDYAKE8bS7DklzOFJdwxRi5iEotizomjZK9BQPO+tn1BApTVl/LBMk5qgZ1ztq+kqpMskFgzqlIUyXKIhiDwgiRDuYLOEsk+Yh3RkRxkEvE5Za2BO43DUdDwm87FosW17SUbcR3hY1bsM9bYjkQPUQyS7fS4T3F48pkvFIu5OIp0mj0TATpkTwgLuKJxNLhsccKpAINmcYVXHKk3uHKiqP2LiebR/SHQBMWNDjA00ftqNA5EnrfW6cci+I84oXMNCa7mFEY779MeZH+2yaOGUypBCh9fGULF1HSbLGf69XWVliPq9yNVzdRmQWbaIZWZadDCJycnHC02fDwwSMe3nvIarGBsEKCEvdiKoisSG6JNA5yJOZCHzv6PKixdZqlrdYr8IFDf+Deo1Murq/4+KOP+fjjb7LeHLHd3dB1B/p+oO86JGcaH3ACgxecL+z2W9559x3u3rvLZ8+fWJkMbnZXNgQpc3F1zTXwe1//iP/Gf/3f4OzojDQkpBSWiyUX+y3touXmZs8QEzEVPv/iCWenG37rN7/N8enxtGdBgz9TZmy9WGtK0aCSFtyC4pYUrKW52DwR56ilsYpAjrt55gxFzIfNhbnMvN5CBqYCvZqDMt3C6sZfzzbdzJHOCWy1yj8FhPPAsFThn/nJTgZtep2aOtuJlDFT1DWoAcaszW18P0w/aUqE5kcNpIAxNpA8gtEzJMCNgUCuQc/8QhcMNauIgtOSYhX/CS3OK/I2qgGOszzUGd5+MT0h7TyogZuq0wqaOQuYP2EKCATd//Xcq9G3UkRFgV7HC8oYkMwuGrX1fbr/9XsZEZHahUHOuFJIxUaTm24CJZKqamzJNGhpl9FeYkiLs1IPIwcioUPMlDtmXWVM3JP5FRPKbJ1NLZFvc7x9mSC/JEdPzN5aOQJDbvB5SVvWDKxomzU+rJAScNGxXix14SUzgJW4ktAWPevLr9BKKYUh6rCFEkxJMO2I7OjzloEdWTqyHJRXUBJIGsU3ncjYt+rrkq8tjWMpwZT7vL6Pq/2s1HGbaZxuqAqPNdMt9BLJ3uJVXzcyOnFxhgJUpMHbHbVChcKfiIobGclGRJ3zWM4Ain2metShFZUo5WaiFDWzKc7klWu7T4X4KqrgpkWRfSL53gImT3IQ055mH3nn6B6bmxvW18LJg3tEl1kuW9Zn9+E8sXSeuD3wi8MT/MMFl4cLumZLk4RmcDQl4Isno+X7IQdiaqBkXImI6xEfgYi0jkN3g/OFJI5DH1k6z9o1lCEj0ROGIzb+MYvdXbYvB95972t4aTh0Wxq3QJojdvFA6wteEkGgd5nGzHUubtQ219ZSyx6ckAkkKpO9lpD0/qY0aBCHzsbTgdyikb6AiJErS8aJ8hJqBoQXJFSzM4/f061gQEoCPE0TyDmz3++5vLrS4Sthw9HJkkUrWv1xLRICQ3SU9V12uwu67oocBzVEWciHA932wPHxEScnx/gAq43n4vqKO3fuMUT48sunDF3mt3+7QUqP5MRwGIiHPUOMZsQyfbzBNZp4fvjBJ1xcbfnFL36Bz9pee3S0pOt7Ep6Pv/EN/vF/87/Nycl9ut3AwwcP8Rkdzezg5rCjWaz5+c8+5/nzC54+P2exWhGLY7E5pUuJPiaW3tGIkaKGjpodKtej0YEtxSPFE6RVJUgTkUkUc1DM2utfzaHKuA7mx0TNMzTOnG4VErt12Eu6V43s+FZZI1rmX/oujRcrh1cktEw2sQhidkvMo5VSDX6Z3qPMgtYq2WtStMXSKT/CpJUfpQ632HwS0uzcLQMtFdpOOn+DPPEcJGNy7YGSEynXmRxJ+R3F2cfQlmnB7LBv8c7mBUgLRcthoyKhdyYU5XA2rGd0ttmI0eQxCHCjFkxFZ2qpdz4O3q6Tc1C8OdUaDExqDEhtQZwQBG1n1OCttgW+6ag+gSLW6T0rDRfzKWRSjsTUE1NHjqrEJqCsbQ9SHCWhQ528tgjq57NZCtZ55sRTfNCkWryFWfXc3dQ5Uj+djEDRbP396uPt5YjLDikqx1pyh0gglYZQekg9xfUUN+DpcE4FdER2U6Q1y8THLJ06gKeM0VWFmkrRoUVD2RPLgcSOzF6Jg9JRiGSv5MM6ZrLWCgQ0U0Zh3JEtKzUizNShRWkeWZOt5bCMzl2liDXjSD5NoFqeMhBFNuq/LQOw52sAYk5cxvU3OQpbiDWTTKK1/nFqld5lKA4vzh5T0YIpKLBZihgbYnx9EUeSNGbHAFES0Q0IxeB7IfnEcuHYLJekZ9ccDgUfbsgEwmLB0eqI431H6wPN11uuf7rjcnvNauFJwx6dUabKZa5on3MqmQFH9t74FQMOjZIpicMhcui2hCAUlizEkUqhO8AweDbhiKPmEew34NZ8/N43CYslxSf6siX2Pakf9Dp60bGydm/sNlNKwYdZHVawso/yMca2J1sBdVpkpupSTFe2zsuQWgaAKeuQesUVCtR2otrxoEexCXDjIdpeVUqdpa5ZfUwZXKBZbFisjlWvozh9TZchLCi+VSnTnBgOB7bXO15eXHL+8pzGB9abFaUIQ59wDBxtTnj+/MXID/niiy94/uIZTbPicIg6kz4PdN2e7faarttTcqTv94grPLx3D3LWQUKHPU0TOD5a87UPPuS3fvN3eP/d9xGExnkt25XC0y+/5OTeGZ999nOePn9G0y65ut6Ri6NdrLhz9z4OR0qF1CcGnyhDD2lASsTZvSu0OnHDqRMaJ4la+a7el0nad5YRfyUEPzeShtfOne5svXzV8fqfypiNTtmkUIOCbMjQrR76UrNR+zyS6wcZc7z6MqWmfLfW0Ay2qD7PyLdSYcKi7mM8p1f8gy5fS8i4vUZHDsQoIldLBKZSSDbAtfIWbC6ADyYD3OJDqwmkVz5NVSbEecvq/egMp0zZ0Fh7fWdy8RMxsH58CwhuaX5Y0VPmPAyZfWwZP9scDXqVJPna3X2txlJe+3ctbVS/V+ctxJwgD1oCK04Drqr4WGrQY5MVx2AOK/tWxMdZnGvwx5sWp8x++/agAPDrBAN0esOLXmhXGlya1+4jufQEv0CkUQZ8nG2wahRNdQnL0jGYVEWHMOOsJjXmQScQlo7IgVg6Cr3pFyR7vjp8oWLkarylZMSFqfZuMJEaj8yYpVXtf4NsxSkzuWRGKJiixYxkCMK4OcEWnBGQysTyrV91hnaF9WsHAGYEtJZvsFB14CTk1p2sUJczs+WNcT2LhrEIfSTyYa2dQhZ/KxhIEhkY1ChlR8pComMxtAwxMfQJuoEmCuK0jSv6lmZ1ghRHFwfePXoM+4Hzyy3NypHIDCnRF8ZgJOaopQGFXJASbSpjhcfB+aRZdkokCn3MNLLgbPkeLaccLgMPTh7ytUffRFjgQ0vyPcRCGg4wHAgh4iw4S3ZNkt0Ah8w6qWQWMeumU5Z8MQ5AIo/2wKBg0bWUZ87CQLopS6wQpUWA47TJmUKlrvjb9VmVww5a7hqzt0KMmaGPpFTUgPqWnAWXHE4KJe0JoSX6lmGI9ENmv+8Yeu2qOTs95d6duywa7Urx4njx8jk5qT7/D37wQ54+ecrDew9YLo9pl2syiaE7cP7yOS9fPGOxCLx4+ZyLywtSv+funWMWS8/l1RU3V1fcv3uXBw8fcffuAxZe2F9dUI5PaNwRQ7cnLBbs93uOTo549uUTvnzyhO3hQBZoFi0PHj7k/v37DENk6AY673TQUE7a0+ECh75DoqgCqPfgG1Wec0G5NNX0jpD5tPNq2X6ChJld+/q4Mu7XN2dQE3P79WPetjBv73q19jw5kTSKlNkkwBoM1P1dBEoyc1UNv2eyDNUx23cnE5wvjO9dLEDQz24BCmbhXkU7iv5eckVp65epANo5VlTNuTqJMJOsp97p/9QOFzSrDaoq2TQLQmhpQoPzSsaVcXRwFR9y1oFT1cr0K5Vi9qLMgoHbA+9G2zezhyBjZ+g8GKyl1ld/nh4zBQmvOv6pi+D291cFTcak1O4aRdsNU0paZiODNKSciEntvMPEwGo7pEwCS4h7bfjWGAbIbS8x//vf5Hj7YMB1GhUajKH6/45SGkpW4Z9cDqS8sKl/WL/8K3CZ1CzcGKZGHKsOF5FxfnPKUQmExb7Ta9AxzkaYmL7jyxsIUUSN+1hio4wQViGRUzR1RK3x1PPyuKnuyNSrn6RQRJvlavuObmaoI4zrxh6NkeQqbjjGIzVWLSnXO2ot+ppFOil23uU1x1XNhiID9V7oiw9gY0GnultBGeupeBJTN0EsEUpvQVyjNaiciTHS9wMFIWYhFg805OxxScAtyLGnv8qs+pbjbkEaluz6A7mFJIWh5FH0I0XlBBSvKotSVGZJnEKWzptKZRKGXkmCbVixkfsMFyv6Tvjo69/m4d0PKKxoFmuyRIbcEbPeQ8mJhejmzDV6Lk47OUT5EC5P4bIl8VOvN5rNJ2rNWa+zE20vLZQRrtTV40czrcdEVfbO2p/sHurAohlXowi3TIfVTBPCkDIxa0aUi9ANma6PxKEGGLYOcIhvads1cegYuh6hoV0ccTes8KFlsTri7OSEzXJB8LBarej7Du9ahhi5vLzi+Ytz/l//7r/LsxfnfPTRRxytV0hOXL14yu7qgtXdU0KJNCXiy0DqtuyuLrh++ZLDfs/WFzZtw93NEW3b0pIJJdLtrsh54NidICXzV9/9Ln/0n/8hn3/2KZ89/ZJmtaIdDnz4ycc8fvcxzjtubm4gdfQOGsksgsM7R5cTElqCa2n8Ctes8O0KaZcW4CqTu9TArFhd1bahBt2znLBmfresZe0cev2odeHXj7nzKMxfUM2zY8TmjKSrftVGsOdk3CNz3pVTRLHkQaZXLspVsqhnTCIQFGY2m1mRScGIu2YblbycDdW1YGD2mXIppJjAp9mIYpuhkWt31BRsKYlP5wrkUhOwyQ5r3TvgQ4MPAV+liEOj2b9o+27NdOuMAp0dEMarCBCMB1LLqaMwUbW740MnvsWEpk7/fjUgmDv7ubrgq4n/rwoIpprG7HdjcIJ9Rj8rQ+g6yM4Cw5S0nG06OyOp3dANTfumAKGer0wf/G/1ePvZBCSq0EGyLNoXQTNsdS7JdbjUKJxthIexpmWvMkbjrhiXoHIHNKNXWMTg1qLT+VJJGgzkbC1iGSVrYQurUIk0xQy1qgdWaC5R68EARQpJou1QzZmdBRjJ3DJFiX8FsVY/fU4eDY/1uVqtv+Bw46AJ28xF2aE1QzGwWc/PxJFerT06bC7Da0ZLDMGwPKKWCuqrS2UT+OlzAlKEVDxx1jkQy0AqHZlo0w5b3Wy2eSHT9QXfJyRCjIJvWpomsGg8DwNc/OApzbXj40cf8LOXn3EZDxDU0fu2ofUOIdGnji4flFiT1PDWjeuCdp+UCK4ENptTTtwRhxeFfJn55sff4O7p1/HhjBDWuEVDn/Yc0jXdkBiGqJ9YHDEX7VwptcrvDFqHKHqNZqYCsewhp3r3s0KcRmTNpLHrAFsVzoyy3oaJkzJqIoju9pK0nKTdprMyQWGqNwIpF2IyNn/XE2MihIa2XbBYLGhCSymigk9Fux1SUuleF1rVY28iy7WnXZ7gyTTtgi5lNusNJycb+By8CF034NrA4bBnsVqStzu++93v8vlnn/Eb3/wmf+c3v8Pdk2POnz/l6Ref8ZOhI+dBpxru91xvb7ja3rA/dDjgqu/ZPXtJutry+PG7PD06Je52fPNb32agcJkT17st/9kf/hf80R/+IcfHG2Ie2BytEUm89/773Lt3nzIckJIoKTNE3e8khY9TaHBhQ7M4wa+OCYsNbnGEeA0GxuFmlegl5mSZQ8aVLMp0v24Z+TLuqzceb/ybKKQ7+7m+Vs3ybZcD2jUlMAYAOU8BQU07inNm/CLeQZU7LjmrgJjZo+p4ap+/xjcGdWPFzmzoaylmS9RGahJTM/66BhP9cFBejMnEa1BgJdwcrS3YCIqivKTiAy41I2IhrnZtTaRBCYGmaQnWOqtSwVNpAOdx0mingv2eMuM4SE1o1AFq8uPGPTrtPwtIxsxvvtPtYW8oF70aFNR7+kbp4dlzxn/rL5jzgqptq11s3jkboZy0bCnJBIoMuS0FyVbyreeuzMHR1ogRCkdUmRoQvOkEv/LUf+Xx9gTCgkJJo0BH/a7thpmIzxEvAxkNBsTXXtvq2GowkK2uO6EGFhIoY98yscrM1VYuNRRTjXAG41JMJKhyDvS9ag1oQijMFpA1Ox57NrU1sk6eq1u51uUZw4xkC/QVxz6+D1QBGv2L1erHWtQEE9epgrfzCi1yOBNRqn8bv6fa7qMBR50kVhnxGmH7sVxRQ4dEULh+vJc90JFKUh9mIHgqBSQQC2QcvlkR1kew3ECzJLtEnwbWqyPuHt3j5eef0hwa3jv+Gou45yZAahtWmw1HiwUNwmHouOk6SsrkYaDENDpI7z2+afBFWEjD2jcczm/IN4n3H33C44cfslrdwbcnNKsNMWdyKHRbx67PHAbtVmhYoFMtLVMp1rdsDjuXGjKJZTDqlFNRtEg5JG68lrUOW9ee3pU0riEdspJsrRWU1FaMBY9e+5IpMc1+h+2VGVKQosoQ7w8cDh0pFZaLNcvVmqOjE5arDb5pEbEWrKJT3FKMGka6hnaxIfiVOo3Ysep70uHA6ckxD+7dx/EzcsykIXN2uqJtGtq21cE/Q+Tm6oqf/vD7tCny8M4pLg40XcfN1Tndfoe4QlMym5Ro2payXJBTZtks6A8Du2dP+fnFJU0q3HnwgMuXL+gKPL+85PJ6y/n5BR6h7zqaRUuOA++++5hHj+5z7+5dXj77kuPVKa0UJGnLaeO1NTQ3C2RxQlidElZHuKAthcUpmUrtZYWx7ZqWajtqLdm2X7U1Y7Zfd9ash/sNx5s5B9rK+CoRUe/x+MRxeqWrCX0pt75yqZ0ohkKVikaazaiIl9X6x49Qyuh4mf1utKYjMmDPk8maTGnCtAb7ocMbCa6S4XRyYH3xKr0+2RQQ1cYoNf0SJQb6GfHNSlwhtIQQTEpYtT3qvxUtkCmYqPsQq53b51GUb8JW33RPeOXTvXrv5ijA6/et3HKwr6EAb3j8VwWK9b30cwZ8SDqhtkBOjjgMtgynxLGetwYEpb7J+Hq+IgOFSUdhDA1uf/1N44G3lyO2iFdHNFI7WXTRSbEINlkE5xWq8p5x9rYZ1+oURxJWrbOa884uj7X6utHHQKlgzjaP0ZLNPNYNVGuG402tKEG2jVY0oxd1/nqpayZe+Qtl/LR1wmHN5Ct9cN5LO92CDKW2Mpo6eJk5Ean5gmULdh0KMMJvACURi5L7RlZo/e6mSLbat7px1EBlPEmDETN6ivZlcpkFAzlRykAuqhUhOeHFM6TM1fUNoY+cHN1nuTlmEM/20BH7LQvvIHVc3pyz7xOLsObq6Y4Pv/MbrEvkRgS32bBYrPAFjsICaRr2SbkTh+2OPPS0TWCIAympTsQiBFxMXD1/zs9++Cnf/OhbvPvu13GhpVkuoV3QlYy0DaERXF5z83LgZp9AFjjf4vJBoc1iM9iLI9t0r9GQcrvdK5dspSlrxyrJ/lQRDGEUsrG14rL2NzuKZaBQcmSI0HhQcpjXv6XAnECYS7718xAj+0OkjwNDjFAci9WSe/fuc3x8StMuaVrl4BR0VoYrUQWTJOB8S7PQORcx6vCs4+NThlw42hzz7rvvslz+hU7mlEx32CvZ3aSP1+sNLZlG4OWTL2j2W96/d4/f+vZ36Lc3XF+c0/UH9v2BLkUOsecQB3CB1WKFy44yZLwPPD4+YbVc8x//B/8+g/ecX2/J4vjoo4/JMfDi/AXPX3zJxx9/xDuPHvDOO+/QhMDdO3cIFNW8SA4pHu+EIp52dYpbnSka0Gx0+IRrScURSzYbNPWjV9M6qfDpftd7Oi8F1E01wfRTwD63d/XpFXqe/pZJY9BNfYzZM83Y5/yQmgjczkadM/SoTHYqjzwTW7e1TbrU86wOTwNOV2pAUEZtj0x1NlAzVEETBURM18FsQUoM/UHtb0xjy3Q93wpLu/r+41V2ViETdVSuzhgwIqDz48RAwY9Ovg4oclURdsbzYJZ8jb+vSKsIjAHeVJqbnPWULY+cNG4HAL8s4/+qv88DittEw/pGtURiyIVzgCq+5lyVST2EloRoSpaUNJ+Klaj9RM6sJYExtKmwUr1CUumQI0ZgS7cGfq+sx1/jeOtgwJlzdAZnVA02LDqfR1XjrZ1d2zL739wg6/8n0t20Kcut51XGqj4qUCGV+qApLq6M03oR8xiV68tr/T9Z9Kw5cKEGA9OFV3NfnXGF68bzKlVjoG5QGRdKdfsOjepdjdJlBPXVcY2GRK+wvozCzMWymFevW7HXrOQgV/y4YbRVyVutW5+XUdGe27XrTEnWRlYWFDQo6OLATdrRPb3inW99wmq94erQEU42BBe4urnEuwNnR0es/TvI0PHX//J7/PT7n/F3/uG/ysEFXt4cGC4zm8WKVVoQe8fJck3AcWeZGNyBlAayi3TpwHZ7SSZzc3nFj//qR7xz+pCP3vuA4D3iYd/tNcharLVltPU06xX4liSeXBpi1vsns0JiUXRU70eerbvCrbU6pVsyW0OWzZdKDq1kL4WmK5xaERntI55Y1R5VciSJ6pLbkbL2Htej7zuGm46+ixwOPTEWfAicnr6gXd3hqDkhlBqfVENvrkXEhIhM1KUkcA2LRcuii2yOC++9+z6PHtxle+g4dD0X5+fcux+4f/cuLzhnOHQ4B5vVknUbOFuvePfOXX77g084XF5wvTllv9ty6A8MFHax5/qwxzcty8WaVdPii2OxWHLvnXdo7pzyz/70X/D86pKr/YHV5hgPvHj2jIGOly9e8Hf/znf4xicf8ejBffruwPHmmNgfdHKnjfZ2TlRfYLGhNEtwS4q04FqKBOUKZBQtLJNapbORuoAOjJEpFphIfmZMLMPQOCGPdqIaFJ0hz7iXYUyH7BFptFvjOio1eZgShkqQrthnLQ9MgYiVSDPmcTGEshp7Z99v2zBBbFaD7XvTxU8loQPkrCuhiNoETKocIQ77MU7JOU7BQIpKdEuGuM6JbGOyOtNqYCL1SfCjsy9i3mF09Iy27DbRD3NgjDeq3NqflRw5I17Za9ST+Cq4/LX20Zmj/+oOE77yMa92HsxPvhYg62RFKNohITpnxknQVvSkyW4IzfQa9fpV4vcsMZTx2lAvnpVp6mWV2f2YBbOF2RPf/njrYMATUJkXoVbJS4UHsp6g9rnPWJ/MoupSN1Zd5LObU6N5pbJhuT/MNpvq5pvTm0eKI91Pbi1YhFvM0Qpn1VaeKmyiPIEauecxGB3jLrumuY4jnr9HtTb1vEqNRGvdsAZMM7NiAYq9vL6moSsiagiQyqW4fWiJwkiMYARMMxhFwOpRMp6njAHZ7aC3jERLKRBzJqZCcULTLlkfJ7z3dIc910PPMBw4brXn/uh4TeML/UEoocUtjvjsixesvvdTHr7zIfEmcfHymubuAnED1/0Bv+ohR043G0iRZ8+ekMrA6Z0j+sstcdhx+fwZX/70p/z2P/rXIA34oBs6546hB0rGS6vkVMmsNktWR2tutlcchl61G8SNiBWOMQgwL63tpgaZjmUaywqLswyzqLTQtNb02o3ta0WzOURh0RGyxRPzgODIJWnXTcykNIxXPeWBOPv5cNizwpGSDioa+jzyB7q+p+l7XOgtU3aMKo0oOpFBYVccjoALS1yAxWrDsQu89977fPMbn/Dp519w/959truDro8cWbRB52jEjt1+S9kW7voW9zBzZ3VEcC3XOTCsTok5kpxjnyM3hwPFORbNglVoaXC0ywV3Hj/GnZ3wzr0H7HKGtiEhPHnyBecvn/PgnbssgnC0XPDbv/Etzo42bLdbgg8kY5Tji8nWe8Q3xKBBQCGQCXjTmhVn2WgsDENPzoMaSF9RAVsANTi0+zfxa/JowShQtU5qUqHG1ZmEbs1UdQOW6rgQDdxHG2dBANmyNGvbrUqcJY0qdKRpj5OivX/luGRj61sQkDMV1BSYyd5ieiiGnuY8tgYWmzlSLBgoKKKr5NpCd9iNazDHnv5wQ4p5VIOta9ojhBAQ78m3BIH0ULa7WGZrEwhnSKXtPjJasJsccv1eO8tq+3ctKwvTAKEaVMBo4sdbPAUVt46vhPD/lg8xG1wDIwsMRode0RDv1Wi4hHce17rRfjgfJh8J4/2aEJ3xrWZXlRHpLBQDvWrLfo2H5yTntzveOhhoZR7VWcV8jPaKwSRYL3111nPeKnoBptT7Npog9cPqyvdM0Wd19mMEaU82HIBXgsAJMJhF0oV5q2DdSBUJqP+uH0gNhDg3O4fprac1Pb9FM+GSMQASRtGj+jazjWAPmp5mhuq1Y4ynsvEqZp9LClVdYBZ6UeEjKZpwyIy4poGVw0tgqIMxQqDxLaFZsNxk/vQv/pQhfMnia++Rtks62bFZrch7R9o0dPsd57sdL7c3fO8v/5q//v7n/Pbf+fvcu/OY/X7g88uO5XLBUBKRxHq5ZPvsBSfHG/ZX17y4eM5+e8zLi6fcXL3g8sVTNqs1NxcXtMsl7ckJC6cDOyiFYdgzlI5SPF26JA1bGl9ogugEyZJNxRHtJKAqBjK1kLupvpxvLZpc47W6y6afseyr/ldh3mItTqKExWrcJXvlKBSBPpHShAQkK43U49AfGK56Lq9uOOx7nAscHR2xXLW0i2Z2/4sZQLGgBoqrBF1nAYHQLNYqh+0HcDom+KOPPyamxHZ34BuffEIq8PLZS1UOvLyi6z2SI7HricYmDzhWfkm7uTO2fCbvOKTIdtUjztH6wEI8vhRC03DcrpDVim998jG7AM1+y8XlDUMcePjwAeuV58P3H/Hx19/j/t0zUt9rySVrGSaPmZIneQ+hIdvgpzLydqYWXe91RopYbb5IVsXPW3XtOe9m3kKW5ztvdLBQoVZ9vhvJbHPbV/d6tP3tZu9TAwEL2rKOZ8+lCvlEE/exx6FDzbIFCjqBMYELBum7W+sQoORopQUVBhpbAHMtr2ZS7jVhKPWtdNHoOWW6/XZ8vRgHDQ5cNPOnttY5oYxiXWI23lkwbdends84Z6OI68RUS9ScmCJg/QBl9mW/l2pdX81kb6WSo7O4JTMsXxEM8NWxwK/7+F91TAjH3BdoulyRlZzBSaa4gHMZ553FDzIGVDXRfJURUQrGh4N55j9Wv2rgM/MJiHWovcmX/JLjrYOBxoLA2t1R/WbdBs6yW717adyKY5281szHWKAuiOlGzOPB+so1GxvhOps7MIeSJg9dpotULwxGjIOZobBxy9VLjP+uUTwjJDT+vaabFOTVIKCGq2NvgBtrO+NHLmWsX88DgKl7vWYxtyNr6t9mV3O6OrNI0fJDZx0F88dMGlV6+CJIFlLKkBwhBGgbcha2hz1uv2O5WXK0OSUcrXDrJU0fCIOqxBUX+eKzL/nz7/0FwzDw/ocf4GLg4ukzbp5dgQsQAn7ZaDtnKXz9/fd59uIl8vgR5Mzu5ob94YblSoVJrq52vPfgPk+evmRz5x7XF1cgDesjTxMMfiwJlxMvL55x+fxzDtuXlLLD+0FVvyxjr6pt8xZC7dFiQgRq5lLXhBR7rKNIwo21WfsSa3lN9YbVALISSa2OWTIlC5IgD+6W8++HjmHox58Phz2H83MuL29IseB9S9u+5PmLF5zee5/letKErxCV8na0BDHqT9v3sFhB6ZDQUIrQLpZ8+OFH5Jz53ve+x8XLl3znN3+T/9Lv/h6ffvoLnj1/zqdffsbFyxc0hx6C4zAMpJRYLY/wNOSYSKUQBZqSaULEiaMVxxLBl4JrPOtmSWoWnJ4cs9msWdw74+NvbKAIcX/g6dOf8v53vsm3v/ExqxCI/YFF09AfDnq+oPCyeIozLQEjl2HiQhNgLjMI24Z9FMuYczJHK1OWDugAHbtFtWxXl4VpwNf1UA286kD4CZYevwz1tISn2qOxpFSyjnWuLYR5QgVKLkYEVqJgTmlEKbOldsnFsbYuTE6vWKdKytk+Z9VoqXV+DVhj6jQYyIWSZZqwnjIpJbr9brQ6KQ70+xskVB0BY/WL184t637Q6w1VGGfMf+rStCRQ4yMZ7Z8TMXDFfIDAKAc+CiPVn4UpozUnQ13ntx3520D9//84bnESKund1pzMUSWUUyFVKr0ikmPwOFOuqH4nF/V3peohqI9ydu0mD6A8uLo8x4jW/XrX6O2RAX87GKh1+DFoGSM86803Ocsxoqunbhla/Rh6QaESDQvFALzJZNdotI6bHhGruiCqExhrxjC52DeEfGKyvbMoFRSKLZVFW6pzV0M7vk4x8oxUo+SYghlvL18ZFpYhFmoCMcYV89tUE9LKoHgtELBfVddeZgJCo8O3VsP6NYu6tJtiBvM5gvYoZ7RrXsZZjeCE7WHLw7NHlLDk+z/8AU8uXnKnucf99V1WiwXLszVJEr5tWZ8cc7Y5YSMbzr8454vPvmR7OCDrJW7T0ncDrTS89/gxNzfXXFwsERFCWPEnf/En3H94j5PjNaenj4CWpj2ibTYMh4GL5+ccrnuWm2OWmw3NKrC/uub6xRdsL56S0jUS9uB6dCsFC9R0I5Xqn3VB6rUf6yNz2pkuohFirq9RsYUapBVMkdJIXSOjvUb2SiItSSBC6oUUZ0jAYU/XTVMMr2+u2F2ec321R0lVAylmTk5/zr1HH7A5fkSTBjxBp1uacfbeEavSUapdE0reKjmzXB9ptiuFjz/6hJOTY442a/78z/6Cq4tzPv7oI37jN77JJ9/4hN/sd1xcX7B/8pyrn37GxdUlT5894+R+w3FYIGmS2xYRgtOMuclCixAoeAKNKdR9/b33CQ/v0d6/w37f8/Of/pxf/OQn3L93h9/5zW/w+P5drfHnzKJp6foe7xSG1gmXKkyDbxQun8mtUhj3U0rGwncOKQ4dFhqtZ0uFvMYyptmTSWxnnjEJKc0Qn/pbqTrx5RYqoCXQbJHJPDMSs4vzCXbRggFFA0rKlBjJKaKJRyLHODL3p/evGiIqviSj8l4mx0hKceKfZJW9LWUqcyYjC+ulyKQEKRViVKTqcNiNVi9GVZ1sndfrLFBRWOf0s+WSxgSj2poyImsWFI+ttlgAa6PBbVjXFNBOlutNTv6116yBvdTfy+wxf/OM/tVjnpT+OseEKE3k8mJtmKNfGEvHWs6NZhP0c2vbO2KBonv1Mk1loPH3ooHB2Mchk38ag9ka6f4ax9sjA1InR+mbVB3wVw1q7XktRcB5xnp+zXzHMNJOVvR5Ol2vTEi9ef4xcxZla+psZ1AFwhr11wgF9IZMVTwp9rwKD5v/D746x/kCqwFJ7QyYsvQR47Aob9SDLjJdfCoa4MaPN8v7mVz3TBTEMtixgFIEcm0XLON7VkShjmIZr7o5JSdTNK5lgOmQbHMS6s8iNK7VufMJDklnyK9WK+5v3qE9HPPD7/6MZ89/wPP9li9evuC9+x/y7u/+Q0rJfP+vvw9HjqP1CWd3z+gPPb/48nNOFicc3znl/PMbUrdlddSQSubQ9yBCu1zRx0QfIydnZzx6+C6/+PIzfvrTLe+/84jYFX73d/8B9x7co+v3bG8ObM9f0q4OnNw7sLmz4MuLn3Fx9RmJa9pFJqJGrlA/sxkOKwlkmPWRzyLXGtvVxxfNWPRCu/G6TliS8lgcGNoxJxzqX3IS1VTXFm1S9KQ8BQP7fs9hOABaArjZbtVBkLUt1DEKcaXY03c7gm9pWocrLXVRe+dRDbi65CvhUQPRzeaY4AOhCYQ7jtPTU042J9y/95Cf/eynfPH5Z3zwwYekfOB4s+L9dx+x+PhbfLr5Hs++/1Ninsp7KWVDB2xZOkdToE0Fn3VxZZeIwwC58Oiddzg7WfIyDfzxH/8J1zeXfPzxRzy+f8w779zF+4aUko25teFUQz8OlXKhQWyehEqaT4F33TsUISWdMaIBnu7v6nSlTF1BpQZ1ZRqANEXXlr5kG/c91YpGA16dYyXS1QzNi8L8otG27uds+9HGKU8lAQ1QUkqU3FsXjf49poGUhilDzFPgBdCGhTplu/kpDuTUE6M+TzuComWDek2dc8aP0uuUonabpKhlitQfxjVZciT2He1igXivWburin+z9m/L/Gv6ObYriu4LD0aQ1kxeEYTaNaA/i6uEOjeRqafMToM7gQkv0GOuwFdt5vivr/Dgcutvt5O+rzpeTxxl9v/Z64xBpZ5HfZ86fRebu3PrafP3GfnJlkbU/lOmMub8uUqCzsYHFbKJ0mHXuhg6VVxlqllw8xWzFb7qeOtgYB3O1EFJIUsiEU3XvrJl67UpowsdIxPBFodjGiOZSVIlheshEOvG13aY4Bt19gJIBIkUNyiEhX03AZJxnKdlb84yJj0XYeIwyOjMFeGYAhgvC2otq1SOQTYCob4QldhRHbizjHr8r9SFpcHT1FtuWal9L/ZcQbMtV1U2rF2yzinQs07UKXf1mokTgtfPWbW8QetTHtWIB6F4RzdbYE5ABXYCoRm0vcwvOWlPWDZnuOUxmZccrp8zbC84Do6m9bijhuOTU7797h0++/JzCLAKG3Z9z+dPX/CDm884PblDe3aPy+tr1mlBkECzbLjZ99x/9JgXL1/w4uVzvnX/Dt/+9rdxHl48f0qMieVmweVuy/HhmN3Nlrt3HlKK5/z6kmfnzwl3z7gpz7lIn3Eo13gRYp8JeUMTAjkNem19zdCKBo9Fs8SxbGPwq7aBWfSJm9ZHEVzQfmiKI1spSMQmShZDYpyGBliHQcqZ1KvhLcmR+kA/zAiD/Z5Dt6cGA13fsb2+xLtGz08KicS+u2G/u4KhY9jvIAmrdUvMhXaxYBj2eLwhOgozS0lWOXAMQ8SHhqPNGSkOHB8FgluwXh/x8OFDbm6u6bqtDk/pMkebY967/5DjTwZ+MQjd0OObQE5K0PPOs2paSurBw2lY0BySikiJo6NwSAkvsDw54jxuyVL49ne+Sfzga9xZH3F2eqp7vkTEC9E5tkOnctAmyS0l4QZz8rkgC91dVaGUUpjUH40jEgtxGOj7npxUR1Jqlkx12AbJ50hV6rOdoOaiDAa1V5GyGhB4mtQiqHxuMIldcSgRdBaAFzQL1+BStLaPZvHaLphIQ6dBQdZ7lnLUMoGJ+9SfJ14KSLs0x5ZJOSnvJOpjYxxsPK4NXbOSUsGRamCRaikij3FJSlOpSi+j2hfnHc5rUFGIBmsb6iXaP+GlZu16jfIYuKjstRLiAmAthOIRH4xdL3jfjoFOJcqBmM5HJeBNNfXbfCv7h9nXr24VNLv9Br9/y0nf+v0UmEjNPpm+i6E+04RI1bwZkmbtJSdKqpMKZ6UhMU5KUgRIuwH81JqfUO2QMiCodgNoeTDb38TKuiJaYhJJ5hPdVJoRZ4+piJZ2jf0yXsWrx1sHA6tmg00MQEMBT2SAooQWZhD9mEvXEoFBshrFuyl4qMcc+bEaiapBmUSlOMQXg5oKxem0LL2BRTcXQjGZ21JbjLIbs77xjtY3NGdPdfDMsny4DbdQ1FGLG/uOZYYbOJw9l/G3I3WpBhYUW/fTJ5fx+fXLmbDHFCgU662oUXc1PEKZoQH2asY30BbQ6TxzjdjtmHgFAi7RiLAKK5bNmkW75vs//T6P3vmAcujY/mTL6Z27/Obv/l38csFivSa0gfeD58c//TGffvrXpFxwvuHJs0958vyCDz74iI8++gaHQ0+z8WxWK5omcLO9ARSu3e133L1zh3ffecyi9bx8+ZzDoePLp6qL/+479zm7e4r3K9rNgm26wDWwHa7pyp4oHVJaFKp3Wqc3q5Ft+FWmbkjDDESDwFI1BKiETbmVXUPtNoFaKsriTC1Miai+WPvUmCwIfdczDJk0QE5C7FRPoR7b/Y7ucEA4ASDGqBu2VM16ZZ3HNHBzdcnN1SV37q1pgqcxJ7RsFwiJIZpjyAMxJnIqiHP4oEGed5Vc2OAQQps4Oj7FecdyteT6+oLrmytSSvz82ec0q5YPf+sb7PdbXvzoM55tL1h3cH99QmPrftEsuNre0Mc4Ss5mCn0a6GJH6bZs24boMu1ywWazJsTC8WJFE1piSsTcgyiJqjZ7FBMgq0G71N750Szczs0EdDoktnFGx6TiWZieg0pC61AsVYWYORKb4Kc19p5cou66W+VBJQBWpxaHQcV0nDPp6YrIVeU6O0dRZ5BSIiW9RyUnYr9TRT+r+1d1v8ptyCWT8mAIh5ZgD91gvIb6mgPRAozpK04ZpdPyQJI8ZZSWreasLcR9P0vAijq2XIScnbVnaoKUc8aZPmtx1m1gHADVGZAZWuBGRzf2zGOIgMkPV1GhKb+XyUbOfifze16+Ovv/qqNiQq8l+vyK15JXvltQMHFPLBAqU4pW54/kUoOADKRR0rn+LlvrZ0UNx/NwhZwMAbfkpVQVTSU5UXA4G3GvAk2GAlmSUizZrlyNqfNjpl3wFsdbBwPLZmmtTZFY4q3abEUMbgn2zMQjNKOydgoz2G++KWJpqy0g0exMnEdcQbyAeIoLFEmU4tXnizrryiHTaXHV4debWxecLZXZ9REreei6rK61kjw0SMgmJsLMKRtn1PgH49yu8bnFibK+LbJG1KnPPu1Y4x9bJx2Q9DqpxHFR5EN0gzi7bSLFHL5mLa54XHGzwERfU8BEQGbBgMF3KVvNCY+UQEmOYVDC2PPzc7pU2JzcwS/XtMsV3jdcX13x7MVzDl3Hy4uX3FxdE9oF++2Ok5MTlssj+q7n9OSYxnc8e/olp0crUuq5vLxguWjxDp04OPTcu3eHu3fP+NlPAqVkFosFzy9eENqEC4E7Zw9YrBpyWTKkPfv9Xmu83mZIGPKiGYpmOJlMKpZxSSK4oOvTes9Fq9a6LOpEk+rYsSxUbOSoGTW97x6XsbKDm9jrlnEd+p44ZFIPKcFwcAyGDBTgcOjou57ltPDsH+YMnfbOx9gTGs/6aM1i0SCiEyBrBUP3kRrWVHTKYYzatqRLXNepF0G8/s75ltAm2pJYV7zJCZ1PdLsbngzXnLn73Pvm17m5vuZPfviX/M57H7FJSixtcDRNIMSBg/S4kxPaZcNut+Wi3+FCw3LVctPvyMtA2wRWyyVNdrS+pW0WhFJIuSEXnTaqdXzbd0YYdL5BfEB8HVpzO8GTetlmiYb4yeB5pzuxFCwjNxbTrJavxpkRCYipZ1IKtXYwHZFDlaLWgTF+HKzThIB4FZSpmvlVmyQZKXCIPSl2xDQoUpAOyiMo2QKCSaFSrDafUxwli8mFOBLNtBxQA4yafdbgYNQREYimVAm1BKkeI+dMjoVuBgwUktlSZ4GFMzeke0edOMrDcBpIkwWcdXzZrZC57ZxxLKqDqu3m4xNesYLqu83uVbTBHjuVmm8fv8yxv5Er9iue85U+0wKSkblv3SIl6z0ZS1QpjZojFQ2qCKUGAmX6t3ENHFiApa+dsyFgpcx4Gdm63xivKcZ5y1bSUx7L7LqLs0R6povwK45fgzPQahQtXmHXOrzCmfMbN1NdFA7tDXDm4+tCKdNNt6hwdJACSmlTqUpPAOf1Q7oyIgvi7LXFOAku421sLkA2mK9Y9n+rgl4zdTO+80VWnXPNHipZqZSJaIe5/Hk4UIeL+JFAaItHdN/U6kWdNDi+X9HrMjrvMVLO5nxMWMg4Gk50ETq7fiLMWMeTcEWRmYAFgiuBWwRCmx6WywAS8NLgZEnJnn5IhKbl55//mIbEUByHQ+SLJy+4/yDw6U9/yv6wH9uJQgi8eP6M0Cx45/Fjjo5O2e0HLi8v6Q4DL14+54OvvcPR0ZrLy5cM/YHusOXl8yesVy3HxxvOTk/ZXmuWeufOHV5efMmXz74kA7HAerMhh8zNzQ3DEA2hMcDYZfCJVCLeMCvVfYyjKE0qU79ysnYxV6pChR3FIH8cFE8wISOVNq4ETHUiLoPloGpgUyFnIcaBmAoxQYqZvp/IQgDdYSD2wxgMeB9ogrdMU2yoVSbGHnE6vldrwgmXIjEXDr0j5kg0ASJtzE+4CnDkYjV0MRlu/Wi+CcQS8LmhySuWJZOdMAxblqdH7PueHz/5lK/decjXfvsb/HzY81df/oyXzYqPHz7m3tEp59cveXl9waHxOLdnNay0JfXBMe2DU9LSIymwPtrQrtd4CYo/WUDvvcOXQMqDtr9lzYJStKKgUxQrY3K/eoV1H1R49hYbxlqavde5GimSi44/1tdW5FJh3GjKi9kcK/r7UhSer860iNa2iWZwdU9qwuDIRuYrUfvvvQvjaF0pYmXTREpRJ64OPTENmr3Tj+2FyZxFnnFKChYgpJrxmyxwthJUJQ5aMBFTnAUDMylsyxzdHFpHS48lCTFPdXpMfbVkR8leZcPNfuaULNsP9nRR0+QKZFXELLdadsz2y+zf4/f5V7V/t1sVR00EqRwvN5Z13uzCa3J5+xiHV73h+KXIwKt/s+SgVJlmaxFVNCcZ0hInRMCGp825InXwk9oI5RWUGaegWBJbkqI5viSyU0Gp2jxf4cdbSLs5/CkYqMiABcZmU8CSwbc43l50SAITca2heBs4Y1GcxTjjyWqtT9BJYjXqmsgNQmWkFtOcrhenAfGGBjRGPoFaIxRjvteFJUUIzluCJ2NWVAzgAm5n41ZjcZWoag66cmUFZkI9NRJEP0+uGWIlN+o5eAmahY2hxdSWmJzW8A1gmiAsMaEm5lm8GkHE6ZwDDA4SzwigCVRZ53HiFx4vfuooEGWtSo26c4Xn9HBOJ4qJBx0jumbpT1k0RwS/wC+X+OWKm8sL+iQ8fOcx17sD5z/8EdurKxaLlm6/ZxgGfPCcHB1zdHzKdnfg4vycr33wEfu9itnE1HNx9YIPPnyX9aZld7OFkthur3XqXt+QohrvrutIOdEuWpZrlUfe7nc0ywXSOLp+oBTB+QCitc9g6EtMVZAn6WAXVB5bM6Q4Xj+ViQbwhiRVA1BJqNa+Qwaj6Y1sYPGUJORUg8QJes1ZiYxxgGGA2Ge6AyMyANB1nY0xtT3lhXbRmMF12hwQM33f8ez5U87OPufhg8DJ2YqwCOSogXShZsQeHwIhM85Y8COXYTKgRRwSGlonhCbQNI1mkCmxygMuZQZJ7K5v+P7Lc+4sVnz973yLZz/4CU++fM7N05+wOW/Z73akklncPeN4vaI9biE0yKqBJQxOJ5k2bTORdr3u5VyDVa/7OeeskyezomHiA943uNDahLtG71dRJEbKeIduHSIe79OYeXZdR0kHq9MO1usfDeqdWr8kV2VSrL4/BQd60dyUhZnREtxkcPGW8do43movzL7lEklxIKbeAp9ITntKqZmkaRAQZ2hpHgOFlDSYHYZe0YD6O4OlU1LOwMQzsATCFav7VxBpCmYE0XkAk4Sd7hMGRVmLIgN1zLKIWHysTmmEycm6rzIUSw71vFR+e0q+dA99lWMej9f+XKY0vbzuo6d7r8709cPNyKJveO03lQ+AsVRoryGIZet1UJPeg5LTWIJMqR+DgWJSzjUYKKVAmpWMYqTkYt05RvrLQnU+uUCKCXHJfIajklxryQAM/EMmEiY1GHAjMuCcpzSWCP9tIwPOMm3BW3BexsgEg2tLmdcnNLrBTrj2d0/nVduzanRnAYXUfsz64SwYMC9dRDNhXbzWh2smUv+tHz5X3fC66KV+t3Pyr0BaaE/siG4YLDMFBM4cxVT+qPC+x9kI0lqT1ltkHGVDFCZhoBoQzKr9NjJXLIGtTqgiEHr9EH2vND5fM1znKg1xFn1XCdERRp2CAZ0f7tWR0uDY0JQNLrWkUlis1pzcvcf2ZsvZw3s0y2OeXFyyvb7maLngxctzJa0JtG3L6dkZh8OeKgZzeXHBd37rtzm585IXL77k8vpCYUUv7PZb9oc9+92Os9MThu7Aerlk0bYcDge8cyyWGyQIuy7hrw+sjzKbowXetzhplXCXCzF3IIUgYqWB2wx/nNbg8giZOnPyjlRFOsb/VVKUztNIlahT76oYwTCh7XwG9aVYDLqFoc8MQ9bvXeFwgDgMtHbdc57uOUDTqB6DrgFBpJDSQN93PH/xgpOTp6zX92hXHa45EJOu23axICWpyR7J5iV4nAalVrOtE/1ynvrFSzFYMgTaZsGdHNkfOs6vO/bdjmHoyIcDad1x8rUHyCZw/eIl13lgffdYs/CjE1YP79GsNuz3B7Z0+BTIfWFoPGXoGUqh9Qtk0WheX5Rz7kRLhilreSPnjG8akID4VksENtRmtNoVJSiM18o55Ykorc2ZvallgDIa35yitu+NY8FN29TQouqYSynqnLONFh7bSyfUUnDjhL1aC68lgqkbwKDhEslZGf8q+x0puQOSsc4NvSjJ9o0R9cxxaNYf2fc7+yyDBQNVC2UqR2RrZXMW83vjShXrgHB1BoDZF+ena1soDGkglEYDAQt6XNFMVk1iQoo3VMWktsXhmlm/PMbBsMch2uGjG0bbodVCvQL5l9pBUH8e60ZTEPCVscRtpHV6CWPnvRY6fnVgUa/F+Mpl9pM5+Dw6/TyijrnUdtZKGlQkYQzQbE3VhCfnTIl5Kus4UM6GcrjU1gScVJRSlUdrI3RVRx3LxiJ6AavfrH7JhTFR/9sPBqT2+ms1LduN8E7175TdqZdU/29klPFC19G19vcRTao92jLev1o+qB+w/qhrpBhRyKAYKidYs6vs9GIke/UstWaIQSv1pbV9bHK2NXJWCyuocVBDJIYg+HqCI7Tv7KtyBjRbZ0JMRFni2ZxNnr0fWOIPBhtYDd+CgPkuUJKzfk5fyTrOWp7qeVC/Vw6DIgMlT5iF3kt9fi4FTwtxgXdrmrCmZM/R0Qnd3Z7Lyxv6mHjy88+4uNmxXDQcrTesN2u6rkOA5XIFpdB1Pffu3cOFBVc3e5arJZ9842P+w//o3+Oob+ljz4uXz4mxxznY7bY8e/oUgLP9DgTaZcvXP/yQn33+C3wTCB6ubzpOdgPNquF4c5c7p/d5ftghWTspcAM599qnbgNRsPao4guICji72Waa1mg1ZlOmpPfAxmKbUxiDrKIjkiX7McKPQ1ICX4a+zwxDottnDofIfg8hxjEYcM6kSe2QsVSl+ytnJcblrOjAbr+nT7FCWIRWUYS2bYnRSkgFmwhpjGXRoMKZQx33kgXnClMqb6QNLWm3JQ+FJmbaLPjFglwST68vGDYb/KbBN3c0mF+0HFIkOSj9DdeoAJFvGhu7q/MRhhjxBRpp1FFYC6ErikbkbPCnBK254IE6aRJL3mx9i16Tej9yTCpb7AKTM1CHF5oGckufeoYYicOsF98gdUfBOZVtKGggEGNFDGrZpwr75BGuFgfOsmqxEqgGBFNbY0q1K6A3PkBv5L5al+/RgWp1BUxdRhKrSFENBPS1dvvtjCtQhxgVK0WYfLD1qnuvpRio3AbGdZ2z6SXUNTFhlACkMhjDPalehWRK0lkHThw+BJLN3PCojG7KKhHnXYWzo/mCcYUrQ9/4LgXIudpgAbOG2dBQqpMrAmkKGsY5DbPPU1GBybmXV/49S+Zmxy/lDIwotAUGGjmbgJQF1CmP90l1JOLYrYHxCPI48ClpW67JjRdDBFKcSjriNIFyzlmY5HESzdd4pLatWttzRpAyYsPjcKSKBojTsjV+sITtth/+ZcdbBwPFNAGUxV8sxtPQcWpl0BYhUGc2Sozab5BqjGcOH7vmZc4lMC1rS5nFsvma9ToJtgEaSnE0VMergUl0okSvmIlku3hlRAVcJWExf107y1E8xB4zsrbshuV69jJmKBO6MEVmKhOsjjvXRV//Zm9bRbdksgmM0s52XTTHtQKDBc3K2K08DIv2RbdhhRwrAiE19J7dijFwcIFG1rRyl9PFI478HcoedvsbtocDuyFxfn7NxfU1fRxYr1ecnp3RBM/lxTk5Je7fu8fp2SlNu+DFy5d0MXF8esSnn3/Gw0eP8Y3nF198zvOXL3n24gVHqzU+eGW9i7Db7zj0nYpteG2J2ncD67Di0aNHXF9c0fglQ19YrJc8uPcuh/NrDjfnRDkgksllMA6BrklFqyzDk4z3Xp3RzJhQNEicw8IW7QJZ66Sl1iwtICjFiJbqsGNUR6JsfhV2SbHQx0jXR4boZlKiTIHi+LOwWAS9z0mnyTlRlv766JjjszOOj084Pjnj6PiMZrECCv2wR8AIgo7sA8VHUhYj9Gr9sohW2lPJ1omka1i8J2VHsVSyDYHlckUMwiH3xJQpwXE1dJB06qY4ocQ9OWdWzqsRLIm2VT2DEoTQNDRtq+POUQKjgmomU1uy9cebTLMIwTc0zRLng7btVbSxRFxQmF4qOme91lCIFgxXcloILY5CsHp5ykUHwlBIsSfFnhg9Jfak1I1qkClFQtB2t5xrcJDGc9RuAje+T/0SVHelgAWGUzafjCMQ00G7FGz8emZQ7pNdz7lTrIFJioNN9FSH0w97CzSqEqDZupLVwRik78yRTa1lous315FyugFymRRZ1fYWHeVdtOMhF6dzaCQgJUK26+u0xVLEUVzQoegZhAayBqUpyzgPRO238iyU0Kk22Is3pz3ZczX6Nh208r2qj3j1sVjrpkWNFcx93fnf/rnc+sy8duhtmIqGtd1crOskW/tgtnWRLBggJ9OKSEq8zCYMFQdVi4waCMQ4jMHAyLcDnBNSkrHUVInzrnLuqtmX2sVge6oSik2HQ+Zrs4p1hQ4ZCa6/+njrYCC7RBYlpySykrLMW9WaqhM/hprllpO1G0h1tEJlE+vx6skqwaJYL6dmw2pMVfPMol0C4hINDmcliiSCz4XshM5FQNnxYu0gY+GxEhmqoa/BckUCCkZwmUhECRlbmarmw/yQytwUsaCidtIqNOpk0ssf0YhSqj9XA0Ex2Ky2WxXL8svU1mPvMyITBRSWqzW6al400sTq6LO7ifeCk5aVO+Z4+Yg77WPy3vPy/CU//OGP2F7v2cfEYn3MvcUKXOHkeKMcCApNu2C/33F1cw0OTk/v8OjxY653e7aHnnbZcLW/ITvH02cv+O6//CtePn/B+48e43D40PDy4pzQNrx8+ZLtfsfm5JgXV+esj4+4d/cB9+89IPeJ3XbPgoBfLji9+4ir7pyb/Tn72IHrwfWqQGfOPWL9vhhnwDXW3WKlqiKmDVNsbUCxMpAYW3jqbza40p5DTjaAyMa/DtEEXQrdUBgGGGImGnT/Kl9lTubxwXHoD7b5PSEE1sfHPHz4Lh998pt8+NG3efz4fdabE8QHU8ozCDJHyBFXMkvvCG1Lj44njpbdYoGgQyF5ckacIkdN8hoMLFtgTWgyzeAoucWZoE0wI++cDg8y4QradkEbFjTtAt+0+NDimwYXGp02mWxzVOeK7nkRRxoih64j50zTLGiWDU1olfvgdeRtLjBEbakr3hFq6O3cuDd05kOF7ZXIWhy0bcAHj5NA13f03YFu6DjsDxx216TUaZ997vAegvf0cU9lfaeUzXhbRjckq/HqngtBgxY13mL1ew1yhsGEgPKgXVepG/9dyDhXwNe9y+i8xdCclBMx9cShBgMGPTM5kOrsGfd4dSxaMKEUfBYQ7XYBNdOJjOSIzxBjAWstTjnRxwMl+nHInC8DUowLITqkLqdoWasSDXNu8SnjSqRIVCIvBdUryHiyZTuKDDnnkaITPZX4rfcN22NjAjYmi3O/YN0Go6/hteN1p+/Gz34bNXjzoQ52InNK7RQqMpEGS9V2ME2BkpQMGxUdiBY0pCHa74bb/06K6Oi6qai2IgNiZd0qYewINRvWz6Q9zZo0WylMtRRqMno7GMA7nG+U0+L/loOB6EzikkKWSDK9garHfKt2YzdV6/f2rDETN9WlMiktjTcZNXYVIq/xYY0KpdSAAM3wfcDnQihTK6MSsZQRm6QHSQiJ7KK6YTfJThQ7S0Ed6uT2LdIulSTIGJGpgqE59PqRzbuXmpnXRFy0Rj1pBSguUJEPfYjUPQNZEDLidM51HgOBGTHTEBpXDYpdU8Yal7567ShQjuasRjU7HELrVqz8CeWw4PL5Nc++fMF2uyMXXUxFHMF7Uu7VuPYHQtDa9PX2hl/84lwzWhc4Pjvji6dPuN4feO/rH/LJt3+Dx++/T3fY893v/RX77ZbVYsWDu3dBrwhDTvzgRz9EguPD4w3n11cMQ+Tm5pphv6URT9N41quNEZ8DS3+XVbhLTDuKBaax6Az37KbPKlbfTVYTLialC8rPyNYipIQpJVpqj7vX4Cm7MeAt1oZJcpRkBDhzGsNgwUCXiBH9OU0BRj0Uap6ufwie9Waj9dgspAjeN4SwoG0WOL+gSECR7qpFrwNvUhzIscejbbWtBbmDRrE6QqGWQJyQo435JStEboFlaTyFBueXLFNDQybHDCmyEHXEToxj4xzFVyjTEZqW0AR8aAlBA5oSM9rlVMApAa4UYbkQmtASvK0nEZoQLHs3Zoar5Sutx8ahQDZVDOfHlG5ioNt1NV5R7aJwYUmzAhcWtO2SdtGyXi85rJfcXJ9zc6Ptfn0cUA2CavgL2WR7Y4wm4RuJg6I/pWhQFEIlDNZgIDEMgyINWYMBnVFQvyvhrGql1CBenGmFeCWPjiWCaGWCOuTKzq2isN6V6RpY8qJZdM0ayxQ4mgpdtuwl+URMAcoKgJQiXRzIUQMrl20eQ3FjVunFk7NOBdVgIIzqdoUGUp4RsgvBWcCdLXHNBW2H9uRsQ72s7DpqFjDrKhizLON1zO525WNN2Rv6ubFMeXyo4aKzIKHM1s8bj5LHx5LFWgC5JSRUyzclReN9JOJQxaUyOUUN5oZOfxeTIVPDeE/0/XWfOsAly96Lfj5P5aZ5e/8CJSqaafc0WYDjnR87C5TMakGWE1zTWmnybzkYGMT6paVQhYdyzbalTDeiSuGWWYQnlbVdwzvGOkaFuFTgQtCtWduIskmTMor6aGWi6hBoX3GIBYfCzsWy6CSF1gmCKjslFG7XGr7YDIha65fx8gsyvl+FdKXo2SQjIE2LziJfy/aLGMnSVZ+tPxQLCEpdoOPy19cQew+x7LX+ok6GrNQ28fVvYmUCpsfPCFFpZPSa8kEJt2EysurL+5ZFWNPKhsN14vkX5zz74pm2wMXMyxc79ntV9cv5gPcYHAWr5YLc9+y7jpILP/v5j/n6Rx9QBLb7Pf/8T/8F/+xP/5T333uf3/u7v82f/cmf8uTJMy6ubnj88DHiPffu3uXQdeAdH37jY4Y88L2//ksePrzPj3/4Qz6795BvfP0Tzk7ust6sGGLCLRtWzR1O1++Q80CfPX0WyJck6XXDlsQ0FtpgPjI+G2xp0FudYlnJT6MacRZl5+dkD7TykEWDJQqpKD8gDok+JmIs9F0kRmGIWht9VWhcy1PTfVCIU+/VWPMzNc19N3CzO3DaRxYLRp4IKdP1PUO3J/V7JOuUQVMzpXF614dS6EsaDZoqLSrxSXIxaFezbQmeIAtdMSJar02JpjiCBd9RFG3D2++KOjHvgwYFziMFhr7XtezExJSEXIQ46O+dczTB44vHezVewXltrcTWsdVb1XSoAqEzBKeakYkRPzfsQsGDa/CN4P0CSmSxWLBz8MWXn3F9dc725pyc9iAqCzwJjanhjdEMblJ299ArApRSmQKWGmAWdeLD0Cm8nwddS5IRV8ekW9JUA3lXEQ2zNV5Ll8VULIu1FZa6+fPkyJxzFO/H86ifW8ZAwKSaRQmAtoB1PYs6+xhbQIOBmAcOfUdq9PW88/jsEW/6Jc7RSENxZVLdLI2iZ0V06JJkLcs6dO1I5XJox4ETbacTsqEaFlQ4Tfzm6Gu5dT9rV8zttP5NPIGJS6HXAyPk1b+9jXCRWDeBaoeIKkpmLNAwkaio3Skpm6R0ysQhaskmK2k1Dh1x6FQPIkZi7FUoysoEda6AWCl5dNjWg55MpElRiVqmiKaLMYkYlVLwoTH+mwZXdV3hHG7orQXc/4pPrsfbIwPUFqmqQziMNVlXrAVi3LCV7Wi3sVjva6U9OGzlVGOtCyGTJyNQyxBkvUhSn2OZnWjGEESBcC9+XEhiqbZ3FgBYAALRMni7eDOXqb0MqiwWBI2MKdYmAkVMD7oaJFW5sR8VbXBjbb5UT12b02xLKkT7WqmgbqRcsUN91XpVarfEyDYbAwFGdKBSSgx4MjiqkAqQh9mQlprlFoILqkGQAvubnudPXvDlF0+52V0QY+b5ix3DUFgvl4h0HPod2/2e480Rd++cslkuuf/wAUebI7b7Hb//X/6HfPbkS370iyccn55xGCKfP/mSv9/8PX7/9/8rbK+3xJhxPrDeHNHHyOmdM957/z2aVcv3/up7/OVff49/69/6N9nePMPngZh2PH16QMSzPjkj9Z7VyRl3iMQ80EXPEFuInlIuGDLkWNncdQ0Z39wZ1dTEmEpRRQLt49T7ULJmBSLm+LXIqjFsEUosRjArxMHKBEMmpkIfEznqjII8BgLzLg4LEMedhLb5FYeUgG+XbNbHbDbHbIwrsNocEZoFJYlK7vYdQ3eg2+3odleUGGns3ELb0rTKyNe21WI8HvDekaK1RiXN/DHFvkaCEoTNUYmAuEzjG7xztv0yg9eF5yP4mElF0Q/9vCijOmqdVBBSztoWGjx9fyAOA03T4pz156PYsPe2A7W5GufESn9j7KvXq5b7xvtXZpmibc3iSaUwDJHDfs9+d8V2e8V+e87V9Q1d19ENPUO/Q2SgaTxxHE5mvI+kSE/OkKIGB8MQ9XdW81XdACMF56zwvnUvqJRvNm2UpJlwURi/XmPnUPlfmfgDo8WsiUZRBKuMg5QwJ6+wu/fTYLRxTZXKK6j69cWE4jRpk1S1L+4A2p7b9Vui18DQu6Alm+BNZdKrYJdowuWKs9Kb2nlvYmrjKVQfLKhwju0r55SHo5K5WqJSsTNNmGpwU325JpPa+TN347dr/+W176VUG1j9ypv+/uZjHgxkQ/9ULdBEumKVjI6KNqKdKooORkpWVGAKBiIlDio+ZSiBEkiVlyTm/3yF94ulpkZUruXJnBM59rb2MrGYcFYpY8BGDaoMGSjiVFLdTa3Gv+p462CAUsb+7YSKvGQ0IqSgDGvrCEhS61l2A6oTlUpqmxGpylQLE6uFOFGJVsgUW3xKhrLGCrtozilXoAYGVUOguuhsLOY5W1wkq3Grr1GmursvQuM83gp6hdq7rgFFbTnOlo2POgmI/azOvaoAOnsNj1ddb1RL3kkZlcHE0AVso+v6dSNRCkDGthwsiKmXc7yI1NrYdOVtM5VkC2s+6VAo2ZGiztqOJbHf9VxcXPH8+Quyi+AC0qh+QkLYb3fs9tc07ZL79x/ytfff43i9YrVacnZ6wo9/8hOev3jOdnut/d3xQJDC9faKH33/h/yb/73/Pn/6R//CHGihbdccDlu+8cnH3H94hz/64z9k6C/58hdPuL54ynZ7zbuP3ufd99/n6RfnXO/35LCgPTllIyewdBy6jkVcgdxjEY9ZxKcc+ht2bOnjnlQ67fcmUiSTEyMPQ6+DqhRqIGuReRbNnAWctqKoE0rqhLKJCsWUlRtgziImBRJyqfciM45qtWOMZ2d7yjmFdBEITct6c8rx8V1WyxN8WOBcM23moDDr7qan7w4c9nvS4YArCSlC2y5YrtY0qxXSNATnbBXY2slFe6FToqQBcsQjWh8W61suTs/ZZRbtSgV4nAWbRvJ0ZUBS1OuUCsrLUdZ+f+gZup5cCk0cVJdgvVJdegtim+Bp2obgW/Dam54MGVOHpKzo0ke9arMkQAEatQuCwqaTFICiK61MiEZKiW7oOfJ3efzOQ262L3jyxU/4xec7rm8uka7QBJU81wl/2hWQhkKOem+m0kEeuQTF0Cdn55NT1J7zpG2E6vwUiazCVwmDby0Y8B6D/KsNREsxrpKvC4GgiI6hOYpKCN5ba7V47a7IFjyVpC9c7QmK5GpJTBObHKdMMeVIl/a4qPbUe0+QQJagnQMSKE41dH1WZUYpgSHbPnIJcqtz4yp0IxXFUOfgSlZ0koQLgpZmnCYivrbBBupsgDxtGX29VwKAXxoQoAjY1DpafczsuTNtgvlbiSWfCk6ZqmCGqiSo46OneRO5aLkgmp5EjokY9yo0VZEBGyoVkxIKb5VrpWjJzhx69Um1a0kDAV1fw9BpkGIdDalqZpg9r5yasUvNOZsJ4UZy4q863l6BMDlSEHqyMo7zgEdosjfNwKDEHi8kLxptp0gymNJ72+BZ27Vc0XYdL4D1yiqZS8hDIkoCF/FNQwittl1JxktAqyqCz2q8kMaq6tpy6ERoJeCCw6VAxOMYVJHNFXBlZDy74vBFtDYKNopVuwFiyQxkcumpg0x0USm/vyoLeudpXatGKyu049E2n8pQqOzaccGOZZCkgY/oEIwsnuS8RvFkXI66eIuWURTCsoU/l5rMNebJE1lQxNoKw61lr0OdGnxZsl4ck7aJw+HAYrHk9M59zrcviRmO795jvx348ovPycOBs5MzVosVjV/QHxJPt+dsNgvOzs741/7gH/Hd7/4Z77zzgN//vd8g5sR3v/td0vWWJz//lKUPfPT1D9ne7Lh7dp/Li3M+/vAhpycb1kvh7rFw/84ZEh9z1AoXz3f81rffR9oTHn3tDheXW4Zi5KXoWDan3F0J+/4uSMfR4h1O4jN2/pLL9IJdOueQromyoy9bYj4Q6bRO7pSsJU6JlFUxULKz1qmG2BckR1wWJBUkZ6RAzI4heQ0IYmGIEJMbAw3vndriAqSMdzMhE7ltyDKZISdtxXOOk/WG9772ER9++B3u3P+A5eYezgeGoaf2OhcGRApt21CWC/o8kIcBkpaiUu6RQREzF5oRZk+9kg19UnZ9HjpKigxZSNnZEB6vsxQyLBZLooiyokvBNx4fM6ul5xA1EQi1Lcpg82EYyIOWao7PTkGEq6trBNH5FN7aQU1MR8RZ5ol2DXkHPpjKnyOs2kmlTpw6SKud+1pyEQ127AITDKpOwHK5pGlaNpsNh+6aZy9+wQ9++CN+8en36YcrvBvIZcANDTk6JSWa80hDJg21b7wY4pGtPpzoTMgoOAiu4FIkDQdIPUF0oE/bBtrgGWJmtzsQs8cvFrgQ8T6xWjhWjaYIfd8Rs7Zv9hLoDEkIecBn6wDyVg8WLafmZKUIcVZ/T0h29GkYS2S1hbogxqnIJkOux1C0BTIU8BmyeHIO5BTwErTGnxtFF0XFzaQ0uKJth4VASQOFgVIWeKfqkt4NeNcQhxbvWwvwAjHpACTvdeiTMwVU9RNWsHUVURNG8R4mZ/6rIH8pkFNvMUltH1YUay5SpGUhRQCwBLRYMDBqVtiDCqoMmqp2RIrkbHLTQ0+MnalpKkF1iAdS6slRg4E8DjFKVG0JZ7BXnR1Ty4SUoGWKrOXG2oWTcx4HUKWqiigy6hdM5FLlzIVm8f8bZEAD1TIyJhFl4i5CYCUtS9+SEQZglwZSrxdSKvFKCiLeqiFzkZ4Kb2t8k4sB5LUeVwoxZ7y3OvgYWaknVvKMDRkRy4pFLOOuegwOX6qQTyW+WFmAGgjoOA1v55VKUlJhqRRDI0/aV+XuI8b05/YCndgIteI1h4wtOpUCpvBdq2Y1wxF73cq6rWNZS9W2HpGOCSG41bbJxDR2pV7j6e11ImSLiKfvIzfba65uLrnZ3XDoe7qYSNvIYacKaKcnxzx6/JBVuyLFyHa3Q6Sw291weXXJN77xMev1mrZpefToEU+efMmiaXn08AhK5C++++ecnJ1wenqHs3v3OLt7l9OTFcdnp7x4+Tl9nyndwLI94q/+5Y+4f+8dNutT/uW//CFf//qHPHr8Ll0ftcUqKWt8GTbWZpkp/phNOaNbbjlennO9f8FuOKfLV1zvn3NI13TphlwsYs95lMiuvkTny/cMORNo8UVVCqUiB7Yma1vP3DhZLjTdfdGgc84RuPVmQM6Ffn8gxkLbBJx4rb/7BZVHILaCkkGQqesUfRCHDy3L9RpJjZpOr6qd3gc1EsmkdrOymFMaiH1P7DtS3Ft2o2I/JWdipyubUtgf9kowXbR4p10AQ9+zcJ7ucNB6vzh2+4MSAb0nDYP6aufoh4F2sWBztNEVKZbhdB14j29araPGntX6GLz2rotBm+AMYpQpWKhlHmomOJUI7A3G9mGMrCti43hB1R9TInYd+90lTnrN3ksgR7EOBX3JOKi4jEqva3dGHmq/eaL0+tym8axbTxsUUSg5smw860XL8dGaxgcO+x1XKZJcy0AhpQ4vmdNmxelmScmJy6Hjqu/ZD5G0aCmhoQRPLnG2m9XSqDiZHzNxycbcr91PZeYYVFRi1nlgvBEqdpgp9h7T2jSLV4zwlotWOsTWh41KhowrtWun2B5Su5+9Xivn9Hpl1yBu0HOzjoVAgyutBeYBDOmQorNoRjtZJoInzPcdX32kPCIC9fkUbT1n/J0FA9Xhl0GvSK5ckKo/oSiASkB3JgttqpKxU05A1PkTyeZR5NKrXyqDfdWyUgaUDFhgNkROAzUNSNIYuCggpGX5IoruJEN7KsqQbDBbJdFrtwGUQds1/9aDgeIVLtdBChB8YNE0rH1gExrWbQt4+gS+FyRnhiREBlJRspIqI5mMpxiJzli1WobQWsdoaDM63KFkbZhz2MUEJILJHxWTm82u5ggOkaQjXgUkGVmqeBxuXLhSnJKvREbWtLL0dds5vJYsLErVlkrry52KFtqiNQtq5v8Wqc7ZnP0sUNEPpCxdsfcrzgRaxOqhzhk/QQcLFRsBkRmrC4aiKppgfYbK0ajOq8Jl9V7W+iNKktnvD1xdXnBxcc7V1SXPr14QC5SyIA6FJnjO7p5xenZK7CPX1zu2+x1tExQCu+joh557d+8wRHj0+H1+53f/Pv+1f+0P+PyLZ/zxn32P//if/lPeefwOf/d3fpfjsxP6rsO3K9rlMe3yDh9/4++xOVpw8fI5l1d7dofMH/2zf87p6V32+z2HwwHngtbo+p4Y1LkE8fjQUFxDZknTnLJYnLFe3Wfbv+QQL1k0p+z6c7b9OX28oo87yDuIB92oZvQpWWHAAUI4NgRII3Up2qqltbo6qWwSU6kaGTWjmZzVbCMWuRWTZSPDBud0kI9v6Q+RF89f4sIx7fIUWqhy3zlDnxK73QFyVBa3eKvvap+/84FSRBX+YtLBUynhPKRhINVgoA7PKQmfAedNj0Cd4n6/JwQdOOS9p+sHdtsdjQ+UlOm6gYOhFQMKW4sIoWnxAkOMuLbh6OSYlBI3ux0lqvbBYrlktfG0rSILOdfsVtsfa/KgPA9zWxX+rCW82YKeimUVUbaSB4JzBe8cq7blwZ1Trk5PuFy19Jc9cbimkBDXkoZMHEzuWsRKRloeyNY+WslxzsE6RxpXOPYL7m4WbNpA7h0MnnXbsFm2HG3WLNqGNKzYn60ZMnRx4NA5hIHj4yVnx0ekknmRE8/xnKfEVXHEZPa2oKigaOkwu7EiPnIu6qKqHAbvbM2Uol0guVok5ciUHEb5dbWzOrVQjZUiN3UN+6x20mV1+Kno0LZi98Y57ZQIQPbgcya5hMsRLxHnG2Jp8WLS8mVAnLcZFS3OD4jogCovAfGNcQs8MpaHNBCvbXXVNzC73/NDKOQYRxs8iRPJrERQ/YwtuZLJqaO2ceaaeFkHTx0xnVJnugID5GT6FRoMkLVUlJKJTeVktkJLR1QiIpXPYW3hNRiovqz4KRjIWGG+H+9fpoztqlgZAeNK1MAnZ/ScqGTOX328dTCQRMV1lbTXEpywaho2beCo9ayCQlUxqYjJwrXccEMnouQKVMN/FEkAa0fJQLCWq4KToKQu+4A5FY0+K2Oy1Dg5k7HOgDHuFZtzUAkV3hZ49ZOBKsHhqdm3M7TCqHdjy4LdIkn6OqZXMChjgmkLmvIdBcZpCN7+/epNmJ5lkQGjWBEKMzvJqubG1JIoolP2SooWa5gHQttPKFk/txaG1bCWop0TGSiBuVMahZNEW4iKyWXGYSDGgcWiYbNcEQfHzc1B28Eabz3JA2HRMsSBXXcw5jJ8769+wG9+59vIxRWHPuKbJQ/u36fIJd2QeXF+TkyZb37rN/ALz2988m02qzVDP/Ds2Tn7Q8uHH32bBw8Kf/7nf8K/+OP/lHax4ujolP12h7/vOD+/4O7dO6Sh57DVOpzzsFguyOKIpaVp1yzDCW24x3Jxnz5ds24fsOtfsj08Y9e/ZHe4YH84Z5/O6YZLVZq0+ydWaillT6ZBcosOaAmQndV+dUMWKdN8I9zMeFWj414FZG7vqVTYbTu8a1ivWlarI87O7nHv7gNWq/UM9dFMsJgqGWGBlIALDd6g6kYYWcNa89Q2tT4OynQ+DJTcU2JHjgNpsOE5OVJCGZ25l0Aceg7bG5q2Ia6XOEFJi/sd+xBYtA27qyu6ruP46Ji+74kpcXx8QsyJxXKpNfese0EEdaY5Iy4YSz8b4l8lzS2LKRXJqvtojnxNV7KUW7iAPm4kLmtw5oSR/5PI+DhwFIS7q5a8acnDguDAhZZDH+kOeu28C3inHTixV50BitC0LavlinXb0uaOpvSsFw1nR2s2C0/pDqT9FokdLmeacmBZCs064I6PSTmCrBn6BV23JwTHUSv8f1j7sydZsiTND/vpWczMPZa75VZdXdPT09XFBSAI8oEiIAUPFKGQfzIpQg4fST5SKAAxGGAa00tV5XLXWNzd7CzKB9VjHlkNoLMp4ymR98aNCA93W85R/fRbJB341TTx6b7y/Vr4u+cT9emJ9XIh5EwLQhMLLLO1y5sMIyzYbT9kcRjqZ8ZDej1AYWyiY+N4cSz/BNk0/rXYLunqlNrFmxZHE7DtK3QjGjZtWALFRggTIWQrBnom9o0YEhKS4bASid2OcegTIplUs2VT1IkYEzFkW5/8jb5E4vqLYsDf3J/cWYrqdkUS+otiwBG3qwzTuUC90dvFGyhHN/owCRrIQKW1C70N2N82/942erOo7N4LTTcvAJqNmLmmYqr0/Whbzal7obsH7LkkeSzzTStNrFBpg4ci1pCEYBwnie7lINaIW2MzxiL/42OV8fhnOBBa1ZliJhKZU+AYE8cpcLMklmhyP9WZQ44sqTFhMOJJLtTu0JZv6uoduHjV33VAegHpxiWoL6BxcWmK7P95LSVqi7Ngi7YGuobdoATC1a+baKQwr/5NRji8nlyuN+4GjNDowwMMGVAqjaoV1CWRYxDgrFoX1tKtz7/edy+awtEzjoAaiy92GWBoIM2q2Z3Q5cWMCC2IV8jWGxj0Ba03u+F7H0INoJscci93/Pd7NdxKt/S7Fhh6+NYq3333Da/efcXzufEPf/sHLucTl/XE6RzJ+cCr2xvO64UvHz9Ris1ZX735iu9//EiIkeVwz//nv/ivefP6B748PINGvv3u15TLyoePH/j1+Ve8fn3HMi12o/bA3//9H/n8ufD3f/97/ov/8m+oFd6+uweE83nl+fnE2zdvOCwLMQitFMq2EqIQFXqc6SFDnI2xHoUp3lH0NTm84pjfcjd/xaV84un8nsf0nsf1e562zKU9ec5Bh9CIsdN1Bb1GYo1T3F2kqrs5BN7VWqc0lDHsiND10VUJL9hRrXZagUtZqdtH5vQDb+4/cnv4hptXZgE7nPFsgQINieX2ntAboo2gneTjMIvAtbAU40LaBisirGUjhE4MwbrxpvRiBWtdLzQs88A8CYzsdDlVHuMXpmVmKzZiOD09EW+P1FK4nM+kmK6QZ28GAefMcZmQkPz+hOPdDcmLGjD3wK1WKBvLIdumEzx2OVgA10DBHAfbRwHjIu7+3gZ3Zrdq7S9HaDa/DwFe3xyYfvUt3xwq+tffMsXCPAW2rXK+WCaEKkhKJMmAjVq6o2gxTkzTxJIjB1ZkOxFqIbsvCOszup5p24Xt6Zn1+Ym2neHZlD1TEuYp0alc6gVdO8damY53fHW45W2auZ0qop319MBlO1HlSB3OjNJtkxBrEGJvDB+U4GvpS+XFdUDp65mz/l+MzW0NimJrDoZcWtplBUmINuOIqi1NIITdXyaZVXGPVJ0IuhGZCXEzLsAoCjR7MRCxUUAg1mhZIyERJBOYLPAtTqQ4md+GR9gjkb53vB4/7bD4VUmx36l2PXYfHe+jAt8fuP7M7i/RbRxS+2YwfcfvOSsGbNTmNtNts/ApJ4r2bkFUTQvSu5lM9c1RNxs9dMyG2o6vmlW6jLPT92LAOEFe/GCFrd3HlnhpqIIjk9IZwX0OpCHRiOZBOxat6lT6f4JjMR6/HBnADn6SSJDIHIUlBA4xc8iZJWcCGfpMq4mkjXC8eqevtfvmlXwMNAoBvEPwzThGl0T5WttdL+5WnC9P+pDTNQ8rUa8gbb6lRqhBDeZSY4fHZjc56VpWXAuBcZfY8xq/wLs9CVTj5fppHQoDcXRjPMZNeP1Z5XpjDvT45Y1rc769bvXnMdjI5Dc+RhCbDXeRq0pCnHXRzQ/AxgPsHYM56mX+scTNJWHY360zDLTeeP/hJw53t0zTgWnJ1BporXIpFxqB2o1wWFHSNO1oxfPpRG+df4jfe9WdCGHi26/+nNPpiXN/5Px04vL8xB9///f89q9+yzwvnOaJ3jqfPz0w5QOvX71jmQNdG99++x2ovb67uztysr/XKqZHd3MAUd19F3oVs/ftGVWYCOQ0c0h31Ok1x3jPrPdMYSGFmYf2gUt7oOkZ9OI3bhktkmFO0uiSbREUJ5oFnPjmBd4Lx7efHexxZejolv0qq5Yvj4cf0WGKE/e398x52S2OxwwzxkjP2bzNZbCObXSlPlaye8tGbyElkoKEwDHckJOQg0K9cDkFznKi18rlvFK3SkpmqIR2phz3xZKu3CwH96iP1FJ49eqeGCKXy4VXr15xe3dPqZW8LHZoJKJBqL0TUkSq7IlseZqZ5xlJie6+78Yodx32UBC9gKyvC8VYA/AxmfMqDLc2F0Fc1qZ2F9ll0dC6cQiwHBemwz0prEjo6FHRajGziPim5VLgYGjmmC9bJG2By4qWE/VyotSV1BqxF2JQ8nEiz4HjzUR7fmJ9fODyfKFvjbJC3wqybSwhcgiBeDrBeSPWxn3K/HmGcsj0NfDHWum4pDjEfcNWv/2jjCm4NT9BTNJJGEx62a89xAqu/qKR9owb848JGP/GR6x44YvaNTgu5aDBYOruSq4Qib0SeiJIJXaH/ftGiJnERNCBQhqCHEIkNisSokyuaEnkMNPSRIqZFhIihiRYA2PNzu6dETIjo+JaCHiXLVckYX//6vyrUQyosNv6tkZv5YoMeAoqqh65Xcy9shdqXY0voIa21b7Z2ACzdW46Nv9Gl+JqJisIje4xmGT+4aqjLt2ao+hoRrexUNcG4ooQLwZAnc/kUnxxB2AsFAppNnLWK+H8n3r8cgIhCW0NaOQoZBUyiSyJJJEpzqS4EJioq9DLhQudOUfqNKFaKH7D+lbKGAeqb2wq4hnM4x+NvCN0m5Gatmnvsg1GUdS8im3E0Mc67e5OWo0l3gNRLU99h58YG7C10uNib7ikSAFnNlvnc51ZGTnJjTokMNSwo+tXVWpvjK8M+PLlzFMVoj+/pRYGoO76XCUaKyIo2oWq3QJ6CK5MsOFGcYawoQ3jNVjHFGIwktjLLlVBqyIxkuNiHKOQuL294/7+nn//+7/hXAqH4xtqNae883phLRdUH7hcNoOI7+756t07UsycTmem5cZMOTSiqjw8nXnz6oa74y2vbl/z9PiBRODjDz/yd1FI2viLv/hXPH75wG9+/Q1dEx8+fOH29pY8d8q2cT5v5JzZts2Pu9A26+LK6nO0GmBqRGmUraCtIpINqUIIMqNiVFF6YpbEq+VAjkdSvCXzmif5kXP9xNa+WAEQqnWFYsQdJKFSrOBE9gWZUcSOiUAfBlRw5Y74Yf8TiLY18ypQDSzzkVd3b7mZD4ygKcA5CvZjOlLyoufXt0ZTMU2j+oxdnXUfrAOJCUNJjjM5KlE6ukUvEoXtcqHVTghmh5yzxQdP8+xRwpHD8cg8TZzXC5dtZT2f6NpZDjPLYeFwOLAsC4cUzYBJzf8+iCNnXamlIM3GEZlAiIk8ZSRGD3pRQreFOQHSoy3eoxj3e2oQ20aA2Z+6ymnvpJTB3eBiUGLw3liVWjd0vdDbsxkP9TMkQxKTJEimWKEr0oWQos8zbY2wTbNR6pneLrS+0sqZum3EXsmi5O3i/gGRdFwIMZDnhfV8ptVKTIFDnJijqaL0+ZnLwyNPlxW9u+Hrd29Ir2aW6TXl88pPRSmtosHkiRrTLiMzlv61I0btnr/e7vuKxGhgfj5CNrG4RB89iCWp4MhCV6G3RuhxH1uJCE2NjzWkazFUGxmIEVijTgSJhJ4ozRAECREdvvmuTAghEcgeAz9Rgo0MUpxsjCAWPrbfAy/h/hb865FBuN2bt11B9aJQwBGDFwXSzp/aLYftGDVPIDSTn81MhrTYxq9mMd3ZENkgbqCeucFGkxd8AanufutFldi+oTIaRuBFmN1A9fvYM9TG4KDuFeMfo4hTb/j6kN4LROPKCMV2tv/QyEAKAdXCJJUlKccUOGZY4kLyjl80uT1it0WnV4L4glSEHW8SX+7GvEQHzA5CI8qYVRlZT7sTi7wQuA4JnMzXfdHopj9OCaYUmFMgit3UFNxzyDqqa/89OnTx68bNRtSZsaOGe1FdGckwunNaNNMI+cd2qRbbat33sBMdr3+3cHbbTxkbwGCXOry1qxGCPZP6jeCljksHRyWIF0WjlrJ0tx6MGTEeUcVldJkYZpO/bEqKmdubO169es3D+cSHT//g1b8QpFDLRmtwONySc+Z4c+TPf/Mbfv1nv+H0fGa9bDw+PLJtlU+fPvLw+MTd4R3vvvmGf/GbX5Ny4b/+L//f/Jv/8v/LT9//A7//u/+Ov/n1vyPNC//Z/+5/T6vCDz/8kcNx4rvXf8m6rvzN3/wNpRSEwJ/92a/oTVjXM+fTM1tZzaCmR0KoNNmQmKlhJYUDKR4MpgyJ2pRaA71PBL1jDhNpPjKne47pHV/ya54uf+Rp+55TCaztCYnOLqZbUdA6ZsXq+RhBbCHWsUCagYy2QRztL2uBP4EM7NNWDWXorXt1a65uI5VyFBxjZgoD3nTlTRtZBY3Yx2IxEKhAiIY8TVMihm6LXqhm5Z0mQupMi+FR0zwzLzOI0KrxDYYBjaJs68qXhy+cTk/0Ujkej7x+/QZEuFwuLDdHY5DHSMiZNM10wQmMboQUTCMz4pSDCKWaT4G0xljrg3hYlI9gXhw1xgqwAwXjvsMW8Rijsa7rRkwQjXFjpmDaoVV0KzbrrRc3CLLgphAT9kO2UVsHgyM89loiEG5nOASWbUa3GcoGrSJlQ9eVVgqUYuFL00xOM7LcmUyVRugd1gt8+Ux9fOb54wfKtjJJ4Xg/cbxduLm5Z7tN/Lefz7z//IVTqajYhhrE5sFDcTLevwwi4Ni4r1eMdbq7EmAcTduUTP3ClTMzoC81XwOVYTns8r9Wqb622hpj15RQSSRTQTiKLP56QZCUvRh4gRBgqLLJDG28kGLy0cK1i0cN5xF5yfIKhDDtz8n+79PPCoRRLF4VAvzsT7zhHKMI7d0LAHUeQKX31Tt/8y9R3UAuKIVOpWmhajGSnxg5l9B3NFG7c4wciRkF2lBmmGDJzk2XMb6Q/Vxo72gYijlc5WTFtog1r0bSD37JKlHHOf6nH7/cZwAlxs5NLtwfTCN7XBI5YjBOi9QOPRTQDTgjofocZCxSLlVxpyReQOpmy1qJoXuXo24GJF5NOSTmjl2KDjq2d2EG908xc3OYubvJHA9CDrZgrmdYT4G64r7twghTsoVTdyitC+53bx13a52qzYxTMF10ECFJIge7iI1c4zfKII+Nm81hXHtYOWdFyJCPubDR/26LIP+oio/ZfANo4sx2gwyDFHLE8yKuC4KhYYEmZiSyP48kUpjI6YCQ0d4oa2XbGillh0TVKvxpIqeE6EbNydnphbdvX/Pb3/6W3/3ud9ze3LPMB1Dh3/93f8sf/vBHSrkjeQDNgFn/k//F/4r3P/yef/2v/8/8P/8ff+D/+H/6P/D9D9/zP/+P/5fkKbLVC+mQuP/qNa9evaH3zk8fPrJeVmJOfPj0kW+//sbGFNtqJKwYyfFgRZMasYfu5iZxFGrBY37VMgMwQmVOB6b8iix3zPmGeVqQZ3OI3KqNniRYdyndSFyGWvu5Q5Bkf9ceiSrOe3VoLvzcdGi/+cdn3aBO0UC5bDx8/sL5dLbcgWZSsuty/lKxYtf7GLOFF91PsHrCO0c3EBJlKyaFozd6aay1szVFYiaFhAQh5oykZB2RBKqa/n11jfPp9My2XVBV4hSZjjMhB7atUbaVSymElIjTTM72Pg05i6QckT5cN2x8EFtz21u3e/bGQHszKDskg633YYDsI8W92xndHTBGJ7X4we3NYnipBDohCjll2jyRZCZWg29bPRup0u/LmCIxJ3PJ63vFsR9jBGSebdQYsnlA99nGVtuKqvlHNGzNSC6ZjMej3ds09HKib+85r431snKp1RwL64Y+fWFOyjfHI//JV78mH575d73z4+cHTh2qb2JGFHYBsoC8KJxe8gLG5SGII53XLw6uSwjebQ7DoPGe3bzH/s6+hndRQ08C9nk3xYFIoWsmhuLFQPBiwF6EaLZjPL4mieopfeKx0EFMFRPlBSKzvylfHwmGKowxQ7B/dz9aAjOWhzBQI2v6rsXAy4LAxow2SmgOrbut+eABaLNioG803ejdJYNy3kcGVasVDQ7nm1lTd7SlQTRE/DqxHcVA3//cX5Oow/wO9WIKMdXu+5Y1l3a/q89FxIsib5f9eX9eTP8PP/4ZxUBliht3hwuvbws3c2BZMkqjVaGqGbGIbmh7pPBscLtbd3aHNoyIeOULDNgjOPkt+p+NZszi5G9UMNjTyUAGvfuiEAM5ZW6mG+7nI29uFt7cZZapEoOZhDw9dx5EOUtnq9CwhEN4ocsUu0BMOmjywapGGGxeeAgmUYwEkmQL0gme8e0flkAlu+zjOh/C2xnZ4bbgqEIQs2cNKqRdF6ruigWjCiaIjZfdIreJHQdCt3EBygiuEJcjBRLxhdY0p8ySD6RwYFs7Ze20KlYQ1OpRsnZslmXhq6/e8e71HVNO5Dxzf3/PlG1et60r05vEV1+9ZcoLZd04Hg4sy8E73wCaOdUL929f8Z/95/85Hz//xP/t//p/4d/+zd/x3a9+xa9+8xdMd7fodOA3f2Wx1PTOf/Pf/FvO22YZ7SEwLwt5TlzOQikb62WlJxtDhRassu6dKgX66jM0CKEiAUIMlIqTHpVQzO0uhFvmULmZNs7rE+fwzBQubD2gbIA5BfZgPBAJCWm2qIbuctgeTXYrOKm0OXLw4ib6k5tSRDgsCznOTOnIsswsy8I8zZ5LLy8+hle/kGL0BaHbSCbahi+BfXMwxzknerXO+XRCsMVOa6FujdqFlGZCdGOfKGwYJF3KRldY19VT9CoxCvev7/fCOcVEqYXNESOTjlmoTSsN2MxICHEfAU/Gi3E3IRMRlnl27wwgDHnvKH5+DvOODWncSiNt0DYpm3FLq35vuWGNB+NsdRAcZyILErtJ79ZOqPoitrhSt5UYLaXwpVR4L0Iuz3Z+d6Sy7zA9MZHmBZM2JmLMEDIajjRJUFe2y8pzU8610yWQjjdk6cQklMtGPJ3JN4VXMfIv37xm0s7dvPDj6cynrbIqEH0EqdfNQYbNo+i+ERr879eH+VTvJakEIUZrbtR/hp2M6PN0h6e1By9wxWsDw7O7e8iMkDkr5sY4IDHCmYz0aEVCd3R1jAFEB9JhsP9+Dcj4/aPKSb625Z1oGMVGW+Y5EgkkgiyGusoLaZ1cC3VFXxQFP1+fh+1vU7Ps7uqhRPoCGcAKgN5XVKtr/Zslpg6CpWHXTha8/o79/2IokY5iQG3Or5193r+Di8quYLreEsHB9hc4t4i5b0rwZvmXoQLwzygGIhtzWrldztwfz9wsgTxFmt5RaoI6U5qieqbxzNa/UFpma4GtV7v43BbRpCxWNZmczqu3EIgKBNO3GgFpQPTW7QaHZsd911VpoZGXyP3Nga+Od7w7zrw6KHOym7j2ZnBJVZOQXCqqix3M3n3cYIIx1Ox5h6eAWRrbTWLqRzsTWSJTSOSYSCFZpdvN8Y0RiIMire4nRNGhrGSEfgSXMUWycQ80upWq4O9y74okGDLgrrl0nJAmQo+F5P9OsKARdQSlqM3nxmOKmeN8wzLdsH4GbcaU9tKVt2/eoSny4fMzl8vG89OJ28PEMk+kGHl6fOTdu3d89+13vH71mhwTtVRSrCzzxNdfveXu7p7T6cSXxwvEjND54dN7Dvev+N/8b/9zttb51//3f81//L/+F/zFb/8jLhsUjaSbewLC+fGRkCf+p//xf8Rhmricz9bVBCtwWrfUQBG/PnqEJvs4p2unBOMZhBBJeSbPkdYDazW0Jzo7WlIkuSTxOL3htD2xtY1eAq2e6Hi0aTCNyJBqqrVVINHlS+pOmbpbXu/GRlg+wIgBts9tg5ynibube968fsPtzZGcMz9nSV8fipqtqbELbQbain9u168tTp26M5o7MSdDpLohYiEkcu/Gt3Eb2iCmJlFH+C7bxY5zt5CWmCYzIRoy09UUBa2adfFyWJimBULye926FQsiMw5DipGcMyln4ySMrjHYOe2toRrdJjz8bPkEh0HHzT8+uhv+qJru3UcVkoTabG6bMMvjEBKSJlQnRAuEYnPsmHctf3PZ2AjXYUidB4Kpxvfw8vxF92nnXGKAHs2VMiTCshCWWzTegiR6s/GWXk5sD18o65mojWUoQ1Tomgg9MtfOn79+w7vXr/nmmxN/+PLIv//0mZ8ennguldXjla3wNP7AIASOy5NghdrgkRDCtRjwNTXsBYTsVxoMsGY4pXS3zB3jieuYRrWNn3A1ixcDoe1Nj4iYzfFARJ18OLq7XSE1Ol/12foLEqlgxUPA0j1jnEhhMgljSI4OJKJs7k47uuSBRPcXa4R12nthI35/uUmX2TeP1ElTBTQcGVCnk7tXx/AfGUXBnmewX8FW0KgYt2uMCWQYObmZk+7/dW94X6DnGFowUBLxY2XAwVWlU4PtI3u//QsfvxwZkMoSC4f5zPHwzHFWYprookx9JtQjoTa2+kjRM0UfWevBgmSaGwoxSD/NmJDB5YK7rCiwZJOWhGjSolIr21bNfQ5PvRJQZw4LSs7Cckjc3izcHybu5sAxN7OC1Y0kBV0CvSW2BqUb49y0nA57+UhgFCrN5RsqWDa0WJrX0NpOITHFTE4Gs1o2Qhx3HtrdQfDFHHfcADL8ycUX4WCbddRI0ESS5CEtXu17QWBTjJ97NqoawTDkxbSmKUIyiFMxGeLlAjlcT3UOkSmb++DlUtjWtptJhRDpTVnmmdevJ8rWKbXx/qf3PHz5zKv717x9+5ZaKn/8wx9YLxf+6q9+i7bK6emRy+UMwMPDZz5++MiqcP/1NyzLkX//x78nIzw9PfPqq2/5i7/+n/H1n/1LTiXw+3/7txxu7jne3/P69shaP/GHP37Ptp35i3/xG9599Y4/+/WfIb3tBKnWzEntsq3E+cCUjsRoRVNImB11xKtzm99Oh0SVmcvpgm6N1iwsJpFY8g23xzdsnGlSqWAJhLqBjOArGIO/MWaS/e+O2Hgx0NWUBvvNlm0WvX8eI2szr/EpZ26OR2II1FpovRN3bsjPq/vmoxBtFarZfmtvaK07N0Ux6Wsc3fcy2Ubr0kPxTnzrDQ3WAQuKlhWpFYrNeudDZF4mtjUaKUmE+bAQgnAKF7atoHSmaSLnzLIsSMhYz+OamhDR1nYb1ejd9UhYq7XacufzWnEIPAwu0c+QgesEdNedux1rb7bxlLJBMLi/1BW0sGQlx+AbxYLIBs61CVqgC1EboUVSK9As7MvQFOvwxDRniELyY8jeWfpDIl1hW22jzh3itFhxN8/ORUjMc+LNFMg5sd7dsn34gJ6e6VrJUyYuN4Q4M8eIHBaOhyM3r9/w6utC/P4n2u//wOXDR6QOUup1XRkzacuvUVO77KTS7rkH/nLBOUEw8GTh+vedoDm+9+XZ8HNxZezbP1vXXxESIVQvBscItPvXAxIF6cmbu9H6XM/r6Ih1929x7ZfYpl+1kNpMiRupT25vnB2hXY2Q7ciNvGjIhv/CtRjwzVdeeNYMjwGqb9jduQIbTVfnEHRPImQnHBrPwHT+wxbeNnV3s9wLLh8RqF2DJie3n7uWA95A0oHiGPpABvxM+OhEQ2EEFBGdICwuGf8PPSZYYmWZzizTE8v0TDayACHNRFmgRcK2ktgIl421mZSn1mQWsoyFcLi2KVE7Io0klRwbOTa+ej1xmCamfESInM8rT6cTn748c9oaKhMaksn7QiVK5/bmyP3xwO28cJiPzDkQU0HiZnNZ7Sw+26qlo1vluUPtCRV1uaDJBlHnFPgBDGra50hg8iosSDAjnhAt2U0MHjVdrkHatjk4VEz0C0Md4LDqfXANIia/iQ6bBbKr1vzmHLCcdjS4VMp9DQRIsbNMjTwH8pTQOKESqBpoPRA7pJj3cymS0TrxeK58+nDh/adnPn7+xOenB1RWNNnc9fR0olZ48/oVX3/zlhSEP/7+j/zh99/z7Xff8S//4l9Sa+fTp8+8ef3aFnNpLIuzy48zLUSeykbTCz+9f08rlR/++D0fPryHAKf1zJfnJxrKdJhQ1GbT68bXX33Fjz99z9PTM4dp4XS+8OrujjRNhJjowLqthOdATAspHYlpQP/j+F0jsiV08jRxEwO9VS7riVqqhVTlRJ6P3Mzv6GIF0FYqqxRaH7N3K2Dx7trW4OiFmpi8UZ04qt7wvLgRc4aer3ODKUWYEjlljocb7m7vyFM0QtvIl6Bfn0QVUVeggBOKgikKxEm8PkaIUySmSIrms1FroUulItgwyZ4zBEOQJEZ6b9SmlNqoXTne3JGjFe8xCEhnWmYs3TMzz8Lh0NweeiHmmU7wTj8aCqF9OMPaQtcaoTWiEx5DHOMVcdjdfOtTdsmYjuvdDsE+LPGdY7C/tasZwWhBLyeg0xMm/SsrskykQ9zHCqIWdUyY4PY1ohVqQdq2hzjtyEs3QxnGn9oJPVgeRLMY2267FsZEB1I2GWwyxE2brTsbzUiv00L66s94ffcG/dUj7f0HTu9/oD4/khOkZUJcfkmvSC3MeeH13ZGvzpXv33/hAw/U3qDbOjU2BoPRzW5bhiV2MPKZ7OZkYy1QG5f8yYah+xXie48M4vRVl9RoP+NujO4eXyMlKNqMzIm4p4uPFMQ3xzBILng4m7ocbnToYjP78UqMdGg8LQsaqyQmzPo320gQU41dX7utA4NrsssJXV3RvdizEZ9d7yb8cetlFMQNhXp1L4HqJFUrwJs7FTZH4uyYeDEwbt9RA4gjBS/yEIaMsw8yoWsIUEfRqV6wcD0z4nJ6e0IrgkL0qbqjPX9SS/+PPX5xMfDmVri/a9wen8jxAvEOiW9AXiOyMMlK4hFpZ5okMkfe10pZL5TakLwgKrYphkCOgSl2op5Z0sab+8zb1xNvbycmmQg9QcmsEvisjbQ1PvTGc1loYTKDBTmRY+N1nrkhkTWROCBphlTRZLPb3hp9W5lYeTfD/evMw6XzWCIPm1DOrkhIk0GoHTKTEY97Bw1MEqApMVnHkVx2BXbzCzarCdEiaW0RC86e7p7yaLOkYWNrK3qwmb5MTDLbDaNi5D3vInuD2ishmg1lj2Zx2XohZeF2bhw42SKSC8QZlZmmCxoOsAo5zPu5bDXS2w2hvSPEE+f6mYus9Ek4nSrlvJHnI8dD4NX9a37zm9/w+csn3v/0nrv7dxwOCyLCv/1v/oaPn75wc3fHm6/fEQVkivzxp+85X848P1tkbEqRsq2g5kXwx+//yI8//USQxHI3wf9L+fqb73g6feK43HB5fGJ9fGSeJ/4nf/076wckUEsHjaQ4m9vdtvLh/Xva8xMI1Fa4ublh0olMJkhGu5AWm7H3ZsxgCcJymEjSaZfVAnZqR7fMMr0lHw6kMDHFiVYVPX1Apfo8z8YOiBFbe5MdqjOky2athAghUVKm+KnOE9RY9/NwOCS+/u5bXt1/xzdf/4a3b7/i7u6Wm5uJNEW/jJrbpRoS0Frb+R9NO1sxa9QggZRnYppIKRKjmcP0bp7q0pXaOtWtrYmBrp0Qsh27rbD6xhlC4Pb2jsMyUbYLtawsxxvvNBOtCvO08PB8IcjC4fbA5bxyf7xHRTivG6LKPC8syTb1y/MT59MzKSvTstBV2cpq7xGH70NA1QxmWoPk798IchmTmFly4CiG4vAr6Z16OdHXL0h9IPSV4yEjpyfOHz8jr95wnH6FSKAWc0oNaml5oQsSF+SIu3o3qBtaKpSO1mKJhH1DghVGrQ1Vkhpi4OgMvRNbJ4rR2EKwZD5CpnYbxxnr3k14DrfI/Jpw85b7r76lPX+mrU9ovbBpJ2pHz2dz51tMtvfV/Vv+1XeVx4/PlKf3xJhoXVhLIS4TSTIhYAVcAkIznXtsEDs9B7ZxEQZ1Xst1IKMv9xBXEIyv7T5bDCe84WfiG+++89n/romzhnAm1T2fQIj0Ju7PseM9hmb4ltdptLbuSEWQiPZi+pA0k3Sm9g2tEz1M3mBFNM7j3Vw3MXEUeDf7GAiE7h25IQaGXA/r3+F/oTL+rqh7fNS6wuAI9A5iCFLX4VMrDEM3MBKgeDFghVTzsYX3/UN1MIoEbwDGcVegBz9XMn7W+WFejPZmo4cgwwztf2BT/5PHLy4Gbo+dw9yYYnPZbYZwC3KH3UUXg5GStUQxZFKOhE3QaqQIq1RdqtYq9AvzfOb1TePtfeP1jXK7zETNSJnQnqALU8pOagtoT3S3OM1TYsnKIQWOU+A4C8sk5GRzUGWic0BlI0Qh5I2sjSwVDQ3ZEj1Fziqce6eYXYnPAA3uisH1zqqkeSEEd0kU/OZ3S0gfeYSd7BKGGeEOD425lOP9+wViZ9agZ0tLEL+ok590vzGkmtRy3IixoVGRWJkCTEnJkyLZrgAzCBLmyWSQ4xHkQKRTdQIsbrZ6JLWKsJXG8/mRN+/ecHt7y7/5N/8GgG+/+Ybz85kvXx5RVe7ubnj9+g3n84U//uGP3NwdkSgc745Iwhy9QqOuGx/e/8DDwwOX7UJMib/+3b/i9uYeJaB94zAlelk5lQK18eXTJyOorRtff/0taVmIMbOuK+Zvf+BwOLIsC2W7sG2rEzcbpczMy8K0LDY79s7XcjH8hmoG0YUIUm0cVU9KKAoJcrhhTrcc8i1rOlHlgobhamaqgZ/J/3TAkfgoyK73tmd12/UaUmD0Oa9f3fFXv/tzotxxmO/IOZNzZl5mJAqbVrMU7WrdnyMC9GGXOrwwLJ8hTvNO/lQxXkSvFrm6rRdq80ATLzQVu65brWzrSuvd8wgWkicMNvc3DxJ9pBWMoV+VlCdEhJwm6uRT0RBthKfsyaAxRqZ5plXH4AajG+vsR16J3Q7mTRAYXZwTA1vwf/P5M4YElPWClpWgnWNsPD69J3MCNs5rYUqRr+4ntu1EOT0xH2/JeaZTrMt34i0dpi5I7MZ5SAJkjNeUrWjSbBeLNOK8YFbgAxs3aVqvlbZuBNQnHL6YIEgv9qkrUtTn/KQEy9HGkcuErEe0XKAV842IYc8omGLk9Z0hMKfTSquNH758QrKFP61bIc3msbGPGAUfXb3YVV4+Xu7fXLfQ8fngS8l+nXuXK7I/n/TrKMEanc6+AL4oJtS73qBmJBRGIb0viD9/Fdfo9f7iddoVMgKEgivD7F6w9fFPkY7r8w0A3gvNUbTsm7zP+ofHwIsi6RpoBEN5MJRyuv+9/RzkVytpxtHR7kXFUK/tvAIj2l9HIteChRe10ks9kf1028/LUOoER95VhuneL4MGfjlnIKxENgsOqhijWhLEjEqmh47GjKZEnSJtStbBSjAryQqokFJgioGglRw27pbG21edN686xxliSgQ9AgeUYPaPRKpEKk4oVMgxsMTMYRL/6Cy5kNMZaLQKkgIiB7+hEyFfgAsSCofQ6EnYtsChQS4G+XQz/DYZYcxojNjemlmmG0K4GkRY6ptBY8OtStRdA2UQPDAin9pNYeXGFbvZEQK/hAwGNr1tcBtkFesGzVBJGYEVSjW42kE9DYIGi9DdYxlqZ5qySe3GSQ8LaKEUcxIchj5j/lprNW2/CB8/fqS1Rs6Zv/3bv6OVyr/4i98wTROvXt0xTRM//fQjP/7U+eqrt7z9+h3LITMvd9zeLdR15fnpiZubA6UWvjw80Jo5C/7VX/0VqoF5PtKb8MP3f+Tx4YlDXrg/3vLDjz+CGAR9e3sLwLZthBDIeSL55qndjs+cElPKBDGjlO18oaHM7UCa3PvcTWRaKWam4jdVqZW2FkIS0qKEOZHDgTkfyDHT+oVBeEWGLNVvwLEmBkdkFaQ7pBqvZXmKAVLci4H7V3eIwO3NDa9ff83t3WtyzqzbRkiFliZac8KTOuE0Rkq9+q4HJ1WmbMmBAxLtvdFrcSVAYS2FEXMak83rCTav37aVUjZiFA6HhWWaEFHTymMkr+wKAIPBrdBI2ZndITBNk7OfB4P/upmjal+vlbVcnOyXUKB1ZUrjGI1C3AusENBmIwul+pZiBUyUjuiK1mfq8wO1nFE2wvqJ2p4ISah9I8nCPB3ZtkLZLuR5Jk6JwMRgqWuzVDl8E5DhaikgKZqJS5MXTeaA5K9QOp6JElJyyL7tXZ09lECxZqHbCLV3J1p6gyTTRMgRnSf6dqZvK6FWy7xP5tOgWJrq/WHhL//Fn3G+nHm6nHjupvOvre6dvfqxtMJjbMxjyx6vyl7ZXjSMr+5v9wViwBU1AH7G1A9+I42C2ORxYx+7NkHjZ80xxWly+oLxj/h58Q1SHEIfHAZGcJyRWtnHEvbRu/lT/COjnX3s5r99bMQ738FNfRwhMEKgQfUiY7t+WTQoqtVf/3VjH83aGHXwoqgFK8pofS8GrkVDN+IqtsbsEdReCHS35LUCelx+7jPg1wSIGxMFKwS6vXZ5cb7/xx7/DDWBWTUa50GgDpKaQeAV84wWjM24BaF0YzWjRlDJAnMMLFNkCpHjknj7uvP2fuNmORPDYG0fIN2gCqs2HovyuMFaoWkgx8QhB26nyN2h8PomcJwbN/OFnAOBmdYzogdDLrDCRUWQaISimC5kzDkxh0QW2ARjpat1MznZ3DXESIqd4yRm3CIdxSwquza2tVquvbPU0U4QY4R3h0G7RM86GAvIuBAGBHUlGkZJJCfKACYz8UVw3CBmclERxfIS/GR2se8nGGTVWb0rfnEy28T5ufHl8yOfP3/mdDo5dCbU2rlcVr755mtqbTw+PpBS4nK58Pz8xF//1V9zPBxZDmYpO82Jz58/AsrTcyRNynzJgJJSIKXM8fbA4biQYuL+4Y5SKt999x33t3fUqvz+H/7I3/7t33O5bMzTgQeJPEwLv/vt7/jw4QOlrKzrhVIKx2XmeFysg54mpjyxXozIlsPGFPM+K52WTJpntm2DpoQIybXLSSIFcWtP0C4WngOEGsiHI8t0z83ymufLZ2p5fuFL4bbXY93q1xUyIJajoTih68U9ZMjy/ri5ueH+/p63b97x+vU7cjoyyKe94bpidShQoRuy1prNnWNOvkY6L0JtEQoemKIeUmTZ63adhbDDVUZ8qhbAEoIyzxPLshBjpLWN1eWFMc3mTBjMlhrMOXE4w3W1YrGrOQ0am9/eeG+NqsoyZeZ5tiLWF0fxom03fRnzbmdJi2OcqhZbbcFKnaCFFCH3C3NY6fGZ0+N7zo8fOczK8/NHws3C4eZAbSu9J47HGbCIWQKElG2j75lYTtC8o+wD+vaNMwp0k74Zeueju2pl/Tjv4v8Xgt+IGOfANwtckSJabP1s0ZI2Q0bdzyNF5zHkDDFDvFAfHxGtlvhYDP2KEpkk8dX9DX/9L3/Dx8cH/t0f/sC2VtJswVrDnsyaBStU9mr1xeYwdPkv92J/ob75WOH78ifAC40hpdBRYvy80MDh8L0Acami7CWC+g00ZIXj+a/YhP7s+0zJYM9rKGDnBfIqIGIa/7QjEv5cfp6u1xqOAvi3+IbM2MhVDfll5/F7MWDoGvg4Ych3fVNvXsi4VdmVn6ADQRwKgpfohK/rzW2G6V4I6O7HMxAoe6rBeQg7oXnk8ogPJzzFCtx34Jc8/hkOhDMxHgnxFqXQe4SyUssDW4i02BA9IaVQqxGRtCuT2Mx2SpllShyXyDIFlmni7njH7d2F40FJacPighYIM8hMrXDuZx7XzuNaOTdBQuZmueH1TeTVTeXu5sz9XWNKjTmfkFiBW2JP9vZ0oTNhC021SjwWpD0bfNI3UIPVUoDaQSSRU7LNZsrkaSJHmKSRQidESzJsXehaKRG2rXNZYe1OIGIYQJhxxH476V4rM0gkewqVX7FBjXQYCC9gKit97QJu1F6ofaU1ZW1KCeLOgri+1Lz11yqUKkaC8sfl1Pn8h488fAp8+vTA+Xzes9xVlXmeab2zLAdCiLx//55lWfjVr/6MWiun85k3b1/x9ddf8enze56fH3n1+o51PfHlc0VEWbez5wncM88HUPbjeTgcOBwOfPrwkfu719wcFg45w1bJQbicL8SufPnyhTxlTqcTHz9+JKXMcwx899233N0cWA43Bj9/btStcDMfqKVyuVxAhPveeZVnN/gyvb16WE+KgVpHQJZp35P6eElBemKKNxymO6a0cC5x71bHzYeOnmq/V0Es+CWihJ5p6VoNLFOkTpln//x4PPK7v/4dQe4oNXBeL6R04OawQEpuMe3yIcWT1ZoTUK/mIuqFXHMilPEELGxohKzI3onYC23afEXvpBSIMbHMsxcCjW2rtNYRiaQYSWnyhSmRovJcnm0M4iqB5XCkls2UAcpO1hqIWe9KTIncZmrbeImMVTd4iqm7GsQKgq42ax4mK711elmp7WyJeHoilifi+T3T+Sfq+SNRhdSfyCi3h1tWl4mlOVOKglYbP8rkBMKAtAK97NBwCJ0RpIa7n9pI8Eoo2y2AjXHGsAeXqLaIcF38tTfQhlD2RRzJhiAEix5/GSkMAUmTLc43CuVC6Y1t3UxNk2eCZJa08OtvvuZ3f/Wv+HJZ+cOXB4aaQbzj1n3t8WIL0J8t+3ZOzZNjjBKwdQnvLMWLXK4eA0Y8tFVMVFz9hI01xgz8Z+iCFaBDIWWbuxm4DS+V67F5OdO/NkmMlXM8hdrxspg36Fq8E+609qfIwH6D+vMOZGAc9xE5p/t1oF649n21dhRg3+SVjoXWWZHrPzNKAfUxgbIjyNAJ8nNEYPc5eAHLDFMkO5n9+n7FLrru53T8qBVK3XIjGAoJIz7rf+hioPVbYjeSVtdntFa6fkDDhKaLzb90Q+qFvlW0NBYCTEqMwvEQOC5wc1Ry7Cxz5PZmIk3JsdVEiEeoB2Ci98haO+einKtyqZ3SA8ecuDksvL6ZeH3cuDlUEk8ELl42TUhoECdDMXpGdAI6Ek6YqxmEav7h2gu9TdBnhMnc2BByCPaREzknpigcYmYKnRirQVIKrcEmnQuClm4mQFwX3Wu1O863XwhesZt/9WCSuk4VK4t+fjnrfkEbPFXYdCO0xrlC0k7pwoSStPqYLtJqpNRM721/pqeHwvtPHzk9B9a10prSqrGsYzRy5LYVSrMC4ubmlmmaaK1xuZy5u78lhMDnL5/3EUOvhRbMmCQkKz5K23h+gufnEwDTNBGI1NL48NMHRIXDfOTmeMd3337H0+MT6/nCFBO9Kn/4wz/w29/+NSrCp08fub+/59I7b9bXHJfJ7h03r9m2jfPzM1PK9NYotXI5TRwOF2Iy+Fw9W8IY9+YR0VsjhG6Iklt6alcSCzHCkm6ZwpFEppNsk5LIyM8MorRB6OnG4I5OkM06U/O0H/fDMlHnF5/PmVILqhuQyfORPN1ANOOeYRxDEKQZPK/9Gjdskli7vCQYeNpejBr3DkcgpYRiHXvKyVj8qkCGGI10mBJNO6UWSqnEmBn+9zp0zCkSA3A6EVIyjb+qcQX66DSvUGrA1A/dxwrTlNG1Mdw31QmBY8Yck6EcaDCOg2vCRyBYbyusz9T2RF8/8fzwI+3L94TtkSxGBH19f0PODWVjub2jrkJtK8hMTGJBMarWPcUJyQuKhQcZCtEckhekgVYLsdFeEWnGkn+hYrBb05jue2/smRK9eSGgbhc9ZtGinjmiSG1Q26gr9nUjYBwOkYWkDSPtqZEVA2iL5GniL37957x/vvD07/47Lt3m173pFQhQ9z1R26zhBTyFq5d2ZqDuM+2he5fwAv5QXhAOxxrnmIDCUDLgQwB5sfGBGmFxRypcurnbCI+iRV98XDfLl+ZBL1+PqQpkL8wt3I399V1HD9dxhOrYjNk//xlvwOXmOn6vF4HqUcT28q5eAlYYDI7BWP/HMMT5BogXjnAtdK4Py8AZiAH7+wbdJcrjHY3RS99RDfXx8wujuhcjkF/y+OVBRek7Sv9I3TbvvhutfiIEJaYnUpwscrJ02qURNuUmJOYkTFPheFw5HjaWw5kpJ6Z5ZpoPEBaaZjPLYUGYaXZvUBpUNSZudwhxnieOS+ZmidwugUOuNHkk9Ge0NKRniArhxqp9FYQJpKAhAx7aE4a+MzDmREa8MP1/ErFApgA5KDkIKQhTiky+cbTaKA7/VFUi9lHwuWAYoUp24oebYdfqKgMIoVOxkB2kkMgO/4sbxEDVQtGNSvG/F4pWI4nRuNSGlsqcIlkrqUWXswuiE+v2TKk7f5iHLxd+Oj3QW6a27t7xnlrYOtu28dXXX/P7P/4egLdv33A8HhER5mlCVck589NP3wOdt2/fINLIWZimzDwnerOM+2maKLVTSqXWSpREb/D89Mzr+9e8//H3iAa+/vob1nXly8dPBImUrfHuq69Zt5X7u1d8PJ348OEDr+9fcTlfWBeL283zRJ4mApaKV7eN87r6/A+i+1HUdSNmSDmDKjklVBfbcFoxDX1yJns30tiUIjfzG+4Pb1nLJ0o3jbQSaWqdkkF2gxAnxBjIMbLkzCwzZbpKOo/LxGW6LsS1Vi6XlWm+ZVkW8nwLki0bg4ZEMwpqte6BRjFEYkyMHHabr7u8SEzJ0Ho33TPuNSCZIWeNMdom7h1eq4XsAUUDHRLXMIfhROmjleAEwl4LIWazmU2ZoLjfgBMocb077M95ONw4RBqYpplSN5p2DocDEqMbDilbMb10zgu12ezU8uMtKjjFTmOlPH/g+cPfo8/vSesnUj0xT0I6ZOZom75pRsVJeZ22FkpZLXk1Wr6EqveVagWC8RnMwAsFrerOdkLrjVYtqz4md0oc3awn6eGozQ6aixdlXfEEJ3ONC5jcr1refQvB3QCDE2EtaGltNqpIcyItGZIR7yy4zFCH+7s7/tW/+Jd8OhX+5g+/p6OU1iwkrtq6lqZM68Vf0PUatI0z22sNNhXRoB49PQpS29hEfMPRa5FqyAc7kj0M4kSsgLuGzrOPHvYtTSNjjDLg9H1O/uIV7rba/GwIsX99LxpwLT/swW2jejEeyAu0Zu/y2esO1boXseoo29jokRdjAvp+vbwsXEYB8LLjv8oYXxYy3UfG49/ErxO7p9Wq6r0YsbqjXf/utZQ1I16k70QRXhzHl1yMf/rxi4sB8lfUJrR6QbQg8kxvJ2LvqK6EdkTCkbBlQlFCEWYSSxRyXlniM4dcmJMyTTMp3Th55g7ROzozvWcn5wlNBfVUqzzNHJcDfU68uj1yezNzc4DDrMSpEeUMPKFaoCcgo/oI/YxSgewnwUxHdFSh4nDmmFPqdWYZHG4KdCLNq/RMzIGUlCiBqBHpFoMSGSCcnZCGekfgl6l2qlZqt0hLUXESlG3C4lafmwYikd6rjQn2YqBQ2kpltcJAC02M9LS26rwNJYdIUjPIEaC1wnYStlL2U1k2pZXgtrMFI680tm2zzWma/Gdto9uNYVSZpsy6XSyI6OGB+/sbRmzq8XBHioFt3fbuNQSh987j4yMxJHo1ko82eP/TR+5uX/Hjjz/x/fc/MM8zD18e0Np59/Zrzqcz73/8yVP1hFKrb2q2QKQ0MU0L83LkeLMyYbB1rZU8Gax9uVxI80RTnwf7gt89+Cqm2UP/NgidiNnHWjrkzHF+xeubryntgae1U1qlDmdBGcxjO/45JXIKHKbMzZRZ4oF1ut5ihzmjLz4PAvMyMc8L02zOfa3bHLB3kGDdTPeCbTi5ce0/Deb2xdUWi7Bf37YG2felmMyDIdm4o3bceyF69yn+O9xgK6YdvdpHXiH6GKEScjIipxe1zTd61cpQEMSYaK3ZNXbYnQ3sHvcwmDp1lmlCiXsqaGvqqh0vRqrpuqMWdHuiPX+gPX2gPn0gtyfm2Eh0ljkxTUYuC1FMoz9S9XqCdaOVDQkTpL4jRWF094Aph/wmdk+CsBM/nBXfO700xM3I7JqM0M1jRPbvt9xRcTjXvBB0vxZDFENZ1NeKztAS+SbSWCs2kg0QJpMjhpBQIlkDzVMCv3n3FX/xZyceTyd+evhMXQu5Bcb8OZDozSB17S+W/R6RPu3E1+A+BE0UsIZDdk+T7qOCsQF6J+4I1g6Du01zF3PWs6LIxw5jgRxcArUxyWi2B3n0mulhHf/LIkL2zdX/fW98rzwsi8Eez6D79+qLTlr38yxXSNFiwVQAAQAASURBVH5/sr7/bN8Jje1FN38tKPBjYsF6XOEd/67rw0ct+sLD4Wcb9hgfB7suJTBUN82bG1xZhnoWTggMrs1QpIl1oC+u21/2+OVjgnhH0Y3SX6N9BW308kRiZfILKIREaInWRvxoJoXAFAJZCoknpthIYfY3dUDlHpEjoncgEdWT+5Tb4pJT4jBNvL6/JYSZV4cj9zeJZSmEqSLpAv2E8mT2om1C9QltD6g80eXJTqQWImBRthNItgWICWEGzahG25wdpkQ72je0V/qw0+z4PKoiXYkkksykEAkD7oerBLB3GlYEVK0UtWKAhiU7RtlvBIvQtBsrqQXYmESrW0HQL5R+oXox0MVS9aCwacNUcYHUukkde6MVRdeJ2q+QVAgTKc88nR6sW4/WiV8uKwCvX7/lfDYnwZSsU/348TPH40ythZQCn798gm7z6eNxQftG+uodtMJ6urAcZohK2yqn5xMffvpIzjPrxVQMx8Mtf/zDH/n2m+94//4D7398z5QziJDF0JmvvnpHToGujSnOfHl44OnwTO3dAm7oVnQgrJuR3V4tC9M8sa4bz8/PTPNCnPJugbqbjKhaMRBnSqhUZ98HSaQ4U0ult8w83fDq9hs6Z+Sh8HB5QF1/bMv8FRZWlBQi85S4OUSOER7ztTJfpkhN167scFg4HhZSngnR0K/hLGbe4r7IyNWx0q5B90kTuDKxf/6+RKyw1vG60rAAjm4xbES/aZqJIVBKsU14FMgYSmTOoKDubqYS3KQokxwlajqsmLsjfLYQpWQbf62F8/nMzeFIDML5fAG1jer0fCJP815AqHM2SimEYIhGEMgRYr2wPr1n+/w9en5P6iemUA29SxN5tvdITC59dlMhmZAspAnTtPdKqwUNVixoZ+/UovMVjC8ARCd29U6SQEwZjVC3Z3ptiDQsNU+sZRtZu73vV8co15pYmp/5ZXSmrKScCVG8cjdHyUGeFwnMOVGDJSmqOKk4m8sjMpE0QZx5tcz85W9+w9o7T//Vf8X5vKFNTPWlAVry+bNY4+EP0YC0TOgOVoTgHaepolSab8ye++BoAUDTzYso8wwI4fq6JShBjNq8rzzSHdbH//diFOqb3Fj/BsFUkOumLkbYtN8RGcS8n/e+tvFbYuz+5C8+/gQ2H4XAWIT9OcZr8Z7xZ39/WSiM/t73aY+fV3aNl2/mL4e+LwuBn790efFs/uHFTiS6IZHux8JyGLyJRXz/HLFl5qNhT6v8kscvLgY0Qu+Z0hZKO9LaSt+KVeQhUCU4iS3SNHKRxKYT2iuh2wbVW0XrmGdnkAsiGxIsPaw7IaP1YDdrC2SB45SJQQhx4nZOzLkT44rwDP3RUAB9NoKYNuhnmjzT5QtdFsyNC0SN+Cd9QTn6mGBBmeg6Gb9g3DxqG3lvdn8qcCmNFKBVJasivSNN0R6RbnBg007p5mKtrqluWqm6sWmxjZwCApFqvBqfuVkYht10obsJC2FHFbayUnWlYYEZ5plYQcyjv9BJKLEFq+JVie6b319eDxKote/z/pyz6cuniZwTh8OBhwdTEaSUHM6+cHNzoNaN2uB8fub2uLCuK58+feb25sDT4xM5CSKJsppTW+mdL18eKaWyXiqtWUH14+N7Pn155G///g8Iwu3tLX98/xM5Z373F3/J7c0N8zzbcamN+W7meDxyuVxY1wvrtpq9bDCf/PPlQkU4lLJX0lsptslbmWzHsVXmKZlTV4/uFGjOdKVerABLndSFts1MeeJ2eUPnwro9cqmF1k/miiadEDuRcd1thJCZU+QwVZaYSOHK1QiihBcSp2U2QiU+nqm90iVYjsAIsUD2gmCHsQcSYJOBvaPapUZOvBNJTshT4JqF0bQC9n1Rki0/XdzXQnZTliELHDCmjQzw8UTwhEslhCFbNG5C96yAaZocIQi06jyBIOYA6Av9um228cfkCIUtScPrXXsja2HqG2F7op8+oaeP9MtnZikccmRKhuRpDGjMiMx0MpYhkZFoY6R5Ns8TwMo5L556bUQP/hI/llaTRUJ3yXEfki8bKUQRHFIyl0K7gXekkeabp4+RemtEiaYi72YeVYgevGYeGIwk1zY23G65GTGYtDC6lDtkiDMSD6hkaJBC4t2rN/zlrxv/8P17nk8b0v26aUKrgnbPi3iJDGhAWkKaoV3R492tGbNcB/XCwKqUa+fc1aqWgNuqE21pdyjceNRXVr+K+Malfp2q22I70c2f2jZPuV7/+9/1RYjVvphxJWfvv3x8sn/ul/FeCOycvZ/tk3L9+s8Kh5eIwYuiRfdnvyIE/Omf13d0/fO65vMCGRieCwNBGCOKoQgJO5kRUxb5MbfnHEkZrsQZx5AXp+yfePziYmDtD6ztzKUqW1mo9Za+KUk6VSJJZ3Ky5KimgULk0iKpdIoY5B+3YBHFfSOmM6E/IRwhZQKNppHSK1uN1K3RS0Z6YxIhLxM5zyw5Mk+NEDeQMyontD2jerZFsAvoSpcTlQeazMZrIIEY9B50Am6MuCez+SRopHXjFFhYiaWXtWpQfEdZW6N3g2aCBisEvFgo5mbKVjpb6xSGP32jaqGyUfpKpdDsq7YJ+WnrYq+x9kLXzU5yiF4M2EVQ6maVtgdlWIfaDI5LQlTIXRxqtItwCpHWjXw2HmWrnE4Xk4B5SM0cAsotIjbLRiDnbPrw3p1YaJGhrReCHLm/v2WeJtbLyldv33A+r7SUWObM+fxM20xyeno6EWPmcj4hYUJC5MefPgDCVszXYDnestzYXDnNE6/fvGJbbRyxrIVpnjkcDl6gZCtknOy4HA7kPFHPZ55PJyelWnFWWzV2erBQKmpl3m9CI81lXZnmjHbbtHrfUFnMfbAn5nTHq9tKbSc2LtTLhbY1LwiUEKtZage4OQq3t8LtQZkxm+3x+BMnWNskW7Mc9L7RVAjZstzFxyvWedliYx78lvOxzwSjLx3KtRBotrmLw/0xWJHauxERbQ8L1nkTXKEQyDk6rG/BMCIDqfCmlwFVCiG49Wnv+/da4E2mlO06rhnXUOm7z4HZQ5slcgiRWiuJgEbdNxP7WqDWjVYu1PpIf/jA5fEn+uUzrA+kSch53s2lFDXDoLDQyHQdoTXWfYcJECO5ighFx7jCZu92vE1NMDb24fc/5J3dMwmkd/cnsIJUhoqtWxdtx7RDHOfP4OsojSjd0u9qoYQOYTInxWD2sv0FbB5bI0QbdTZ3ZlSx9SeFiATnjxRT4ry9v+fXv/o1710lJAradD+PtGAf46GCtEjwCO6o3m2KWYtrcHSAzh61i40NjAhtm5D9VNj1Cmaeo6g0gl6/14rJIRMM5n/QfbMPLzbnvRAeBcSVjzKu/R0Z2GWf40PRn+/yY1rm7xmuM3+/uP9RYeD/vv/c2Mx//ggvf5e+KAJUHSUYlMLrs7y0dL7iFeybuPrv7TpUBNfRxPVtjGPiowE1dEavw2p2SOUXPn5xMfB4+p7L1lhLo/aItlt6ixTtFCBoIjTLlW4YV6ZqJq6N0gNBMnOaiLpBqUx5JfZnonxxFuoTqom1ZS7rRL9UqMa8jnQLmcnClIQYFQmVzkqQFZUNnFltcqqNyokmj7QwW70qi8NZYl0Di5+ojGIQbVNDBcxQqFPbhoQNpNkMbS1oysS42GZdlFaUWuCyddatstbmxUD3YsA6eJvp25igU2jdss412ZVikc2J2AJbH2KZ4O/+JXA05CtWCKg2qlt+RnX2avDbUoXaFScx74/WzYd7yvMukRIRUsy0Vnl8fPT8hcyyHNg24xFcLmeONwsAr9+84TBnbm9uePjyhWU5ItJZL2e6B8/UamTKaZoN1uvC+dJYt0LtplX/6utv+fLwha01vv7Vn7HkxLzMrNtGrY27u3tSKfzw/Q8cjkd+/Zs/Z55mQGxkMc82bxfhsq0shwWa8Hw6UVrn7vUrtlrIwXgN2myEE1WprQEGreVsaYTrpVHWYgXrupmaZM7Mh1te333Nyme2+IXaT6ybIVpBKiKVm5uJu5vI3W3kdsYNY66SzmHsMh7runI+ndCwQFjQuHj3boz8MbMezGG4Fjj2fTY6sBVFdxLeS8RzzEaDh2j1bkY/aLAoZBXLCwjJixPrmIcV9vg9iHNfuneDw+mQKzIxvrf3SCltRxgGWlBKQbp9XykbHWWap30u2nvHWbwY+dE2+G29UJ8/s334nvrlJ1J9ZsIKCGhIysTlYB4f4oRjmegyIUzEMPlKX23B9TAf1HITJu8uLXimgmxYErAQQ0KiJYlaEFS/dnM+DhjZiryEm7vj7o7YBMHSCunkaIl4Nq4xQ7YgiiQbBTQMJTBekqEPrSuldwMcUiBggWLJFSwA0jtLzvzqm+/4m7813wELfjJuUrBBvnEbxjXZA8NHQXQ4oNr5trjjYAgqnRGoY5t8J0ffsNUIbLJv2lf43DgDV8b9GP/qqI8c3tpjmNW78WDFwh5jPHrdMYaQK2Ig3SDyoZrY+Qhy7Y6vhYVwZS/YOdzHFvvoQq+fXokHV8xBr/fztdf3nt6/tjscjO99UQ28HBPsaZcyXo+Ay4D3TBUJTowcxYb9nK3xg602UAHjn9nr/4WQgD9+cTHw5fGJ0qE2o9TZJrWAdlMF9UjoExImC2TsEXpCWgRZOOgrSo9IjbR+oWlnlg7xRIxWuWpL9HZLKZlSE9IWoiSvru2iDroh/Yz0z8AD6JPP6u3Ab7qx9ULtFagQN0TPNtONkTYOPkffZPOLlTNadxiU4KS6GBoiFXphLR3yQpjUOo8i1IvSe+RSGlvtnjhXKYI7DzYa1v11rQyTilY3erDypIaOkggaKM3kTGDeB0EzdGOLp2gObYTraVa1mVpvHZFKZ3NfA+M/dASJ1o2PR8wTx+Mt6/nsYRsmWeq9czqfeHp6Yj4sSAjkaaLUSoiRh6cnZ7Gqm8wIeZoto0ECh2Xh9HTidHrizZvXBMn0svL69ZF1LSzLPd//8BPb04m7+3s+fvhEjIFlWYyk0xv392/57qt3TAqfPn5xy13rAN++e8t2uRj7n0TvSqkr23ox6U4QTpczh3C0qN0YuJzPJJfzdXDyod0q23amtgvC5l2PFSylbKztkVqNPRzSgWPMTOGOu+Udp/qJ0+UZqSe6bIRQyDQOOXOIwsHVKFVNKTIeTVcPXbGC6vn0hdP5C2k+kPMtScTCqjTQupprJ+oS7eALjBgDfdy5AiHKHtTTPclRsI63YAXC4XC4ciZ8rh2CqRV0ECIdYdjn96M79lnESBQMIZo6TXwzHguTB6PEkGlh6NpdBhkbaymIWkJi8y57ydP+/PbaKuLSN22NXirb+kw7fWJ9+kDYHpnjxmFJll3Qu5/7RMOgeAkek+tKgdHp2ibjx1SwgKGqtgpqIKijYr2aBC5GNEXjIPhrDK5HJ87QPOlUFVFLg+zuPNm79WiiY4Mzh7mgHUInBUwxpA16oLmnGxGaqx1SMvMui4M2gmLQUaQEH0FuhGkmREN4IsLr23tu5oUvBKpb9YaYUWwMOeRrMHrNiJCsu9ZI0BepdzQQd1EKhSFLVDpBHN1hbFTBCg9HaGxLzlT/DarspjxjPm5kObuyjcd5LTAt7EQsO8ILAEPEfeOUK2JgZBVh+Ct0/9o411dZosH7ds58a92L55eb5xgH4L9naPqHJHK8Z1cxOLQgsBclJvEbSAnXzp8hkxwbu7+0Me3w+0i7IjH4OGXc7mOkMIoAV8eNgsB5AoOr8M95/OJi4NNjIGXPCNdCravP9JRAJseF0Gf6OkHPRLeEzOnA4WbheAf5sEL/xFo+sm6PpFZY9MyBSkpC10hdN7YzPD13ap2ZpjsOyw1BJhAhh0rWR0L9AP0z9Gdb3B1iujTltBZahSyBJQkpXdBwZg2KesyltIV1MweyKUWW1GhVkZgNWVgbKVTQyqyVKIVeLtSpcq5KCAutZ3oP1FIotVtgBhud1dj+7pjYcUnKCF1RzGGwd7Sf2Tj7gjpOakbbhLSJ3IXITCIbhBfMAjNIp2OdnYFDldAvUAstrghHhIUYD7Qed702wBQP3B7eEHrk4emB1jt5TjRdeT6fuJQNyYH5cOC0rjyez5RamJcDy/EGEeHxeeW7b74hTUfOl+9pCmk+MN/c8vHLF958lYgpcn46McvMP/z+H/hP/9P/lB9//EhOmVf3r7i/ueX5+YkUDzyfTvz+H/4O0cYxCFmV+/tXxJBZLydyipTLib7MnJ4emaKwLDPQWbcz63bmvF64bCulVV7d3XNzOBAEpmCTtVoLl1ZYzhNpmkA6MYl781fa1qibEMiUunFpX4ixkp87sDAtmdv4DSWfec4nTu2ZrT1CXLk9LNzlzOt45FZuoCnrtrJeawEuemKTC3Bnn2+fKf0VS3pLjAVtK9KOlIsVNzENTbjD2dUXR7FB0LZtEJTDcab3Sl0vBLp3Xp3WzS1QQ6D0wtbcxrh5x6+dbd3IKZFiZiub8UdiYr1cDH52FMF0140YEtO87HwBEA6HI7U2tq2Yc+c0Ya6fgshErY2YAqI2OjBJ6MEyE4oRWLWuZO1MYucFFeqlkbVRqTytX9j6I1NY2fRCiAdnWwfW00qVE/PNcffpQBupVmRdDZWKSu+b8RViNuMpMrRGXZ/c30DQtdLLynycCCkbCc/NqCRmg9iqgs7GQekrEpQsHcmJ0IN5E0VTbWjz0JrWISZK2SiXjXJZEeAwH8zksBmvqQcrxCQmJBk3oAdTbizRxMuybTbGSGacJFTbxIN1lktKfPfuHV8+fubxdEFjMgOnIOZq+XLVDxCmCQkGUWq3UWvSaHI1GrRGiMrwkNj5ADsodW1/bROyDFhb7SaiWsHRxRMMtTnkb5HwIZqBW6HRFKooGkGT5VyEFl0dcJ2pd1dhiHpdOvT/vXtxO3kxY5v4UATssLz4huH0jO5+GT+TPu5FxKgWHA3ay3KQ4NLiK0vSTZ+s6din/wEzslIFLUQftUUfr4kEkwPrVS2l/lyhdUJriHoZJ65AE8sJsULWXTL3fUR3efEvffziYqD3QOtC6N2IbhTTuTs8L1STGbZuxFOBKWfmOXJYMtMciekC3eCtUjtrfaL0SumFKQcaytYq69o4X4oZHBEIWQilEKWxsqE8EspnpH0h6oZoRGPgEuBSIpfthnpJEJWcL/TekKRIFOBgXUSJtJbRbptsCoEcsZtGxd6vKqV0RAtRCtKVtjW2tqJOSNOWjDfQOls3FMBMhAyStMbQLzAVdpJXHxWigleWxsQe9pHR4UfTiSdJ5MGIt0sfcJapdnq3cYYxmMO+oAK2ebwMKoo2I9zhYLGuZV0vlLqRp8Tp/EzplcPxBou2rejaeHh45PbWCoKtFB4eH6m9kafsGnHhy8MD35Zv+evf/iU//Pje8ghq5+nRvPcOh8NugZxz4pgzd7c3HJeZ58cnfpAf+Itf/RmH5cDd3T3rujFNMzc3N6yXM18+f0LoxGhe/ghmlLNtTNkg4VqqObaJoLUhizDlyYhj3Qhdwyq1tsJ62dDSKJuRJU/PzzZXLqstckEsIllmJrllTnfmytmNS5FjYpJM0ETdhErjdOlsL4qBtSqlXm/OrRt/ZKtn1vZAb7BoZppvd2nfS0ST0PdFBswMRkRprVJd/z4c0/pgP0vwBEwjgvbuEchBqK3ZTDyG3YlRxIywajMZVUpGbrNMEiVk9ll6d6WCXX99N7bKyWSMvTWb+XeX0EaHNR2FCDHZBryjArqPFvCuPibxgKdED4Eudm9upVmOSYyU3qnrhSpgjfzMFF0Gp2qdvj3p7gkv6rwAxQl7hnBOEmgSTHsZOyFn68yjSeBo1jRQLCBnStl+FrVNLhhkXpppzCO+wYRAa4XaLR573TYzM9oa87yQ54NtbiL7GCLE4F4lppgZvfTY9KQbymAbngU8gXB3c+Drr77mhx8/8Ly+p/RKdJllt35jfwxSausO7Ydos27bQf1UBd94h4vROLbh+ncfa411TBCCBi/YEmPanWRCGZwUYxtEryrMw8OLIhnb7QsugN8LBt97WeDjGvFR2ZCmj/dml5KD5oPZr6C9IT342xEnAzqPYJ8HvNgAfzZyePE1vfJciNE3bBvpjPVXuSrGFCUGKwBiDKTgm78t1BhtxdCu7pwdCcFTvwx9cXj4xYkcn3vh6q9vYCW/9PHLiwHdkB5cJ7s5AahZ+luHGDfz224dWqczEYMgMpPzgZzGhlQJaUXLxrZtbJtSKkxToIfIqQrPZzidGrVD0wshRUIohNBJbCgXpK6EXhFN0I60FlgJXGpmvUy000KIjTg9EdqKTN3dxozsYw6hgvRIJJIlMAUoTeldPIPdoF6abbIh+Pun0sVMfMThnNa7FTY+Fuii1wVWr9fOiAMN4UWFuRN07PtqN9JNQJBoi3kK2fPA2247bazxsaE1cxELDhGJ7sWahKscCKDWldpXSlm5XE6s24pKo9SNECyK+cvDM603DocDXS3HXTCCWcqWelfKxun0hKry+dMnbm9vWc8XPn/+zPPzM4dloffO89Mzp9OJ8/nMNE2cz2fjJYRASvZcgxz4+3/4B3768Ude39wwTxO1Vm5u7pimmU+fPvH27Vs7jiLkPJmf/jxzPBw5Pzxxen7m6fGR9fZCTolX9/fm2oeQc6K6fNNu4mvA1K57r5Xn52fW0xnFzEsGeXKaM0uEFGcO+ZZJFqJYtkUKMykd6ZrNlrpVni6Vbbse9/Ma2cr15rysjY8Pn1n7LdM8EUImcCbHhf5C8tZQI9cFJxX51DO4B2yrhVKKzalh35RDiKSYiSGhPe4kOBVxi1JzBUSsewnOE2ituEVwN+lbSLTSqNUkq7ZwexGwfxihMkYg2LXYWmFzP33V2V5Pcha5yO5FYUY/YwFn5zm0Xuih01SI04Hl8IokhbhFaq/mtuh8mVo2Nm1MeWIikSZDmf0GNUi/uUPcrpnvxGCGYVo3pFVbs2IwSfC2GaognYjxXsBg28vTs6tHumcNBctjEFMxtJG5YLixvTfBj7XxV+q20bZGqZ1FDfAFI9QJQg+RnI1HMQhzouqe+WKFgA7HOQPYgxgq8dVXX/HV11/zw6fPnE4rMqUdh37JW7FI3+JjESAY7N360PvbpoU3ScE3bGEoQtzXYa9YB5NdvTOOO/EvAEEW6NXkqQjRXT2HfFGceNhEvRXyUQADcB/FAINzeCXkjSJK8WL4ylN4SSjsOjr25gXNWJtfEvT+8ePKFXjxOjqEaOdeJO4k37YVOi8VB8Iob/bXGQIxOScHJTQ848dGe0hwxYCpfMx3ZrzewFUWOezR7UN83HJlRP4ydOCfYUdcjHjiXWQfPt1u2KFug6l2fRKAWpPD09FY5CKIVCNcYbP11p/oKLUHekg8l8D5rKzF2N8SC+u2EkMxzsC00WQjdjUZjM5s/Q1bzay1s26R7ST0C2ioyLTSD0/E2gnpSKgLKdpCUiv0Li4N7PsFZ6tdoBPsdanBkRID1S9XW1Qa0fXgvTefEXcGz38QVQYdcDA/rTuJNjoQBakMs4zuRYFxQTw6NhiZL4nA0NeKEQPF86z31zSuUDfIEK1OMrm2qF0LpV54ePrC5y+fKXVlPkzEJEw5GjFO7edr21gvZ2N8HxYO88Td0WR/rZoFMNr59OETr+7ueX568i6y8/z4xO3NLQ8PTzw9PtJbY55nPrx/z3q5GFs8xn3WlnLm9vaWLx8+8P6nn7i/vSf7TPn29oZ5Xva5Nxi0Z/JIQJX1fKYWY7DnmNguK+9/+onfHA7oYLJ78p5F79pcs5RCrcW8fP35QzA73FKKIQWnE8vBwpZiXFjSLVEXQsskIkEmQpjRnthq57wpl7VTXyABZQuUel1u1lb58eN7XunC23zDYbmlxwuFExmDSLU7+oZ1mk0N4bKEM6seW2tmzCRO8lNbLGyumEATZVM3rAH1azPFaO5/vnGllKywVYeBCfsG2Do0FZIGo4T1TuuF6pbVTU1TPiWbTVvHue0GUK0nGyVGS56UYKZRQQKGozRiiAgm80SNgDu66ZgP5Nu35sRWGiHY77ZiF4IEy2HQbOvNC3KWeUD4IgteDDSCWE5FEKVtK7SVqEqUq7ufNLMIVzUL65EDUUvh8vxIrWemOXK4OZDjRPfIsN69s1fnDfWNHBKShJ4rJU202OhNDFUshR4TMU4Wr16j/SltT77c5+HYAmtrg1tFSzfSnRjv4e7+lu++/Y6///5HvlzOFA+jerH32XMGiEmZFxvFh2BwuqpSq10zGjKhB3PzVGFwCEyEaC6u1+3aofBd8nYtFxBLXFGxwiQEMX6CuIZemqEdWvaC19lPe6N0LWSsS44OvRuZ0DbQcQ8b+upGY05iBP+2gQroQGz3xf8XPwQ7BylES/DE1EFFq3mQ6AiYGzWhMBxvd2TEw8ysMRG//xqxNyuxBuqhfsw0jLJv//4BFln9c0UGdCeK/gcuBnrvBlV4hnprrrnFtMrR87N1N6gwaU3rjdIqrc3e7WS2ktnqTGkLrStVlKJ2Gz1vwrkEqma6dIrCpRQUcyYT7WgMZDmATIR4S+UdpQdK3yi1UUunrhu1bdR8YqonYupIhpifSfkWlYXSgun3a6C0TmuyL3rNL/zgspWuniYXIk0SiMmWmmIyrm65ZA1z72q+cIfevBCIBte7Y9llXdFeGDHE41pBlBSDLUpAHB3UbjrT6T2aD36H4OdBog0VOmpoRjdbVVQIVSyYxh9TCoRms3YLjbGAmJxc2qSBuzuDqoOaX4B2izte54Xz6cQ8JS7nM+fTM6hyd3OglsKnT59IMYHCH//wB1KwDU17Z1tXY5Vvm208aoYu6+VCjIGbELi/uyOpxed+/vyZt2/fcntrWQiTm9zsDHfUHRSNIHd7e8vnT5+5XC6c82RZCCFQto31bAhTTInmcHTEnPlCCNTV4n7B5rfbZvB2R82V8Xzhcr4wTQfm48SUDyRJRLUExGAOD+ZVKVAJxtV4Ie9pOkKsxj1V2erK8+kDx5s7pvloN7xE0nJDkORz1EbvjdaNhT7lTCuV4ZjZqkG2NlWwzTnIcLKzJEoRY6cPtv6AJRVTVYjPRxuN5pLT617qJD10Hw90NXXAyGMYC44xoIfpSqO2jdACUJkmn4U6DB1dnmiPFyQxrJwlivcagZCOpOkVNZyo9QuabEwn2ghq8/6cItO0ENJsM3AZzzTmxbIvnK1XiJUYAjGabLeuJ6bQyNENpcJ4PbJfF5b+CFOe2ICybSCRZclITEZCbMWh6ug+RJXaqnGugsUc52lCa6dFU0rFaSJNMyEnNPloQgJNO2EUsi+OXa/WvRNsMzVI4Hr8lnnmu+++4y8fnzj3yqcvnyh9I4T2sz0vJWU5wrw05+XZMarNHEiN2AvGAXlB2HNeytjkdIfRr14XOHJguEHHeA3Rxwne8wcrWhV1IrjFEotv32AEWRl7tr7Y0MUKhZ+R8bBxg3hB2525MP68ds/qgXDyM3Tgn/cY6baZnLIfO2vrogR/vTBQgbE+j2s9RiOFJ88VKc1G79kR3t47dFvD6dlNp4b3jKvEmu4IgXjhMWCLP4k++Ccf/4xiQPYbQ1sAzYC4X3k2i8+enGxqL672jXV95vkZpmxa/FYubGth3ZRLjSiT5Tu3jdI6l6aUDs0vvK5CadY1aE4oyeFl29RivCH0e3JtTNMzc7xwbiunzWVsRUldkCRI7sSpkvIZiQdKtxNUK1w6FI0UFUpXNgXV6EYsiabKVk3+IylbdSxWXQY3I1F/vU2FihhXwctZwaD+GNyLQYTqTnuK2IzMbT1TdFGhmmzJrFmvIJwxc525q75YSUKl+UzcLruuFQkmXRodHNjiBI3jzYHWK9t2AWxBPRwWYo5Ms7m/jQ3jcr6wrubG+PnzB0LonJ+eCcByWBCETx8/cjqdOCwLUQJ/+MP3lFqp28ZhmXl8+IKIMOVEDEeP121maxujO81Fbo9HgirH45Gbmxvu7u44HI4vvA58ce5WDFzWCyEIt7d3lMvG6XSilMK6rsQYOZ/Opow4zExehNRSaK0T80wOmZQyZS2slwtfPn0xjbYI0zwjRJZ5Y9sKrc6EkJhkJpGMbwLEaCMbDQGNftyGtGxfOoYrnX8uhSkXyvqRx4eZGDKHIxymoxFEffMB43kQxNjoEmg+kw4S6W46gxt3jUTDgBUcqnCYTUpLV1tcA6a4Ubs2UrSNq7lJliRb0KC5M2ZFgpks9W7deqvNFiF30RxXaO+dFCMxZLQXanWdOcG9CRzaleFV4JDyQM7cz/18eqZrIXSYwkxMN4T5jjrfsa2fOKZso5NekS7kfGCeDoQ8CHFglY8hQdbZWyNjngKbrSX+HHW9kLIyLIUN3SxIWmzUMjowhOQR2tuWkN5ppbgx0EQOkTJst6ttRL11CtUGg+qbeEpIawYFh2RZFHE0VQ77vuAQ7GQ0VVebVEK1JFVV55CM06DKq9ev+Ovf/jXnVtn+5r/m8fyJPWjHHzHB4Qg5b14MeGrnsCV22NvqhMFn8u42juvaDrPy4i/XPxizbUGts9UrZjD0HtZmR5JGejfPlKHhHxbJA9GzJ3A54xh9jP+LIyg+bhhoa6c5YmbH0Uy8nHT3/w8s4D+RoqGQ2XNEOkJxZDyKvDjU4iovCJibZZJIDpYjE9VDqARCsuNcW7NrdRAOCPsgQ7tNBc1XR6wx8N/V1YslfflK/+nHLw8qwohyRvQZTOFAINtMQ5MZSIzZX1cIhYrytDb6lws5WijvVk6UbuTA2jq1bEZIDFAcNBzQb60NQmKZFkJamKcblsOBm2liisajn1Vo/YlaO+d4IdSVXoTn58BpTagekEmhBaRWYj5DeEA52ALaO1tLlBZoGowLG4S+J3xFk94lgZDs832a5RfpwLDE5DkMIwxnPEuIxJjJYSFoQnOgVJOQ9WBEIBVjfyexQJ9JYMJsi6NLuPwkEMQutuYQl/SAmRcaW7hjka/SKzR1Z0N7hKjkKXJ7e0MIwuOj0rRwe3fLNEUenx4p1Sxqu8LtzZGcJuZ8ITrMnFOgTZm4TNzc3HB7c7Pbtn7zzbcI8PnTZ7oq8zTz5tVrtstqyYenM9OUmVKmeIX/3TffMk0TD1++QM6cHh+5ub3h/v6edV29o7zw5s0bjscbd7cLxLhwOByo55V2LKw3F0qtOxeh9875cibNmfP5zFYrkiJ5ntBmnXoQsbAjGaYpsF1W8pTNfa41np+fOd4ceP36lhAik0x2M0sgBZP1kdvO2o5ZmKZIjNcbMceRJ2GPwww3c6W0M+XyIw8fQZpwN93R4xll9k3ayKyuOOL0fDakqtniEMQKzOqysRgEa+eqk5UCImZyo2IW0yLGLRhplRJg3S6oNvJkEG8UIUcHeYPQemTKdi1pLZR18/wBMZvh05k5GzfgtK6kkFiWGyMjdrtPnp6emOeZzZ0Hc85m6qNX8qD64lfKZjwEgdCF2CJTviHfvKK3E4hZZgcx2+7tUoixk4cne5AXPKvRjdnXmnZUqy+qG2mZeP54pm2FKAdCSsjxFimeXtc7OU1WPK0bIZqld55mel938mPwREPBzLzWtlLqRkrRwpyaJfV1VRtFiMkEGwNYl/0YdOcrdTehSeKITwxWbIqN2Hpz9KN1ulRkmtFm8t93b9/xu9/+jsfLA//+H54o6r4sYy0IjSgXcu6kaK2GEmgakUtlXbsponzUEtQ4JBIsM2OkFEWX7F5DfryDd0Rj7401OOwvu7322MQDltUQ1ZMvMe7TS4v9IdUUhnSPvfhxMaAXCzav7lppak2SkcNNUhgJu9uiHfGXrMqfbXy2vo9f474fIVhxOcVkha/4c2PEzv1coQ5OqY1PMY+X7JHhcw4EqinLkhWmquYHUmpj28ynZxs210NpoN0ddwEVWrf3NdABQQ05fkkQ+ScevzyoSJNBdtoBW3xCiGbKIZE+OtygXqhUYgQNhU0r7XyxE9YbpW120YbC1le2eobYiTlQ1EYLdCOCTBqZSEg8kNM98/SaZb7lsByMcd1XqJ/p7Ymtv6elB7apk+YbWo6ctyO1YRuiVOvkdaPLEyHYOAPttJqpLaEax8TdFlwCakYHtrGLSVwGahEZc5rBePVchh7suUbHpJHIRJaJgNnEJoVNKioFolWGilX6KSQm6WTpZBpRq53Y1umhOzTqv1WFqIneIhoU6V6YYQZDYbx+f4QkLHkCudvh9kbhcDjw9PTA+XSm9UJKiXmeTd4ilZvDTHbCy9s3b5DXNm+PMfL69St6azx++cJX795ZZK07BL55+5Zt2/jw4QPr5UKrlTDPqCp3t7c8Pz9zPp0smwDfnHM2FCSmfaNorfP8/MyyzGxb4HKJtpmIdWrLYXFCHDtBLeZE90W3tsbaKiElIzBJRLqNKrbLSo72fo/HIx/ff4CNPRzpcrEo5Ndv7rntM5KDLQYpkaRAt5m5zeNNV5+nQE7XAz9npefrSnOYOq9uu/slbNCfCPUB3R7Q9EyIRySZIVYf0K0q61b9GkrGxO7YKKc199xRonjIVhAb1VCcqCo26iO4QZc6MmyjgCgQ57BfXzm7Ej0pNCXGZoFlrSN9Q2iU1iBNbOuFUgopwOW8cjweSXkBsZl7753L5cI8z7ak6HXD+O/7fJ4nugYSQqqV0KvN4hFLmGxm95tSIqZMCxPaE90zPWzEVXeY21wXDXbTgCMejV5WR+PUlAe90SpMIhA9+EkEolkC59assHpRqI1ckRFrLIgVFL1a+mKwhqFX36T6UGAYcU8U1tqJoRrDPiXiNDsCZIx/UcxzJQZiCAyjHbwZsQmtuiTQmOVTTLx7+5Zvv/6a7z/8e7anlabrfg3G2JjmlRQ7UxJEMhIy6put4rwX1+Sjw3rbYPDezaFVNBKi7MTyKy4w2lT2a2/gAgPY38mjY33yNXfEA1+/24sLBmpgXw9qowHbnwZZsPm9aGO2pt3D4/AxhPkpjFcZ99/03/eQ66sVKwiMKxAs+jsEC4bzgi1Hez1Nr4hGRwmuvokEpphY8sQUsfMninRTrQgmtYzS7BrugVrEzcI6ziR21ACgv1BEdMNa/H2+vJ/+qccvHxOUAdOYjWmURAjGgCYa47bTfS5aQS1uFCzJ6bxVzj53Lb0gSQm5UdloekGSEnswf3ZV64xJhGDcgBhmcjwS0y0p3UE0iaBJgp4J9QNR35PDMyFHeoqUMHORmTUY4aXXC0ghaKFKRcRwiEBF60xvGUs8FKcBVg+HiMZ2dYa+YlIbP49W5XohIC5Z6c2MR/aSMkSiZiKTJZmFSEqd1LNJaoIaMiCVFDtZKkkamUqQRuxqagExaKj3YGtBgNwjVRO9J79hg0kH7ZYhRLtgxyPnaDdQV+/SLvz400eeHh94Pj366Et59+4db1694XQ+Eync3R0t+S4IU87c3d1xuVwo28arWyssPv30gYhVxK/v7rl9dc8333yz8wNaLczTNQvhV7/6Fd9//z0PD18IAtu6gio3xyOlFH788Qdynrm/f8U8m1lPa411XUmDieuM5xAjacrMh4WAGLms1t2KedwUrY+fz4SgrOcL5/OZnidiCBxd2aCqrJf1uknFwPPpG97010Agp2xGUNjNXNvK1fhDiVG8S7fHnPRntvDL1Lm77earb8JqpgRz3khyAn2m14RifhbrpmylQU8En1MmjExYi5lamcNdZEpq01rxWTAQg/leKJ3WkqssALXRU4qQoppfvhiZLGeb5aZY0F5MErV5EbXZiGk7XWA+QC+U9UyVwrYVluXovgPJF2mTGo6xVEomt7PCbagK8K6nEgVL4ZTIFDPSC4XOtpmaiL6hvbg5ViblG0JabE0CejWkLXSlhzEr9lgdt9bVXuh1I+qFOSczTlOD9XU9Qzq4xbp1wiEEJGVaCGjKaMrUAm0tEC7Ms6EPIZh7YQoTQVbKVpmCNVSlFHptxk9qnV6KKZ3KBqokFQ55ZiRUNjdA662b46AOSoF3tk5EEzEponFFHLcMZur11VfveP3qnsfn34NeE0xFCjmdybGb8iS5eiDY2E5E2Uqnd5NP917pTXwmLUbMBUimmVdXl0A3xUlwIt/etBvyKk6G6571cA0R6y/cUmVHAszDYMDsVl9E94C2/bDtBVbrhd7N16UPvs0oBqxM82JjlALdOQ5X+fXLxzi2YO95pAGa+ZOQYyRFJzZn2wda61Zot4CGTu/B+XTCIWaWkJglMY9NRLH0TDEpeOvmy6G10QJc/HsUX0e7uuW3sxDcLCo4L0jQf/bk45/BGShcu19F1WbpRNevAlWMSVmlIurdLEZyuGyFx+dnHp+f2dqKREWmjsZCDxshdqQZ4QOEOS5onMm6ULrSuuydeus28yV0gp6Q9gXaA6InoFIVnkvlpJlzEDbwC7EjDmWXUJBQrHvSbs5iw7fXF0wdzH7EZ8F1Z6kiSiD6+CoQ3HUq9Ghe39XVAmHMQo1/YOZBgeBuaTF4aIpUCJWQKks22CkJxFH1Y8VA71fv+SZCT0JugaKJrtkI8T1a9eibcgyD2WuPZVnYOFJKRHW1bHoJ7v7m0qnzmafHJ2KIPDw+oV1ZlkyImeenM09qetlaK9u67iz+3rrbGQuvX7/m3VfvuL27Q0Q4Hg8cDgdyztRa+fWvf83hcGBdV7ZtY11tjHBYFr799lu0m2VvrZ15Xri7u+d4PDJNEzDkadahp5xJ88R0PHDrvviWqNc5rWeOtXBIkTkn5xDZ6Cb4AjDIUZHAMi+8vn9NRzmdTtRWje3dlE6k9kTSiZQWkkwIxRIodTjSGW1KemK3qsVOycsqPWdlmQt5iqaPF1tUptRAzkaUa5neM61N1A3WTTksd8a8Fwzq1hVlRaSRojBnYZ5MYyK6EsQCuppGaguU7tMmiY4MGCkzCqSgxNAJoZBiIycLIophRZv5NoQWiDnS8kbfLvT6BFmJUuntTNdoHvpq1tkx2CigtUprlVI2H+OYLXFyr4iunVbsvNVa6H1juNlNDsVqCNQhgWuWBtq3SI+dBEyTORBKjEg0ZnarGyqBGLN1UDs83Wl9I7ZCuZwZ7rutFoiJVisSRwHeWdeNFAR6teJimojzAuVEWQvP55XWhMMhkZIRDmPMTNPC+XwyiFmhlHolq/ZO3SoaCjE7TB86sm40CUzzYUcG8II6IV4Q2MYfgqeUhiEzdOOZ5rbBOfLq/p53b1/z4XPinJQxKBBdEX1izjM5RWJqxNghNOh+H/VumSrdGpxaXTZdjUcxUIphXGRwtqEKA1bvblGsfZ/aYyqEuH+uPj4B3Wfte4ph+LlML4wVba8y2BEXW6OdJ9BtTFDH2EXsOu8DsfDjNTbknz38qf2VXNENLF5YguyogNlQBJgSQrPwyYG6qdjaIYbiTjExhUgOgST4/pDc30EwIjKmJLJJ0X7tDLl6782UC9UQqR3DdkKu3Tfy4jX/049/BmfA2cua6NK9A7ZZmoqyUdl0ZdVCpSDdIPmopulfW+PSOmuzIB+lo9VDd8SY9fSOhm5EnxCImohlI8uZ2+nCVjdqW7EcHSPhJX0glU9oe6a2xrYJT8/K56eNx5K5UCihEqUjvRCbSSIbFjKTxEx9AtmQDrXFXPzEeE9pkcTiAhWPOe2DkeqmEdLdaEMTQTvR0QRDUjJRJjcQguBEr66BHmy8IkmZJmGZfKaFM12HhhQLTGnBXM4CSstC1kRq0DTtZhogqFfO5vF+feScSWS28szpfEZRbo43lkhYNu/ilS+fH3h+OvP8fCJnG23c3S+cnp72+yOnhLbODz98z5xng55rRWLk7vaWIMGKhdbYto3eO8uyoKpM08Tf/d3fcT6bdHFdV5bZ4qAB5nlmXTegcTqdTJI2ZEPDt9/fmHn2G69iOizo5cK2bebX0DulN1TEUIOcDc5sdnxjzMzT7HIggOBhQYE6NfqKKz9sbl5bJOrElG7J6YBlZIA6HGlcjUZyA5HrTZQZqXxg9JI4KWmq5KmQYyHJRgoXaE/QhKYRbRO9HUAziURKw5Vwo+tmhUAsTAHmHD3DoxEpwAoUYjTkKISMVLcxtfAMt0PvvsB2kILISgyNECoxVEQudDHUJgYhxZk2b7S6MeeNZaoGd0aDxVOKhGhdmiDEkG1EF4XWqxvNKJf1zOx3WWvFNj2ML2CjDt3XGVpztMLGcIRAr672aZHe7D0KFtBEsNTD2ix9L4xpn3fS0M3aulfOz0/MyVQztW4sx2QE4GZJfeLmL1ZERCMIh0SYF3I7oDS0VEppJl1uG60LaZ7JaWGVjdaKb+ydy7p5SqNQaqVdLhbIFjPSlVIrfS0ebe18iu7+IaUQO9CF2H02LcOcyJsah7O1NiTCYZ64uVlY5kh5UQzE2Dke4TA5cTkqIZrNcJNKCoUWu49Fu+c/NCsmQ/a1MmIR8Du9zfkBTp5UA+yNAa+YZNUKH2cK4P3+rgwQHwNY146FwjFGDBjZeixqV2anjZDUxl6qbR8TdO00g029EHlZDNjjf0hToJ6ZIf5qJUQbgca4SwOjZ0kIwSWfhqQYN0epQXdeQRLzcjE92hV1iDlTG2ybsq2V83njfGmUzSXwY1QTxsgE5ydbMTNGlNIt+G4PYJI/rXL++x+/vBjweba55wXMdhfbWFVY9cJFVy66UlkJqkRmokfWltppBIhGXtLUUFEaYrLCWtyyE2YgpUZuFeoZWTsLgWOMHJIgfWLKQgpK5jO5PkLb2Ao8nuDLg/L5qXLaChcxWGqWTvJwE3WbTQGD4GlklBhH5pPQus0dm+uurWp117oebEShan/3ilM0EDSSSGQxTa9MgRgmcj4w5YVJJiLdfOjDhIQZjTMaJ+LUydkIaRGr+qUH1L0OwFLLRqUMVxerVLFRAQWzAHPyolUNP7+4MXOdWisxJvIUKeuGBLi9veN8PntAUTEXP4wX8fz4SC1WGGhXvnz6yPF4Q2+d1TkhUQLLPNNFdp5AcGvW54dHnh8emVLmcDjw4aef+Jv/9t+ZU+WykELk9sbdDbeNKc+odmKc9mLh6clMjkLA4n/9Xthq4fl8YquVmKJZ3AISAofjkZjiPjKZl9m8BbTRy3WEoE13hcPT0xMIXLZtL6RaqVzOhfO5Mi2Zw3zHpdyztpPdjwhodXa7Wbu+rMpzvqVNN9d7Kga6FCrVrh0WkBuER6IspCiUmqwQaZ0U7oiHA65bwFwuCzFX6wokMaVMzmYCFtiAlSiFEJs5ROLFtgi9jI0En3narFV81i5SCFIIYUNYES5GWgJS7BxmM59pLXI4RnKGLpGtGgFtniNraTY2lGS/J0Yv5Ay+PZ9P2MggORrQzZPfrW2jbwytVno5w7YifSP0QgqKpIBoJqSZmA6g0fcG3Z0mrcBz+2Qn+Y4z033zP5+emG7M3ro6T6S1Rl9XRDIhp52f0iq2SWtFeiItC2ijywWtsG6m0pDYORII2RQCpdjIpvduXJQQjBvjPKvq5iddKiTrFEspL7NyQIfEsaBVDZg17rpZnKslxap57BpEPwkpRW6OM7d3B+qSOHnXm5Nwc4jWgLgbXgiGi9bUmbJ1oq0HpOIbX6MkATF1hvl3wIhrVgzlGZbYzT1Y9nm+q0asePFCQCN7xoW4fFGHLNSeW7DMgaEy0IHy+3ERLyaiSUz8iz4G8HtG1NYBlb7/8D/eK1+a+Ppr3kfkNgbKOTNPiRh9HBgDKVgSbWzZShtXPtTYnWBpZlyGCIh9BMc5xPIjoHFuK5fzyul55XxptBboYlyYoU4yebXtWUPKuXsMMLwihh/tf2BkQKPB470VZ9ea7a52y7dfe+Hcz0YO1GIXco4+3xaqd0gx2QnrCWrAo1WV0swBFIUcBKmBJsJla9R+xnTJyhQ3pEz0SUgJWvhCkGe0VU4rfDkrn8/wVJSzVrb/H2t/1iRJlm1nYt8+k6qZ+RARmTXcGX3ZRLMhTSGFIvz95AvZz3xpNojGbQAXQE2ZMbibmaqeYW8+7OMeefnQUhQpK3EpiayoDA83tXP2sNa3RPDUQS8e3Bzgdj0XVLV56M2CYEZBOm/AExnfxlZiNkU1NsdfYXpZvUB6U8cG8b1rkkBOhRgTS07k5M6AJFBCZImZmBYfV2fIayfFCb8h+6EZmMrxKYCaKw01dyD0pMRuJDGSRcwWr2SjYTRXodu/fODHTF9bysLtthGCd+G5BI9JHs27T1NGgLUkApF27Bz3g9/89tc0HWzHjhDprfP0+Mjry5XTUnwEHCJfvnzh3//TP6HA5eHCcRx8+fKZ/bjz+PhIipF6bJxPC+fTicfHRy6XC9frFVWj1sp92/AoXi8Yt20jRmYSonynGAYXc8WcWZeFkgohuqPg6fGJnNd5kJqPigmYzVz51mai4aC3Rh+D2wQt9TFY1xVJcYr3do5txz6cKOWBJT/R7cawOyY+6RpzF28h8R4dC+Rywsrp/dcSIq3pLDIjwkZIG5buSLi6lVAy0PDC70zIQh0HiHuxQxikaKTg4qWUlBQ6Il4IiDQf+eL7WjO/lD2bQN5HzE7RU0LwBMYgcyJA86JC9jkdaBCExJui2sAay+kgJ/8M7z1hBJbFfIw5wLRg4pdSn9yCMQa11XcSoU6Ea4yRHDNjc9R1AoYe2PEN278Rjztj38jSySn5WkBcfNXn/DiO7pqC0RBJhDQLapm+fL9aoFfGsdH3DTulqa3x7n8MpbZKkJ2Mw2VUArV2clm8KOsHQQoxdgjKkOF/v36grRJLZAkrNrzIyDFMS5hrqaIEYnENiBFofaA0QkqUrPR+wJsjZLq1VLsDZ+auO0qki3MJogVGqgRdv9uaVcgSeDqd+fXzE3b5xs/zGYwoxZqzTYLNHsI73BgDKUPMXjTlPmjRaMlXBQNnHbjTxRNT9X0agDNctNHG+B7oJDIv4vAdS2QOgYLgXvrAtFb6RS7TYmnMUDbxlel41xMAc6X7bn9/25n/olhgNsvvZYLgQlIbPql6/63+5zoAzguHIHMCEAMpB0oJLhAOSgpCjuqfRWmYdGQcDogUmX40/yxbgBDi+4rSiwafyHhqaHc7bjuobad16Bpn1sVcjc6VSRZfDTkEzN6MHTMt10kNPhv+CxcDfe5jug5PLxRxXDCJYYFmg1p3Rm0k83CYyuYdrk6xUhgsRZE0kLWjSblbYGzCvgvWYEE46UqqC2aZYxi3485Ptxf2/sI5/MCDnViaFxSaNrbxla6Nlxr4ugVehrEFpdmYI31P7xsRRhQkKEsuPoYywwOHfczp6nyPCJWZvEYQJAwQ32E2tbdHBdVIyQlJi3fyw+lTWZKruEcgT3/4sBc0LOT15IeLCUsQSjbyspPTF2I4QLKPo63TDJQMYXFRosOOfewdBusihDhHa9sJGQXkQEKD6CpvrTCDD94f92VZEOoUEB4Q3It+24Sn54tnFWx3cjiRgksCU/rAtt1J4qPLp4dnVI1Pnz7y9PSESCKniARhXVf246D1zuuxE0rip5/+RED59u0LOhrn85nn5wdigH3f+Nf/+l+zbTun05n7ts89ZOR6vfLx40eWpdB75XrtfHh2PYSOgZiwLCfO58b9difFhWW9IBb59u0b4WPk6fzIspyQmQq5ppVA4rVe/cJJCZPgmQa18vzhA9frlTTpf0ONWBIpGEsahNFoJkg4E+JHhmVGvVOrun+/JGJa6L/IhDgvj0g54aN7wApm6xyJexLg6BvWv6LBdSUWz75KSMu7pmRMy6qIj+xLDC78i50QKxY8hjdMjC24/U9ixlp4F3QP7QxrxDBcDBYNRAlxkKKSsiB0jB2xOyFM/UHJyDiIUyRc8sDsMyVH7ntgPT35M2w7PQeut0ZNDtUhJfq2kUvmut0wgaM3lnV1m2Lz7q3EhbA26uufqMeVYjt2fCO0V5YstL6yb53l9EQuF/Y2yAv0BXatpAFrGDOoyCcSTYGQaSGge2eJgdt24/j6E9I3tit8+PiB8+WZoxqxLGQRjv3wXAaDsiysJbm2KCQaBawAg1Sid83NL4R+HNy3VxQnXB515946920jpMJeO1sfPD194GidmIqvL8x8PTGclGozvEiDj4l1+AEv4oJEjwNXcuvkFZb1glkjmlLSSlcli/Crp2f6jz8yLj/xT/OZLAJnGUSqr4El4zkH3qCU0Om6kRmsqlhRRjVaD1SD1iOt++/vM0l0qNGsc2hnawf74UmqYepcvBcOZIzkf5KL8fCpxNuEm9n9iyyAMURR8QbJJ1n6PjJ/W9ENVbp1hvgZ2YYXZ87mmaLKt6NwCu0kTuvqRDB37bRxoMEtypJcnJxLJqdAzrDkQMnCEgqMioydLJUcDoxKSo1KRFtg10CJJ9Lp4h6H0Omq1KZECSwl4UPORqJRcuVyBsJC3ox7C+zqP780iZlBIWdBY6CrURtUdGoj4oyp9xbjl4m1f5liQIzOoGmjDaWJ0QlTsenFQNf2pkzynbgOgiTEIesQG0iHXJFUsdLpo7LEziGuSl0IZA0E9XH+0QYvR2XfbmAbf/2QeMoHdfcP/3kNZE10TdxbZO9CHV4ZxVAIcTLRAyTRCQhSzCIhZmIopHCmcGLRxW0tw5XPpupI0CBzzOyCmRHc0qGTwDW0+tLhjcol6iIVCQ5rUv8Ev40pLUCMhSydEhtL9nFczk4vUHMngI+6/ICPYeGNqBXUXPwljsCMYuRYaTFRdHK9J83L1JDZCb+9Wus08TGlDnU/tzXO5wc+ffrE7foNMJ4fH3g8XzgvJ3J0G98f//gHjtpYlpU2jP04+OHHX3E6eajQfr8RBC7nlS+fPztiuCQ+/epHjrYT1Kcma8nknHl8fOC0npGQWdeV1gehNUSC2/li5HR20eHtdmNZCkJ6X3PUWqkTILQsJ+/854EZJuGutfFOzHROP7TqWe8e3uNkvT7V5717WFFZitMEx6AE93eP0eDNOiYRkQUj0UdkaMQ0+sgTF3i98f4B1rXQS+KtGCh5QUjO8K+DIA1NjTz39C4qbUhsMLtzYyfn1Ruet5wC9W5Mgvk0Z+pRBE839D01jBExmUmbLrwhRt/zz7nsfO4bSnMLqFREOlGcKIo4ItzH+C4U/h7v6vkNZs2/H+0u7oyuuRjdL4OU0yRmyrzUfG+aYvZZm4GNQcAoORA7WK30ekfanaY2RYIL9zo4ZaGcTxPc5Taw3irNGlrbe9qg5O9yTpu8jiSBrffpcgjs+0HMCxbdNl1Cguhe+976RDq/8Sj8ex6puOq7T8FkSr7T7p5E57wO/3uN4UJEmWhk00AdLvB8ow5ixpgpkKS3n5MR3kKeftElO2sjTjZ+mMK5t7j3ty27EzLXtPL88MzTw9N705xSoGR3S9n8FhAPDwoGMUSSfvfCexYE9CQcFtibrw6aTsiS+jp1qP9MW6uM4XozmyvhN3DamwsnEki5sORCTL6HdxR6c1vmW0vvcnT/3l384e/lbMxmLM57eJ6+/25X8nsGgk9w3SEgrul6W+ZNTQFifu4zn/cQJqlyOm6C+RRN3giIShSlSPekWxlEjBQFyISw0vSBY6zU3tDYwdoUgruo1boRQicFOOWELq5VsK40E44hSPTpRDLcWTZBRUHmpDN4JHfvA2x4uOacDP05r/8/igGl0jkm8neIA4Ksu9ikq6Ha5sgnesdijlY0Ubro9NM3CAciFZHBEhpr6AwxqsAShKyCDKWbUlvntjfu1bi0wdd+8NhgC42EcbJC6RmzzK1H7rvQq0EPlHwmxDJtPkaUQRR3K5glUiws5cxaHljCA0UvhJIYC9StQW0+ToqgIRDFPetBXWnrAyW3rjXrs/L0MWMQh3B4dvwUeJiP7k0GMQ9CrIS4IbHPRMWCUTB5QnWh98iQRoq7w2fMHbzBAqqZbgtDF4IoJe2M7IeGTICRohAKkldSLO/vpacyzmNxfqDeRuKlLOjpzPm88vz0xMenZyKBY9sQYD82eh8spzPX2/2dbf/y8sJvf/Nr1pL58PzA0+MjmCc5Xj5+4L/5V//Axw9PHNcbqo06CX/n85nT6YGUFyQG2ujs01UwxvD//XymLMt369n/78NpXuCMPubEw7312HQDzKLhNBTLRmvdR4GzAHjbCR7HAer/ve87D4+P2LRBPTw8sF4upFT8cMGpcUESmFP03mhh8/h6P3jeXjF4Ifr+6wgpJZoGju7vmWGEIu/du0SbB3tnsCOykWJ0q9Lb6mpallTfJgYzsjrMdZIZtXf6cB95Nzh6JYbk/IDgTAKfK3fUXMnfWiWGRghj7oT90pCoEI5f7HRt6mWEEqJjvV36TM7GUoRmA7R6eFDyC9V0ilvN/74pJcKExQzrbPsN2z2WO5iRSiGnMykMkih5WTlawySSy8relTADinrr0HfCGMTgAsSAYdoRiZgOdPRJ8fW9vpq7nqIKkgvEwXo+gYQZmia0uadPMoVkxXUGwYxDB9oVEfNVYHlbhfR3psBQ5Zh/H1L0qdR+sKwnXy3JVOyPAa3h68Lg++Y4HQTh+/scYiLmjPMBfD2jOpDJUHBbrDNOUjxzXp85nZ6BKQIWn5qibmsWHXO3zXT6+/vxlkoYsJmZIp6EGL3jtgbdYdyINWQ013VMDLCZgnZv5MWBQ97EiAN4SmJdsguVxUWmRxtI9WLd3oSFU7An83l0/YlfnGO4OLObzUYsTJy1N6cmb7zD+eeH4EI+C1NQ6hcsb5jlOYFIMVBSoKRITr4SSAGyvIluG1G6r4YDvr/nzfa8kNLKVjP1tXLsrzx8AB0Hozc0LaDR+RNhEBisKWElMLoy4uCIRp7i2xyF7Ie4T3snKZMRGE0mVdRR6l2mPu4vLSCsIhxmHH1Qe2WIQUz+kLeJmRjzzQ5CksgahBKMpp2ux7vPH63+sAwlamcVRebkLY5AModzjDFoKnSJaBa2AD8dleUQngqIDGJtlHYhcKaNxK1Cr+LRsuVCkuQH2AxH8tA1P6AXOXPKT1zWJ9b8wCorCwva4H7feb1dea2ONx6mUwluPpoyr77cYTCcdKWRKN93mPYWDmTux7UxUcFiWNggHKhsKBttwGgLwonIr2k1cNQx40B3pxQyI1LDQoiBqMEdECgpGTk6plbCQKXTRUBWQjwT4ve3Ws0mn38QY6AsC/fjxuv1Skzww8cPpCjcbjdGbZyWlfOyUhanDZay8HK9YaaczyvfXq+oKU1/cJTxumDBH8yQApfzmefnD/z1X/0VfT/IKVCPnd4aZnDURk6JfWYXeG4DM/N7inbSjArOfmAgkVo72/145wbU1icjIHrmgASe1Rn6tVaOWiEGJAwPygn5uzPBZmEwcwn8z/XD36OWMw8PF8qy+GVvLoz1whJ0BEZ3gadi9GEzBvj7Z2jYztDv9DcVKKcThzZ67RzdL2aJ6t24VReqhobEHc90n/5oKV50y1smepy7wu8Ybx1TRKfmHZoaISTG8M8kESRUAsdE2TqEy6yjHJ5bYQ2ndPp7IURfP9HeO6k50SUYbr0LuHBVB0txGEYdRtcZpmTRL70QKGWhd//3k/ygHr1i+H6dnGjdpxtRgjNLjsbz04XL6UQ6GoSM5JXRd3dxBJChjDbeBh7YaGhvmAWP0W2eqDiaiwVT8Ut3TFWamNCGkhRiXog5eSzxvEjq8As9ENxSF95w5JPDHyJ5WdHjYJ94bG3dx9XmHWwwodaGbAchFSQMH38z4TbMrJAx99g6SBbIWd6LAX8+Ek4k9KnBGB0ZlTA6MryzJRZyuLCUj+T0yFsxYOL43DhrVJGBhO7EVfwCx8YMbequppDopMWoUzzn53iy4HZU8+IyxciaFlpTWlVanwWnQBZ5n0osKbGUzFqiUztlxmtPW3Vt7zxDZAr2HKntP+/W3gofR01/z5aJs9AP78r7KPEdA5wkkIJLtUV9amRTF4b6FDkg5BDIKfl0NOL6LIxgw8WsVIKnkXjHPvUKgrCkSIwFNaHVO/frZz7+6iPHqPQOtSlZMioD3go+IkmEjPMgE0aJvkIp0ec8Epw86aJl12oEGWANs+oFUiqon1B/1h3/ZxcD+1COruyt06qzy4N6V9hnBWpjECwgOfseN0SSTEGJNto4sNAJsRNN32IDyQNSwLPSQ0R64kDQ7piIUE6IGvdR+d23ig3j+ZyISdEOpxZYQoRQaA23foVC4TSTDQeMNyWmW09yXsisJDuTObOkE2taOaeCKOSCQ5Hug7pVOPygVY2Y9SlAcQGHA43UH6DgFav/huHBShZgVq+utvXua3C4rRLB7IzpCdNHtP9IO4x27HSp0599EKN/GE3XCfTw2GezOLvQRAxAWN2qSKSN6MKx8X1U1M1HaX00V76L0Uej3XbiJLGdToUcEyVmtwS2ztIKMSfysnD/05/YayUvQuuN3jv/8T/9xxlY5FHIfXbqAPftPg8bcbJheWRdV263G//1d39g0Bi1EqfdCoFSPLHwjVp3Op24XC7eHUngdruz/SJq2HCblqnSpZNC5HK58Pr6ylAXgxH9o5Fz9gPUJs5Vfb/eR3+3P8aYOOXkjHAdPn6bnVutDR2dWjujQx82OxOPIbU6iKH/i0yI3je67sB3FwQhoyTqGP7vHQd13Gkps6RALOIf/DfuBW7tgoUghcBCioUYoq/txI+PMS8Rv2iV0YI7EHQq0YNh0jDbMfGf4fc0P9cciPhaT+xNnewXlIsixbU0cxAtkwEiCKKdKJUYD+Li+/rSC60LXSMmiTaE2sPsTPtbjAzg6n7VBqORYQKgEjmsRBX6DnsdlFVYzxdffeBk0HFUUhZfyw1Fsh9xtR6Y3SEPlmTQKnW/cxw7ez28S8yZkDNpWSEuDBP2Nliiux1SidPeJTP7wcfxbonOqEQXc01Wggd/uSNlu2+gnpLYh9vecooM8zVUH4q0zojmBV4UCAmJ2cfuXmX6mROnUG5OLKz7hf9mDbTuDpAYGxrHjDuIxHzmvH6i5Gfgd/5MKtybsWYXCasKXhC6iwp0nl14QOHbaiIFdPilE/Co7DehWk4BKO8IgN6NY2vsR+frccwO3chTaB2DOZ8/TlEskKRDdPHgmBkyLrST+eUF8LAZYCezKJ+rgi6R8aZBNJtuBBfyxeAJjCm4KDSKj+B7V0+BfSNGTgtqnDbCHKf+CyUwiDYIOMQuWH8XjUNwC63FSSrMDCI5Oh7Z8MK4tz5D3IavHhik5Jq23ieQ6s2aK0IKkRxnNs3kNYzpGBljnudTgGi49dbmnffnvP78ycBQjtY55jg2SiSoK1vb8DAUUZ0RlXP0RpnjpV+wuM0oISMh+kSmN8Jw9fWSZuiRRGwH6cNHgOtKl4D2nde9ExW26jtA0ciDCackjn4dvh8rYXXan07J6Dy2bBYDS34gWoZesB7d2hCM0Q+varNSTsJikdSD7/8quNnJux33lL75Xe39YWROZnSOXWWGc/iXRwOrDG+lgrO+ky1ECmpnHyk1F5h0866u9UGOjRDdReA+CKOH4UWElfk9RWKYF8bswhge6/r2CjEQUmTYYD92F8w09/CXUvzSI7AsK6UU6r7z7Xoj58TpcvKf4ezWX6+vDFPyUvjp5z8R5EdEoO476+oTjFor19fX9xH87fZCFBcZ9j7Yj4OyBO7bzrqenZ+f0/TdOmMg58zlcmE9XWbU7kwWHGPiaL/ntRuw77tHJufybjN8wxrXNoN2eMMcD1T8Q1/ND37nzAuXpycQuG8b+75zufhu+DgqPVT21qhNGX0CodTtqGadEKqPe+drazeO9r0Y6GPQhnF0YavOIkd20iHUJfJQAotASL6LVvxiliCIdYKN6QZgoqmL8+rFPffuVIuMPnyFEJQ+dsyUtAgqjaEbEu7ezAg+mQgzZlw6IuN9zGgm84CfIV3vm+d5UlucBUtDZPMuN1VyTPSw0GTBwgkNgfvuBZSFRClpFrmGjU5rG/SD+9cvnLKSZbiuRTqnDJIS236H252Hx2fKmql7ozfXKWQLPiYHEOeBtFpRvZFMkVMCbfR9o+47e6usSyalguRCyK4DGcN58rThUCMpLsaSSeljOCuFSlehTzFfa50+SZutd47a3KLaB6UUWnc6X8gLYSKOXbg2u/8oZBOfYsXkxHQmkEe9mI9TFm+9z/RiQ3Pw/Bf1jl61u+trGBITQkE4Y/p9ZXi0wdfrwSWd/VIMvs7VST18s5xqH6CdEoTFfLw+1K3mIjP9MzIvs0yIbrk2hdGgxcSWHeLURZzkJ4mcfBfvDoJZuIqBNYLoXCPMKYXgvv7oxMoQXI/VpgNE5wrRCzZfQ313JEzhnYjDpd6+grzbyb2xmyMu9Q/Ee8zwO6TMReb+kVDi/Er45CoGA9zdFDTROrwFir1NfVoP1J446vDI+9FZsjMfEkKM+Lkwmus/xHMUwnRRBJkRxvodVd17d7v01DQhQkjTNSN/4WLgfjs4tgoqjO6VnHUHrOTokA8RIw4hqXf3ozmgqPZO7ZGmcXYQPlYLWlHbCdZYgrCmQhyJGBfGPjgn4QiFHaFaoQ2ljsAhziwf1WlOfvu6zj6YkAM+kmwDYpg4Vv9zXQwSSbK61aMHtntDxo6Wg56MdXEoxeDw4JOSCEd7F5nEkCAYXY0k0Uds1hnDd/bR8MWlDEKavgM1gjqlEAmEsBBTpqRElpVVLgQ9uVr2tNHDoKrgK1Mjdq8OQwTJTm5sss/OwHzyEQIhJsYERJkGtLv/9I1MBd5xb+aWsq6Vbd/JuXjEahTnfM9D7dY7vXUHo+hgPS8M7Wz7nfPjE6/3G5cHx86+XjPLaXEBFUZtFdFITIWf/vgnHs5OU/vy5Qs5RlprXG83JEYvLO43bttOKdkPuCDebat/IHIqLMvC8/MHPv/8MzkXBNcDfLhc3Lff3ca0nFZGa3z79kophcvDhZjeYtaEMSOZb7cbOjprcYGmC7wOQvBiKKVEbfW9M9E5UfFQq05vcyds8EZhsyHUNjA73iE64Hv6Nr6jYLfj4NvLldfXnddbpXV/b1MStEe0GReUvI7ZpRckNHofxHD2f2beRausEDz2mJC8SxvBXTTqvvg+dvqw6T55IxfuPh2wgbNqnNxG0FkIMAV+s9CyAGRf2s6RuqET0jXBLNKARgzVJ1YWCOFMLk8MlGrGks+0Idz3AXgORR/N9+Tm4tcQjNfXF+gHOQyCHrTQKMlH+ByV04NPhJzQpzAqo9q8NL4juUVcL4A2aDuj7i4y7G7T0xAJZSGWFYtOazQDj2/MEJOvaGYEuVsju2tCYqarH+AmU909NSD1qNyPytE6fa/+/UhkrwekRsweqV3bIEZxzY55pPppFnYhCCl70NH9vrMinE7Fha9R5lrIQUVdzC3SEhGpmGxkylzfiD9D8t3eujfl5TDqXX19JpOah6+Ygkxw7/D3uAWjl0EyPGzOIjkXQowOgwvBQ78iPjEZxmjQY2AtkVCMvatP1HTMS9YY2qh9UCYMSswFpDEG/zzYXJWIva9RJLik8K0g9kfUpxnv/AMJc3blExwJ5nqNqQ0w+z518DWDT2E8aM8pF70ZXQyKX+hvkk6Yq6K3n5m53TzN1c0wPw+O1hkjcr/fIARu++B+QDuEJl5EVjWWJZDENWldjSpKC77CDDazIrxPe59Q+ffs3Io+z+oxXI+ib/u7P/P1ZxcDx3agTSkhMFRJFjjHzClnynryB8BcVhq6kS1QD98fHip0DdgEf4yRKZpZ0nn2txvRGqKRkleWsBIehFAS57jQ9ztjuyNkokZMVw8WMt8LD+l0XEwV5puMOu3LNL8T7Vz9m9ySoz5V8F3xADswHYzYQSIxzZGx/9/80NOOjQ6+sp444YiYzaAMXwnorBokKEuYfmbhnZ1fsrCumfOSeMiFNZxYOCNjQcsXlvMX0l7RaFxb43ZzH3zJhZSM0MXFR2J0GTAaUb1rNJlTmD7FY2NmXf+iOoxRYOi7DXCM6SwwaEflehzOur88sEw0snf4O/ftjt5vfLu+kCfMpyyF1hrr6cS274jAj7/6kVYPrvednDPfvn5lu19ZS8HMuFwuqCq37Y6npLl24Xa90Xvnsp4QCaxroZTCw+MTy+JrhefnZyREtA32/aB1dx/kXKh6YGMQo19WRz2mE4T3rxSjK4PwEbao/8x+iUX+8ccfOZ1O73qEMMWOpcyo6Ik7dUoavGkH3sCgfYwJtPkuGBz6Fizir96N+72zbcpt67QOYQRyboSx+wEQowOzkgd7RTodJdCx0DE5MNtRO83OfjqLxTUuIsGV5sE7ySSufrYpNCJUhN2lYuaHMOqUzmC/6LIcguuCJAqixXM6DLx17bh7pWI2tQaq7ilXEDsTYiOGJx/FhkTTQp1YjdEHOhrSK73u1O3KEsT1Hrcba4ESB0sKLOuC2XAEdUq/SMxTZDhDQ5aCTDuee9+dCiJaHet83GYuwgS6iLsTYjn5h3tii9928mrBGwEJhJQZQ2jVBZESExYTXafWyd6K2Ma+H26xbY3RB2koKkI3o45OSREbShg2kRQuZDxqZd8rS1x8xB8TUQ07jnfx73uR9jYiN0OGg4oIiR52JCwEWQg5IR00Cil/LwbaEF42Y88TPpVmXPrsgFHFWp/ujkFJcKiSKqTMZE0Eco4YnRAi6yLENDvubvRoNDFyD0gq3GvjRudos/BEaUMZQwg5TWDSXE/JhObI90tbgs3cBD9n3dHWMDyfw8wQ9SJqKkRhTqgDLsjFdIa4va29poi6j7la839/F38c0oDWxrSNz793CO8FR5h/jr01u2QXVkphOxrDOrdt56gN2yvb3miHF0OrClWhYcQxCMF8ohUSJEeFW5trPxuTleCsh9qNow72Y1CPQauDDuToTa/OIv3Pef3ZxUBolYyyhkSOgafTwqePH4hroSwnYi5Ei+gxqNeDth3ctx0LSpsj9KmxdMywrayxkOLwnV/bfFd9fmaREw/Lwodw5vMwbj839lsn2iCpIJtCCsT1RNBAiIe7Vs1HJ90aKkobna6dHGYCnjjtKgTfBWaGI3tFiKO77WPc/I1ekos+urh3vDW03/CiAJDg0ZXRlY/+nzGVuW7RQhXpgxjcZiISSKmwLCfWcua8LjyUlTUUskSsqfvM4+/R1DhYSXehX5XbDtkKoc/wmxixEL2jAYoM0OZKbm00c11CCGnWMt8vpTBtYsNcAJRLcgFgq2zbxmkmCt5uN3ZxUdjojdYPLBjbtqNq3K5XQvS91F4r54cHvn7+mfvtyuPjA6lk2rdXvn77Rt13qhjtqPRReblduV6viAhHOzj64HR+IOXM/XbzDUoInM4rT09PLOtCHZ37569cLk+UsvDt6zd+/vyFh8sFM9ciuPDHR/6jj/eR/77vrkNYFicUhuy77FKmDqay77uPRqeNsrXGdbtxvd04nc+EECgleub9DJUKyQ18YwQY04oV3epqUwfw9qoK7Rd44jGgNuFownHA3joyjKJK0Hnx1IDKIOdOzh1hIOaUOpUKFGLIEDYn2aGobpguwIkUi9tVVSlRsfCGlT0wc+CWWH23CGJujcLekgYDY66Y4gzGYT7/Im+agbd/6Gs2HTeCbYxwIFax0Rl1IYYXSD/Q9BN1NLBPrMsD2250Hb5rr5XjvnF/+Uo+L64b6Rmzg9v9xvZ6cD8lLueVKMnBNdqx0Rhto21XQnaLo8SEAkfvGP4sjO6Y1/vtFRuNkCKSCxKX9y9iRoZbckPMjNkxRguQsgO5xNCQUW0sMXO6PHBsN7beGCbUMWh1Z993juoTJFO/UIYqWHB9ic4F5lBC8iJBp9DYXq88hsUbiFLIKbMsHmD0RvNzamOfjoNIyHmG40QkNiQeRNtAE1gGhKFve2T3p7/ujiB2d4uRMuQEriLwUbMxrbJZIA5PNR0urCspT10HeDnc5k7eW3exgY2O6uDx5EWH60vVxbMq9AFv9MEoYE3RXjE9HMwWPRXRgsDw6QHmRXdtB70fDO0+JdM53peZPRL6/PvO7npOwcYU33UCYtDqcNt8n9oDM6dCZv+w1v1GispahMspEAo03tZ2rhex4db2lBMhrmCZrkpToXZlrwe639j2nbYPJCR6z6Qm7N1I2QO8Ug6EkBw6NxJiPvWscwL2Rsc9ptvudj+otdNUCdGzMXp/c3L8hYuBVTpJ4KEIMa/86sdnfvObH5DkVTFERCM9DvYOt67c7tdZtVWPYxQPUlhDYrVI6kIOiZRP5LX4XvjhR7IV8kh0jRy3Vy5SeY4NFWdAH3vz1DVTokWW8ECeB5ZqY4QpKLPh4UlBSUSSqI/ozcWJkuJ7op+kaZliMOgEy3QL7Mfgdhscx46NV0LE0ZyhEIKn6DlzG4ZNr628CaIGegg5GWpCzgMjEMKJKA8kOZHiQoqG0EBvyPhM779HCMT0gbickCVhmrmP6AfU8OmLBEOSEESR6MIRLwa6U+1MySnwCzfbPNSZqNODEAOn0zp/XiByICEwujHsIIorYt/wmj4i7yynE3s9KMtKjJF1XRlzv59i4OfPP/FwOoOYBxcBvU47jXW+ffvKGIPn52fKsnC9H9y/fCanQsqZ2hvnyWXoY7BtG/t+UPLCy+sLH54/cNRGbY2ynKbdSpAYSHyPPY4pEULwbmkOR0o4wRwHbtvmkJj56zBT3nr31cjr9ZX9OFjWde4PwYKrdtXcj6866KO7MCrOMKqRUfuXfIe9Kkcdv/j1IB4w+tzxD3emGEYh0lKiNo9ktl+ONqW571sOZAoQA+u8ICqmy9SRVEI4E0KhHZ2YfI/bW0dHR/C4XgteOKIdC8MnYJNfYMGphWaGhUwU8/UE09r4jjCelqa+of2K6qtnLNgdG5W+Bfb2mWp/4lo/cms/YvnvKOtf0/XsXmtVp2P2ThLh9fUF0UbJjne1vrPtL7TjhmkjChzbDR2Ncdxp2516fSWdV+zh7OsgM9qYOh3tbhXrcBx3BCOlzLI+EMuCheITAonTteOgJsTplu5lH3NiKMRcfBcdjGLG6fJIb5Vj31DzNdC+764N6Q7HOnqfkwoXFM9qgGH+Xrpew9ve1gf7vlHmVYa4mFJNabWRMoBfYEOFEJJ3lqUgoRNjJYYdTQkdeUKkjG2vvGk92jAYCb1VQhSWYhT1iZDERI4LqSyIZtZFOK1CkM7oO3EoS14n7dPP366VoRWZY3qxKdJVX2ctpVBCJYk7RsbwAmio68XivITb0anbgfZOKQcpZ2Ke4VzeKfhqQsf7ygHciYNBfnch+ftos/vX2RR5J+/TAdPhiP1hXqQok8vhWSejN3+Gj50gg8dLQj89EMUt6288h27fdUnlJKSSMCteuOOIbkWJYSPF3dPuJ6OjDdDmLiAkEVLBtNCqotVIJHpTanWAUld3Tuytcb03ts3XLIaQsxCSwV6nzuLPu+P/7GLgkp2s97R6vOZffzrzq08XVIKL2Truc+xCzAFK5GtQlIrYQZJKyYHzKVNS8SxohFOKPF5OfHheOF2e0PSJ0CLxGOz3jdvxyq8vmXN+dFFiE759a3y5K3c5SJI5yQOLZYY1qoV5GXaGdpoIWZVogRz8YEUGEpWghSJ4PnhSQnR7ldoUmI3IcTS2XVE9POqzeGZAxy0rx9Gw5jauMWYoh5gryg1COPnBMmEwhhcSMZyJcnKQiN1BXkF+RuQL0is2Iq1WjpHYLLITGTE6+MO6+67NbZiE7NMQay7imspZVxi74Oktcgk8bzvLFOHEgKhPTZZ1QRG22ys5RU4ls+Q0R5lewd+3DZtjMp1+/Rgjv/rVr/i3//Z/5tu3b/zjP/4D62klpMDpfCLEQhLh65dGU+Px6REz5XK5cN93dK4Nrvc727Gz5MzD5cL5fHYffm+05vvZ/Lzw9dtXYoiMrpzWM0/PH9yiNvocx/aZI7BRW/Vx/xhYNU82FC8W37IOGL47PI7j3ZLriWBvrPzEsiyehSD+zy1Uut3Zxp2973Tzi1TENQ69u5pdf1GV34/BcfxCM7A1cjNUo2tIgqFUB9WMThuNrJ0wXKxn5jCaHKNf+pawGAEfcUtvqG2YncHO3wWAnCYkJUyHi7t5BO+qdTTEmk8KXJaKTuz1kOBTlAApeJCYu1TdWvhmzUQb6M6oV0yviL4icke4Y+Pwjqy/UOuN6+3KH75+4d5eWS43Pnz8B0q6eKFSK6M1copsmwf+dGtTtW0eY913RmswOr3tYB3tB9Y3RttRnZ/z4AmfA5uMfPeHEx1Fzbzgl9OFEAsmiW6BSPJcEQIEh5P5KF4YNjhaRXFxn1vf/NLqwz/jEwgw7aXubx+mBA3OuBAXMpt652kYbRgxNRChpOy47RBnUJeg3YOWQooTljXm+eL4HlfJu7Cxj2mx642RDnqPxJ6w7qyEX2ZntSH0TaEoKQpBxrSwuTZCov/znDKnElmyC/KCBXLILOXk42j1f27qOGUZ72o+Pxu1z+cLglSCeNKnSJhtk+veDrdXcOydY/f3dWnGsmTySKg4gwIRYk6zWDViCoQUsDoYZpQUSCmTkhCjQfAV7tAx17nOW+ljuPh3CEETpg7rMpiIX6PVxrFX7tcrUTrDzpweVh4vi1M9ZfhUoLs5VzWwXxsmdyTB1oyjKVtzt9nTebCWwTg5H0ct01Vce9RBY8RiwWRhtEE7OopRK9QqtDmxaF05mrEfytGgj8mfiIEwBNp4d0X8RYuBxM6aCw/FcawldJbQseDjkaDCMclTotXhlLHTx47onZwGT6cTH55WlnQikVmXE5dz4flp4em5kM/P3Pon9C7kWFlDYrCRTo3DTn7oNOXzcsCfrozjTopnsp5IsmBU/4DhKvyuTgMcDOK0m6CKWkKSEfuCpOxwieGCqmA7lTtJM12L200ssq6ZH57OrKfErQm3Ki5m3CutmX/Q+tzZB9/lqwZC9/WASPc0qtbp1RiLQyKqVYgvpPgT2B+w8Yq0TNsS95vy+tq47oP7MGIRLHSkH0RzGlqKDcKJbq5uRnSO2pzxnVPC2hsxzV8xwJIT66nMJC9XsktwL3+IkVIW1nUhitJ649ju9FFRGaynM2As6zL9vnC9X3m5vlKWwofnZ5al8PR4oR5KigePlwsxCnXf+fVvfqS1yul85svXL9x2HwWGlPjp8xfGcH1ECA5QUTViSMi0Ar68vhLEx/+luKgw5UwbU408dFLfHLs8xtz7x8gy/CR80wLs+04wh9T4BMM71BACvXmKXogefPQWvhKC0um0ftC1EZOQyonafC1mw0Vk/yKxENiOzr5/Lwb2vbIcillxmxk2JzR1dqD+93lTDI/eqeC/d7juZRSHxlhYZnc+qYFhfJ9KmBLjFJQOpwZmmbY+M9+dm38Fq6g0XxtM0qKG4SjcNMFZwR0Gb+mWOvf9Ng7oVxhXIjeC3AlyB92x3mnH1GXsnddvNz5fK3lNwCNPD4EcoO0H2+1GtEqKCejstyv1eCXREN1dUPh4QrVTjw0baQJtxtxfJ3+Ow4QLYe9TIdWOiY+cg8RJqczzwvdYdpmx1nMz73oLCZP06O/rECHL9xA2bYPaB6267TiE8K5RETyPgMl8IHghoYrjtCeAqbXmNtdVKMUnUZiHNPV2QBDW8zqfDS/mUl6IMfuo+s3fMYNrMEW1MjTQe0abMDT5mmK+1IQxhDwnT6bf/f2CW97WFFhiZimBFPqEfw1yXEkxowNnzzDXFlKncNatc6MNRnVnRqDSaqPX4UwOLb62Mo+kHj2grdOOQWuGzD15KROBNAZtNIxBDouHwKVALMULtuDP87oUcszkEkgJ17cQqN0bvd6V0ZU+BkcbWH+TsbpIILrqfK6KjaMq972TorNviJlQljldMLQ7/Ejnz76qct+vhKR0i+zN2Ovg/BB5fhpevskKPNF65qjw7dudoyrWhWYCAv0ItB2qNhdyqzHUi6ZafaUxRuQtc8RdJx4h7mhxm0ClP+eO/zNfYQTSIqSkGDu1faPWR0JaUcnT3nCwHxv7cbC1AwtzbE1hCa88njZ+9VBY14WcHng4rTw+Rs4nkJzRuBJ68v1hENK585QHZRRum3JsDSTQz0ZJghyNJG+GQRc36aSfdZtBFgJqHrec8F1LC8MjhsdCGG9YB/N+Xw0bgWVJhFhQHaw58fhw4u//6gOns7HtN17ud27bhuwbXzZjG4VqaY6j3AZmFt3iptEDgBTW+53L6cq5FAob0naGfCbFPyHyGa0bbQt8u8Pn2+DbPtiGI5BdUd4w2TEZbuEJCQse0yuxY9TpmMgkKeSwYFI8ZnS+LHdCrsRFWSxhSdCtsVfH8LZap4FyEKcGJ+aFtBaOevMOOQin88m9sNb5X/7dPxGD8Td/+9cg8OXLF3784SOlRG63O0Mbx3HQtZKXTEiBL6/fOD88Qdz4+u1K68MPtq7sWwXzpLd1Xck5E8tU8PfOfmy+U5fAaI3ASs4FzDyiOUYWVdZl4eeff55uGyGkRIgZG5ON0Z1dfuwH9/vdiyYzTueHufZxARG4MDfkyHKOSHe3R07CcimcHgpfX/0iUAphm93FL2Z0rXdq+8VkoCtLFbdlhTCtRdXjcWdR48K+jml/3yWP/rb/dV2zt1vH9D93QqoTHzymY2Ajyck9/jMK1YVliaErqtldAzZ8nxzEs42mVdglzNW7vaBOS6L77nUqmLX1CRO7w3hBuSLhIDKQEdm2yrdX5cu187ob+xbpLZJX2O6vLOmE5ExrO9v9lb5/I+fIkj2WNwUP27HhFMwjGXVNBOvIDK2SIJS1EJcy3+eIDE9hFFFyAG3T9RASIS1IWOhu6PLJYYjTm+1ocXem+YHq7FLxNcIcO3v4zuQQTHurC0ndCWDBtUcq0ZsE7TP0ZoJizOkMFoLz6rs3WGUdFHEHkY7mvAphCvU8k8OR0lMkpoJxYDVT1gcwR6GbCqrepL314MdxfD8LLJHCA4gHbZkYKmMCjMx3/kmI2ZHHw2bw0DBOJWCi1NHY64GJUXulafVuebx9+UUpZixVOWrnuiu3GjhUaESaBYb62Tma+rjeXLNwCsnjgpNPGBys41yVEhMpC2UBlcEYlRY7KXdSTp4CmyZu2X/SxNYQvFm04UVBq+LQK/EQuzdejFHQrt5oikJS4iKUNRPy6hkqwxtBHf68mLgGZR8OalLxglFQns6RD+uNJTdyjkho7HXhthVsRF5uja0OnyANoe9CrT7JHDrFqWa07nZ/BUwCIebpiDRkOM4/E8ihsax/Yc3A4/pXjPGCSsdC5bW+cD4OVi6IFGymU/XQ6bnTRnWUYi00W0ntCx8vld98cBFayCuntVPinVEPav9XWPkV7XbjflOWJbDrf8bin3g4P6E1gka2tjFGYuiJrhB08Nq/wtmoo3HUO90atVev6FOYhYqCKNmEBSMlY7XBMXb6EGoXah/0Xqgt8OPHHzgtC8LGjx8v/ObDyq+fMqfyFStX2vrK67ax9IN+RL5tF17qI3E5Y31HdCPLPDjlxN47+2jEEshJSfYKp4AsCuFO5xVsMCxwrcYfj87vd+XnEdiijz217yyiTho0oVrk0ESxwFkg5cGuN9BCLs9EW4hcPCTDvnuLe9i5/CpQbp06VbovXxwzXJvDeu4vX9kYM/63kNYLOQVG2/j6+krKLowJIXC/vfJ4XqlNeLycWZeF0Tu//8OfWErBrPG7P37mn//5n1lPK/lc+Pr1G9++fuNv/vbvud12Sjlz7I37686np4+ggcfHZ9c+BCHkQNPG9euNj88fWNYEKp4CN9zXLckV/2bGl9od9bqsPH/6gdv+X5HoDIvtqJgZOUY+Pj2y3e9stxsQqK0TYuBonfV04Wjdd6nnEx+en7k8LvS40ZtwPw6Wi/HwFEjLnR+WSIgX7A+dL1+9O/xlRkgOge0XRfohwtej87wkSsjkZKTFfB00fA3lHIidGGSulBIMw3ZPrHtbeSFGCkYJ6peyVEQ2sBPoBewB7AycIFwwTq60HwdGw9gxcTiK9jsMn6aV6DCwPipN7w62NV/7CLsLEXubqyZF7YraC12vaFWsR8ZReL0lwvJbvnwz/vhlZatPXGvi8rEgwajtTtCMyCAXZfTKt5cbv/nxV6wl8fPXFwjK08njrrOB1UZVJUmkrCdMMum0cAw4+uByDl6wtOrxsubs/r12TBY0nIn5BPk0HQHCoYbUGVAjgfHm4w/ugBDxLj8mn2L0tmN6IKP51Cgn2qZUU8KyEnHXQTgLx7Fh0Sc5MlMIJUR0Fh9Nfd+914Nwv/F4efSCPIR35fy2OXMjxOCTOgxrwaFX+DN39DtrPzHGI2aPSFxIxUWDOnxH/vbSQ+j3QF5WmlQEt4Z3E5oE9tGRtiExgBRaN/bDd+t56Rz7N9pw7U7tzVNmLdAtcNs7dXiWgYmBDRZrHNvBvis6CpoyGqBiVHVh67RlEMwoI5HLmfM5ofmF47iRzpksDyzx4ojguCN2o+lB1EpORtPP5PQRiospY8hkyawxoNkngtKNIYltCPs+kHNBwkYYV5IoSS7E8IAshaMqt/wz5aRcnhNpjWyts23uMEiTBOorwo5YIpSFoyrb/UYJkTUZT2XwKe88PR7k5Fkon3vFwq84rStfNtilExL02qg7qCbufZIV1Vd4hkEMlJSQKNiAFBI6mSdRIXfl00PnH/7+4S9bDKi6Ej4lmYEKaSYSOjTCghCDMrRSe6UOpQ7jXg2zTD498Xgx1kW5H5G9gulBvV9p/c7dvmHlG7RMr0YPQrXDD5t60I7E67eNP/z8Mz/dM19fAkeHbhWTg1Q3V04GwMIUVpmPqNR8x/dGj9sbJQfWe3MVq0EKka6BrplhhVsrWMikKCzlwsPjM6ezsMqOKqRYsaXzdIa1+OGg1Rxvap1gjYhPIEzxzrjeCaFS5OCcqgONhtLCQeIABkMCtxa4NeXeoA5Ha0aJMwrTK3yYlqiQnHzWXTw2Bu41J5DmOiZqfB99Aqh0Qm7ExeDuIeUhB0L3CrLu+4xuHdgGJjtyHOQlgVYnZg2nK+Xke9NlWcg5sy5O7ovR1cWtN7btxpcvnxmjc7298s///M+01vjpp89cHp5oTXl92SjlREnFO5eS+Pz1K+upcC4ntrpzv995OF84XVY+ffxIDpnRlDEa+7axnBdU4/to/c0PXlvHcIeBxEDrjft1I9JZJmhkTGiHqpFyofVGscLD4yMhwmldyTmy7RvbeMGks6wLUDnqjeUSidEP7bK4mn0MD/R5e4l8tzGBn3nZnPF+Pp08FrcsWDrodWAVVA+n8Zm/51HCe9dX68DMATEtK6ccCNnDiZy9LjM+wLuuMTyTIwTePfjSLph+Qrmjmhio73Z1xxiMsVPNgI7KIFlB+iNIRpK7DmKwyZqPGJlOoCkuDquJfixsh7Dd4U8/D/70c6VJh7J4rkc/PF1vTkQkCGXJtD3y7ctnSjByiOzbjfb6hRKNh/NKq+19J+1hU5GYEjEnQs6+75+QIJupeQRHcvQR6BqA9D4ReLNhhWkTDcF/hs5q8BF6nBjcoR49rZMkxxjTNhoc6mw4EvfNnhjV6ZBi83tWLzJKmowWDz2CqfM3XNgafcH3FvPMfKZFbWofJvtCXVgmZkgVhnRG+r4Pd+hbQ4qQ1u/nusXBoBEtzJ05023iTirTQe87fcBSPa9i3w/QToqucxk6qK1x9M5+GHVA7fB6V/bhxTwRt7uORtsbvfo0l9GwuFNp1AntiioumgyCJIES6aIMDnp0O2gK7kAJCtEM7Y17PdgOFyXm1AhSiSwkKZxLZk0ZsQK6cs8rXXfuraF20HT39Ws8KMlhP8PG3PNkJK7EeMao7Efi5QVuNGrtlKgsETIuHmzd2QxDmNa/7rL0rj6xDYvrtpK72/IMZ1J34U6Usk6IldCOzjEaQ7zol2BMAjZLCSxavBgnM6pS94aNncSVD2f47cfvVtL/rdefXQwMGktJnNcFU2EJC3FERLqjPJOyRT+cWu8czTgO4X7vSOjwcMHkzHY0vnwLPkKxBt1T5/ZwJywvrOGCBGWNSsc47sJtdC5pZe+dn77e+MPXxHV8QMviRC5Rale3uU32ukr00adEV3uauqCweWjJ0MB1c3yshw4NH7nhlqTPLxv9Ap+eHojrhXI+08eNAx+LouJ0v+DJje7GduxyicYSkufLi7gVbSjbXrneNtYweFoiaQSsGUvsJPku9thrYj+MVkG7Q09CyJOrHYh09zzP8mAarHycZZE3NlxKfnmIMela39/NGI3zeeHYhdYc1DFGo7VK721iOBMhGhpxv2uEnJa5Nw9zVPo9dW5ZioOAJLCu8wG0TsmZkgvn85ne6wzXcaTrvu2czw/sNghz9XDsO7f9YGt3HvSCBrf7qSqXhwuffviBjx8/ctx26nF3cd/qu8dt2ziOSmuNsiwsy8K2Oc54nY6A1toMZjro9NnVdI4ZudyHZ0Dkknl6fqKUxOPlgZwSt+0bt+OVvCbOD2cOvfv6YxTfUVPRMNwmNsVKb691uXAsF7b5axGZFwyc18zpEsinjMWFVpVj62w34ziqXwARH3laRIf5JKv55y1lpWUoGdY83BoW/DlQDR6Fq0JMhZKHw4saDE0wHjCN3mVS3QEAtLExuNOlz88HoBdiPCEhE425RgokccuxaxcWRi9+uY5C7wUlcb8rL9fGt9fBiDvndKa2xsm+Uw51KuMlJE7rynG9c7SdNP3jY7hArNZKEMNsYR2DIMK6LOTskKsUPbgnpoUQV887kExIhWBu83O0cnIhYBAXfA5fLdrbemimCHoAlc78lbe1pI9vWxtz7YQH5JiLqnWuCzwUK/llTZgckA4oOYJkt6Pm7Fhph/2Ed8Q2M4gqBh93q871BIao0uWNyQ9B3X/ezIhJKat/Hyo27cbKrvd3Q+iQxtZfCPWBZZI8E64fGN0YNA4btF5JwWOYj2ND1EhyJseIWqB3R0zvh1G7pxneboO9u4bKtyY+hRzVi9kUktsIxcOb9trAhBISRZJPRAhs7GitqN5p4lZxjQ5FG7XT1N0E92ZsLU5roaKxY9aRMkgFluhiSzVPYpQCIxpNKscwxn6nFA/Q0wAJ1zK42yMxWNEWud0KQQWoBBolD0aJrMnXcLXr+6R8r8r9eiCqXO+VNh651Qtx9+8ByVwrXFtj76DiGSCTPu1C59bY2gbJORA5CrkIKQnn1S2ZDGc6jOAphcdRsXCDaIRfVn9/iWKA0CnryrqckR5ZKIQK9J2UlBAGJfqu0tntwtYCe20IlZdb4KfPK7evws/fGtdjo243Rr/7eLxslNM3Sj4oy+BcOyEd7FdDt4N//PvfsD6DlCtb7VQ9Iav4Hj0UOkKennttHR1CWVfyWkCM7dh5vd8ZVoHEbReWJZLTAuYxoxKioz6TePiOCh+fntm7sVUljEqWTm8gFql9cNsO7vcddOVcXEX8cFp4PK0UmazoGDiGUEfiOLqLS2onEhgdcvBc+pgSKUCvkb1NCyMnkqwkyU4WoznyGSV4ArgHb0Q/bHLw+FF7O2CnAtx+4S8c5orx8yV7bGvd6GNnOzaOtmOqlBjcb3zKlPNKXBe3CVUmR8H3gPtU3J+G8fBQXD1tyrqcSTlx7DfSxavYn342dCys5wtfv37j+emJ6+srT48feHpYuV7vWDLy4tauWg+u25WqBx+eP/BXf/1X/N3f/y2tV/7pf/337PeD03Lm4fmJspR3qqAnFbrwb993evex77qu7zZDVfUOUKIXYW8dpHgz0Hvn2Hf0cuH09MDD5QKq1PvGftxQK5R1YVhnv90Y4Rv5XFAyt71Rbeewg27fswkeHj/C4we+zF8voXBaG6c1cTlnzudAWh3nXcWgRXbZGN071RgCJk688otRoQttQKiDmiopwp6dix8D7+x81UFMkfV8Jluj9Rv33UV9PmgSIDMso+pC23rcCXGnxDEhKxlCxsyDcUIU3ym/71md1GIpUfLi9qy6InKiNfj85eD1Oni9DRp3Rl6Qn//Epx8+UUomh0S7ebw06vbC83nh+u3Ky8tXziVwuVywvgPeObt63r32OZVp//TwIAmJVM6UtbNvd8ZMU5XoDPoQF0IsQJx7fheAOYpaYbgY97shxLxr7kqwDKiP5984Z+rwrIETDJtGmikN8QjkIdMVAn34v68NI3SF4ImPMTmYzXUFEZ3dYfilTdWmEHEis4e4a8Impta6MUSx7kwUkzgno4FDO7d9/36sTwul1UYisVBYQiLQGVpdUY/ragxl3xvH8UZ6FZYU3hkvA2E011wxotulaVO07RH3E13kLKCUJi/FaFZpujsYiwVLAJERBtcOr9sGaSfkQRyVOjZSV7TNrBdRmkW2EbAmJFvoodAtkVU8eXY2NBa9COjSaVQqO00O6t3m6i0RIxwIkQFW2Vpjr96ZX28uZEQcI9zVp4smTgqsCkc39tpph7JX1ybddmVrC59fB3sXQnJOyddb59u2cW2DIQVJcbI8HMNcR6eO7iFI0YsBSUYsgeXkn5tRlb4PoiUogU6mpzM/tyv/+WXjz3n92cXAcg6UJRFCQkxJcUHaQG1Di79JQe7E6B7lPoSjCipu/fj2ovyn33UKgdsW2Zpyuw6w4sCKJROPjRR2ytq5tMHDQ2DfEsdLp1pBk6LxxKE7zRLJIrUppQR6N1KKBIIHNagjT9fTGbXB0Qyz3f2s07NpWljXRwJw0yuEwHEMUi5sx5XX+8Ztr4x+cCqD8VA5FZwvYGeubfDz68br/SAm4ePpQkoLT+eFD5dAipXr6zeaKVETp+NEHZ2uwm03tMP2hrcMeOJfCH4J9IRqIoczFhaSBALuVcY8wCOYj4zjDClSjBwzYnHa2rofTCIMvu8Je6/u8ognUlanjsWGBCWmyKi+0xwoKcL6VChnT3PUDay56n10Fxxu24Y8wPl8ptYKBpfzhXVdaW1DQuYSLuz75oXD+eKK4j74+efPbNuNspy4bVd/vpLvGHtvPDyceX7+gb//V3/LP/43/0iSxP/0P/2/+Q//9B+4rCf+9//tf0fvlb3uZDde85Y3sO87tVbPhcfHviBTgLhzWjJ5WRwEY4qJT0Nyyai6IKj37uLFAPfXK23fKMn3g722d1HYT19+Ih0BQuaogWYbnfYvirB1vaCnJz8ggZIXnh6EyyWzrEbKHrFtuEK/tUGryhggRKAgkglkL/Sihw/pu5XM89Z7NUcCm+ekqw5XX5fAuWX26hfTba8ctSEi/ncKw6NV28SaqpCXhK2FkhJRCqYPYBGNDR2VSPPAI3HvvbARUsdB0YlRE0dMGJGjdkJcKEtAWFmWlaM3jlbn1CMjIdCbujCx3lmiYaOxbXeswhLPLMmZ9qZeaOmYhVtWJE4ktPrxlpdMOUMbAQ+m8tF4BJ9ihDK5IbhVEh/ReuywvfPdvViSuUpwFwBM9bjMC603qsKQRLdIt0BVcfveEGqfKwDALALqSnZrGJE8HSAiYbL6fUWhuNvA1JNJhfhd3ChvCvYZJBVcfS+j04a6iNDBvvRmfP76wrfP1+8H+4BM8rh5Bgl3EugINAs0lZm06KuI4zBaDSTJpJfBuWRfj82rpFWja0YtkYNgRek0qh6oHuxDsBnqE3SSGudl19SLtBaUjjAkzsJpsLdKLEbShI1O1FcWadPFNRhB6CFxqKAdSnSOjURDmhKPiqLkNaIJtja4tcq9bVTdUR3sNwgsziyJ/iwEOmO8stWNvTvYa++HC2Wt03G8ctNZtIUwJzNwOwY2IkMKZsLRI3s78+0WuO6CyoYU41YH13pwa4YGQchvNhQsOF3X0Yuue7OpGXA8c3TdyzAG5pTbCIPEtRe2V0H/8F0w+r/1+vOLgYeFkGdeclfOIniwz06vipWGR+x69VT9t/nuWI37ofzpq1Biph2RvTVu90JZVtZ4Bsk+6g+H2/VEkXCibsrL650/fb1xu2/88dvOy7YT10GUhV4jTR3RuKSVGDNRPZinhJWomd4G2nC2ZHea1pJOnMqFh/MzYsaxN7p6GMeyLB6uUhvX65Vr2zhlJ6M9PXbWBaIUvh2Bn14aezMul4UPz4+kmHlYMk+XhJDYr6/UPsCEEAo2MtUiV4EaXC1s0/UQiqcv5maYFEY6EePqAqAAQR0WYpbdJ20BUS8I+kTdppnIpTp87D9Z3/2XxcDYaf3O6OoCH5RlSeglQhM0Zl95sBNLoJwTy4MwdiHIira5G2suHNLbzcOpYvg+gldnLvQxaIenw63nM9o7OgYP5ws5ZmLwXftx7OTiCvzrdmXIIMXI86e/4m/+/m84P1z4/R//wMvXV7b7nefnZ3LKrl4e1Quc5sXJceyE4HHH7rEVXwG0Riz5fb0xzKOc+9SUEFxg1lrzhLCSCSLkGOmtcX19odXK6bQQS6HWV3oaEGA77oSgUz1esNgm1veXn6IZATyLgRT8g0uoLh6rRuyOTd03Zd/7RKOG6SdPBPz796CWwBCZAjKhd+geMO9q81ppR6f3HaGSlsGyNlL5Rjfxi9juxAyX9YFVCrRG3XZqU5b1EROlLC6+UiJmhaYN7I6kO4QdpsXYRMB2JO6k0BGDIwlG5HaDnz9vbPsDw3yCFlNhq3derq98eq5cymWunzxM7NjvtHGQAjycV16//MSXsfHbX//onbE5qlUwWt0ZoxNjJiWfSphFYr6Q10RqYSaP98kY8A5wmK8HnFDqmg4zZifsWFfHmk+5xxT9jTGLAsPDhCQwrNJU0JAZIdMsejqjCl2FYwhi5iTsqf04uu/ciYMQ+vuYOMcI0Rgp8xY5zswiyHP949XAG2zNLwPlzRrY6fNLTV1H06FvO+EXeRkLgU/rGZMXUtxgGL0WRhCaKMcY7K29u7PaIYxRWMJCaJ70l2J8j0GrdWaJxAChkHIA6bQWfI3pnjcIc2qBa7p6M1rzGzCFyCDTxfNCbvVga0K2hSUEet2RpmxUwkzn3FXZTWn4iiW3Hc2BJsbaK1vfSVukrI5XfN13Pn+7cbve6XtFOvRdGKnQS3aLuigijdYaR7+j4pM3TQdtskpaDaCDozZaV1L2JMmuynXr/lxZwoZx3+H1HoAFpbmtvCj76Bxj0Gfgm/AWWx3Q4FqQMK3VhIYyZuqsctte3RLaIrVCtEA94HY9+Kad5ZTZj7+wZmAfnSKJ+7GTujHS9ETjAqBedw6xKcJz1OMwm8IXg7Jy6OpVow5COpHWEyNkNs30rbOcA6fHheNovFwbKRbq7aDq4D/91z/y5eudP36508RQrlATSVbadtCtUeLCw7kQRmApK7EHxj7ox4AKRZxXLgjPl098eHhmTQt1u6FHZUyF+f31yqks5GhcX144Z3h5+ca2b9zr4PEJEOXLi/JyBOcXSCRF77BQo7XhFCwp6FCutzvX14MxEiGcOFrh3pQY/VCso0KPfDifOJvMQJmFQGE0nb7owFDBhkcpOzzbYzFRxc0keHAGytbuTlNk/ReTAdPOcdyw4WSubpUws8lzTiCZJUfqiFg6CMWQZWBtqoLFBYMy97T3Uui9e+pfdUXyW0DPvu98+fITx7Hz6eNHXl+utMP91DkXnp+e/DKulcfLxQlcC6QSeXh44G/+9m9oo/Hv/t2/Y7tvPF6e+Pj0zMcPnyi5UEr2WFeRdwLily9fOZ3OXB4eKKVg5uAhgHocPjKPgZSTi7AEQgzEnHw90FxoVZbFdQNPT8QU+Pnzz6QVSk9EDZhFjqOzsdPoRG2eaRMyyalPtF+4CWqt9PYL9oAqww6O3pEN1uw/T+tGqzOcKXsaZQiZlNZpXeRd05HJ9FSQY6HVQT3gOAbHrtRDaRvU5gdW1zt5eeXy+EAoic6gxis9HDztT/zw8AOpJ44W6f1MskxTpWqkiCclXredHO6cyo3ARoqdkIcDfhgYd1KoBIyQFmIZSBT2alxvO3/4qdLtEY2DUYTH5zOj+5pOeyfFRMmZ3j3jox53Qg6sS+Eo2fMxblceLxcE436/Yto5nR2yFOOgLA+oungrVMNYyGtATBm9EWOnHY06jBRclS+Kj18nRVKco0ud7XwIeSYVRs9SGH5xObbC8wosVPYu7F2oGmmWqBbYm9GasjcjitD3SVUMwmiVGD1OOqWFcXjKY1gS2pW4Zo56kMTXgXvtECNL9unVG+jI/76NmBwZLZJctGYNNY+jTjL49XMi/ONv+P/wggF/++MD//rfBH7/0vndTz/TWyXGB+6HcQgc2ri36omzGjBNmCa0J5+chOD/2xhESbQ2QU/WUQbptKBxcAxFJFJiRrs5RVV8N6PDE2F1+OdpfVpouhDlxBhObPzy5eDDp2eW04U+rmCHa3vM1zO3Orh3ZcRBXo17Gmy3P/Gb5x+4Hoa9Dpa8+qLVjFQWPv/8yrHtJIVw1IkBXDn2AUtmG94MmTWUaYsOmf24s1zKnI5Gz4EB7Gi060FTw2Sh9UCOhVNKbPuOklynpon7DhoTtjR3bCQnKloYBDP//O6NozdiidgUga7LmSFKrXeCwNdvd7QJQRdQT+/89q26pobG5Sw8pj/vmv+zi4Gfv95otXFJwiVk1ljRkCaiVrFjsIuyt0AdvjtbLyv7Vjnud4QTfU0sp2e0dkQHkcHWFB0BEeO0BEY80CD0nuk1MyxxulzY6uDzS+VlawyBEDaEZ1JYGVa942zq1qeQOZUzYpFeO9ZcZncqZ05TVBctQBsctzvHdme05sKcGLkfdyfnidCPSsiFbT+4Hle+7ZVLTUis3O7G60gcBG61U2431uiu5X4ElhwcDjMyxxHYNxi6kNOZrpk6BpFIDIl9BEIqjPhIU3VUcAvE6TMPMUDy1CrtPhp0JrY5jpVAis7GJpivDbphCQLQfrG7DsGLBaKSl0jOroDvGw7oMMcLy1B2OTjsQM2hGf3rQbLCZTIGEEjZxX1vlpecs3+I1feEt+1Ga5XaHjhadZhPG5SyEHMipwTZ8w1yKfz64694/vTMw/mBL5+/8OWnz4w+EA18ePhAis5ov5zPqCrX2w1USKFMJ4F39/f7/d1TnZKzMDxu233hOecJMvHf/4YfTW8fHoGyZM4PZ1Q7Ej04CZylbpIYKnTMp2ZWHWKT3jLZI/0X7oHj2N5XFl4LGDBoWqF3QiislsGcHClhISVo2W2EER9/S3bQU0yJHBN5+uXHcMreUQ+2++DY4NhciDrGYDsqZe1oyJxD8DhZNQ7rng9xbPQWqXtDSdS+QBdiU0QOktyJ9orljWgbQXcCYxafgHQk7YRUCcF86mGBXo3L40LKjft2hXjykCxz9LODabqjqkfHemO0Y2KzB/2o5KXw9HBBeyYl5yKoDm6vr9xeXvnw4QOny4VbuxHSQlifOGyBlrDoSYClLL5mCR3GxhiV4ct7rFda1ekeynOlxBzFBlIuhJQd8NQdbxxicGa84ROhkGkauB+De1X2Dkd3R1AbQrOAmrA1c7R6gloHKRoWOrk19HDCpIoX/Q8PTxwGijk1svXJPQiTNeBRPzajmgPesQYMi4bkgeRKiFdMdi6njfBJ3ydWPzx2/tVvdtJ54advnWNvtJq4VuXelZ1B1e66CIe6IxZpXRiiFPVQOgZY8CnQMOE43F0QR0OjcthOiEpASeZTmDBXHzKEYJmH9RGxg9Ejr/eDnoJHV1slWKGkD4yWfQIVEke9+mpHHQDX1IV/AtzUdRdfj0p93QgaKMmIMTME9L7x8uVPFOs8loTajbHAfr+zLL/i8vhrri83tu3muojgPJCcTh5f3l0XkCTSNCDDMdXbvtPUCElACgjEAXsbSFpQCrVFXu+ZFofDqkzJKyzF0L1h9eC4G/UY9HHQuhFkRt3nxV14DbpFjqrUIjPSOtI63LaDph2zK0kjxZa/bDHw9UV5fXnhw0Pmh4czY7xwTidOayJoYbTOYYO9BtSSM7+D28LK4w9IvjDCmdvdYz1lGMcYvG47TYSPjycE4b5vDlbRyOiFFB+4PEbuu9HYXZ0qzTMNYiSKj+jqBFwIQoyZEhdu+0btHWJgXU5u0RZXye63nStCr5HRdgenIM5K6ONfTHeHGtt+8GV/YeuvxEVIayAk4T4WNESkK7xeyRxkIvccWXMiSUBHQTghdFQDpgtD0rtwrSk0U0pcsHhmP3aGDmLTuULwEZKDJ7pfwswVkihNjIaSRqfFgoZBie6KCDGh/fDR7tubHiOxRBeembGeE8vJuL20CRM5czpdiGaIHITcsFRpNO7bwRIfyOoj/ZBd5LVth6u+Q+R0XujW2OpGt05j0KxxzCyEWDIxZfK6YBgpR5a4sI3K48dHfvs3v2WY8vXLZ37/+z+gtXNZzqSUuV83Srx5wZdXDz3RwS47ARcGrusKBPZtY6hyOp19n2rOhBcJpBy9K2kzrlTxmS+OMT0tHr6ynk4MU758/eJrpOiAqtYGTRQN0U/1EB0ooxXBVdlu8fvu4tjrnV53wD+cIUBIRjP364feWcdCChdySZSw+Prs8DHqGO74iDkQI5QcKLlgGt2XPIbvK1vliI0xKvtR2e4u6t2rx2m39ra2yggnSlpYSsTaxnG/M5qR8olaDcsFOwajX0nxM0u4InHMYKA7/Wh0hDVFShzk0CA0JI6ZQ7KART79eCGvG8d+R/KZ8/OvWJwU424XdZ1Eb3eO/YX99pU0nEEyhueirKWwnFfWxZMK0cj9duPr189s+53np2da66RyJl42TFeinJBSqF054cVTyImkQrJAbZUY8JyLfScF0LFyWtYZCORIMx3i1gk8AXLYW+Jd9DF3N25752VvvNwr961y3xu929TtgEpxJ4QFIl5E3OogRyPkzOv9oNbN473dv8w4ndlHY8EnG8m1huzHAaqYhO9wNR30IVMI63n2eY2E0hi2EcILKd5AX9+fyRJ/5hT/mYeHT4QA+1EZVum6cG+de28c5qmpQiHNDBobcNiBiDlATaKnbEr02GDxJMJj39A0GMGpllGV0yRERqA1RXogdndR7N/uPP/qif/uv//v+PT0kf/4T/+O//Af/y2XVCiS2HcgrvQw2Ez8uRlwDE/Gdb1D5P6aeVifefnWuX/bWUsml4hKg9i5vf6OU9z4V3/zgf/D330k6QdUnvi//Y//lq/t8+zgO4RBzmdKXEjpE5fTE19eX2As6NgYMVIV6naAVYfLAcEiEiNGQ7s7DErIpLjSamc7hOsYtFjRNDjjeoChA9069XBHwdHc4XU6Pbq1WwQJmWGRPgKDFQsLrcf34KtjKHs/GKGxq3L/RWz6X6QY0PHMVr+QMizLYDsGpyg8yQNRFzQYVQd7FdQyKWdCTCxSWGUhlAt3i9xqZ2s7494hJl63G1WUTx8eYARGSD7GrpUaAyWfac08Uz5GUj6xNydgYb4PrjrYWiW3g2N073Z6Z9sbHb8c0qlQtXK7feN221hYOBfjaI26HwwFSdGr6lhYTg/kCMM8cnRvg5dt5+frK12UfCpcnh6AhSUtdCncjk4Yg2yRPSbW2Dkvqx8++ULMTgpUc8tMmr73OhoqgqRAF6N1JYeIBA+uEXVxjU1PbxuKBPemCnDQOWhOrwsd0piBGEqShb1X2i8eiBiFlALNnJW9rMUJXsMjNk850idycz2fWZ86dgbdI+HBNcc5J48+JhLWhePw8e3Dw4XHxwutd/bjznZsWHD20v24k4Ojg9ey+GUQAjFHHtYzn377A+fHBwjCf/lP/8x//U//hU/PP/Dh44/0vZMsEQhoHez3naPsrOtKKQun9Uxvg+OoDvsJaQq1/DJ+4w7EEMgYgejCpaMixozCdWGWiJBLIZdCOa3cthu/+9MfuN7v5HOmkF2RnDyu1Ih0M5o2gkGWxf/893S4+RnS5syAWQykmJBsVNsw3UGU0i5c0gWPHo6kVAgIVSbMRDxVLnqAnqebSZ6q+jjpeB3tG/vthg5zQR7iOGJ8Lz7U8cYSFi4x87x2Vv2GhCspROJSuPdBpXHsHQsHa+nk0tlro2qdX50+QEuhJ2XN6iAka4R4EONCWY2Hx8z5kmcYmBKDi31b7cTgQUi9VY77le32le32hVjvhO46mVZ3cihIXt/XUzmdMB3st1eur6+MaSfFxlzJiwe+pIVad/pWvciLbjnOy+LPpu4eQGXDx/B4oFrJmTbjbI+gZIWUFs8emOyBPny60oby7Xrn89dXrredbd+p3eFWOtcKI8xcAQtzquoHt2KseP7AfdtJQbAoSErU1290Ec4xEgOcghcf93aQEJb1BD7nY5hfvsvi8d8xJWKKIMoxbkS5Evo3Xm8/gX3AbcE7Ii+k/FtSfpg2wYUuK0098bHhDH+hup26Qa+KDhfe2cMjLL6eyJKcjR8NkT4zCZzgaAGaDSKBLHjDYhPjjvLh6QN//eEH/u5v/ob/07/57/nbX/8V//ybM/93/T3/8Xc/0e8vpPWZQ5UhhsVI045OTYapF5VBA2WcYCv0A2I/c9sr6WTI6lPofez86qPwj/9w4f/6P/yKcxJe9xP/5Y/P/M//fOf39xfy+sQSFta0cuLMOX7k8fKJeiRfddOmldSLybfPsM5YxhS9INJeUYOYMhIj+3HjODrXvdGSkk6BXKAdDp0KIyNDwLqLXoMRo2t31LrDsAa0hhPB4kqvLkYdFukhUEPEysrN4E+371Phv0gxMMZHAOq4c62edV4VtlcXbITk9LI+hNYzpvNBbEJvyrHfeNXBt9cbtTaCBpY1Q/RIyafHJ07Z+e+DK6Pf2e5GJXDdbux2p+sg5hVGx3Sq5kXZxsG17aS+ej6CgbYDTZEQE2OyADbtXFvlum9YjlhMUw0+wT4xM7ST1oXl8oyN6p0JODIzJA4N3FvHdHAko+RET5GOEXtHqjm6mcEaEiEUcnBxWkoLoTcX+olHVRJl6oUVC42jH/QpYozgRK5RPSFPAm0K3kKc0iE1djpHqM7Y7zOJDifShVF5PQ6OXn9R2E10proW4Xw58/CQKeUghMG+V9+Vlp11VU4pIFkop4xcCtTodqPe3OdenU3Q2kEpiWUtcBjbdmPbNxBXZTdTr9BD4vn5IyUvpNXhUOVSePr4zM8vX/jP//E/c7veeHx8QlV5fb2SyZjC08dnzuuFJa/ktJBTYckLjw+P9O6oVQ9xcS+3mbHvO6UUSikzfnbCeJqhrc+1RUNMfOxeCiknylpIJXG0SuuNweDb6wsXHlnPi3vYQ2Eo1NFoNIpGh6uI56z/i3wCUeIvQkNSDhAGte4Mc/tP2jdCfiCnQJaOholRFXG3TEzE2JGgSBiOB57Y2JgTqWTykoh5IPHA3ejR/fvTPjdG56gbow5CuhBL5hwOPj7c+HBuXE4BjcIfv8EfPjc+f72zjRt6GoQTWB5YapQ+OE1mx2iwJgjnRAq+ynNAltvLYuo8PGY+fXqijwvndXFglQr9GOy3Ddkr1y8/8/L1Z/bbz6zaeTqtvkYyhamgdkZEJIXEeV15enzCMdSJUjycJqWILYVYMlW+Z0XEnKltdqnJUy5tuF6mlMyxu6e+9TaT8jJa1Rn+HYe+TF4AIhMEZAwb3I/Ot9vG7bZ7VK362klHfw8cGgoNF+nGKAxctFrVQBt79UlFPBKMRqsLFpyUFDEku4W2bztLSpR1IcTkZ3CDtldKLiTxeGEJcSJsA8fRuR93bscvLgdJ9FF4uQ6GPhLiguppKuD9fEUM04aoYtaxobSq7G2HAGVZWfLi2Odgk8EyySvDnFEiPnUd4gmGQX2qlcuKtcFDWfi//A//R/7b/+bviNrp96+ULfFv/u6Z4//8N7T6mT98+0pOF7be6NaJJdFN0e7CnIAzWNIY5LGxBmVUD6S6350zsZzODMwx1PVO2zak3ighQW98eIikYIhFQigs6wnpQrTiTVBY0K7s/c693VkuF/9M6UB1+MRRZDI78ITLLv7eSXAn077Ra6M1BwvFc8ZMqXtHUGKFUaFjuNZWSXmQknI/7pQ1Tp2GuaYoZg7dubdKlBWW6AL0mLmPznj9rhf7ixQDvT2RFudnf7t/YymZOgy9dwKZZcm+J0E8NYxIr42H9MApPWDj4Pr6B/7r7/4LJ73wnD+Scpn6187D4yOLFF5vGyG5M2G7K1oDPXRGOeihYbIgrAgLNoSt3qna2em0AJQE5tANCwEVc6TrUCqO3x0pct8rx1Ay0IMjHTvuEQ0ho9FJeFsd3g3EBUkLUlbGELaq9Hun5MgpwTkkVolEDTNcwyAYXcH68O8HkOAxnBLF09+iEW0QxTBr7PVOCoW8LNA7ddvRsTO0ITFNZTIEc225DWWXTp1+3j4gzDVCCYbUyHXb6b29v9ntaC6YxKMul6VwOrmlLsbOcfexIOuO7p10GHmtIHkGfrjIZWhnrxu3q4sCx+gzr6AxRqMPH1XHkijrCsM4nU6IOTa4lOJIXDEsCF++feX3f/g9X799ZS0rJWf+9LufaFvn0+MnzuWCdvdPRSJiM21xwoVUd8+sH8r9vnG93eaUYH//80JO6PD0wL7vHPvOdrtTjzov6OThR6cT6+nEuq4sp8Lf/6t/4PPnn/jd739H2A/OT59YTyuqN3SDozda6F74RAF1qqGOXxQDDH4BggQxujYXetrmiWntRkgXLqdICA7s6t0tYiEIOfnoUcTjSoe51qWNjEmG6EK+bj4dSkth1cS3b6/04YyM2jakRYxO1gjVkP4TT6cv/O1vlYfHwe1IdCnsdeH+qlyvB7dbY2RFHgwuyskEITl/Igh9eqBTDA76kk6znba/8vKaiTHx4w/PbPWRZfXdf4ieCrffN9SM6+tX9vsrvd7dKsVCDMHDqqb4t9aK9kZLkXXJPD09OkseIy8ehR5TJK4rFp1SWbur/1fFHTDtcKt0NPpogBJScCulGk0HsTfW5TxFecFFeUNm6NLBcl6cBTDcHnnUxnF0Xm93+nDORwhCPSr32925FKq0t7Ci5A6MOga3fUd0cD92d4rsEY3wOB5RG4w6oDbCurCYcdxvWPHY8BjkHVeso2FaicHIKRFDRqZvfmil9QP7xbH/chX+/f+68798+ZmvXx/R8UgfC00SMRYigzYOBHHynSkqLmMdatTuxL02lDG6CyEnLCiEhI04oT2DvXd67M5U6Z01DlIQSk785ocP/N2vP/Lrx5UTjW/tM3n/I0U6/7u/Xfl2/S3/z//XH9j1iqqx9SvLeSGWjLU0tQI+p8u28XG98g+//St+/umV2x3aGXoOvkLYAmF85P6iXH/O6P0Tl8cHbnLl9rXzp9+9MpYnbl87D399RsdBbZXSNnTZ6PXGbp/Z+52w5Ekr9M95zDMqeTjNcuhABwR8DXJsd+px94mKAhIJghdIIUEP1L3TmkB00JhEJRVDYmM/ruT1cfIfXPNlEth7437snNdMXBMZsNaRFt/F3H+xYsAsktMD+7jR6kajICS0QckZWCghu3lKvJPJaUE0se0Ht2PDmvKwPhBr8VCO1jnuToELEhiifD3uPKyGSuDonVojI6+I+T4YxQ8gThy1s993UsgE9ZF7WiMhQGvCt/udfewYlZzc+uahJcJeD27HnSUniEIuia1WtlGJDI5+cN3utNp5ujwgYXWWeMpYHBy90vdO7wJZyEvmnBcXN1kADUhODMv05isUHTbz4CGKQ3FcqQxJ8Fzt0cjRu6G9w/2odPUQEK+uHXKR8L2gmtK0U6OCdcaw971Z65HRhq8v+vcjoPVOP3YsZQidIAMRZmBH86IlKiaeVXBUBRvOvsZV7jEnivnB3LpSj+bOkta43Td6q56GlyLLObGU1XO515Mz3cUoWdgOp2T1zfj8+kLtjU8//sjrz9/4D7/7HdkiSRL7dufx/EAflaPdgfEeZ7peTtTeXG8yLY5HrVyvV2KMpJTnWmMwWmPfd67XK8d9p+4b2pz/HvLcd6oTD0spPDxc+M1vf8Xz8wN/+tMf+X/8j3eu9811KcvK3gu6R1oDy75T9rFto1lj8MtQmO4QoPmq7DSrHHZgemeh00ejaYLFdSaqg969q4wxEZPOA78hA8z2yRoYiCRyTohMdG5OnC6BlJWfv3710eIItJHJJkhsxHAQ9QD9iZheWS+RvDRoyoen/y9r/9Vra3amWWJj+s8ss81x4UgGbZqqzkqpUCVB6FJDDaj1l/tCphsCVMqsqjSVmUyaCIY9Zp9tlvnstLqYKyKy77ohbiBIBi/IOHuZb873fZ4xrpGypzVb3r/RnO4zy7iSSUjZIFS5tFyqyTCJyoUHgdeuSo6iZZ3g3fuR1W+xTUOVoScoESE0lETOCz4FUvEUWdPe0UeWKAgXwqdtJLFACBFfMskIrFOXaYDE+5XNZo/oLNI5bNORdFPZuLkQwkJoBCnX3bwyXUU7x/L9GklbW0O5WVwcBoGqiL54BIogxMx5mtloiTKS2UdO48y0BkIqzL4S8ZTSiAyzT5yXla22NV9QIFIfgkFUrK5YF3KKLD7Wkbqp42+bI9kn5JKQKtAKgbIQRSDKOqHLl+bFGgNz8pjSkbVGqBo6k1IhrcW0W0TJnN6dgRMA7w6SN7+LDCWzFk1RDWuEJcd6uKWgiqQUiaagheS7+IRSlXYKl4puXMkUWqfR1mEFrMJXHDFVojOnASMsrhiWMNIoQyskr24sG/PE8e4d3c0znu86RI6ch7eY7sCnP7vlbz878Hg844vCr4HGdjTSsYhEEbViqsvAdfPEv//Tnn/9qw1//7cjv/1sIruep/LDJE3pHesUeRp2jOElwTzn7z77j/yX3wzcnx2f/uRHfPXmNTlM5HklrpqoHbFfyMJTVAVs+bTWCSAVxylUDUZKMqJUnbosmjqITMx+IaRAFgmhL1V8Wd/Xuu3QoWU6e2IBazTKXkivOhNLxKdAlBNJroAjSQjluwltIhkwQlEU4KuLR8b/Rb/5///DgLW5stDFDiEda8ggqeSnnCr5TurKrY6ZzlpKyBRZ+5IpZ/CSJrco67C2IRXBxm1QWmHQvDm+494/0F/dUpJm9BMrhWIcWnSUdcWPEwJzqZOsNMLRZcsULm4CAq5tOU0Td+ORUzpzs4Gtc7hs6EzHJASP4wOn0xFjJLvdhqbvmPNMYiarhnE9MK0jt9fX3Nw8593jFxQlCCWQRcYaQ8qghKEEEFLjmh4lzIUZr8lFM8d6cyil1piMliByFZ8kTxEV15FjhRDJXEAF1mVmWVaWDEFosszEUH3gMWZEDPRKoqRkCYGgI0bDsCwECj4aZJY02eJXQZt/SLXnEuuKoVzGf0Sc7em6Dc55pjCw2TVMKfB0fKTsHVc3dXKhm47ga3Bpu99WOl46YswGaxVts+X9+wd8XJEStrsNS65gotbu8aEw+Ug+PqCnws2LPUtceH13R0jQb64Jc4Eo+PD5K5ZpYjgNeJGZ45np/ohzHX27Ye/32PbDyg4whqgEj+OZ49MT8zjVlYmHxmWcvYWSOR4OzPPMME8Mw0BYVrZtz9V+V+tm3tN3HV3bsIaFh6cH3t+94dMff8K3X31FqyxeBUqug0BlDFI5StZYuUUkQ47g88wQT4TyQ1grhIAMK7AFYEhH5uWJkj0bvfJ8D8YnWrFhv5W4piNkmJfzBUrVVP0wifPpRLO9Yl0XlGvRyjHMC417Dqng/Urf9Uixcr8cKSKj7BaltpTUUEpAihXySEozQk9IB6MPlXEpLVoGdhtP43p23Z53bebuXeFhLaSxei1FhuxXlJzRakK1jjhX/rsSLSU5Dg+Rd4+afvsh+nAiTit+ORImwe3tLTF6hmlkHY84lUkyY80WnwKnoAnjgjOCOY84I3h2s6XREiMzi1/x84gome3VHnd7RehaFlmzLbI4RCok75nnJ+DMbtdxeDyx3+9ZZ19v/dQMjrsER0Os06M1VXplDJ6urQTW9Xymv7klkhmXwGmsnfXTuBJRxKwY55Wuq1rdJSmWKGgvUwllDOd15uVHL7j/r3/LzW7LElaG0wnbONYY0bZld7NDmobD3Vv6ZEjaEPSKaQXn/ISWVyxhoTcNKWVO48AsahshuR5Ui9YN63pCqBmrBigP5PjDAfWYNxzKR1zvP8BlyzAH1jSRUkTqhBGxjqNxtamwFspaw3DSaZSWUCIhzyglCFRUc6tlDcEKzbQsxHUFEchqvqx5NNkUYpQEL5iOI3F9IM6er8637Lc/4fnLDzH2zBJ/z5v7wGESTCkRi8CkjnIy3Dx/ztfTF1i1w0qFFmf+b//tM/6vf2HJ8yP+g567rwRLaFF9x2AWjvMjT0Pi2m34/H3gd09wajy/Pl7xjhsey8CNX8mc0aUGXOMo8crynsxUPIeUKcZRSp1SCV3rvxSJ1QJVCjGs+NmzafYEH5G7jjGuBBJZeZT2FJMJQoJUzEmwvd3zzd3nKC2QpirktTMUHXl8XGi3O4J+oLjK2Wk2hjWeKSVhpUN5XUP7KlBUZJ2XC/r6j3gYSLne/IqUl8pErrrLEiozW6t62/cRWefhxBjqfisW1pyQqlaJQszMfsbahr7r6PuelCOn8YgxgrImwuDJq0c3mlBERbe2V0jj8CkRSBTTIJY6QtxfX5Ft5On8QAmK81BYoifKXCVKSqAF+JRYfUYIOA8n9rstbdsyrytC1l1PygkfPa51XF1dA5JlCUzrTEkFJXWt03wnHEEjioSsUMLUg0Kq8+A1RnIOiJJRVDUmF8FJdWdLMvmyWxYXCEcgxpVU6om3iAsFrVTOdxZVzrL4tXbjqV5uIS7mMwJFRkQMTOuAzT2d/OGlDhd6YIoemRJt67HNNU3bUAQYp8hUdnrOcDicYAs7scOfz6QJkBqr28qQ77Y1vGUMxjUVPrRGovcYIVGuQpDe37/D2R4pBdPhwM3zDcN6xMcVITNGGkosyCLY9lu4/I5SrPCdxS9ooXl8euB0PKM+0t83E+pkYGKcBs7DmXVavofJNM7WPV2MDONYcwUXEAtaoYzFGIdRFmsd1lX/wuPjI199/QUP79/yhw9ecT4c6bdbmu2+jp7XSFQVTev0js41OKkgCYJf8UtdnXx3DCuF2ly4/Ex+5nQ+o1jp2kqXa43EUmgdNG2FdVUfe/VQiCIRRaAxpOBJeSbHiZgEy6opSaPlDisFy1r5/UrV0ChFIYWAkig5IkUm5YkYJ1KuU651FcS11HBYGerr7CS3z3pK3rOGwPFhqO/BYgix1iONNmRhOJwSrTPIYhHFEH0dRSvT1VBwqNmIh8d3rEHQto6gCquMiLyyLhNKCbIUFFEoomAu0qdhGFg1aFm42fX0uw6FwU/VuClUhf0UbSnS1ZWitAhWpJC0TYMoa/1s5br7TiGQo0cQMVYBrt7opQGhCTFXrkARZNQFTlV31QnBaRx4/3hkmutjEKGQxpLn6VL3qzjZRC2slEtjKYdC+F5trNFWYJqEaR0prLTbHbevXnE6PRJyYV4irjOsKVF8ZC4e5Uc2fkHLRMiJOXoWGdhZzbwuFTaUIt5PuC5QWAnhzOpXoAcEU0hMSfJCdhjpSGphKp6YQkVzS4Eu6gIJqvKeJDNKaogRISp7pDbtL4RFBWhxaRtpTLYUn5HZ0ehnCGrrqwrcNCk0fPvlCZG/4YPnLbttTxkGNtcLWSq+/mrl7//2ibv3LWnTYJxEJolVEPwB5UassYRT4Ooq88nHz5inO2S0fPrTn+Bly1//5o7X84lzHOj6jDEGf55R7QvM7gP+6fNv+PzLJ6Ajx4XxENm555gssCriZWQcHpByi904rCgMYcRIVeuwudaVrbEYJWp7K1bDrNYCLwKRukIpoiKvi0xIXXMBoRRCqcHcohNIhdAFbQ1VOx0r3jtXtkxI1fdQBJXamepqYrvb0OqOx6eHizVVIf7XbQn+NxwG4goXRKagjrqR1P6zrLjMeDF3aakowJo8iVQrDwWKlrWuQ2IZFxKJNXj2dleZ+ClSwoIUHa921xzykYf5LR+8+jH/x//dv+WD3TWNDjydn7g/D6TQc3oKvLt74CE+cB/uUEtmGTzGXNeAlqceRmKmpMCwRs5DqB5s9d1twDHMw4UFXh/w87ywbTY455hOI8O54opb22FlhYl4Xz/UIlWz1MgEVmGkrYehXINKqdRgiJCqsrFLJqaISHWsFEu+fLnUapuPgSjWH3zg342W65gFCrW/H1Y0mSCrm1uWWjMqMVFSTbBO08hN5yj8MBlYY4YYycWj0Kwp0BhBt22xrcEYSGXFase22THEB9ZpIbrMPC2EqSAwqFLDWNZaiqmjWqnrn2cNHp9WMBqhqyPgNJxpW0/bNxQdubrdgExVUJIqQ98vM53u2G53dRIiLtrZeaYU6Pq+ms2oQT+lKygo+pXhfOZ8OjEO5wpsEaqGqAQsy0xKE6fTidV7pKn8ik23obMdbb/FqcodEErwdHpiDlOFTc0z0zxWg1vILHOiPJ1oCYhtwOmeq+4lfS/RVoJK9XadZ1L+ISSQvq8v1h+/BMJ64bZLgcgOJS2yWJyTGOORIaO1JGdNiZqUC844bOOJeSCUkZI9oWQW74jeYVSHNhDOE6IYRC44oy+mvIkUKonPqEDXO3YtbLaSvoXWJGSqtaVhnvBkGiHYbhuunjmGteVYWkZfEdoFSEWRo6YEjfeB4AtOC1TNxCGLrvKXMlKo+Z3Hp/dkHPcP7+kai8grfStZpxP7bUchkvPCtHrs5WYe1oXWaQ45ENcZyTOsVpxHDyXTZYXAYFUHuiFzEQZdwn7GWGLy36+LQljx68o0npBErNWAqLXopkFbxzR5prmG0ITS31sIK0MjczxP3D+e6iheVWOiNrUChqph3Zg9yNoayNTvySSgXJLgyrS01lKEQSg4+5Ul1qbGHCNLzgQfaRvHFAvrulS9MJkpRmyqE4wpBaIuZJFxjaZtLes6o60GVsbpzDIeiEldDgO1nmoIqHiktzt0Uwg215onlfKYBBRV17heJWIpGF0qGl18p2OuD38QxJyZlhkhDAiB0gaZIoqWRm7JZUWWlZQVMbX44rh/jKzrma5t0FYyDgf6nUbqmX/4m/d8/ruIsq/wZcbPE/v2CqcEPh1w2whpYI4zS4r89rMnzi5gxcrzl4Kf/fmn2A8+5H/6m//C4dsH/DzQdte4Zss8jry7e2I8JeangY1SdKIwvT+yf76jQ9C3Af0hPD0m7qcDYe4xG81VvyFOc33YlsocsJdgqDAVF18iSCVIORCSR0oLQlUnirg0xkQm5kgulpiWKiESNQeijWJZCn5JxAi2CEowJJ8wTiCF4jQMgKXbNAzTCbdx/OQnn/KbP/wTSkqS/CNnBnLxUKpoQ15efPFdUESUOgYp4GyDVRqfImNaL6N7SZGSmBOpJEIOLGEhUTiPZ27LDcM84oxiFxWbAn44YcI9/+ZPn/Hv/i+/5Fc/+hi3dqzDTFoOlF3h2YstqWz49R96Hn9zYHh3Zru74TQd2G87uqYjyogskXXNhJgZ18S8LkjTstl15Bjwfql7HykubYZEjtWG5UPl3qeUkELTNw0Yw5ozs6g7HCc0Kgn8FLE5YtoGpRRFBIQukGqmW15yC5SqORUiIyTEnC5d/PqiiVIIXqFE1ZbKpC5d53SZDECRmTUHZFWVXW4ll//tCwEsRpiWQKvj9weKQkV35lTVsyiY04oSAddZtlcb5vOJtGacddimufjqIylUg948hPqfJ0+K9ZbQ9xuQNXgVomeOoWY4rCNFz/l8RiiQroBNvHz1jHbnau+cKmkRwtLYHVY7cimEmEhkpNYobcgpsXhP12/Yb6+4ur5BqloHXdeF4XzkfDowjmcUEqctWcD5fGRZJnIWzMtMiIFWb7BNS7fZ14pbKlhTq3w+rbXyOXmOxyfWaWSdZ5zSSBQ5Cp4ejkxp4sq0bK6u6HuH1pVRgCpk1zLplaFYvnv81yDRv/hMJSqHYqngorIYpOkQVGjTug7EtdYgEYbgV1IINLZFmcxwPjKn84UjkQhhS8wDyq5oXZMLMSZyTPSNZRwvHndVeO46Xr3Y8PLljm3vud2959nNxM5EREykkFBkTstCiQdi0ejOsXsWeUaLGSWrXyuMRTu8h2WOzAlylIhOY1H4CwnR+zPKSLRdmdeRlGf2VzdVKhXq+08qi/crbTJkEsbC6Xyi5IqHlarQdj0pBuY183SccdYQisU6A3aLzw1G9WTZssQazo0ZYqpZi+9+7zFGYvSUElnGiRgXlJasPlKK5Eo5XNNhjCSNA0IZhHKkIsnUet+4eE7jwjSv2KZBG1ND0ZcQqdSX0F5ZKSLi00Is9WGq0AjboJueJBwRhTIdygl6CZurK7RrSEKwpIJKiSUXCBkRKpUO17CQGaJnDitTDjSuZY0zm101hN6/f8tHnz4nhMDT+cA0PaHnHqjtsJurPe5Fw6urJ17uCiE7rJvIb544hUQs9XuqyOrBiLIQlEAqidSqVkS1Rn5PuZNkYPEeITJt26KtrQ/CUqebImtEMRSa6nGQniwdpykx+T3t3LGOnv74Of1uAQUxR2znOacDPi7QXhFivRW3/YbjwWOaPdDw//yf3/CyFxgxcHur+NN/1fKzP/s3/IfuP3D+f/y/OBwjrdpQQsa1DUjL11++Q4ZEHk/ctpHnzzt++ukVOr/hT37e8Oy64e/+6xue/stj5W/4bZ3QFVkbIRUfhyyQY66Aos7Uz36BWDyxeHSpvy9RNMhAkQlElR4JFYllxjUKWS4OB92wLr4i9aGSVmNTa8GN5PHxSO826KZlPg0822+5vr5m8StSCZSWqPRHzgzkUkN+QmqkrHztIkR9MF1qXEYoTONQQjGOM3NMFFmDb4IK1vEx1RpWyTTGIK3Fdj3DvBKDQAbLq5c9Qtyzue75y//2TyhN5ovf/Geu5QuuNo5dd0SqEcRrTrPjHANJ+grscAZpakiodzuM3lHSQsmREAOChNEZrSJWZ47DicVvGdcZ2/eUi61LSUNMC6fzIyrX2tI4RRpToTPkgkxQQqLttnSqRcaqcuUyLVHOkgjkC6dfiXo3+O5AxCV8FalNh1jSJU8gIEWc7mqgCShF4v1SHe5WIawkp4wvEZkLSlY3e5GK5BMxRnwsl9pJZo0/nA6XVAM/ja7rkyX6ipBtepqNY5oSykjEJeBotQPRIrKqPHwSPqyVVrZG2qatlD5qnc7nQBCxmugah58SISVsa+l2Hd3WcfVsj3KKsggEClUgLYVYVqIsVVwSQx1DFlGL9aXweHhiu9mx31/jmgbrLEXCGhbO5yPjODBPE1Zqion1Sz/Uva91FeernWW727K/usZ2W9IcmLxHKYvJhfN4Yo4LRYDSiq6rD/rGWYTUdSc8jixlptkpdtc7+vYWgUVIWx8ErmEyAxPt9yDolDPqBwUeORVEFhABqRGpJVLJlIfDkSKoamTbkwvM68w8j0jlcLYwzE9MYWKNvqJ1hcOKBcoZZXZsdhvOx4CQGmsz8zyh9MJma/jggy2f/vQZL152OPtErwp9M2A4Qs5o1XO732Oc4pw9y7qy5paQ69qgKxbX1ZClNobgr5jGPaenO3xcmOdMLJ4wRsIqWNYFI0CoiDKRIiPWKR4ez5ddvGS9NE+mdUKReLHbUA5Voa20xVnH9YtXTOcZozVBSHJRmH6H23SI/oY5G5zoiMUwzStKXtLUotI5CxeR1SXzUf3wVTy0ek+MBaEsyrYXSJBkDQWnFMhLliAmxpC4fzpwHBZ8Aj8vqCDxIdQ6rao9KR/Xi60vMMx1lZeVRkiJdh3K9RTTIK2po2EDbaNothvOywxKsoaIQeBTJq0B1SSsFWStmEKgpJnZe5bk6dyGLArzPPHtYeR0eGJz3RDbiWFeKUXW6u3lPdh3HdtnOz56ceCT51TTYi48HhfGo8cITZaK5fvGABcxk8IYjbrgm7kwFMqFjBpzqUAibVBcbJYF8rogRK6sBmGIVLFSEQKVBeeQUNPMOg244yPdTcNf/rs/4cvzP/A+PaLiSN+0pKBZJoHrNjRakMsT3faW1hlevzvjJ+idY06S41//mrf3gU8+/QV//uN/w+EtvLl7z27ruL7Zcnuz41e//Am//YcD/8N//++J2fPXf/1X+PHAsw/gox85druA+WwkiAXbQDaKKaxYBM3lz2+EJl3w8JFC31dZm189SoNxQMxo06KICCYi8XIQSKAiMc5oU2ojLUSErBewFAS2qdriHFpE8SglabuO8TRhS8OPfvwhVmceD/eM0wyK6paR5o97GOCiJxUyI6Xi4nW5jD1r37YygASxFBYfWKtzpWJF+cFXIJRBm4Lreroi6bdXDNMdIWiebX7Cs2fwZ//2Fe3+wLvzb/jnv00cvoI/+eCn2J+2KHfANfA0HHj7oPnyzUS/a2p9Jvn65U1G5kgrLTEaSkykEKGstCbxwctnl9H/jDKR4/09160gyZU1CVrTMy8rd2FlZ7pLGCRiXKGkKuIRGUQqaDTbdocVjmWaWeYVUzKN0/hYjVylZAi1KhKSvxxMqqY0kQhEvtsslnxZPwiNVLbuiTKkKIixVAKdrnCZkAKyZGRWUCQlSVKMhJAJIdNtdpcK0A+HAV+HFRhZAz8prTgRwEDWEd1Kmq4npcLgZ4RSONfTmxb1bIMUDTJLpvPMOI2oKPFhRWiJslVvmwMkVV3r0li0c4QcsL1lf7MnJM/h3cB4HIljQnpDGAthnBDGontXVzjWIkxNc8cQMSGy+IXj+cSrFJBas/iVYThXsExc6xe8qr4BIQvGKqSqtTFjLNoabm+fcXVzQ5YNa55ZYz2wrTFwPJ+JBFyj6LqW5As+LjglWcPIGhPDPCJjpj0Yrm93uN0V281LcnQgC6YYhvaRg+yZvn/41y7y94eBnJEXepxVDiV6/Fo4nE4sIVZstG7p95IiI3M8MMyPWNti2h1JRGKWTItiCQJrBMkEgh9p7RXbm2sWP2LmzDSeabaKq3bHBx9t+eCTa3Z7i7YnhHiLKHcQH4ATIgZKtlAecLZjCQ3Hc8PdoeE0dixRglY0G4ttW5xr6XvLdnfNrt/w8O4LpvERnQqGlv12R7dvyEqy3T/n5Uc9Pv2OnCU+eWzWSNMRc6TpGqbxCVkiS2kYcwDtKqCm2dBcvSCKCa0tISSEVuh+g9ltkJsdy7rSi4ZQNOMSkGKuxE1jaPsd81wFXqkUQkrMfv3eTUHKFSAUEssaMU2FuKwholw9sy0xMvnAuK7cPT5xHAZiSszDeKndFqZ5rETIHPBxqQfcHFjWiNYOIRq0BGE1GE2Wkqw1Ia/kEnHOotuGw+E9SkpiCBgcPkVYV1wqZF8dGmmtk4olBJbk6+1RKd7c3WG85GZ/xfE0E8LCEBJt51DKXToAMJwH/N09N+3A7d4gla0bDqnoTIcRlhIz07pUf0Sp1FEjFVpWIJaQ1S4Ycs3h5FBY54RE0/U9SvJ99TD6GaUjxdbv2hQdKShEShi5spQzh+XAfB4odwPPXn2IcoKrW8NpWAlPC6K02NxexuVgjMG4wLpmTmMAfY0XYOmYZsfh8cD927/ls19/w7MXP+dXH/4ZW33H2/svWE5Hdh189Bef8Gc/2+Gs4Z/++R/p25Vf/uIln33+t/zVf3rDX/zlz9lcP8f1C+dpIfixro5KRZ0rXd00udTP+DiNFbeuVWUqtAbXGdJUKhOi1MxELL5eUI0AEQl5QqkqIysxIiUXtHtdsRstiMkgkRhdHSVt23LTP2OzMTy+/5r3DwNCGLQBeWm8/JEPA5W3LC51LlnUBaBSyLkQSiQicDkiimQJkclHuk1fx70+oKXGmhZhNMfDex4fTuyvrkFYUq4SDtdcc3/4PbIJDH7if/p/f86Xf5D86Uc/Q7mBd/d/oHnRsKgN3z5MnJYNx+HAjz79OVebDaRYR6Q5sU5nPvnwpxwfz/gY8CnRusInP3rFpz/9lC+//JLtXvCjHz/jML0nlJE1DgTh0U7WEFgsdFfP6buWELc42yKtYPAT87TitKk6YaFxriWGxOJX1rCSFk/RFQgjRQUTxbXCa0KIaKmJq6+7xYsURJuavwglwboQhURGiyoGiqhUO3Hp8EYuAUaJtQ1GOqzyDPOZXDRK1jBcWAQh/ZAonUKglIwDrK410HEd2Lg9RUciK03TEueMjwHbOPrOYISCTRX0GGFo2u5CPVsYloF+19c3ripklZGNJSvI1PeD7TSb3RZlLd+++ZbxNBLmSJ4FnezR0dWpijZoa6t5sZQa/jSKIgpK19VUIhFzxFjNuq6My0giogy00uG0raY/IeiaDmXqB8w2TT0IXF8jLvUr19bVDKWwLgvTspCEZ5hXjscHpuMjt/sNvp1A7Jm9J4nvdNECP2eGQ2DnOnpzQ0iByMTN5hPeu+vvDwMUiOkH+FP1DQg23QYrFTFo5mFh9hkTF7Zby/3Te+xuwzzN+LSyxpVEw2kcCBmWFcZZYOyeOQiEFczrTGbhw1dXCL3HpzeEsnDVGz7+0Z79jaTpBT6NTNMdTr2ls2dSmcl5QYkEcQKhyTQcD5K3dzu++GbD4i1Repp95Mr22FAwRtA2Lc706DQxNYowe14+f87t9gOM2PA4vef6xS3ffDOy2V/z81/9lK++OrO92tC4FmEkWWSafsO0DoQQeZwX5G6HaDcoteHq+cfQXXGz+5CS62pnnmdK36Fvb/BKcT6/p13BWDgMI0Z6bm9uMdLRNBJEYJnP+FgtfFwCXWiNSKCMQxjLmjL9Zbc7zAv91S1LDByGM/O6chpHnk4HjsMRrRTTMuGDvxxIA84YFj+zrDMhBVa/sEwzz150lbvR2Xr8F4kk0mXSVwPM189vQNfReIyV3WFWdSEe1krp1jasIZK8RKvMNC9EUdn4xBP7mytiKvT9nvN05ryuPE4DLz7QmKS/nwy8+fYdp9/doZIjBYk1in/+9conP/o/cPrnLyq+OQykcUUpg1P1wueUxqLRUiEk+FCr2KUIwDLPAasbpmnGWU0K9TKmZbkYNQvoQN82xFXh84mQH8mqYXt1zePdwLvfTJRyYvVnHg8J028heZTcEhaFMxuEWpnmI74cWEJk8YJCYN+/YBkV1vQY4YnzHatekddX/Pmf/ym//PSn/M0/ZHRzxqiB7a7hsB4Qqme/7dl0Hf/4D39gmAopdXzxhx1ffrsyxx4v4P70nmc3t6iiIRca51iW+fL9pKo4ynsa3VyC84ZUAsY1sBR88qhG0bUdgz/QNQ39pmU6jLx88RKnG+7evCemlbaznA4TrulpGsHjof5OhYyEEHjx/GNUlrx7/w3T+EBSEnImX6BExv2RJwNC1+t95sLLR1TYSKk50pzqiGj0c7VXlUTKAh8yYQ2QYHvVo7E8PjxxPJ7ZbiSu2WBNi3EdcVi5O94znV6z33gmv/DFF4LTueX6+Q2ffLrHLwOL6Lh71Pz2Dw8clyOLV5QY6V1D8IFUErl4ii9M5zP7fsdjmJGqcLOzfPLBlh99suf22c95Op5pN3u627/k7379Wzh41hBZgq2J6ywQKtOYlpfuQwKRJCM6ruQUkdgq3RAaLTRaGZCCkBfCmjCyOskloh6acqmwGAQSxRpDlW3Igk8ZaVStYpIuo/2ILrVRIJSsndWUWZeVnAqy1JNnqzp624IpDGJAaENEVTd9qiSs736WHFElV4qVAN0a0hLI0mNa6solVQKWkOXSGqEiUk2lEUop6bcdq99yOoHQVZC0hpmcM8pB0zuElpyeTszJc7V9Rqbw/v6ep8cTVjYY3YCVWNXVfavKmM6iGkOIAalAXxzuQgpS26C1pm2qUjsVzzidOZ0P+LAglURbTWsd1jqMdVzvb0BIlmVFG8f+5ppuu2HNikwFhQhZP7zjPDBMZ2LxjMuRaXjifHhAqURjNX2vWGKqp3Rr0cqyzIEH/8RVs6C3hZQkGYNhh+IHfWhKmfgvREUpJqxUOG3RRbOuimEReCRBeuzGMr4/kSU0/Y63dydePPsx2sDx9MDxtHIeI0L1COVqottYvE+E5chuPaObK66eX4Ea6LeJm1cWY1bWNBEHz7qc2VhP10W88mg8IkfGc2IlsWrLcG743e9OvLvv0MaR3UwwA80aaZtIiQVNQ6MUyQaudgWVC/s9KLmyroK2dzR9QyxHUpxBF5re4vqGfru5gHMiZrPB+R05NbhtS681++0NIlmuPvgJvbuibXZ4n4jDBLrDa8FjKFgpmZPg8TCgzIbZLwgnsK3m4WEixoqdLmhWn1hDJktJ0aq+ZlqSlCSKahFKQhJiZJgnrnMiLBOnaWBeVw7DkSVM9WaXFa4xHM+PPD090W9bmnZDUYavvv0Dyips43BG0286pHWXZsBMMQnVCopJpDWQs0c5zbRMnMcTO9ew322IR0/xvsLRcrq4B0zNEpWCkBWLu/gVaxps65BZ4JoN98OJ+8PA3TiSjWVz/GGHnIJgGhR/+FowzQUlVt5+a/jln/wCJeaqYwiZ7E+YRnCxe9DoekHRWpNFIqVMCLFaR0sVMIkS61otJuJFC64QhKigGBABkSXGOEpOaBvoNlecR8P9o2A4KX7/e890joS2oWmv2HYa8hUyOrrGkuTM7B9Z4j1eJLSsyN85zDTyhuAFKs68eqH4xS823N4U9psT94+F6w188rMP8fMd3347UopH+StiShjj2Gz2GNtyPMJvf9vw1V1iTtdIF1jHIz77C0Y6EGK1SxpMBU5R1zs6ZqRWuLapEykiSnqULax5IUVf6aFK8vzFc74ZFtZ1pjUOIRNt1/K//7f/msPDid/+/h94evL4RVJUpm32PH/5ivEUeP3mC1IYsUbQbh2iKOZlBJ3rX3/Mw4C2NRWd8iXOLgoxR3yukJpcIIZEHGvFIlGrKCKBkYZ1miDUgfhwOqEQXF9f15GY1ljrCNnz2Zuv2MsD61kxDjtG/4qiA1+/e8svfxpwasOXXxb++U7w+beFIR7p7DXrMNHbjtePr0mmakmdlLx595pf/uy2BhrnMz9pd/j5Pb/73QlpLE23IWdNiCshzRRVSCGw+hkZBTIJpnkmCdh0N4R5JghP9p4U1pqX0JHgY3UErCuLX1jzRMkRKwxSycq8B4SwxOjJRZPRhFTVu0VWjrXJdUyQYyVUBaqfoIiIUDUdvyZPXBJt12AxrMuMygZHUwN6V88RRvM0TPgYKKnUNcXlR6rKPq8hvUirBcUKljjS7gymhXUZySiUEfiwoJaM3e9QraYssEaPNYbt9Qbj6g0clYlxJaTA/nqPtIJQPGd/pt05tjc95/HIu7d3lCiQpkFngxQaqRwxJyKh4lVlNQFKJeqeNUeySGx2tRLVdi1NZwg58Hh65DgeEQravsFqS+MamqbFuQZtNTFlhFXYzuG2LdvrLSYI5iUTYrWDLfPA6Xzg6fDIcT4Q0wx4pnXi6ZR5fnOFaSR5XtG2Y7PZsOl3SArn85n3d+8gOYxrKVKScJCb73/vOUJJP2QGQszYWLHerXAcjnAcC9EUyjxwoyRTWAlFc739hNPpjl/94lc4k2nbZzj3jsfff4bShSXMCFtrnUl45umRr15/xr77iNubG5Rqcd1I206kdCaGiWFcKSkyO4e6KejtgnGe6AtvHwUPB0tUrxjSK/7pH/+Zolv6PZVNccE+kxMKsLKlU4n+OrGxknOvyP6Jt+/e45ctn/zi5xzOZ/qrHeOoOIxP9NfP0eeRZtvWfr8U6MbR52rWvHq+J0TPze2HnJ8Wsu2Q/TVJOLLInJ4GsJbBzxy+fc/VzRVZCN68v0e7hvN8IpfA4q/54svPefH8lhfPn+G6LVkY1u+aHdYRQyArQyoFGSPXbUOQhTGsjH7hMJ5BCsZl4DSc+frbr3n/eE/yESUkH334IQ/3hWk6IlXiw49e0O17wj9Fbp5fo42hb5oa7HKgbWL2T6gm4LagdESGWD9HOrPOC2tY8Ro2vcOvhTksGKdZ88JxPNM0bW0/Sdhc7VlmTywJ5RSjH7iyV/TbPfHdW06Dx2fN05hZjp7vRgNX+2fkmx/x6B9ITwvLMNG5Hb4ItGvrd0URlMQFPlQrqs50EMUlR1Y/o+UCa8q51MaGTPT9hnUayBk2XUuOieQbZO5xIpJWiVMO1Vr2+xu22x/zz79/zf37hu3mE4YxkZZC0ZbhkAHLOs886wq7TWYMK+c0XsBsApRDasU0n7F6z/l8xIl7Pvy442e/jByPv2VcwTYviOkbnp4sj5+9wW0kf/LnP0MWybRO3D/d8ef/6hdcP3vG//g//h1/eP3IYZYEZ0gqgVYXPH6FVi2hrpuqeUNUhH3KxJxodYOykmlO+HnCCUHTSx6fZpIIFCWIKXI4HAghMUxjDT9nz7yckTry409f8vb+d0gt2fQNU6jtpnkMvH//QIgLjbOXplogxhnlBEUEQv4jcwaE1hdr3ncPlfqA8TFckuqy7rRSxGSLVPX2Rop0zrF/ds31bse7t3f4ZaBrLZvekeLKNJ8ZpoHD+cDj+YjdOZ5GxzRc0+5+RJYnvn79d3z5ZeHZ1S3v7hJffjNzf4RmfwVCsy6evtsyvg1gNHPx+CRQS+TNwx3FSHSn+MlPX2H1yJune3zMPH/1Mbuba/7hr/6a0xRQRlNSxPuMjJLkE0+HERVnnsRMEhHTQ8QTY0QVifeeaZpIvjBMA+M6kdVSmeVzxloHVAUmAhafa5dZ6BroyZFSapdZoC+F9EpFy4LKuZdVYqGkQuZKmdransXPzOMZva0oZGd73F6RhGBdM9kHkPJCCvvuNFAp7zFlVh9r7zhr4nqiaTe4XjHFqU6AlMIHjwyJSMJYgWo1y2mmpLrf3Nm+ojdLZC2GHDy7q47D+UhGYHeS66vnmEZyPhzrxKUYkq9+eQHkPOPX+eLzFoTF16LlJW+SUyB6T+tacs60zWX8pQohLsTksbbmAlrXst1saZv+ElyqISerqyc+pMiaAlI5rFFkVZnrMXp8WFjCxJs33yBN4fpmg25MbZaUgHLQbRTaNfTbHmMtyzJyOj5S/O9RaG6evUK0QKxVt+8/bKol/oswT06accqUAkYrlgTHSRJbUBvBmhWhWIZZcRpOzL7jH3/9mp9/+hJrWza7G5r+DU3Xc57jpXmakKKGkobTO1gz11tF23msHVAiIdSM05G1ZB4fIicRESw0baLfSsgtYzZ8c7fj/rRnKjvePe3pbgyirIi0sikFgUeJiBYJkzWOhbaJ9GZl1wtOR8/9+wHbbogl8ebukRcf/JIlFg6nIy8+eIHpDUkXMArtHEVq3PYaCTTbPXE+I1xtBZ1mT9dXfK9fA75Un/3ZD9yf71nKzLP9c47nI7fLFeN8ZhwOtI3mm9dfc3N7g+t6lJLYrqcojQ8RbQzFaCKJmAoKyEbjY2YKniksPJ0eiSkxzTOH4yPn+YlhfkJeAAJCvsQYICeiXzBKsmkbPvn4E55/8JzT8cDzZzd8+e0XKCmQOrLEA8KuCLNgu66G6qRB6Boydr0jhAXdteRWkeeCbAzCaqa0MCVfKa/O0e/3nORAVJ4lT7x7fMPm2Ybd9Q5lLDcvPkAmxZKeOI4r3ym0um6HePaK8TwgdGE6D1xtrhnXAz6daV1DYqUQiKU6ByQahEGUjERcVgOCnKu8SRRFzqXSDxEYbVBIRNY09hnF19q0M5LgEzIrNu0Ldm1Ciw7vq8wpSUvXFNZwwueV89ETXcMyZ7KbMarDZIHwDlm6ynEoDQgDIjLPIwZNt9Fom8hypt9bvvry12TuQI9EGg7HI8O7Ad0Y9n1gWVceHg58+dXXfPzpB7z4qOfwh4Fp8HhfW3FaOZxrME4jMMScMe2FUZEvnhoBQukLVyBV4yyBolaELjSdpH9+yzdvH8hF8O2377BCk1XmPJxY1plhPPClKlxt93SdZVoCq59IKTCNC+PwQIwCbRXHYUYUzaZvSGklU90H/7LO/Ec5DKQCCUjUWlpOdUIQciCkiJSm3mFzJMdCYyVGgsiZ26sNH736kKvdDiNhPB04niaWZaCsK6Y1nM4PHIcTc5B4HFE5aBym35KzIoYrnH2JNY7D8Q/42KDshuM409/0hJDYXO1IUhFUYSaR0srNbsfrx/e8+vCa1rZsbxvwI+PXJzZX18zTiXmd0dby8M0D7f663tQLmKzIHuYYER5S8LQbg2oURWa0UYhUXddQCKFqemOulUKpqqRJkFDa1NviRfKBVZSsufAHL+O3gsTWw5eATKQIWYEfqnLHc45QKqBHhoxY6hexQbOeF3TrauBnGvHThFCyBob+hUo3l0gIK660SJUYhxPKSPy6op3B9YqcDctYmIMnlkCm1HqQaVFOEsrKuia0VljrqqRDaTaiJU0r1zc73j28QTnD7Yc7nt1cMR4OICP7fU8YoARRrV4lkEpgDOf6/206/FwPP4hy8TYkSk6EdOHUG4lrDdpIXGvp+hap6lRKaoE0CqEFqw903aYmtYVCakMQmdmvaAUlcSFEBoRMSFVzCWtYoSSu1Y5u29dqZUmYTvF826PdTa255cI4jUzTiek8sdts6fcdxmpiKFB++IgJ4Wr3+rvXIRuil5hiWIJB01f8bkzM3nP/KDicNc195N2br1Gy4T/97T+S0pmbG4U2vmY6uIBHgif6GVECWoIPkfPqOR8U+11GlgdSqJmA3nXkRvMuZZ7mGbuduMmCneyQ5hmxueXtWfDPn8FhOXEIruYdyhFbfLUgltrSKWGi+ETRJxABaw+4zYpSimfPLFpfMaXE43Hg+YeaVALneeAqrVw9v2KaAnNYq90TQ9duq39A6mruiwnjWkKsrRDvM4+Hh8oMyJHFD8Q88XQaueq3rGEmxBVkYjgfeTw4Fj+z+oUQE1IZlG0oUnOeFjadphhV2wS54KRgWj2prJzniXGdyYcHhnFgWRfuH9+T8CzriavNnsZUPfmLF894enxg9SviIpL5V3/251w9u+J3v/8tu90W81bgGokyGeRC02VCOdV1nav+hGk5My1nmtbRXTta0xLnSDYgWk1/fcXkz8w54rodum3JRpG0YskBE86s8xn14c/Y7FvaTcvH13viQ+L+9R1p9RcGZrUpxljdAVIJhM5IkznPT8z+SLORJLmAyVQZuUEJyRIzykdsFhSZybGC00qiItJDBAen4wkjBDlkRr9we/sBTacYh29RSlWl8zpys33BVduQY22cJLHwND5y8/KGT398zbvTPWWOnKOnbzb1YI9ClhYR9xgkqXhSVOgiCWGmLDN9c4uxDYfzyLR0CNHy288/Z7MP6EbydD4jTIv0it/95ls6N9DbG3QxfPX5kX/9F2c+/tEV9/OJt9OJ5A3LIpHKINH46EEmQowY11T00gVrLS92zBACPtZKs1KFTPVwdFvD/nrHH769p1DVxEIolnkFE0k5YJ3i9nbH4/sHHh/P9JsdH310w1fffsO6RJQySGFY1hMhwItnH9NvJPPdmURtIwj5Rz4MLCHwnTEs5YAqEqUukJ5SxRVCC0qoYUJdPH6c+NHLD/nog+dc7zqMgl/+4sdc7Xr+/r/+mlQ8a1xZ145lHSrVUCrmkElOUNzKyj2FlTQt3N95/DFzeFpoup6OyP27J4rYsvqE1A7RWIIORK0w0tBvrrh7M/AwHcnpwH/62/+IK5E371deIXBtoj0P9P2mpjylpZQEWSGFJZdISVWd27Ya5yQxLWQibWshWqp3sH4IsqiMamkEUtd0f4z14CRFTSrny39XNcy6AolIFzPbxQt+eehnCkkUpMx1BBQSpmp6yD6xcxteXr3EWsfj+3fYAsNw5u7hjgC4qz3CqEqgu/zIi/s8hICxkmkeaUTLGgRDPmIahVEbYhhZ41jfUEbU0IuuN1CfArnU0X2i3qq1VFirMFFye3tF+9rS7ns2Vz0ojzCBttOgJNIXfOByYk54ElMakNKRdSSkVG9cosClAqm1wbXVdnd1u8c1hhg9ykg2+x4hqno2V0402pkaEtTVnqa0xDQOaSpBzs8zafH42RPCSikJpSXWafbXO4blRMoB4zRON1XGUzy7zZZnz54h9Z77h0dOpyOHwwNaasbpgXl5RpQNs1/J/wIDLYpFSfvD6yBb1qAIRTHGQte0+JiY1glxrFyBr79eyWXk6cnTtoksPF++/h3t9gN0TozjwNPZ07TXdYqSA6p4ZE6VipkKJRxojSWXM2k9IXWmaRRJg2oGpuWOh+XEw9ggzQYVdhzCM57imdfDA3en93gdCd6gypbGWVD+UjFeKjK1gEoTMq2IdAS5IkRHETD7E28eJt6/P/LigxNrqL//8zTw8qMfk8TIcJ4Rq6V1DtdsWP2JeVkpwDiP7Ppbzg8jKUfmceLp8QFURphEiiMxTyzLwvH8yDyPTPOAUhVPfh4OGKM4HI/cPzyx3e+RyiKNY1zr/hYhmb3/vsZ6PJ8JKRFiIJfM7CceD++Z55E3715zdbtjnA5cb3s2G8fhcM/HH37MdH5FiJG+78i58PLlC7Y3V9y9v6tymlKT4yFVtkm3UazLXMFNqeJ553XlPJzY7ndcP7uhLIEoIqJV2G1De2NJM6zjim4bitMc5pEpBryISD/hYq2iFREuTbDa/T+NIyb+8J4MPjKPkRS2GN1iZUPJO3J0pGQQylbNeGNZc7VoYmCKC3oJFK0Qmko0zVWoFfwlJFsKw3nAqQoOW9eVZRnY7jTjuBBDRbX7ZSbFjs68IMXA4hfQieJOfPLLK/67v/wFv/nc8ofHhV9/NqB5gWOLKn0Ft5X1Ml18ImdPEYp18WgkCM00S+7u4IsvIcXC48EypQVhF2yj6OzH5GEhzJ7h4ZEX1ztEuOHweOKf//7I/sOGUjJNq5HNNYz18BT8yrksWKVYfMA2NRguhMQ4ixAVMBXWiRBnhCxYK2msAg1eSh4f7ytEP1WeiEAhRMFaixKJJBbKRQUtEFztb/n4k59wHAbGcWaaM1IldKv58MOP2HUfczh/zRoDblPx90r/kdsE6+orZjZVF4EkI0UhSUlCVaxr7UGQU6LEiBWwaQVGjpAyy1pVxf/Nv/4YqQc+++Id755Wcq57qK7t8GmhRImQBikyk39LCguuJP7v/59/xAj44Bc/pwDvXn/Ly5fPKq6zJJIQON0RylyJWJ6KR9aC+8MTEPmrx5GbvnD1TPL1w5Gf/+QFmoavP/uKRjlMsRgyUjqMbCjKI0PBaEl/3ZOFZ1gqMW+32wIaPxZ0rhyGkrgM5OX3TvFlDZSUQEh8rI7qmgxOQEEJUUUpUPWoRdR0O5BFQYhc5TCALgInLE1xuNLw8fNP+Ojjj7k/3DMejlVqISCWjO37aiK0DqN+eKmtcXhl8SHSCkvImS5LygUTvdtaVCNJx8AiZpRuwEgCAUPdS/qyYlTdb3pWljjQGAs6I1yiuzJsbxy7qw0oxTSckUZhOsu0rhRTQzDIdEl0R4pI9UBJJKWVkkCa6ryQplrujG3YdB1dtyGEyHA+MM1TJViS2HRXNHbDzfNbfvTjF2z3jsfHR54eR6Y5k2UihsR5eCL56j5Pa2QJE7kEuEwHnr+4Jr1fWNYJYzqkcqCh31t+/qcv+PSnP6Ftrvn8c82yfMXhwUMsRO9Z55lYCnNY64Hvu8OAaJDyhwxBaxznRbAWefE9ROaQmGPCyY7FJx4fH2h2E0U67t/f8Xzfc7r/lvd7R7O10HSUVZBKpZ9tug1ezWQ/optEozy31xO7bsSvD6h0QCeBM5qExal7vH/g8THxbac5PDVkb1lXyaQaFpNYzcicZkp0PJc9fd/R2MjGGTZGsjMrG3OmtxJrcs0s+MjhMPHm7cpx+JzPXgveHyPPXn3BbvOKjdEsJ4/70Z7NVvM0nsnlXA+D7mINDTNNp5nnldtbw/p+5bQcOAwPrPmAoNC4SsyUuSBy4ni+4zyPHIcbNm1PyIXTfCLIhaf5ke58SzEtwjTYtgWRiVkglWKJy+UzFzlPZ3KSSKnQSqFNgRIIfmUaRn76q5/weLwnUpimhc9+83ustqDhV3/6K3TjOI0jc1wQw8g0LKzlzBhnXHYsYUIGS9PpqvU1/jKFgxg0PkwgOiKBcT4xlQmzUdjeYJ3DrJolLWQNa/Yc52MVY4nCtIyUrFnkwv1wx2l9YrjLPD0+sk4ZlX84kMYU8TEi5IaUKiMjRFF19LkGh4U0GNMgwgRSIJTAh5XkA6rUmltKBZGpF5iUaF2DMapWymNGKYtWhWkauLm+RhTBckGWryFwOD8Q8k9Qq2CZPF2j2L9y/MmfvMJuFq6f9bTPfspwfs8ybnh4e0QJW8N3RUGUlACJiDSKtm1pRUOWhaU4HmfB3/02Mq8DcMO6ToTzmZcvNNudQraCZASi2/PxBz8hTgMPh2/4L3//mo/9DfeHFSlbbjbP0DoxLgdiOrPGFZqWWGqerq5Hat0xpYAPCz4upBIxWqGM5tWr5wgtOc4TX//zZ2yMQCdDWBK6a5AGlhABxflU+M3vvqI3O7Tu+e1vvuDu/YCPEWd35GDxIV1aY4lvHr5k8fe8+OAZSzri3GVd/8c8DJAFIQWSAoxlKpW7LmR1OatQaK2tHbmYUaJws+lwauXp8XfcfPoTskhM4xNffvXXmKbFmImweNS+ReSGRsBea0SMzLO4wBgghpVms0M110zryNdLYEwRRUOaBdlazjEwp8hWtzRZE9f6kFEBWmsY50LICtFdcbAz4xpwQnKcPS+CoBU9Swg0OFTxWGvZNx27/S3n13cUlVnkCEYiRUPOlmEsLKeZlp7n2z2tayhHTwpL3aUlSAKklXWqIhPCirpnFFRzmlOQC8syo62h0QpVJFFVna4v1WRXloCKcNPeYFaN9oaffPxTfvLsU8KSKIuga7Z8e/cV3XVDd7PHl8z94Ynd1rJXP4ynRTQ0bsfTeiQNE6+ePcOJlqfhqRIkO8F5PXLigNrripjuDDl5sqw79ShmtldX9RYfArOcUCZhGsn1bc8qjmxuFCnMqNDT6g5fPF4DfSakwDJ5kgMjLWH1WKfrw2xe6BpNQWA3PdpWvHPyGdt2tN0WJQzLHDidRqQxmEZdRsaVtnj3dA/tHR+2lp/+N5/wcOf4p79/4PHxSNNsyMzMPkA0aCEJIhDLwhTOTOuRvtN8/OFzfve733Bz1bOEBeWuEXZlDF/zu6/e8a/+/F/zp3++YRmu+PLXM2mRlFnih0LyKwc/sKw/tAeGIRDOE4pdPZRJQVNaxsGz7S3f3H3D1e01XW7ZFEejJNK8JuuEzIJd2xEeD/zlL/8tv/3ydzQvLamTJJOJYcFayxIkolhiPCDFzPVVpG9e05mCWN7S64zKmSYknOn40bXmNG15PMwcHm64z1sWXx0TA4VkNcJIUoiUUGgMOBPI4cRVs6NjpMmehgGVCzkakmyI+YqvvnzkmzeCyMzf/qNn+9zx+Rf/wP/wHz7gRzc3vHnd0ZbnhM4wq98SWUEY3h7fQ1CIPNM/23E+HpjLSO4Cv/7qbxjPR4wSdKbFl6pG1mi0MBymt7w/P/Ay/Yjz+xWjJUXN3K+vMdpyTgPh6Ym4eJp1Yg1nrsyepmmQ6msWPzD7I1ZdU4rk8fHEPE9sla710mFBRsXb93dELXk6jQQF65p4Op0Z1hPf/OfX/Olf/Bk3z18yjSsshuN54hAfSK3ktJxpe8nqR2RjuH21Z1xmHg+Pl8yQARXRKvH0cEeKEbqM1fWQ3pmOmZmgIjlH7s6vLxhkiZ9rov9xOvNfP/81wjQ8LRMhQysMO7On63bfvyfXFEgqomzh8fSObdsxpwOm+xDpEsfpqa7qlMZcwrAigV9ndChgm0qkLQKRwQhBUdBaRe/qSsGZlvE8o6WGEElBI8SG83TA+0SKCv944Mer5/5Qw4aiLIhZMTwU3pZH3r4b2V//lNve8u3xyLweEdOEbevlLZ6nWrm2FmUb+l3L+f4IXcH2G74ej5jSIY1mmU90uXDb9ZhS2NuZX/6y5c1XrzF2hzGJ03IidJIhzaiTZ/ANPiji6UzMiaYpFN1z/xCZoiAnwcPjiW2/pXGOsHrWsFQLp6aCmHQiq0yKhfHpTLfZoSaJMpawFKzrGIeI1gpjTW1w6YY5SEhNJb7mFqW3bJxmGlakgPu7d/yk/4g333zLZtNAGdFiTwkJtKFvN3/cw0Ch7peygKwkRdTgW84FCmh1GXOFSiLcbBzXOwHixN3dG/pW8fL2A7abHZ99/hUPXzxwHBSiNPWNJSWNsagMfllISSBERl3Uvq7bI6y8KCAzqQj6fodRjhQyKSaG45nsE1YodK77YW0bpE70vmPymSwkHsEwPNIrgY+Srt2hRYvMhZLAKIP3K3fnmfbZK/pNx+QHfK7u+DVFok+IpMmx8gFiDOi+p3EOnzWpXAhnFL4nfFz+vlRjDUorrDYVABQMqghKTIgisFYTVcFPEyFU4c91s2OZVjrb8uMPP+Wqu+Lu3T2DHzn5R+Z5qD3/Swc/5og2iuDXiwip/mz7LSdd649pXTgPDiE6YohI4VlXwXA+18yC5CJf0pXKV1LNRKiCdhop6m4akUFBSAsyG5rGoo1gHBeccBhjiKYeFIvKCAvYzK7bknxGGAdLwDUGEGx1i9KWrBXNZoMQmuPTkVRqiGtqZlLJHKczbdcgdSauIzmK6pbPEXX0qIdCf72yu/qQmxeGw/FIiAIfZubZo0WLdg3aScZxZpiGmoMwlra1bPqeaRrZX+3IEpRTnMYnXBI8PH3Ni5tXvPxgw//5v/t3/NX//HuESMzrmWFaWVSsu+vLK7/GhRg93XdfxMsKRVMyPDyOCCmxtkN40KKhtZbrm2u6fktaLWL2aOG42j6jae558/aBj/70hhQm/BJY1oUQGqyW1by31lVMKS3n88JyVDRXltZ6+j4h1cyNvmJ/umIYNDn3ZLZk2bEUyXmZ+eCTDxn9wPK0cPNsTymBafHYNnMaM8yCrDVpBmsKrt8yeM3dKfCHN5HbDz/gzXvPYXyivbnh/n7ks9/dMw8So64oySCsBBXxaWBcHtHFkmfB/tpwHB84zwfe3H/Lfrvjsz98gyiRjWkIRCRtNW5uHKaVfHH3NafwyGG9I3qBjgXLyiomjv4eOXQYTuSQaa+fs5SJqBJeBAIBT2DJC0kspKy5P7ynlMAfvn7NprM0naPdNBzHM6Zz5BAYpjOutWiryCESiiepyN/8w3+mVRteXH2Eawzjw4TsK7c+lYQzlVl/HA74kvHFQ04YIRC64MNMXDxKV2lTlgptFSHGGgjOpeYgcrgwNaoIKSWBbXruj0f+9h//K5tmz3Z3y26z5TxMzOOM+xff7ClVR0NtORmUkqxpYQ4LWSXQEi01TgpKqlPOHGpTwLUOIUFHjZaSkFNd6SkoOZIEzMvMssy0trZ7BIq+37HGi0IcgTGax/OR+XxGas3N7ho48PU39xznxNNB8Pr9l5xPG5AS02gyHqkkNkGnNDklpnliyYWt29H2DlTB54iwLUlajsOAMYY1Lrx5d+aD/QuQln/4h9/y0cuGcZq4O33DeZmJwJrh6WliCQHrDCl6Fj/RGkvb9sT4iDWKQsbHejFaRWVNxOwRqn7vxpxJPjCWzPE0kn3CNWC1QQjLGiJzqjVDGkBJYiqsISOSqLTBfk8ez0ipaZqe87kGMaWsQcycIsoUrKqTnxgTwQfm6QdL5R/lMBBTJMRIof6DKVkpSjnly8Puu0Rp9ekoI9jdaI4P9xyPEw9PZ4zpeeF6pNgxnALLLLCuI6V6q5GiAX9iiZGwFJSuhwyBgCLwPtSxa8ogBdo4ltnjtEGWUvW040RjHVIolKm+7UYbtm13MUQVhClMA0RVmKdUJTBojOspKOY1sPpI9oHJzzgK5UJcLIAUpRrvckQrQwwr0zKy23QYrTBaVRlJSaD0pVIoUKJmC+TF8iSFqqyGeJF+ZIGfV2Y/XSAshdWvdfJiamL12fU1L/avAPj6zTeEJaNbyehPFALOSVpnaFZdFcZKMxyW/0W/3VpNyitC1EhojCtLnipn3lQ2wTIvWGlYCyhRMEKxZMi50hSN0TirUVlglEQ2jtY5fKrhxm23xeqGY5iwJpAo1YQoE8oIbCMx1z0fPf+I6TSBEDwcH7h6tsEfRjamwbqOwa8Yoy8u+YQ0ogbHiIQCUxggJq52CuVUTTJHSZGJEEceHs/cHjVX+2uevTQ8Pkju352ZxgBZInREG4FzHcPxgA/f4Xsb+m3D1fUVw3RkXieurrdIrdFW1vFuLix+oajAhz9+xr//P/X8/rP3ZDUhTeb+/VvkfP6+T5Cl518qxGKCp8NEChqjOtp2Q/SSZSpEI5l8RKqGGAWyGGKqVa6H0wllW6bHyOPjmSRWer3FGEWMC0ZZtLWsk2NcWk7TNWWdWE4jVivc7YRwAe0ijbJ0vUU3GaFrzVMUQSYhVGGYjmyvWj42z4hxJpNYc+K0JL6+W2hSoiuaTkmWecb2gaQlD8NCkDu2/SuaEHCbhZRu+d3vnijjN6ynnutbS9O3vBvOlJyRBVKcWLhjHWfa3TN6vacozxoHhO6QthDWlTkEctEkPNppTEe17j0KFhk5hHekWLBKYNZMlp45Hinjl4hSAV0ThrHMDGnARMNUAp7McR2gBCSOoGbOpxOH4cTkDUYpik2EvPD8+ha7N+QxMhxO+DQhdOF2v0eq6lJ4fLpDJEnMGddququWkldSHNGmQZrMuEwkWe1/MUSUKkglWcPC4iea1qGFpoiCUOLCwUiXUG8kf3fhuJADY9HsdlfENfPm9R2f/mhHSVV41XUNQf/wHkzB0zeVbuhk5bUkBNM84ktgnVd89EilkEqhsiCVeklrW4exGkRBB4VQghRCndQ4DZTargipZor6niIzw3RGWqp1T16mDk7zeHpkPJ7YtoLN9RXjOPHVt+/Rh5Vxtmi15aMPf4yUjrvHb4FMYxTRR5wUxCwJWaKLJKaEbgzLGohLVa8XkauvI3icU2i74c37CVsUu/45zz56yfz6zMPjiTVDTJL5vGCMhQyZhSxTrZ3bHmktJSW0FNW9kzIh+MuKt1xw1/WFSQViLswp8FTOqCIRZqp4f6XIPlRKqjE0ziG0IKVAyZDzBeKmFa5rsK66O3LJZHK1euZIfUcU2r6tWZ3F42Mk/rHbBDHEuha4fFmoopEl19RsrppgqWsAIoTEMEwsfsvjUyWmpSJ4c/cV0hQ2Vz37azgvJ7SyxCCw6gaZJFkFjBwwSuKspu0sJtQASiypmgUvl1ypVD0cyIKVlvE0EhdPFgplZA1NCUEqgsZYCpEoAkhLoxwSweFx4e27I/Na0LYjK8s8r6Ak/XZDILPOE11nKQRKThXXqcUl1S5IPjMvA+PUoExVxqZQQ3W2lQgquVFLSb4cbBAXu2MEkqQxG4xWCAo+DTVdPy2cxzPOWaRp2V5t2W+uORwPfHX3Da3e4GzHeRgxbcZpTRSWpjF03tEIQdvviNPT5QByedG1vKTnQ937U/BhQqsOoyV+XYgh40zLqkKFKZUqEwqxYnKdMxgtERn6riElTeMcKhYabRBREsZA9IFi08ViWO1txgpUETRtzyc/fsnD+yeUMejNpRXkFX3bIFWtiIa8INEoK1BG1jClicw5sOSZtHo+vv6AT3/8K/abFyjREtLEGt4y+a8JaeT+6Uuce8nzV5bX3z6wLIqr/R6tQOlE4yoBzBjN6D3DMGKsomlbfJo5D0devHzO199+y4uyod0+JyvBcTry7u6OdVD87E//gtcP74jyiSQFWY0U1u8PA4H10hqpP4vPaLNhHCZUZxhPnuQFNzfP2O57vn77GaOP+LKw73cUYVBNy5wyRVms2/Dw/pH+ylXsszSIoslFILSh2JYhaN4+gSs7wuK5PwW6rWaTBlKeWZOsCXHdIo1FKstaREUDt4rPvviGftfy6c8/5v7hDdJUUM+SDW+fCmp1iFWRl8QXX42YbsVtNabvcL3i6+MXzGtC91uy2rCGnmHZEoNjLwWmU/jHuSqZaZBFYRVkG7h//Ibds4ZQZrJo+Or152xvW96+fqipdaFI3iNNhZsJ7TCbDXrcMMUJREJKXWunRiGUZ00PlKLQ7S1jHhiT5+3pNUoqnpYzOUeGw8I0TVjdoEXD568/Z7+54t3TI9YIsg08f3ZF22nKmkg6cJjuMTvY3nRg4Tw88fzFNX6ceTq8Y7PbYhqBazXBr4SUUVYitCD6C9Nf1N97FAEtzMVh4lEZtJU1qEckJI+QohJhFQhFfV8VMM6yRo9Ql+8rmWnatq7Zcm3/GP3D137JGYOk0w3RRGIOhFAPKLa1LGFhDQEjBFZrVKpWVCMqTjumgJDUyaDMhLiitMA6jcyCHAsyC7SRNJ1lGk+cH89s9o5YEsY5nOswxjKuYw0mJkWUPWjH0/iEk5bjGbRa0I+PdM2Gzb5n1+7QEqbhgKRgEDgsTlvmdUFrzeIXchH0TYVy9Z1hmlYKinZ7w8PhgRxm/vyXHzKwYZQrB3/CF0mKhmUIvHzWE4tgHB8QriBFZlkX5lAbVEpUbktUtUKYs6rOFKHIBGrxrjpYEDDMKwpJ4lyrmkohlcG5BmstxujqqBH1wii1QSrFvC70m0qwfHh8IhEpSmBbUy+5CpawstctRcbqNsmJYf6egfrHOQzkXBAIVH3l6202C1RR5FL/XQmLkpF1DZxPC59/sbKcMlZvkLpFasiq3s61NcScMEVQskSrDqk03XXAmlRT6UbhWs28joQS6J1FBs15GWu1UQla1yMCNI3FT2da29C6hpwKjXWVgOgvXncq9S0X2Ha3EDPnIfH23aHqQ4WuZLOcsdYgdZWn+LjQaFtPYjnVE5xV1UueUu2ayu/49eqSaq+mRiNlrY2oGrBMueqc61G+HhQa19G2DUpKxvHEMNc/bxCJftPx6sMPuN7u2bkN7758y9PrJxrRkaxgLbXVIHV9M+SSKDGjUZimQ0uLFfqCjv7utfzuQ5vR6sIxyBGtIISVGBZEljhl2DaKxvaYIjFS4+N0qRFKjFGoInBaI0udOCBatNX4OTAcpwoZKSs+r/gckEZilEUh0CKhm0JWK0pl2p3mNB4RLtP0mqfHQ0U4+xWpLG2nEbp+ifq8MM4jQaysMfE4KK7Pgb7vcK2qf+bYEk6GYTwzr2euth7kDTHNeN8ihEBIjw+JUiLaCtq+4enwyOlUKXm2sWzVlp3uKDLy5TffEPVzds92ZFkrprKBMJx5d/icza3gyzff8rTMtFdXBPcvKp2yHly/+0mlBrUQms1mxzgszPPK4+MR4ySnca2q7BTZNhqkxXSabDWH+5nFF5Rp2Gz2iAgla5Ts6mVESYRNzCEzH49cd7dIueHr+/eXEatFmMCIZAqSohuEaeoXT87kNaBcxvWSaT4SUsNHH78kxmqRM2aLXwUpZsIiWEfBZ3cntjfP0FHz4e6GKFbevP6C03lkf32FcYbm6hqPQTqD2UiymLDO0Jg9cVaUlLHbHrMtvH78lsfje3yamILh6fGJDz94SSyexhmEqmKr83xgOC9I2aC0oW13ZClrJVUlwjTSOodRVQvrs0DoPffH94xxYR0mtKjeAaUVa5h4OL/BKkNjtoxhoC07hmXmyjVoCyHPTIugtx3tlUHdZ5JaWWLlRiThQRTaTnNcBm5efMTD27eMPiJyRJrqcsklIy4Tw1QgpYTPHiGgsRaVK6ZZaoFt6gHBtgZZJDEGlFSUUuu0uWS01LSiZQ4zZNjuepQWNK0lI8inGnT+7scoxzwcWcpU2Sa5rvHGZazRBW0xIqKkQluDX1dS8JBh9Qs+iksIs+LRsqjEUqWqwC7leiAzRgIR22rmmBEadJGotqNpe2IU+DWALZyWgcNksVqzRsPh7cL+6mOsu+LNm7fEGOk7Sd90hMUzLyM5RXIqrLOv8jwRkLkeVJyu4cVYqjbUOU3IkfOSadvneKn4z79+x910YgkL99PEcSqsYUMOkrIqRJGIFDFKIrTCI/A+4oytUxcpsVpTCpUUq+o0KOSqKE9CgFJIoSqev0CYVrJSaOMwqU4QQgjElBAyk1I1wiqhKEJUwZQUhBw4nA9QBFLYylrJAaEFS5gJuUfkhNCQM8T4RyYQyu90xUpfCHkZUmXuS6Ew0qIuxr6cIErF/f3EptkyrZ73TxMvXm45niL379+zhpZCQWkNxVYQh4T9doczCWMVpcSqeFwg+sB2s0cqzTDXnUyIK61psUrTGMcsNNf7HcYoHh8OpDWyLivTsqAbjZEKITVCW6TZUWJhiRMFx/7mOed5ZRlOtE2DsorzeEZuNrhNgzASJwwhFbTRNdufVoovtNbRSFfTs6piqKxVNKZDiss0QEiKgJLy5fRYR77KaBrb0jc9fl0Yx4kYA0UVXNOwud2y2W0IMfDtm29Z54Wi64vvha9Y0pxpTFNpBbnWZ5SwbJod9/cHliHUJOPlJ6yBpD1tXwEZWmi0sxihGMcFoQRaGIwyuI2mazaMhxMl1qpEjB6lTD2wCUmjDTf7q7o6aBwoiTYVz2ydxaeFrDOIWq2qaySNEpnMyhoGotDY3uCnhb51KAf3x/e4zZaQqyVz29dReGNshW6EAdXV202WkaIyaxpJUwVAhzRyHmcejwesE4QgCNNab1/JMS0jTbMSfSRHgRINykDMnnK56ex3O0Iy/OxPfszd4x3jOvN4HHjz7p6r2y1dI4lEfJl5HN8SZGRY33FaJro2I/IPk4GqIP3hi7gRe87zggmQh4Je6qF4eZx5zCfipLF6hw+SLBXRS3LRzBK032CXSNduEEfJtu/Q0wZCh3SQ00SZE3FcmMcJJosrioc3I3nYcNjWlZi97pmDIa+aEhxFaYTPiCVgveZK7TiskeH1me6FxegGLQXGNOQV8ghhEuTokGUirFtSERzfO3768w855IklvEPMCaM9G9UyPJ7ZNgpL5On1G5gzeuhQgySFQMqWjKJPOx6/fMLahnlaaEuHv4+YxaKFxRlNjpXBHp4iQnqytDRzgysNqiRUmfHnBVPAJDCmoayQQ+J+fSCETBaBSIFkMI0lLgU5RbRTWCR/8uHPebgbsd5yZbZM8z2SghaXsLTSXPfXXHU7ng5PdH1Hqxv8/UweA9oLjBd0uSWe6+hXCV2nqdbiYs/sPepkUEOuFk9p6NWmWgN9olU9re4pM7RNW1c5sT4wShK4YomXlUEjBcPhiMkKd9Uwvh+xviXGgj9GNmXL94aMrFC5YZ2ONNsG1zqyyQhZAUMhJ5a4VpSwFMQYyCGgpCGkQPCRXGpmKJeMMqrC1nKs+SrvcaqhkOuuvbe4pDGNYkq1Oh1KIKRCFgJpJadp4jQ17HcNKTtkbnDqinkMLIvHWkUInjdvjlijCCnguoaSBHmeWUINMucc2bYbtt2WXDJxnS6+k4iQkoTGlwZyQ4iRL+4G2l6SnWNhohTQ0jGeVoxJbDc9ui2cLjmgpmlQoq5ajDJorfA+oFRdUyx+JRRPkYWiQApN0XXlCZVBY4yrn6VUG2UheGLySFUpv/XgVk2TxtnaRpsrlGpZVpwt+BAJqSLhQ6ryOsQlLxYi6X8dgPB/A45Y6xoWREIWyCzRCAr1oabRlFhQQmNNAyKTiiUJRSiZu/cTwyiIa30Q/vynn7DGB/pScFaR8yNaO8DUimIuKKVYw8owDsSSaENmt9/zzZu3pFJou4YYEvumhwRamZpjCBktFeuyskwzIfgaarGi7qdsQ0KTpUB2jpAkxjrK5Mm50HUdyESKkpQ9ZrPBtpawpjoKv/TUS2cpUqBRdE2DM4YQV4xRGN2RSkBIWdkCJSMu2s8CxFRo2+YS/giMeWCZJ6ahBtjctgGriCHw8PBACRVt3HaO5Tyz2+0QCN4/3vGTj39MyKVCLaRlHFa2uz0kzeHhzO3Vc/SbH9oEx9MJc6PJcq1v0CRomgaRVQ36tD1Gd0hqwDEHT0kJQfUEWGeQuXB1tWEZRmJaSTnQu4Zu02KsQxqFa1piiIzhjFSArDuukDOQME3H0/F9XaVYUC0ol9n2PfM4Mywn+ud7YihYp/BpIaWAa3bM60CSniVMbK42mL7aDR+PT4T1ie32ink5obSj7a9QOnE4jeTFYOwWZOY8PlFkwBhDjhWhKkyi2zVIWopMdLsW03boRvH+q/ckCmtKnIaZz7/4ktvrjuHpAQXc7iorHbsQl4HzoujyD+GdjKb8C+7A7v/7ot6IQ6oY2lIw2lzeK4JdikgpSKnWQXPeY62gaMUug/MBpQuIOm6NRXIWqprOSiWe6ZToYqYITUBi5xtO1jArWf+JnCOJGsNZpEIIScqlHjBL4ePlmpcxAAVrDEprJPVyQBaYVGiiABT/ZnwGUl7WaOCuNnw8NbwMC0iJsx3XvhDXhNEW9TeGJ3MglcI2tLTRkXPGGEEull7eElKoPoFyIXhSeBF2KCXq6qvUG6jzVVOcEbxIdQ8tKIgSSfFjrFVoVauCm1rxYZsKWyGoAFngwk7p846dv0UphVYWoxr255mUEu0/G0J4hTJ111tyrQS3+TmucWyWBaVUBeqkTIyRksH8x5YfpV+QyJBz/R0pibxgwWOqHfWcKvtfCYmztm6eSz1waFW9JFprKOAulsBSLnyNkmtOWWT2q0cKSWMcSUiOWlIKEHek7L7HEWvdohy49UxjHFFG5riwnAYW4RnWsbYJpKDtGqbTQEoJox3DOFCURGuJUpXEmktGW41Qgs41yCLwc0AIWSE8uj6olRWYZHj3cEdbIpt+R8mCdVpxXcMSE/k0sds8w2eYHj1RFBqjUUrgrEMYyTyfyRJunl/jheVcBMM80HQKYsC6DiU1Maw4ay4WyIxUBrJjmSWxaIrYEMOK1Q2BAaE1ylnAc3w6cX1tUdKQwkKhws20dUS/EIJnmWckCqUqiCjGxOI9WdaHuBK1cZGT+P7SLBQoZaGIKq2L8XK4K5eAWkZohTENw7RSZLxMfwtFZBbv8bF8r2c3pmLXl7BiZFUIZJH4QUv1RzoMlFLqnkoqQKGIlyH35V+TqKKULFHKVLSbdPhcU7DBK9aDwc9grCBLfaHuFhAB5IpPmeFOkEJGG0Hf19CHkYb/H23/syRJkqR5Yj9mEVU1c/eIyMyqnu6eGSyBQLQEXPAWOOOd8EZ4ARxwBNESCIQTLsBiZxfdPVOVfyLD3c1URYQZB2ZR8yx092SDaq3IKyM83M1URUX4z8cff1ykYi0Ie0tZcHeWsuFuPF2esB6bv7eO+0BFGD1V8WqlriFRqSqsy8bbTRgthsq8vu8x732S9UpMGrxeVkQMKQ4V6qixwGrYnhk+oZe7LIVSK2PsaKlBAGkt5jNI8kg0yINRg4+RlGMM7rcbb6Pjo7MuC18+XWAr3O3gve30EWtdq/Llhz/w+nPIc25bxYrDKjHcyIS6Xui9cdmeGV2o5cLnl+8o9YPYzc//kcun/y2dV8Qqflvo9YXCSv35b1gunym1sm6FtRbog8u9gzVGf+PJO1WE7ef/lv71F7wb334syJfP+KfPXJ9fWLeN9edf6Mcbo39DlihjiEZxRIci9cobWfRU6FdFvj7Rts9IW3lpF8ovf6AenWZxiMyc92+fwAdXa/i4c9Erx1j4869P9LsxunD/7nvu+4XtMqjr3wfC9H7gxzOf+hdux05/fw/p0HVl7JFhrQ3+UP89P3z/B375+hPb/oWneuGf/h8/4l//W56OnfrzM6N85us3RT5f+eXHha0q4+ULRxvo12cubzdsf6be/+Zc99fXg/pjkHwEof7jRuVf7gG+/ivfKXB2JcyX5dfHV8mvxztEW9mkkzb++deUq33m+V+8vvn+j/f+iyv6B3jmD//q74/8tIXC8pt3i/36z63OPzeD7V+fy/b9b/5W/+K//9zremr0xevLh0+48i+3atUPa/CX11T/mSf6P9frLz9pUgb1w5/j5z5Rnz/xOr5hvvP2+sq3/o3yrBx60I5GXUNr4XK9UJcaxizr0XUp1DVq3L33kMMuihTl+vwUCN3+a9i9RRnS0BW8eBB+F2VIIMBOdCNJDT2b0Zwfnl8QhU9fPvNffvonvv7yI3/793+LikRt/vLE9eXKKPD17Y3b6JQthgJVWWnNeG13igrL84bLQZUgNLfWsDHJ6aGguNyd9z04Odv1ibIMjv2g90JvMBRkKWG7bXC/3+ijM/pgKUJN9GRYlGOdsFtLzcAuk1wGqEf3Wmfgw4L4jtB6AyVmU9wOWhd6N5zI9pFQqowZEAe11ggs1VGUo3WkBgk4B3P+rtfvJxBaRPNrXXHT2FCilFJRFWxEi8roFvPBdcP1iW4huIAuqFVc4d7f+PGX/8zlaUFV6EenVOeXrz/R3gqjS2YHxuW6cr1cQWGk3OUfv/8b7seBlMr2tHJdrwwRbhTcBPOYECdlsK4bl2sM3Dj6Da3OVjfuDHbrEUntO0e/c7u9Yn6wEN0Sy1Yi25DOvt95KhtVlYOo7ZkbqhEVU2KSX10WjAMbgAXbt1SllgXLzKVUQcvCsR8cx8GwRjvuXJaFP37/PeUCt3HndjOsd1DP2mBw8tfrivUeMPlVWZ4X+q3T8ZyAF+NQj72z1I3eDR2xIwTh7/+7/wP8d//8c/7j790QgP+ff2t0dmD/MALhs8Pnv/yl/8rry4c//2/+jb/7frZwwo95HW//3A/6bx1pzBiLr0o4IAG+y//e8nt/9xdv04A/5Wc24PXD5393/tRjQV7fGn/+b/6fLO9PfP//+YHRO2aGiiQyEGxwN6dZoAXiQtUlAl0/TjU5PKZeLoti3jPI8nwvxWMABe45kCpV4WImhmZGGWTSR+XCzxzCPTLSMeLnPt7LstQ0xjGtDjzeE8/6ZIQSy/KYs3H+umlGxhZZsRluEsrTCC6GEygU53XmDHiN8d5miVKdZLi4rvi3Fp07WiNDV6OUjsqICasmHD3Im4akbnyIfSHBKYDs+JFIdoL8Ff8bNvKaoqNJUorcPz7p0KTNNfQc5BOi47/dEXKueDwzZ/SR3Ud6rlstYYdCmCz3Sn6qu2dwObeeh10SzmsWySTO5XwcZnD5X1754X//79C/gbd//Mq3tx9px8/sR+f6tNHuLaTnSyJBIuiyILVgqmxPT4mQZLaa11CWSuuNP/3pT6xl5fOXz9jhvL2/UnRQL0IbBwPj05cX+hi83b8hphx9p3hhWa9AZXTh89N3HLc3ijrXTfn27Ween77w9PyM+4WXlyf+0z/9A2/dQ0XSNOz8dqHtMf3185drlAbsjmt2OfQWBEeu0f11GG/vI+SGZaOsF5anndEGXgquCy4w/KD1gfHO0Y9ICt1QKTlDRql1Cd9hkcxWlvBfZoFMe6e3FmikOGN0jtuO2whCoVaK1OBMtdAmQJzRPVpIfYbr0dk2UsCu9Y5odP2JWHax/ZUVCM0MkahlOUIVEA8yGBLytN6d3geiIFqo6yf6KKCGiOPD0LVj4+DXt194fnmKXtl7Z/XC7dug6IL54GhG2e/BTF0XSo2BOd4HX16+sNzudDNeri8hrkBseE3pS0QYw0KdTPUk9YkMrEdgU7OWEloYO0ffUTVKLoxoTg3oO/feeXreonXSDTdHVVnLmgpcI9pktIBFm4mNjA57Gumq0T40nOKDY+yYD+oiYIWn68bnz8/8+Ouf2PuOW6dIrOXlcoFmHMcegU1r2Ogslw2pcO93Bp1VK3vfkddvtGMwRgzfYfkz9vQT+v5DGLi/0kv+8hv+r/zb/9wv/xf+/M+8/vLa/rlrlf/Kv/9rn/mXP79/+n/T5M7X5Rv/4//uf+Bt+cqPf/4vjHZjLcrTekV7YdUnlJV//PqnYArfN/7m+vc8XZ75efz3+Ms3ylXx24VP5Qf+/d89ce//yPULXKvzvK6s5RNmGzZWjgPeb43/8T/9A30YX777jst25du3N8YY/OFvPvH8XGN4lY/gSkDMR7jd+OmnXzgOw4agZWVdFv7D3/8N26q8vX7l7ZefEIXh8Hp0AADSIklEQVSyXrg1488/vzFGjAT+j3/3H/HW8X5Qq1HKwnG7sF1WXN55+ay8f3vj/l4xWyhrYecX7v0Xyqaslytff33n9u3O0/bC5+fP2N7Y375xWZS/+5sf+Nu//zvWslB1pR939v1HtrXw3af/wHefN54uX/l0+R943n5kHN/4+Rfl//VPwv/1v7/xMxvvrNy/DdQrl0tlWRXEw4DrBbWN4huLbFzKhW8//czt9sbr8UZ9LuhVsRpTR8VAe0FbzCwZR0tW/sL6svA2drQEz0aSYd7NaDjb9Rnc+fOffsT3xtNyYewHl+3CDz/8QNHCvu+RoV+eUXX2tvO+36JlrgrDO8127v0bl6WySaVa5dP2zKfn7xmj8n53jrvy/tb5/m//HZ9/+IHneuX50xf2cacuF2p/5/4W+gVSPNrgCIKfaEHqgtSFl+tTyDVbR7RQlpXecprl2EP4bYPtKUqrxQq341cu20LrgqtwfXni/f2N97c3KgURQyVJc1253zqLHogaZXOuT2ugn4czegRyb99uvH175fn7P/K0On/6LzFGermsDGv04QxWbHTe24GVHnMYdIR+QjTqsV2eKFR8GH0ozZx6KZRDqZeFslxprrTW6d6hEjbdjO4Go7H4Si0FFWFZIogvWrFEHooWilcwx0aH4VHSax03Y7usbJcLzaPDxC0CLTwS3dED/3NzagnlRzejt87Z2p8BvCDUZYmg/He8/g1lgiRqmaEeGgMqBc0MBIsLxzkjxBDhWMCuuN8Z3FHtrFY5Dufl8ydur+HgxF6wfsn++k5Ribn11yvX6yXaWPpgfz9AFTsGow+aNBip6y8Sg3m0Uswiuqr1jN6XpVJqoBpLqSzVqGtBqtPebgiGjcbonSIFFaKNjchMtnWjj05voVk+hkeAJAsHBxfdqCW6LeIhRRTXeovefBQrytEG9Ea3ni0khAaCDtpxpx8HZi1KD2vFBZ6uF+79xv32jvkACQSmrEqznZ5tRLoI3Q5uhyGmrFtB1zvtf/1/4tsfX2n/8PchjbkKRZW2F+6vRqGwrZeYR04o/mkZqLRgpnooAu79lkTJmLRXi8SsAyIQdCSUH5eF99s99Mp9oDVgLIgyQRHFo60ionKMshYO61QqL9sn/vSnH4HC8/MnehuMo3NZFkSEWqMeJpVUSFOwAiPqy6M3kJ3ebzw9P8cAKFs5jhsvLwvrpbOUldv7YL8He3tb14DwgPueOvUob+83tu2JPgZmg/v7G7WWYFiXShXBRguxn7XSbfDeDhrO3o2hB29/+3/j6/Z/wd46P+8/0bZ3bp++sm3Cbs7Ty0LxjZ/+/I3vP/8d/lxi3v1X41f/lV0O9s9vjO9+Yfu0cvxycF2eeL3cYPnK+u8vLFVZl421dMRDGrveFXs1/rh+4XZ06qbYdke+e2W0N+7PB9cv34WgymgghhSgD/wQ1ovz9vM7vQufXq5cni6Uv6+4Hoyvd/TSKEUo9aA0ePmy8e1tcHvbeXt+ZZEKbVCXyKT7cuf6nWK64y/RpmeXCOL1Mrjff+GX25+4vFzRz9C2V175ylHeqZ+Mz//uiReeearC3/67J/7D/+Izz+sTL9eXKDL43/N0vfD89B1rPVCPseALwePwT86nAnVv9Ka8tcK77qy6Uz4r5RpkraOtqDesvXOpF9SEtrzw0+uf6Qr1D5Wxdfblhq8DWZx+GLVXvt++53jtaAd7bbStoV82nI6Ggi4+PIjWbQRi+Bwwuaix/3rHOSgX+PTlieW7GIFu7w1fobw4iNHe7+z7O3WL+QB7v3GMPaS5a6G7sHphu8L48oTZ4Hht3G/Oe+mMw9l+Xvn7P/77UPnUGoO1XLm/7Vw+rZTLJdCa4by93eIaa4GirNuFe2sphxuoaB/hlOqyRt1aK2bGqivPL0+8vv2JvRmoBmk5eROlCmtdUAbSApHpzXh9fUevC5+/36A5dVH++Ic/8l/+4ZU//ylmTnxXrjGHoA0uFD5vT+zvO3dtmMWAsr1B94O3fqdeO5e1otpZFmPDaHsoPNoQ+iEc905hx4ohG3hVTBb6WBm+IGro4oxBlElUKBKtg8OiW2ApK9uy4Qa9NSAmOI5jwIBCRcRw6/QRfKFPz59YLiuvt3dshM8zixK0eEg7H8dOO6LDI+bMOD3bHGsJVKbtFvwkr6g/SsR/pWDAQpCFnUVW3KJd3prjGalEq0O02Wk1ZPkVPEZUjp7DYpaNpXyH9Y2i3zH6Twx7o4/C09MT5VJorVJVePn0ieeXF7Z14Xa7oSLstzvdnDaCMX7cD9YcmNTNqB5MTVGh1MqyJGlkdEoGASqV0EqKOnbEM4ZqwHTeHSlRknACSl1rwI4xbOOeAkjg7JS60Hxh1MG2rgwLSE6kgLdo5bPBYY6r0hJSq0UQYqOsRTAfvL5/o6pwPzp13di2LaJOc9Za6P3APXgIuihSnPf9LSYLjs7wBSdGIouUGOZjO/V556en/yPH3+103qlr6Ai8/bTw8z921rLyw3c/YF5Bv2Aoou8ovwYjfnyirAsHN758eWJvN97HnctWcTvQpXD0jmuBGkNgfvr6a0Tlo6FLBDwlhjBG62Oq77UxaGLoc+Gnbz/xsn7hWP/Af/rv/xOlXNm2Z563Z463nU0KRcG8sT5XdBN0E6oWxqHQXrCufHv7kVJfae1n/uaPf8cqP+D9mdbe6OvPXL/8xN/+8b/Bvj3z+uefwpF+fqEWpfXO/edfcK+YVX76+ZXr03ds25V2vPPzj//E91++Z1DY2+B5XRHvrNeF5VJpx42392/82nd+fr3hNfrpr13h8omjN759e0dXR+vCVjekFqpcWdeFy9N3lOMXLht8kU9stwttb1GOk4FWQnhJGm/f3rl+7tSqVH2hyBdUHGGA3FGPuv7f/vA9d1O+3V+5yxvLs3F/f+P1bjxdrqxrxT3mjZSE/KsWvnz+jtvb4L0bn54/s6wXkMI+0uBt1xDTMqUAl7rxxjvrsrDfjOcvT6AH9FewhrUjEgd/p/eKSGFdXxAWWn9jPzpHg9JjvPCywOfPT6hV1gU+vVz47nLlWp0/fPeZLy9PPC8bXz5dWWRjHHBZn6hFGG2PMsZRaIdyez14vXVaq+CF3i98e18Z5tSlM0rnILK8MQQdCe+q8/r2FQR262yXT/zwxy/0cufNvtHqjtfI2NblwvPTZ8b7N9anhSEDKyExuwLLssaEvWBY4R7jxcfeo5+/bLAaHJ1P1yeetxeetxgRLj2mcVYtdI9kw82So0R0VjjU8gQOvXfUoZmzj4Oigklj7wdlrdz3b/zpl3/g5eWK+srRLXriLUpTq1aulwv3fseGc7/fKcuKidIsxtfvxxHJXF1BJMlsG+uy0veeCd0TVRb2MVi3hcPuFK2IQs8AdFmCn+TNQt3VQYm2dV+Vf/r6n9HtneeXKz99+4XhNYa97Q17rjzVC8c9NAq+XF94+zrYb4113ViWlaMdHNZDjdAjaXE/UFlY1VmLw+gcO7S7gy+UuqBXw6xg4tx24zCFZaWUgWhDa6HUEv7OBVGFEeTWkoRVPETl3MG6ZzdGoUgQVt2FQWMcnf1+YISuT10qFy0cLQbYCc5x3Lnd3hjWuFwieTn2zugfCOreed8PjjuICbL+Poz230Qg7L1F66A6akEkcQuSghO1zyLB9iwF8EaJBkKGRcshdUH0ivuCszCy5mXWeX7+zNOnF273GzZi+lPrIfXbjhDacDPsCHbtumyIagqLhHMeY4SDFzjaDSnOsJX7/R0twpNdKFXADOtJnzIyy1+CPFgi63YPYodo1Gtu9ztvtz1UrQxUYwSxu2IWdVqRkgFRARMG4BpkxtZuweYoGgqK6wXcGAJlWXPk8YEW4b7vXJfC9fkZPw76EUqLh9tDtyCz2Pf7DRtw7HeWZaElRcjcWER4u33lWhfe9l8oT4bWzmGNopVRDL0YtWzIYmAN6p51sDfwb9i4sdJZ2Rhyp14XrLZAKbaN4fFsDtkZLpgr3gu7vEOqPg6VGCNcNPfSoFwu4COVGR2ryn28c9Err8fPLM+wbcL7+8/88bsXri8r+9srre/89POf+bw+s64L13phyILnenR3Dn5hKY3ujW/tV64lSK/bk/Pr63/mzf7Epy+fWZ8X5PUGRZCtxNCrcaPpG+aFUjeevzd6+xPf/fB32LFTrfPHPzq9Hbz9+sanT595vm6oGLI02v3g82JcdOXpC7wfB8cwrpfK57ry89ef+XZ7p6aA17Y+se87WhqfvnzPp8+f2V4vbOvGH5//HfJa+PmXn4Lz3heWcWGhx5AeXai6UL1Q9ULRC8KBSMOlRaCOsl4qVa+8t52xd/QCvTf2++D2vHOxK+CJAApulbVeWL8s3N+FWhpfvvyQ7U6pwCnBdFaEvcWY64M7h93QdaPLTn2qMWvj9Q28o6sj1ZBEcYosXK9Xjt45WgN31rqyaMH3nc9bZfu7LygrlcpaC0tVtlVZCyy2o7YjLXgTn4tyLSt7d3799hM///pPvH79keP+jlN5O+BP98qtF45D2N8bRR1KTF9tPXgQw4OcGtyNlff9jcvlieWy8eXzdzw/XekCox8xxtmDS7F4dL287b+CPKO1hoMwQd2pvaQjcKxIjLR14fX9zv5242m7UpcrbRxs6zObPnHRl2g1MzDtICPOKQNhUItEHRwLmF0XxJKc7YpZ5diNZYNunVt7Y11eGPvO1/fG1/cvrPqJbi0IgcsaQ+jagXqMCjZzOkZZHNfIWN/f3+ntSPnzIyYrbs7hd2QYl/WKSg32fhUu65WrXhlHyCdHz320IAqVPoR2DLzHWPjLulHqhcOM7fkT//inf+If/ss/8d/8x/8V+73QRmeVwk8//hpCa3XD1Xm9HXx6+hSyzMuGrgut3dNHFYqD9AyebGC1p5T64DgcceXp+ZlPnz5jfUdcGE04+kGTfnJsfBh1veDD6T2C3FIWlmVh1TWE0qjRQeIxZfY+7rh31nVJYnygxaqx7qUs9O45PGtF3KKjTQpg2AHtHoH4ttYkhhtuUL2y1Ro8s2b0m9Hc0d8nM/Bv0BlYoq3FvIeRLIp7PEhcgqVfUzJTwJsjQ1k0iS+iSN2wbhz+jafLJ/bjlVIX8A3zWJBFrliS/X75+SvDnllXZd+jZed6fWJbozIgUijLQrPB++2IaA9hqTlSmE73O26DYzSOW6eb8PnzlX1/w/YdukRr1W2ALzhw9B3TyMRFLPrOb8LxrgxXpK6sRUKzn5VlrKzlSi0bbjV4B1K5A12gazrvbBPyESRG26Nf/7o+se8Huzsvz5dgvC4bf/juj1yvV/709mcudQvlR1k47MDcWWqwUo/RQDdkvfD1fadYdHZUMRjGclHe7m8xDnl31CtleWK/F/Z98PT8wsVfaHtM21I1ht1ZN6GWF95fQ8Kz4NQKt/sbA6Nr4df9QJYggQ53DEPFgChF2DgQGVS9AJXRQlZYitN1p65GKYp1ZX8fbPKJ29fo4Pjy8gPPz0/8h7/dWJbKulZuN/jzn98pDe72yqIviCxEXqrc2698e3tDa0zy24+VosYor1xrtG4V3yjt7/jxnw7+8LeN777/wu3bN9o+aN1oTTHfcCQMpB48PxlX/TPffVr498sT5m9sLxfsu2fMO9u1Rpse8NSf+N6ik+Z27NyH8Ov94La/h9gKhSpOsztPywVrDbeVxsF2MX59/5GLKeUdbrqzbU98/rtP/Pj1R+r+zPL+xCd1Vi1s6xVvd+wmXK+hsunSQQIpO+gMqVAlJ/BVVtmC89JW+oDb/c5TO3i6hLBWOwDf0PJEa/D50x+5XgfI4PK0UmtnrVfu7hz7TqkFX+Hb61caB337ld6VHz79O5p8w6i8jjs+GtenF9owlCu310AUl8sbdXGK3ViLo1VZ5KDuO18uX9iWSlkvHIfz7fUrG8Yfnr/n07bG2GTeub/teHnju+VHdL/R+id++tn5v/8PP/IPv9zwdUPWz+y9czucdyow+LyGTHZVUF/wDtYOhI4uQO+0bjy/fKIdztP1ObQuLivdBsMuMBqtHbgaro1v9x+xS+Pr8TNbfeK6PnFZL3g3thKQcqcFK7yEVK0a6PCoWZeVUld8rJS2oUflkFvsn3WwVAUdLIuzDqVkEANOrcqwFuVbCpftharPjJ5BidRsjT5C+8Ocn379Jz5dGuu18MKFNhburfPy8j0qyroUqAbjzv24AY3hnWMfPD9d0S1UIr1HD38vO1tK5NoOl+2Fp/UTxsF1ecbVadbZ9yMFdkKy/evPr4zb4A+f/si6PlF9YVmf+PV959f3NxY+s64XfvnzV57WF7774Qm60nZj3wU9lJWF754uvN3vrNfwR7f7N4w7VZx1vVJ8IM24bgu0ws0b9dOFt7c39tZZt43PT88sVG5747hHECV1QO0MPYIIXi4MCSJn0Rgsv9jKpisrG8ft4NZuSFHGMdiPA12hXoA6QqXUBrhT15XWG/u3N7xUvCrdnGMQwkI9kaBeWMtLlPO6hl/xAjgqlVWfaG6IHazqMTtn/Es9Q/9/BgNjjHMOQTBYkwWtITxUQsqObiNU8Bysx4yCUiQcwWj01sJZaEfVWJaFZd0QKzgxf2C/H8FNKBUh2iru951aC6yS2XgwkOnGftyj9mbOGPHlbilkFIzdyajtI0aO9taxHk5bBRTNa/dTvMdCJSbIPjjDLAgZlwt1i77TYpVyFFbZQudAo5f0ZDhPVS+LXuaiwRRdUla5uCJDUNeIvo8Rynd1ibqQhKBF0cL9HjV41RLDQvpASvDgaymYkgpgMJLAoQRL2dyCaerCsq2s9RqRc+2strDKiuQEOMewsdP3jtXkhleh1JBhbqPRRqcTxFBr0L0nlyF6kmOcaWSRwWyOjNPC/qAYe9vRNVqTFq2Uu1PUQ8bTPIZs6I3egz9xGZWXlyu//Kpcr+sJbY+jR3/v/cb9fqS64kqRlVo3bMRgmLoJW1m47RUbyv3NePt6Cyc44H47aN1wrXSDUmApyiLCtRjP9eCHTyuXL0+RFWxbqghCXS+UdcNEOIbFYBI37vvGr3u0W22LUVa4XAaiO7e94T5CHloXrBmvt29UPej9xmjGPhprv1GXaDWiN/7L64/8zQ9/y1I3lnXj5XllKzGsK1DJnkxiUA3ocoxBEai6UFgxG6x6jWmNFhoL3QPqDLXsAiyIxEhWLSQr3qi1hKSvFqyWkMU1R9cB3FmuRh2KriNkUYdAUcwicC0a46ilCGad/bhTVg/Y1sMxb1W4LBdeni7IstCHcXt75/3Xb7wwKN9duOjCpQrqr9jxRuMrR/9HXHbufefrG/z0+o0/vQ6ORema51IK7oqosBZjKCwlMvbIUi27AAhC8ghbt64xm0CrMUYLNVJgkRKtvQSnamTXT3dHR2czQVl4frrEYK++x+wHEbRoJC5lcPcDhuCjoK5UveAm3O47O3f2sVMqMcfEDSHOFqmFPzsKllKoZQmkkhKIrENZQsJ92daw5WZYGxzj4PX9F4pU9j04B2NEp0spG+tlo3OE/Rlh36MvyijFWdeCUhmiWPOw/xLdIpNRPwnX7bDkEYVz62OgEp3ooFyuG5frE7Ws2H1w39/ZW2Pf76jGKHmVIBKudaHfQ+RtvxmtdVRDE6fWep5BMKrGFUsHUY2+fwi+hkcnSu8eZSWL0cqHR0eWDUL3fwxMBxBkUW+R+NIj65MBzTq4cDvucR7rSk2YXktJQrzGjAuD0RveQKlACX6bFobDvncOG1QpiEUJ24YjXqKjxKLsIB7aIkEyVIpuPF0+QSX5bb9Pdej3txb2Dg4iE5KKP4vEhLRlXdI5BxMZH7gEvB7E2flnSygy2zFKRJ42oi+ytTt9HNQqFM/BOBZtQWT2FxA80c7YO8fRo39TSrZWhQARojghQSwSDtMNbm/3gP+lxLCMhD7xjltHJKSWxSK6juCnIBYKWWtZWZaNogs6ClUWNlmp8UTALYIld8QMMYdpUMrCumyUUrHonwqIh2CNjqNho1FLpbfGLVvPzAPGFAmeQbQ0lmhvcmUhQENLJIaE3ncL5mzdNryAi1GlslBi2hgCPbQVllqREiJRZj2ISEAtMUdBq4TmlAcp0GwE5O/BpoYwoEG88xzYoam6VwN+Hs6c52gt6nGC5l7yEJNZK4ssYBbZxTGiJl02RF74/OlLcARGD+iZQjs692MHUV5enqnrNaZsDuPzc3ScLHVlLcruhUUiAFGrFBZUVlrr3I+GbsqQQVFlXZXnqjwX5eVifLoany4LLjG4xaViUpCyYVIwhNWcMBmwbgV73Tlao8gS/IbVaWPHecMJDQxhY0c59haDSWSnaAx4YYzobV6cWhe+/nyjDcMprOvGdjFU7+HINNre3C3Pq6Ki3O87y9oxE8yENhxYUInzGN0vnkI4Ch6GSYtSFzAxpAguGvu0xeCyYSMCCdvBG1qMy1ZwYnbFbLEoWkENdQl+kTlVClYKx9hDhrUdqMCyrmxb5bIoy9OF1pXbbef166/sX78ylsHKM6tAcRj7L7R2Y8idXRdsUd5H4dfbwdve2fN+j26U7Ml2UTyiJZZFWGpFUyVUZK6hJqPbaRxYF7p0xthZqiOShFhV1EueTwsJ3yWklcNwh3PeLhujH4x9cLSA5MXTKXUPp2KKDFBXikc58dZ23u2dnYNlSGSEGfRHzdnPFkV3p9SFRYO4Rhd6D5tW1kRw1xrlkD5gWIiG9U6VFXejLjFWt9aApkc61THiWUf/fAQiVZV1qRQh2sh7DOpRgsfTGLS2c5Q7WiwSsFKjHm8WaKITgZUql+3CcllgQKPR257JzEEtgBj3+439cuG6PVEuaw64amDZdqmhWNsthsWZGEMGozcGd0qL2SoiBe+hlOMWvkxroVAYSYg2i6FRxUuUx0uQ1Id3rA3U43l5J0nOg6MfHPtBLQsvn7bUGSD23qqsJYPA0TmaQze0Ljxdn3i73bnfD8q2sS0b9B62X+IMqiqrRil+ks9rSbs8nPvRwjZIBDhjzE6Dv2IwMPuSRTWdO5hAyei2lFjALI8EgU+d7g3vqc9M1PNtGEffOY57GgmP+voIfkBsyDUlh++UEm2CqnFzboPeQ3PZzdEcRKTLEiqDdSCyYN442o4dhmhlqQt9hOGjS8wUQLJuHbG9ZMReJOo9YDHW06PVqLJRqFQprLVS64p0oY4pBtExb0x3oITBgiBXLrpEO6LU8LI5BWwpMCRqPPhx8iFK1tlb72zbld57QPalcL2Gvn7bO8VGLCMwNLI7R7m3nXhixgjxA6yDF6MM5VJXqlz5tD5T9MLejsgQJTK1YcJ2WViq4MThrbVSUI7RQjWLYLKK6NQjgezdFo0sB68EU9NizQkyVa1LBgtCqYXLtUCrMZbaekTjY7CUkBetqnz33XdUhJ9++onnp2eWZeX121sYwqI8vTxT6oXb7Y4Qw1K8GVaNMRQ7BBO4PF/5tH2O0asVXI7YT0tFuqLFWRbjaXU+L86Xy+C63FiXQCK0hoCILGsMzfHCkEK30Jl3FdZd8kCuLMXwxVjZaO0aXSa60kYEyXUtHK1HV4bs6GqIhFLkkEK9KF8+PbOtG/e3O/vRUfnE/f7GupYYMetHcF3cIyhzAQ/1udEdN8WtMEZBuCDFcRFGuhNVRVlQWQJqluk4HdMIRh2n26CN2OduBzZuIAdaOgWL56wGEhtBtFDrhU1qoGDDKMVYt4qMwdv9nZZjYq8vG3VVtBhNjNdb4+vXN27f3tB25yIrF/kV7TfGe+P2/oqbwKJ8FUCFf/h253/68Y2f3hr72LAaU/UoFRPFHJqPUDYta5wzEVxqJAYhPBC17aUgBqPtmB8UN45+QUUZYhFUkM6E5ARVi/G/PTLz1iyfbeN23LnvN2qvXIkBNt6FRRbW7QlZKuNwlhKqmofdOWiMbM9mBGIlWlD1U3mwUBgenIGiS7SJeux/k4Y2Rbe01TYQdUQd84ZgUJSlLpR1i3NtjXbbKVbQValSKFIYEi1xpYBqzHwRzYQhNRCKEKiFDfb2zruHAmH3jtYIYtUCrby3jiEs20LdFpo3bBx0j3kH9+PANSSH16Xy/hb7bl0Xilwj6WKlLdGid/TG+/tr8JNE6N44rDF8jz3pgpWUuxjJcdIgwJcSHXJmRpdAwuuyULXixfBl4GWwD8daD5n3DjTHD2ccI7N1YXu6ctme0EXRTL5cPeyiBbqDR4JbNErgP/3yKz/++DM//M3f8PLlO/A7b/cbwxLtFk3hvSiMug96YFmBAgyjYYxu9FuL0sLvbCX/3cEAGr2xLuloslxgOMOTgWsx2TAOv0ABa52jH6cjCrdkHD1qqFVX1BQ8RDa0LNjwQAaK0LrnpMIgrUBs3NDgl5TiFJZ1YVklyElIbHSPbH+McJRVC1UVKYYirMuKSfTiFxFqqCDj2fqmsqSs20CoLBqBgLhG5I4E2tAMs0ZHwHqMnvTUVrOIkqVUKpUqC+oRfVZdA7nItjo34dYGNw84btEgxLWMckOWNYRGVAPpgOx48JAe6RLlkxDWkkCwjoPR4oCtVdnqFsOiTHi+vvC8fOHT+gPDhD///BPmPTJ0A6dDqWiREzpUV4Ybc4zmsEHxUOWaxsA90JiANFMHL0fwijiiNbS9dRLWgoG71Ep3YRwHpgF9994YPQ7vV3c+PYVU8qIL1/XKsqyMLaL4ow9G77hEYCkCv/zylU0rz8sVrxKQ5hhYK8iomAhFt0CWqsGyoOOOlhYOqxy8LI3Pi3ItnUtdWLdLSOxelWVdaV7pFjMrmgndBROnCHh3FlXe98JujYOO84QzuDX45dtOt3tk3D7oDsKdGgk6Q6FTcW3IcuXz95/4z++/cNtvHO2ZhYZ5WuTUiPcRZbo+nGGw1o3hJIwtuFeKXtEs6Y3udHNWkgUt0WJWiGDdxBFCAEuXgrSQLlYNmFt8sKnQWihpdnOW0pBqOdckprMtZQtjODxbEoWyLOwdFpTr88b15YJL4z7e+dZufHtvvN/u+IBrLbysziqvyDC67fR9p/eV49j4+nZwAP/T18H/58cbv+5KW9Yk+TplRLmudz8nxolmKdACZSu6BsCXWatqCDOJ90Dl1kBCxAtDR5yD1FZxpkgM8f5e6M1491uQkxmZZQd8bUNYSg0y5PXC8+UF8S1aqEUxGYHUlRyTKx3FKMRI9FIqYxzBWE/oWCXtgpOlXMkSao9WswLeLRz4opQsHdYSXDBGBEpvr++4DJ6WZ1bdWNeVZi3QS6Zibmd0jRKhR9lERXMwWhDDGcbBHZrRJDoMrMYFjhEBTtHCdtkotXK0PbJZAamwXAulCE8vG+sCyIWiEkmIwrpVigqldG42GEeL1r/oDYdRMDrmUTZRh3EkwtmCZElR2pnJCiPgaxBhWdZIYmXQOULjpQ/oCjt4E7wb3kGGUlC268bL9VOUMsYIlA0JPRqLgFWsUDVcsEggSCO1ekY3jnvj/n5w9EHzQYy8i9bXYkJBUI+96+qBshQYJRJBLwVRjUDvrxkMSNHI9tLZ+HTtPhgmyAh1rm4d8OjnF6MTgxPMx6nu5cTP7i3UoKos0aOJsFTlPg7AgoegTlkWtC6AxKEeMNwzm/GsmWUv5WA27YSet1bgSDGv6AUVFZaysa0Le79/qG1Hzppxfma0ilkBD4lNt4BI992w0WnaKKNQraTy2GBYI05lPISoT4XzVwoySnYepPgIwlY2KMKwlWY1CJMaHRvHccQ4yjEyqAI3C2jMHbHBWmqOdp6YhNPdITXai0eP61YrW7lSidaWRWsQ2nIUZy0F20fWm2MtzVsEgdkQtR/3mKPufgaFY9jpHHJiRdwrEv3/+Wcl9RFKZCw7Az8cM6H3kKIeI9IKTZ17Hz1KLR6w/49//oltiZ5czcDs0/NL7MnbPbpOfOq2W+69UABrbWTHR2F0OO4x99ykcPSD9/0Ioaq1IHKgclDlziqNS4FVSXQnFuhScyTzUAYrgxjzOnyuv+GbsRZhrc6320Bd6OvKcb2i1bnd+xlQOjE5LzIUZ1jC0SUY/MfYMZztWum2c9u/8fyyIKXnfYYDw8mJZUIfxrqEaMxt3zmOFtPU8FQonPBvNrxFX1c4bRHc51kgAv1ZKnAjbHqwshMCiz7nZqzbgVdLXlEw6pFQDixLSl/JQKqxXUMrfnuOAViHDfYjBG1ubURAUxYupXNZHLU3xA2lIwyOA+4d3t25aeFPb4NvrTBKTGO0dNTRUkZO1tMoD6TjjLNYEJ/aGVEuayMmemqWBkwawxtYTOUbkiWyUjLoiBJN1SWY+V4ZwzlGkGrrulL7QCVE22pZGRIiPEvZEFvoOjBgt0bzhpfkXXggOa6aAXRktJMzEIPHJDNPOZHFkDbKjREEnggGSiCgl2VBpaJSojMiy4v7EeqrdS2xNyJbyr0B5p3WQxXSx8i1SweVNG4EXDo2BrqE/Li5pDxM6NXUpbKuG6Uo+7HTaNQSGXPwBAhyonlMvzViZk0VtuUTuixoD73/WpXnl2d6zrpf1oXFKrUrbdzBQxBujBAuKprOmJI6NSF/XzTQMVXFJRKTYz+i1dIHxRW7O7TgPKgrtQQCva5bPNdu7McOJZDPbp0tIhrUSyrThuZmd+P69MQfRVi3K6/fXrnd7tTrRk9BOzWiNXfEOSxS0/7G841ygofWy7oiI2zr73n97mAgDkQ9HVSQZ4LsNczo+40xOiMnV2mSCSOTkGDpJtQRdD0NeUYs6s1CdBZgLEtljKhz1WyhW9YNc+fYM6LGcSLjV43ItA9HC2iJCYgzy1etZ6SvVVlLZfGF0AIIMkkfQfLDw1itdUVQWo8oX3BsZECjMHantYj2VhY2wqGID4YfHHbQrWXtdsqcyqyhnEMravaaMhRnJCIRm2QMywg8RD72Y09p1jCko7WcdRC1wHnWxxgRqKlmprOwXEJKeS2hmVBFWSQg/GNvfOuv8XN1oQS+F2IgJbLNEEgK5997j/HNxN8RZXQLtUSJg6siOXAq1pCzqnnaIo5jYK0HnCkVsxjLaiOuOeRpUwqVqFl6CWLhpYYMdZGQre6We6gor++v3O87rRtK5fPnzywEp2U/DsSCdDMMmoEPZ/dOM8NV+frtV56eBHjnsDe8NNbFuaxwXZVthW3pkbXooBA1v+4VkzWmlnlA6SoRdO3HjnmjjYK1wSKFp3XFGFzXJVTGmlHIMlkJBxy64wulKmqF/bjlAKyCloHJncGg+cFiJeq8Fk6jmQcKIMrt2Nm7cjtu3NuBK7QeUGjJgGl4sjk0iMG4Jz+EQHMknOhtv9NGTLCMvRaM5xTbRizkyVsbjGJQhXVd8RGlMDFPHZDQySgVKorIRlkFT1TTNJAeqQvLBtUb61JxBsM9FEnVOYZyWGG3jV2f+GUffN2hqUK9YFqx5KWoRLAKhqVAmWap0eMGU6MjUK5INnqQajXKicMPmh1UCc6OJblrkpSFgmPJp1rZyiWInNUY3oPkt64USvahk0OYNKYAtk7vMQ6YGnVqi5Q72pbzOqO85qkKG6RHr0vaOqOohnq1CqvU5HrFunWLyX2lFNayZCv2zrZsXC5PmA/ux8rwKAXu+06nB3fMgqQXynYWWvqSPAKNrrAxLDkk0+ZZlCfEMhA3jiP4MbUuWboIlNEFdJlpWaDES4kup9aPUG2VQh+N3XZGj8C+H5EoXZ42pAkcHXdJaeAF7sb+dsPNqOtC0Uq9rBTdomygBZGYKCkZFIJEEtF3bvs7xxFTT40YFS+7oiM0Eda6cb1c2C4xgE48StmjW8ZEkZAVWSgieAlkXSQQiGMcXF6ulHXhdts59ntIbA+DJSZBqil1gHvBJIZWFSkUjEESxy1InJgHevQ7vfy/qZtAZYlJuEkOXJL0NawzrEcNFMek4KocfuShiNY6GMEsdsnN0rG14hI6zpIh57LUDD1rGvjsqbcY1mDKqe4XDibYqVjUaafjNU9VLyIjyST8zMjj2oJxnT0iD3eVmu6eaZajeeANGR5jKS3Z13SQhsuCCAQ7okfIIhNtCuhJspbsHihDzLhOHfKMZNWDfGMW2RdFsuThH64xgpuoVca1u8TYUbMchSMlRJZUqRoM1jX5HdWDqiEexL42Ol41DMRS0TGzCgs4kBH1Y416e0/mdEwjW4iwq6JUUtEWSQlNeq6pRlA1S0UO5DlJLYfzzs57+5iJxKAPC4LdsPNwtf2gHceZ3bZ+0EYLWLpWyhLBp3pNR0BkzkUyX7Jg1KOUWrFm7EdDuDHkHZHBuhS2FS5bkAq3JdojJZ0pJTI1ssREPqpFQddot3SiD1qPgqlgqhzjnUstYM6igMVkQxGlN49RvZcn1i2UK2/vX6OiJk5ZDK1G9xt93DlSgljQmB+SOhcmMKxzDE+Vuh793250Qr1zeMesB+HKjQD/o595tukOYgjYsJbOqeQ0y0qVC8OdQkcI0q/12T3iSJlwZaw3JYyh1DD8U3abJUoSQxytBYYjVZEFxBRT4e1o/Pgt7M1ahP1Y2A/h8Mq7Xvh2NO7D8SqgC8gUAYt9EGMHBibhuJLCmohlz/Mz8oBMNDTsgAkMCQ14l+BmHKPRvKM2qHVJAm3C5UVy/oNgmgGXEK0qXmhjIObBTPfCvjfaEYJqWmM9IghPXEP1PCdz9kDMLUnnQMjcqofSJxPuZvI94tzmaWI4wbrvnXY0EOVyJTP1hd7XlMONxu0oPSilKpenGIrWvadeTGZKib6MDNBFY8qeVs0afQTgkbknJ4UgOkLwGMp0zCSvqSqiAZ/bKFRWrBO9/we0PTL3qoV126DkYDQP+ziCxpKzc4LngESnjdTkOlSIVdNIFtzwXJfj2Nlb2Bgn/E9vA26wSBBGa4nupVrWKDGNgQ1CDdTSXpUaCZ8KQ0YKFYWp63Soig3nsBYdLYQqriyxB81SBMlD90HVsssn+sY0uULiA3SwLSWmXP6O1+8nEHrUO0hRmaJZX4JkmcbhNGIojhgM7elMNGsXgQm4B7xmw1mrsdbMbIWEhVa0BE/APDOVyagne/XFcYlIsKfegQJFBR/CSLcz3MNQe8AnoUKtWFT4CaGOWf9cAjI04egtg4h4cGKdPlq0wWh8dhB0YnCFsTK0UariGuxV05AcnaWMOViE3LRR4ht5UC00xj1nncexxS0MSPhFP5EBz+AnYEunJyg3hUZm+eFyuaClUlVjJnkGVmoD6x2bLS0eB6Zn66KyoOxQNPgXee3uyshDZUSgplrD2WadGZOQ0oyQ5IQxoySX8L1AbxYIg4HUqCHPfWI96+3nQI44pBCHpfee3QyV7iEUE/B0DA4J6enKUgu7HUgRllrQ5D/4gFGE3aKPPAK4CFBqrYz2ipcWzr4YpcKyQl0yay8d1Q508Bb1ZF/TpcS+ChQsoPtaC5uvoIJrSMUO1yA9PcNlM4zC9y8OFNqAt7eD4xY97U9PC0fvCHdGS2JTlRgSI519HNBypgZLIkTxOV0Eo3Ebjfu4sVtHRo179g6jJ88hgvrucU9KoC7DneEtAgV67IcSSJ47YJXhkaEspbKVipVB1SdgAVe6hfNcSnCBtDiq6XCXaLkqqniN9qwxLDO1kdr7Iex1uPJLg/7jnZdtsCyhbtpHkA1vGL924X2sWClojVkqIf8qLFoQB0sitGT7nUoJjRQLargRhGlVMutNnzptWIlS1HA/2fYGYS8oSCksqiyLIkSWNjBsbudc2+M4oh3vcFQW+t7Z92i/3OoWnVRlBAdJ/CxhQvAbyLcrUsMeaXRYeVRwcwhTdEmAJuoR5yyIjcFHml0sWlYurSGlsG3X6DTpgd6NkZwJVYoK22VFG9hhQeaOKBWREkgMmUapMII1FxwYeiYAIb7kZHKYbawiSeRTsqw7uzwCUYm3KhzDP4SX+T+JGQ2uIdXuo5y2oY+YYRPvrYkoNpQFKWm7IiqNaYI5Vvp+u9GOKS5l6b9AGkEkX1cuW3CXVIObEojaHPIVHT1l/rcozNJZil0FkZeccxAoos2Zohrju90kOVbBLcIVGUFSd43kWMP04DS2dfDpWXl++msHAxYGM/yaMmdoS7czEOjWMe+IRTuO10FZYoJT9DvPg2ihK5+HQrM+rGjMDFhWSpLlhtmZRc4acMa0GHPiUzuhaR/RO6qUzHgsfUlGVm4MehIBJ3gtkT1ojSg9IzARQhNBIu+1Nh6DIDTb6ZwYbUljlDWGbRRCgCQzidCAizZDDSp/EFyyNxkMcc8hManfYJntZ4SdTZnMrNkt9m7mWTQPbYRuYQTIOq8OpRDQsRcN5mwuCRb94W5EBGtOi6ccm1gSdZDIKiyDhW7GMI9yRzrooksQl6xE+2B2s0QdU7MUMCLjIj+zO31EkKfkHogpV2nuItplkg4T5i012vrGMPbjoI+ezyzGko7RA4lSj7sROLxBh4KFtkMiUX0E8xcFl2hFKnlftShLVUodUFoae0dkgFfcN5wL4gcyDpA1avDEAY8QrSfJMu5Dy8JSYa2DrRovT8/UGlKw899FlN6dX693fvl5DzU8N2p1np42bu/3UO9bKlpDn8MMjh75e2Q20dcfmb3RzNj7O417MOCxVFLLUt0kAHvDvDGsRBsh0e0SBrzlc4wOIqmKe8W7oVxQGQzZebk+syyGslHlAijDB1I6Uiu6RBAjOaEwDKOEg1VLPoInZB+Bt6zxjForvPlKOy7czKm7MKzSLXQ2bt24OXQtUCtSKuoCNtAhWaCcZyvOvneSACgUlFEiMbFcp0iwg3DoRtqrhJF9GmH5kLU7tYQI21qzE8Etujxw0mTjYzCO4CBhyraErLD3UPmTCmQgPvngMg8+eW48Ec1EPItouFonbBoTSJhTFDn5U2aO9dCPOcZAKDE4aVgIPdUaEDvQvUXLI5J8nukTAl2IduYYdaxzPguW/B0eFlsS3SOQTJHgcggzIcyJi+GT4dQBCOunRc9AJsocUV6xEoFSKcEbiOcW9z/Mkm/laCnUqmgp8T3vMb9CgxsjuU5jhPx+oAIHo/eTn2EWbXzFhev1wtN2ZV0vof+Sie5s75Ys+4YvqSeB2tXPDjuTnmB0oMfNG4OeyGMgB4tKln5JpCgnB/sIpNrD8Et28Sza+HLp/PCp8uXzBzj5X3n9m3QGpIbBdsgFyz7z3mKm82gRXZMwsFq0dRHRkEwdAI0Ro1hmjszNLGip0Ydaah7WGDDbrWdNKYxrBAYjnWGLzD8DFbUQpphVainzU2JDihPGCUlnLZCzCl0CdQjYeqRBH5nF+wOu9pmZhvPtWVccUrMli/zEMMjqFgfZLLIrW0CipcYsgw5S4dHydOfGDI2Bx0Q5j18IFn5uku6GuQZcZ4QmAoIcEZigQlOHE1aKGj9ZM7cRx7V5Z5dOY2Rfq0F5BAyjW8KowRD3hKTRwikGNeEx4jA8oHk/ywTx92irEgSVEHESIWqdJaByR0PKGDsDvlprknEGfbSztUrSIGuJUkfdFkqt0WbTGr111A8W1uwqWfCs/ZUSwaNZpyzOdd142jrXi1Fr1AjbCLJULUdIUcsN54LaAbLjvmbAmd0WPlKIKfQboqYcmMvFYKBI7azryrF33J113XDgsIHqipjzdmu0cWPYHbMjhjRl/7pTgQVYEr2LgFFGBOmjB+Jz9M69v2MSkKO5Izn8BI09YjLo3mhjx0yibc0mIjcyHM0uEUn40VOWPNuzxDvLGiEfJowjdNal3JHqoWRXsswmswCRsJ5IhvjRruc2n2lkTqbQqNCvDF9DEtygm2AU3BfuXThMsApqQkkELQbMx4C1QgTbI6W9e09hpSUcfZFZavQoN2UrYjcj87tYjURR2uhhGwI2pCb6ESJdJIkrbJaRJa/kT83Rv6UqZV2QEs5ctKBreEWfjhwLhNE4A0x3hexm8LQ4UwxOPO/L9WwftdRscZtVx6T7apwVJITZ1iWSN5KPJKZnB5Oro+rc9z3sBBEIBA9kTWf9kKkXiWALScGhtAGznIJH2aGoZoCQ+X5yVhKeiYXTRHk9y4Xm+Jg6NPE8Jybp4nii0h7KckHOXSIzj6QutGYoU1eGRBIGRw++xOzeOsWoPILGmiVXLXqqKpqF0FvR4HZEMJBlFpOs54dtaNZiyJwEYoFDz++b9EDPigZqlk8qZqfp9GyJFg+8h0KoluBYPC3G99fO3zw3vvv0V9YZaBZjPqtmNuhkMGCn8MhU7froCLvHDAA1QmxBa9bssu8SofcQbwjuSzhHRh4eH7gG2XCMEb3nyWQeFjV889hwMRZ0QuUZLWk8mAnLzWp1d8uSheamVZyo40V/eWym3nfGOFCP8gHKyVA3n0hJPMgRUlWnKFJkn3LC924GYwQ7Ww5sBDRaJDTFJTO02bp5es0sD8yq3MeD5Dl0o3nWNLNEqE5kQhrwfdSzNa8lDC/Fz1pplB1GZP7iDLUg+4yYkCgGbcDRs91KahywfF5uWSs0MoPKfEY1A6uTSJD/CQNUNa6rrCFyEvU8ieE9xKyGCMhHAo9hSM0ScvUwcGaBDmhCoKphYJdtBY16eG896mqzhaoSSIh3VjNIDYulwnXbeLoMLutAyz0g3WG0AauFdG7RK3MOANqx0TKrlYTUQ9EykI5lPkxUhWXZuKIgjVoG9DdGNyrBzPd2Az9YqnNZDekW6ogehNIuUSd2KyAXpBhGC59nA2/QuzJ6oGtHO7gfN0xAa2EMQAfiGfgSa9i7crhQctiREQ7BZfalx/mpUlIKdUNkQWSBohQMK9HpM7qzS0P8ztAbVhquI8P7DFqyjh7Di6JxeJJBI1RUqIGwdTe6CENWdoNqWQ5Ldr2USu+cjtpGtHsFvDY7XCKgnERBt6hLi9Q8qRF4eiIh5h2hhjDOSNRQJIeHPZzblNmUCYfPs5y6JWFAsntjynCS2e2i0U1VEqdcNBKYVami0X3kipk8YOoR/ezF43yZdqwkjC2xwsykJhigQJQaRw56w8mgLqD4ddnCIRMZu2r8npGoQ60pPBWJ3jF6lnBLzoNJiD0n0owsFnjqnhhTOj37iizLnhDBhMT3A+uchir+EwikRZBhsbfGEGz05KYk+kryFSTsjwhQFK0VHYVCaGa4WXSy1ULZctiQE219bvRso4aw45GYBmFTU2hvLTXaIUvBidkGNoyqFUnbOm03bvgwRnMoKdvsjaPvjDk8QEiJ67C5ZVGq1BSWstSRSYKthm/BBRuD0QZ4YxFl1YXnBb5/cn54GnzZ/spyxDbAq5z1dRkJnWV0Zh5wn6QakhOHItpzIiKPDRaO2RPWGjjdetSVyFKE5UCkdN4Q9R0jAo6RbGKXcbbaTOqKp9M2mRvN8DKhfs/fjwgtYPaoMwVBboTRK3FAR/IkOiEx6Sm6gnNulOTmBHM0JOAoZtEdoAHV+/zf6bAjihxpQ05YTCw2QQr8xD1wHuQzwZ7nRADXk/uYJgg5D1BIk6qWIBdKICFTKwLA0DSmsRZBIAsOhgmYaYpoDNqIARqSTl41Rz6mITeLbExMmdXN2fsuEpO/xCM88jz4RUpM7KtL6knEgCpN0otS0WlwCX5Es4Z0A12jRdEGzXpQ3CQDxm5Ii+x1yczAk5FfapCGYvaHpdmaBZcIroItHW1NVUHNQ4I0v8wH6iGpjYyEvI98AppraZkh5zMf0Cwmw418gDVhUnJWedNBs8Ft33m/37jdB05hvcRMgWGV19fI3oeWkIAVhbLEHYzOGKFV345gpY+RE+ZshFFMODO0Azy0NoBuLQWQcnQ1ByFJnKgGkv9VKAWRFS0rKhtFLkhZYg6EBMK1+06vnbEYSsPlltBo7OKi4QxDvnyWJEKrf0h0QUhdgjw7s2F3uofaWxlOkUotAfsWKVhKHJsHT4CedsAAVSwH5DBV0yDQSA3EsmWb5DgJk5bIyNwZwUeSlEp3Ui62kK3QcRa6G80bYhF8mPp5RibaFwGxpC6ARiA+AvmsGURrDXtL1+RNxd7qHjoqZ5wtlmRnMnM0TBoNR2sHSpxnjwAmyGnRQqkqSCIZMm3VzEC1YBLXEq40Wy5zLWbWfpYbbQqW2bnHkInAWmTBUtB8lmKanSuaGVCihafzDUngosHaj+QyiITFa6JtsZ9CyVeiBTOhcyU4a2UhW35hFppRRZdKXYOzYsOjhZkPCGqqJ4lLCD6ZUYiW1Mu28vnLC4LSWo/uMRySUzbLTJ7E22N0tAvFojw80e5AD8POe3a1KaGBUbVQpYZ8ftQps3QbQVeQ4WepuYd0ehU+b873K3ypnU/1+F0+/veLDhHtFljW/iUYwIMg1nlmQJRC98at3UCytYQasGXW3aqEnGuoPo1oZVsMK7FZLL1dwE9hfIeNhDOjRdEYiUgYpaxMmV53sG6MNoIFr3EAZpCCgmU9NbJEzbpcR61RiyHFaB6M9OZBNXT1mIuQWbuPHE05Ev5hAiKx+dVDIczmdZEZiUa02FMvOqLiuDZVEHUWybjaIyOakBAmp7uXbDfsFpE+JWGv2baluVEyS55tYRN664Sjb96jjlokDKDttHEwaHHtWhlacBmhyKUPmD+oV9keNTwDCU15hah/2RjZPhmqixNNEo1yAsIp12zuIVrjIaEZbUoSEJ5EoKDzGYqFAApZI1Q50SlL6rCYUYkhIZI1vqldYD5yQFDUDEeKsOgidIx9dLodsT+Hs5jzJLBJJprDgjtAh37H+msavAtIjeAsszA3i3pkjtceHvPLbUS20O4H+964tZ7St/B+g7dfB8exsz2vXNdK2SquFVbDX28xqXNrHOWCWYnAT5SjHzH46jDaiDNnFHR9SqcfITZmuHdUkv0/LKTAJ9FJVworWJQDylhZlwtSKu4VtOKyIuVKKc/U5QLiHP3Obm8UTUdkO+KvuP1MGwddolVscjPifUq2KTup0Jok4JxT0UIjPspVPemeQcAV3dIgN44e+g5OjE6nc9adNSFvV014Pc6wjxGG3IyhMelx6ih0T4Y2BargHv0SQwtlkltnUtRTE0Il2EAGRx85ynZmwmQJKUualJxIpxz7QT9CinzRhVoKshqHdXYLrQ9UA772xjQnGVZnb3xU6x2jS8P1COerFWTBhyAjlWNVEDrDDpBKGwdCiXbC1yNVDD0z+yxrEFoYM3uP4HMGF9FKPCznXEQ7QCQcRHvkWKJYS3aaTK0TXPER5eQgUEddcmRQEQsW9QYfHkGeBPE6liXs0iDQM5fQM3CPORJxj3HGRQStURaRdYkktO+h/W8jxMKWijscZpS1wjDGviMoay1ct5XLtqLF8RSCWkyREuJLkpL9KmAlzvo+dqwZm13DtpVKzcDOR7YJImeQVaioV+hK9TX84fRHPlFZR6UEOdqc69L47kX52y+FHzZ4lsE2/trBwIdayFJq1uBmdBka3hM2N4joLOcSTDyupHEMdvokB2WkltD70fcIOkh0gXRikNBrsjTzX52o/WkasPCtesJ10xPP7FwSBpRkqQYEaufDCxw2HXvWMUNwhzOaDiTggeVnLBnRPuFsJTeuZMdF7tCAZZPIkwlhXLNr/n4SBs9sH07cI3/2UYsJ2Mp9YKMxUmgk+pElI2I9BZ08a7/x3PLePNCAYEU32rgzLJnjauTIAeZshBkIkEjHFB16POdHMcNz3dsYGfRni48EE1o1RVt6BD4iCXlZDNcopbAsS+go1BgIav1gJA3MplBU4SzXlFqoa0FzOMto4eTEoySjGSRF22bHPZjSEWyH8fLi0aGS9c4pAhQkRv+wORIR8475zjGELoMmle6Fw4PUKSm6NNk0+EBSLCd680c648Fug92c1/eD91twYkpmD6tWyia0bpTak8EeenQBXSdzegyOEdKk/dQaCIdoTnTVeBAcjYZ6jwzNDB8hyl1EUIvBUeqWez3q1BowFrMMZMSe85yLYRIIX/dGszuHv3PvrxzjFbdx8jM8JaoTbAtEL+LC+MqsPDbX3O9ZQphfOltr50GaRyU4LcE7iX0650UExE/sCyODokCUhnSGGq4kx8nznMzt7WeQN8/FORvAcm+ksx9u9AIyUtHUorUu2vAyI2YSTvupo+9EYD1M42zTmUOQou4eGWWc4ZIs9RqQMiBVcDkYvjP8iOCTqQuzcFbX/YEyRvKRQfQIfoxKzYB8/oadZ/1Rpkwyc7ZjykRrPXhK85zEfvGTL3BakbSjp0hZGj7NtVaHlpygqLvnEZrQJwnLpg5GZheERmPeYEpio0lAPFGPLBGb5WaykzPmSfIjW8ghdVdUou1yqayL5pTIkLV2zwRP9fRZcspFP+zltPOIpFJjBINBBtUosshjPWYfnuczS4eRvidsbVFYirCtymVVljpxlXjP3/P6/SOMs7YT072U2SoTNj4clVngYF5iQXpumEmYif7l6EueRDzJGtrIOnAU+WzecWxCyUNsPSHF3JQe7nLk51jCXrkDmNC5YOfGD4ccSoT+wbmFYZMzy3cVZAS0MOtV0+vP/t7A4uW83rMcgGEuaPaRxmYnA4F8jw8BQWxiO21eMM8TqvOsfcGHaw0X4j77ebMv1QKRKLIiNcktNbLFkPy1/J3YRDFsyPL7IeixtymqEcZJCzE+PQ/5rMnN3uszYEuoV3Em0kZmVzIPrs56YMKzGsFBSHRmbRVP5m9MtCwloOJSAk7dW3IESqyDSyJVlj3XJVpTpzZ/O1oEZVIoZYlpbk7CeiO6WvCcylfiBJUoRXTP3oecJOYSJLsiZEAGTsPtxkDoo8UgG1kZXpPQpxmTBsgcpdwRDpYIETRduo9OH4Nba7zfO7cerPQ+jHY0lsWpS2FRZ13S2JToTzbLtR/GPgbHMA6bJLO4rwlajjGh72wVlBZTQ7tgojGxUcLwlQBmEsYtSOkppGTROks4qC6dZGBw+J3d79zHnVt/47298Xa80e2OAKuAekkYL9v5MiAYBjk/J3rC3bNFbrZqxtnWkDVMpnaJ52HzdIw8SzIPzHl4wgkmiWtkkDMehK6hDa9Z8lQNB5Rs8Ew944SLJTcmCXTuJ/omJ0QZqFfwmYRVs6vHJ6FZmR0VERAH8iaJTrpMOuXAJfkAFmjbeV0eLdGLbmy6RuvwOjC90axydGH0d8waCaFl8KFnwBTBwGPmjIijkkisRMn1DP6RLOlkOSw5KjZmfR1m39NMY/gQBphPslxktjMHi56ngnoEoRFcxfOJPCqpjg4kCbJMToCkk5lJiCTR8nSck0cUqKnPskXyIdxmW3cGMfkcycBgci+kBIdjXRfWbWXbluA5tURcs/yCllzLTJbOhFJPL0H6As3vq879Gbehookah62VLA9FgDsJ0yl5L0YpwlIK21ZY10pZnKE7LYOK3/P6/XLEzKDbqemMzOcDz8Mp00kDkm1sMwN2R8fMiCol60Iz4x5ZL6sJmfn5qbFwYcR6jg6dXtQe15ZBQCzmjJri4Uq+B7kPg7xCKAamo59c6fBbfjra+JueDvyDRwaJ3w4GbLKeZzQ5B5g8YIPHWronoe/D4uZ7unl2CeS6pXMNM5h9woS40EhhpG7Bep5H6uw51Tm+2M/AqH/IWoYZ3UbAozYSZm3J3Ai4dHYmPGL68uH+z60dtcL8s0/CjQccLyqRZZ8GZfYi5P0lYSwjufN5Sh6EmQFE7pG/76HLrYRhmtPPQlRGQEIDfHh+lhSK1tRyd9xaaF3U2cokMZlPY6WaNfZu3Pvg3gf7ItyGU4egKatrMoA9az2Domu2367gKz5qSHX3e/xOBhsC6PCEhZTKoCaBdIzGvu/cmrO70E0o3SnHnVqD7OX9oIix1Ginax7cgJJCLPdu7GY0Dw7LbHlz5+yB7ha960NHGNcRcPDoKQAkQfiNlujkCXhFemaMEpwJH0ey7Z2DTveD+/HGfXzj1n7lrX3j/Xjlfb9htJinkRnfmOUcEnHx6LwZI2cqjKxnGCfEHudHQGa9OGR0hYKnfvuYu8h5BL9ujzp2OtWRiqPugaA0t0e/e7Z1nXvdhKT0IBJEL9zDOefpkkyEzzzM577NLM1TsdmDtBu2MIL0MTlXoqG1VkBqolepteASQY6GCliQrqmsbGzyxKVcqEulbI6XK4d9gz3mN0RdekQAM78yoegefCfP9t2qCovl6PmHkwtTlryF1C4ws5AVHoB81JTxRG1mIHGmO/F0Ti8eVkvTaSmSwjmc5QcDYlBKBM5hlKaN1eRanWlJ2sokZEcIHtdVZliSjppEVTNj19NuR4YWug0WZMDM4mtR1rWwriGhPHURJP3Y5LTJ5GVlCTgmKhbwEaitzI6V2DRy+p7sdhHJMpokWK3pD8Ys0MQ1DkclhvjVpVAW8KJ0UXYq1Qtmf+VgoMwobkwxhWBVjlDVCbap1ogY3fIM5w1E+SdYw92SPZ/OQDwhaqdLkC0e3vHxMucxPtP9t9cm2Tee4ftZdrCYPy2zcT5PpJgiLYhOpBOPYMAyCgyEwHz2uAaaEL3/WW5wcrPPB5qlhNxu4b/Co5/Qjn3488e79A+B7exDZRquJM3YB8Yp+fNJ3hwj+mjnIRmaOZ8EGTMEcXJynQ36SBjXWhgBsyQWtRSHCVjR3VAT6m8OsvMojzwOj2XcK+eRnI47SjiWkfBUJXM8+R+P+5pzL1Chaj2heSd6hDlDmshGuoEMJ6SMZyCaUdQ8ZFIDiZqEkQ8YS4yekJzGl+/thni0lN5a59veeSmNZ+2sErA5OLV2vN5Dg8AbLndgQ3wHuzD6Su+F1hV6jrEuofUwMhh1q0BNxKjH52a5oA3lPoTqTu3OOoI41Q+lHTdG75hUGspunaMXxA3ryt46x+xaSd5FJqpBwEvGcrTGZdY5NKaQuszqGMNnMBDf7yVIqCKpXSFHZoIDkR0fwtHu3HuUBW79K+/HV277r+z9PSbP4ahVdMSIb7cYgysS5ZMIBsIejOFnzO/p2CN11VOXRPP5wiMAPdWBItNgzqnovVEkyio+0gGPcBmzX35IGCzrlmcyszbLICSTn9lWHLZwIhGJ4WWXzYwlzqAi1ypqEOE8pm+LjDTaOSmCSZzFbne6HVgG51METS3q80UWVr2wlScu9ZmlVqiG1wPMaf0eomD+0flFojaFydyFozmmFqI2AQXStJ9tim6e7Z7ZRpqIrg2yy0FOpy5KBFMaAmyztDtSu2UG96GLUFKQJ4idimQLthPwnwVC4Y9koMzETyxRjA/Qfj5+Z0nbM5MKhSIZBD8g+/BVGSK4cFKVz2BjBLci1yFkpScBOZDoWkrKhk/S6YxaJZPDND0uQWDWOFeohyLvh5cizM6Kee0uIQsv5plSpRWTCEbPcnhyMLsZ927UoowuLPLbz/iXXr8/GEgJX0vG6AwAZsOqaon6h0hA/pA1GTkzUYzI48zOf3skzlPJ6+Cs/31cosw2P7Z7xCzwHCM7s0higc5+ZUtxlTQ84ZwdHxb4g0qUNhLe0hKDb6JOKGckLfPwnKgEj+w4Jy56fs7DX6aKHvHnj3f1CCJ4OEKZIhO51swWylgbycx5Pn/PQzJmbdqdoZH9dx+oD6wfsX4zGxieddkIBiazOMHKxEge/4tLlzOz/MvgJ17ZD8xUK4TJOE5gMQItjwFVlgRCMrNw8egqEDlFouZ8CXINgoeRhiGNAhOtseCTPMKrrEGWhaob55xzspQ115zJLSEPfhp2C+XBfXTejoNv2ngpzkWFRZxiYIvBeuDe0bITw1fumO2Mcae3lWMv7E3wbHuiFCjBzp5tgSpbSnTneCnPAE+ULgWzxmpOH0lG20MetY3GIYMmcDelUUNVsQlHG/TuCIWlhPPuYxrk2ToVssKdHsRTnCqRmQcYE0z5Iv0MoaoHoW8pK9U6bkeUTiyY/9ad19s39vHO3h/owO14ZfiBlkBeioUOAiGmjqzLWSo7B8iYBXvaOYfu5FbL86MJ39fMuPIf086AJ+Sd2WD2+UcAYSmMlWQzLallEaik0ZNl6aE9YIZ4jYRAoh9+pBOxlG+ercAz634Q+wIn0FTWjNTe0mFNexYOVOBsvTzM0O50uXOMmCUQmXEJpc/MOqOPPSaqrnphKUtyDxSVA5GFVDLKszyDgsy4PTJ9rUsEAekAxzxvIqnOKGkjo7A1M/cIagU8JJeDGCchB5zS5T4DJh/RheL6CGqSyxPPM+vmEHV6e9gYT56L5p9n2mf5nJGzQJsdUxMZiL0jE7ZxD1VHHC9hSc73T3tqZ7JiOTcn+SeWCWABy3k6IXxEcJvWQT98VjdwmfwaskyQiG2Zmgokkpg8Mybnbe4dmX95lBMkeWfTNsuJaUcp3Z2jG+8tfFsXof61BxXNufM2LOOtMMQh+iAnNBSRzmTq2kzmEtHPNpkHBgwJg/RhmLWsb8hvRDnw2X4ThmJGeiop/CB6OtwY0WonAcwIWEJKbFTw6Cf3dDxzt2WWPzxnD0hMyRojH25i9TMGME9BjzwY4IlAPP5dcsOFrKvnKGVJrYbHA5JJfEygfVhC7zPRQdKBRM1IJdGC4anmFUYhZilYDJWy/qE2HVnEbxCMGUUnxB4OfbYCwayzkfcyF8rcM/HJDMkdt0BzpsM/o9aMFQdz/PQjxJDsmY6NnjXIjKhnYDfrdYGQpDEhsheEFKCCkb3wkg6+FknYcUFlOZ+R2ZQxnvyMCcHNrfgoW8WIcuE+hNdD+LUImxQ2oM5gOO86gsnB8EbrO3tbuO1raOaPEsFkEZTQewi+R0VYGb0zfM3AOKFxLcFfqAV8YdBoNmhdMpiOiP8Yg52DnRp5ownWK90iBBMJiiIorjD6oKUa23Rgs57Z4dzf4ciccRwU8fhSwWUg42BrB5USc0okUJtmxjEa7/sr937j3l65j2+08U4bc448MZKcjvfsRHGlNU9kYI7aHRm8ZAA6nU3WlSMJgQnIR0tdIJNRQoqhZcNHqP8ROihAwqpKtn6cAa5PgplM0uEkEU5bNBJlinMr2RXkeY3udtqXWdJQnXBw/uw8Rf6bkwBkcJzIWXciSBLDNPrRJ2EwyknhTBSl5lCzWhaWurGUqathuBWEBdUFxpFtdRL7q8QMjLgWzUSoIhrt1SbpMDNKCfne5GbkXJWJEkyY+6FGGpB8hkt4JkLRQWQ8ktmShL5cJwgC8Rh4isshmkFIrN5MXFTi/ePqA42xTDS7R1BjFvo10f4aw9Ti8zIg8IlODnq22Ex3MN1rIPtZnqkFIbhrR9NAyjVIlpKqqFJmHZAsF8cGs0RPJdGMTGcicJIIsEbyLlQnK212P0WPgUucAE8yqLmzj8Es4h5jIIcFmVcsScVCtb8ygVAk1OVskP3J8nCQruFgz3hFIpqas5oNmPPtZ7VYOEl9IauYByvhh7P+MozpJsMIOCHnG32Y5ewbzuzQZ110io8EQlBcOOc1JJFuklOQiG41CUPzfwaYhROOlhY7IcAgDn2I+JmkQiFD0xhqkmxSzEIxLVGGog/yizNT7oSv0lgYs751/uBpUIbPWqVnhhtMjinIdNhArCX0Fk5VJzwpnI73o/ZBkGoCE/UJjya7eUKK5+PNqDUMYR52mdyAGQNGZmGQmUEiBRlIzBua8O75bydbK4KVAFmSQCZhAhCJWnfuLy9Tfz2qbjECeI5NrpmBjTNDJLkElnel87nmRw9zji7cUd688Foqz4vyro3F9tO4Wyb8qNOGc+/G7ejcjsatrfSx0Jwguy01x9CGhp0KWK8YJeYUDOew6KMf4liiGd1hH0Jp4RRhoQ/naJ0GdMIZz/KdjcxOdaJbMRTG/APaM0315Fq40C0EnxIIij1MwLHU4Pw0Bnvfs7YbgUt3Y++NNg7ejxvHuHEfbxz9npM7/TwbnoFMN/IsFXrLfSxkMBBEyAFZovM8XcEVkWlfMhybZy8SBPtN8IdZEiyzdGDkmciA4kPJizTcInIOPAtkYXqJDE6x30D/ZKY6g+QpnTvliiNYDE0V/RiQ8zj/WcEPJ+GJcODhmOfeJ0hvKnZOIJxncp4bSQ0FHw33CAZEVvAjHWD8jEsNuzIRMw+XLvMcnLZczy/NmQMfL14mRyf/K2exMP9n05GnFU+7LlNYambOcy9aIFZ+lhSmJUw7JSG+kxWbsFeZX7rrmcwoSa8TT3g/yY7uiXgwLfz5P7dzOZldMei0ybHXQxthID34HrpEUDDtceS8UVKQVD20fFYxYTdsxSO9OjfZuZ+mbs40cyKSYnaxJ3UGb57aFrOE4kEc1u5oE8iS5PLX7iYwk6j5JstSPDS+PeFzcUnI1tLBRgtG6GfH92c2P+vmkbPGhrbc18GU5RTnYLYSpHtR5iyDgsoSw3eY2lNBAsNHZEkZaZtFa1nMhp/s2TQBHmWFINvpb6D4cGJhwEL7WakfDl8IBuVIUTkfbXrb+IzQis9DYORhtCCmnMZsvtIo+eMATOjLE/4iN3scV07jJVLzvkOhi9HxDktdM5sKREfO0kw4D0s0ZToeCBTicVgkYb38c7Y1Plq6csdaXGdI5BLQ83mQM9v28WGNcg2nHvmHIHE+ayjnGkwkI4hDSQ3KNR+/qaRxBlbzgNmH4HJCluF8nKo1MuEp9+xhVHr2p9PjGi8UrnVjo4AODnMubizDqKm9dHTYB7wfztvRuTWhDeMwGFIoS4j+iBSqxhAW9RDd2TvsfXD01Aaw4M+4xyji2VLVegzzuh+F1qGRpDtL9ARNozYJXmGEW2uxJipnBt56p2tkapr10NDfiFdJaNgEZPbQ07n7jnVD6xEQuxvHODjGzm2/022n2c6w+MyZ5UQ7WsEtAiJLtMrMUbXoeoHznERJktk5FpeerrNolPM096dmolEo9OQQYVHTH8kfUg2xFwN0lu08xic/9pwx2ePhjDMBOKFZP89CkAZjTKymMA94UgJkUpTOsz2JasyTH4seiUXe6NQCOdOkmc0nUhaIm+E2ojFVogNi0ENnP/k1JuBDg5fiGRBMPlaWGU7kTT5yoALVDfxKkycRbZFucUZDCW8G7jMQ+ZDcZBl21t8/tiV7RtDTJkwC5kiO0mwfZ0oS5/en3YuyTh5tneuStlrAiRLEAymcNiXvze1xHXmtljC9yyRWpvPP4G8iwJEE5pAijw6gscb9HT3EwpDM7FOiOKLERDh8UDy1U9KBm9vJCXOfZeJcm7T5BT8n1z7C37inuoSyqSdS3HJ7qoH2kkHoX5lAaHMBAVL3/uN0PHHO8cQzkI7sjDNj4YwbH5FQ+PmUxTXLITucC5+Uiojy0/GEnGgIaRRdopYpBOkPo53DkiKIGfZw1JK90BN6mhnycENsRJlCEqL3IMxYGuO52SZKMScdloTTpwyyJb5pc+LajL5J45BSdpLvlSEuU7KU7Esdsx98klzyQMwMIxORcNanNkPAXnzo7bccijQ39KxNj2FZ9gk40Ijab/z7bIWBHJFxBi+PLOQvotp8d2fCb+nA03icDjl/oZbkjXyIXOX8v2kI5r9MI+zzps/3soyW51pOIzDXJlooPdGJhC7JNfHCZCjPDpngLC9ByjTjDedXCpdS2BBkgS6DQ52NThkD1OjDuHfh1uCtKe+pk3+M6JVWgzqMZamsaNDe0hjeh7EP47Bw/iaOEqPCzYTmAq3QpFBVOLrT2tTI95MdP8h21iLTq+I6pwA6OduWxEnoydj2SW5JgzvPyrSlXQ3ohG6SM6SjI3q1m0dpqtnB3m4Ja8c42gmTi8++6YKQgjDEnosMehrx+bSDpGcm57EAHtneCS9PieHUnkAeRLR8H8/EYgaD0bkwuwUCZI2fjSEvZ/+vWjobjWxucj9yf0YbfdyfzvViBg6P/SyzDu6AP7LvubgiGrZiEh8nvD4PdJ6zeTZmi6uqPmRt/WCxHR/R0t3pySVSsAX3FbxkjKznPczJr2EqJq9BiVHk+UxMAmUYEi28meDN8uEc+jURvxD6yWwVy8RKHg7WZfr25LF0GsEXcDdMQtRoDvSZzP+HfYHZ2jttNTJR1NiTQp4Be6AwIcI2I4cZWOZV+mB4OYOxOTI+BshNCeOZKAZPq2syrDy7tCBUZ3NkdZj1RxApGmvnqV0QHDk/SdxIcChcolz1uL+JKD2Q9RzhFlo+JuA1A83yEHPUGQz8tZEBol4yphyt5ebMyBFz1EIFKQixg2KpUe0Bt6OPczbr47M9cWZybgkpApP4dgYiRkRvU4aOWUd8ZKgqhkpnirlI1rQ8Q8rZr/kxKny8/IQ0J8x41gTJaxYBCddTSs6wLjWM7uwBtshEXGKUsWY9MJyrZZ/zVAt4kGQmskI6gcwzmPjAw8TYzNnPTYEnKW1GuRaRIgrqg0UTNvfI2ulJ1BoTcYj1I6FlT7GWMJGFqXTwMRA424M+wPq5jA9CVGD6mXflfaRhLspvAoFchAcES6y/zBQOwvjOX5nfl/w9ZrIQDkQlw61x2tOQeM1nrhLa95JGemYMQToqmAecfZjwtiu/FmUrFZHKXQZXhZXOotG21a2zD+e9w1uXDAYqx3CaB8S9IGwSTP0KOYOjc++FezdalglSNDvhSgGLMp0SOgC9xfAwIwwLOVDFQjIISQKee2eonKRffI4ktqwhkwZm6mn4XPkzcw/76YweQRMSe0YtBss0RgyNska3aE2dYfOc3S7Zxqso4jEDxP1RD53BwBng5WRUz5KfuCQJazrQTDzgzKYiCfsYDEagoRIkOSCRoRlzTIg7AnD9DfqUugEZhEZgHdnuKW7mfrZh6kQj/mJbMu1GZpwn5fsMROa5yH2XZ3/aoiR2xHuf5BZPwptlV83BMe6olFCzkyX4Tnh2ciluS561hw0R6czAg9PZxOe5F3yOx8nSJpZRpM8zbKfTnsfTMeaIXUtKsp2MfRKFmOisn3t2WM/yX8Lz59dEyR6BmCTqhcgjYMqA41FUfiQWD55B7J10JZEQSdrKSTr3XJtpIzL5CE0Tzs+fLbsxmyJyOUoSICfnJG1xaPdncCM5SdTt/LxAPrM89XCFE1MNYv48mjKJhWQgDWRpSLPNUhYJ8Gfa5792MBDSjpzZk87MMesw56aNpiOcEI+wjHYi6ntAho/NM7PGmRj745BHvHnG+PPxQGSTkbmT0Htkh4WaspyDQWhgq40MHcrZuxlT+TK4OCP5B1IwOx2ivTCutyQspSVqjjFdcYkxmnntTkesQ5IQu1hCmfNmnS4jhHJOF5tONnf2FEVxzaOa0FbUmjw3ehyOk+E7EkWwB/zkwRrLyrlRIprCg/hxoh6mjyxqrnn6x9N0TAP2MQh4OG2gPDacOClkFBDbXD/OeRZZ/zxNYOaI8sFY5SH+zZtmWWFCkz7vR2YGOgOkJG/lCsf8cv+QZSa3wTRbRsNI4XntbriEaiBSGCjdlVsr/LrH522m3M1Zi7DkvjBXdjPemvN+OO9DaBYzCboFeWjp0IbQSoxTlh7nah/G3mAfTve4t3iGs0ylWEqCd4PRw8jjA8+S0LlucBoi8Z5yBok2jRCT6tnVQcLrKiWJS/kE7GMBdTotiWpltjJF6y50LN+vB5cnbYFKidYrlAh9ZlZTUU9WeRoxcp7FZI3bLDf6JLl9hHD9N4hRPPd5wM7IPdACcQqphnpm3n/x8iQwzt/POvO8fZtOSOfpi89QmVYq0YE01JN7lJnOmUxMidzY2+kQ7ZGQTIrBvJO57Uk7lRWeRBuz1SwJhnu/4660YRS94gRXIsTcCp7BpJDZaQYUfg7ckHTysd6hLRJ21mxm/Hmuk3MzlfWYyMpMnHwGALPAKedZnw/uLBW7Z2rTmcqxPtGZLNf45HvkWsQefZDGY7s+bFbYqg9Brc8wIffYtJunzc7s3kYiwhEAau470UDqTDz8Rw6/k1JjHo0G2lOWR4tzBNw991yHJA6Go7LUQEme3YcgZdIwp+Of+2IGgxET6LkxtCgmBUYmyRIS+yHo1sLyf9C4+ddevz8YyOj8YxQmPOCT4QopR6SiVGLDyAgvUC2iRh2FMpQi0bM8hYOMxwWfz/J8pjM4CHcVaKfHcAzxB/Ej2b/Ru5qDS2SE8ZG5zDJPcbYKZTAxDZjG9x8M+qwhzkxTQhRCZ69zttNEv+fHoCKdTvd51anSpeeWVJnQv0Y9KCOG6eQtjU7cs6dRjvfLGzgdN5xLCcxIfmIKmgYtpIgf3XWagVh2fpCZVMZjmoqCER1PGD4RmawR/iYg4FEu8bwG/2AUT2uGnEjNI7j7+D7nbcytl3+Z5RnJdavnRjGJ3RdiNDHWV6XGMJMa62gjDnt8ZTaaghzmFWdgpmnk0uC6orIBMTb43mJT7kkWXMqg6ADpDGK6560Z79259RDPaRZT7hxjHZV9FNZSQv3Aw6jtZry5c3enUeieDHgXPNvaIOHZ7jl2mjPIMksoNoWm3ObeSCU5JDKw5JUMC5niKkrVQsjXlDM4nQbyPHmWjjprXUMcmbVrCSVDI2dHnPBx6O5HJ1AlOoxihweJMspbc1gWeBAMTbOtMIKsQIc+ZNLi56Q3Sec4t8+gY2WcHYaBGoQ89ZhdJB7IhmgEAUNTs17n9NDY+5YOpcxLySuIXhM4IdvkQkXbYqAhQA4nsnMvx/c9n0VmxWkXY58/eEIQjtrnPUxH8gjXcm2CK9I4UurYWNIYxphfQUYBKxSfYm5JCrYaz4noughPIw874op5iGxNbRMzkouV1/khgEE8kidCQRKZycxMX5LbxOPZcgYmswSYH5TkPcMfzpH0QdNU+Pnt/LeHQ/XZcvQhiBxyUvzONWDGQh7owON5JEItYUctddlFgg8gRcMR2zgDwBgYNHK67mzbDtRw+gZXx6ScgRK5DI8EOYtWZxyeHqXMcxnP1pPELyXQTUMSrXdixodwDEuO318ZGZCezwiBOSM6s2xXx1oPGFNrGvoRcLRYkCZSK1p6ROrR8uEpKxsL0/EkAvGIABMhmW0XhYTm3GHEJKeeZKyI0LPlkJg6WCTaPqImZA8hk6KsJVs2WiiPTRjzEYR4Zg2RfRQJ4xl8CcN6ewgAQbY1RuYVEJCjvjDahB81qOei7DLLBORnBMRJBlEBl/tpYLJMnvA9iWo80oiSQQmjnIMvGKCrnrPbxzQzHoFREbIsEPOwRTU7rdMAG1kTnfVAhZGQb5K3zi2aFxgckNiwmofdRs/yz+yiGDEqdFgIomTb6ExQJJdKVE8kYkJ9SA1obWYYCrPLJK5jo+hGlQtV1shAP9SvjcwAhoX4jawYgw6PltSzLtUQD2GXoisiG06hu2A95ghAx/3AialwwewXjuHs3TmGc1gQ/USE2p33I4R2YiBaPJsG59dIpz1sYG2gqW4obgwTerPzbHiKTplJSiLHXAWKIEtM/uwjNBgi4449HUhcpRZhscgsxDK7mFhl7hU7bVMaV1GQDCzYcQ5MjvjemGptaww88oL4grMQ8KmcMsC1RFuczzM/bY1E8B72UZFqZ4DhgKngJTI+S9Eo3PDRaXIwFovEIMQVmeiDD6WPFgepGlrjHrtEPbfobEsNUmnN2tLowV0RrZlRehh54iyoCFWFRZYzKAhHlV0cNhijf+AbRKDS3TIbt9MGejrB+XLpD0OYwZpkqSG6ueREJFvayZ7aBZ5cEjdFRw2b5SNTkwz8MmEqOph+0rN0NjySoJktj0lszfeN6wsnb8mp8IS/TxLkNOZAplEfPv+jk5rePhO0tKeCn/b14543mYT0cu5T9yTbueKZFCgCxYMbMzrDRgZzwZdqPaYJtgy+Z5AWJcXUISnp59wfnQup5ihzj0v4sd4bR7uHmNeH500GtONE2eKG1EPcqs7pj7kGEaJF0hU/Oz6cEZ2gQQCyHvM+PDsmvMPuRmX98Az+66/fHQwsKYE5iVmRlQbMMdmij2ea0WsSVs541jMP9HigU7nOJvmD3OiP30jnJef3z//6zDLTGciDyKMaPZ9qk1amCfHH24p6sPw9tqYxuxwk2faPDH+axTN6y1AuHv7kPSS6kVr/k70cRMUTK2C2jJxNmLNscgYfuYDz+U1i5Ay/dWYEc6HzvROxOWtaxNpEPDMd5WNXGo/2mrnGZIDjmb1M55oP4Pw4nQIcv0EE/LyeeZBFHoBA2FQ9sxspk5uleeA0a/0xgescGpVR8Angzox+bjMAE6xoEn1iz0nC6bPvOURaknPhMXgnZGFLBiCaQZacwVYETHFsT7a0hmKgmeBaM8goBDulRAsf0R54WAjHdHN2D80CzYza03EnJhGZlESmPvIsDAsDZiMgTvNBcT/LV2TAFo84S1nMcdn5lBOKjFBHT4OZlftEujJoSwW4FHx92GbsJHvJfLBnd0nuaw892qjrPtRKhQj0hJrIYajNpXpLlNnqkp+f92OxN0OXIMNNSWY2Mwh6wM42sySR87lFmSe6WZL6Hu9zOihPgZy0CSX2ZJUICMp06KTjyfM9V36y3YO/EDygM4hnXks+pckjkAz0kcdx+c1O/s03/+Lf5l8fZ/7x4ynIxUi9jlCxnJG1D4+Wwg/E7IddyzuahJoP1xK2YyJ4frblnaUaHgGBSRJvE0oP0zxt9UdL/hd/y9uZ+zJ4IFEemiB0BK4POzwZ95F4PpCXR0lRfrNsNm2ZRblhjEHL2SePrwws7dQfhESHVcig0x4jicvUNZEcAgdj9Jhy24/QSdAkKs1rmkETPCbRfvSnfCANpt0LvYuwYw9A5ONz+svXB5/Awyb8iz/+F6/fr0CoDwfg8058fKjjTQW4jPZcToNBkip07jkepJCzv33eqEwnP2GleZhKsnBj2IZ7QFYqQRCbilpzmIePZFnnZ0+lOcnwsvjsU9AP0OaHNeXBjj0j+qwNadFzUzI3i3lkAJ4bLUkz+KOlaNbcRDX6bIEpy/wge0w4isxkH/QPT2N8VurSRxc+HAaZHItpkKYjn6ULz8RvGjnJyHNmZx9gNHfOmen+IK5MSxSO38/N/Nimv41GZa7xDBgymJPJv0itBlVCFCTbDSe/5ONejrjk8R1JQzSfpUtAm2Ggps53liPUsiWonofFfbrjxz2Es8n6YQaa0aycWXHu6SBYGQNliEYt3smvGKXbSN0AOEtPHbKsRGYqZFnoQ/3QphJfZA+e3Q6a13wahiy3nRPY8nOm7HP3aDmTISdJCQkUSVMKdpbX5nTOcy3yucsJfeXOSpLpbD2LGmYBRnJyKspKYUF9RQgthcmGLhodBbVU1my1nOWkyJAlmduZkTFh5KiJSm6EWZ92/MzYZgum6F9e/yOIiky+UlMgRopDiXpw1Qn5R//2yHYxfNbYz4N47gPkA5+B3+7PuUc/2k47bdW/YKU/+s3HrvxwBvzD2cySVhpEyel5M1mKclLa6azjjyR4DnJKomc7sny0NjBF5WK6Y16/5XXP988SajynSCTOU3vahVmi9fP8Trtx8hdcPqxbOmeP8+qZPX9YUWZ597ev+Uzm2OnslLDwN+bjHILW55enwqsHEnIijvOeBIaAqsUoYvFUmo1zp3iKFh0x+n1M9cbfPDLO9NLPmPH8+yz/nD5gEmtlkuTlNOP8xgb/drv85gNz1X/7vX/99W9QIJxEGfKgTt1+IprPCG86HTsblqcz19PxzVYvI9mUEtGlQBoVHhlIBgazBPBADubBsuxRlYS0Br3H9DfLXndkZh2cEZZKzQeeSMNEOqallWTqz7Wf3qrE15w66KI5JMdz9GqiHWSGYrn5PWpBInoSYj5mDWe8Lo/swoBa5KwtaUKDEYHPUgHhe31OtMoN8OH6M4GAvI4J80VNf/bdzuAne/tnG5DFIB91PYOfx2acSID/pix1Bgc6ry3uuxQyypUz21IV0DkeWM5gYMxN/xFZYdask9Mhsy8+o275EAxMOC6zoailJSH0QwZ9lk6YdefH8581w9ltMamO0+jFsiZZyqB56IpFycHpCB2LOe5E3j7gDIo7j4McHRwfAmEXzEJGGHeqR5lqkjHnqgCJbIRWhE0iKX6SScdIsR4JRx5y18F5yUkriD5kZiNofdRqH3yZQHTy6YaJlxpnJ9GCqjGDXWSl+Ip4NFFGUFVOJr6qspSFRae62qyXZ8BVZtksNvg5WjaeKmP0NJDO7KGIi837nEhhJjFmRtGgNqsGqXTKmJMyyTVRkuABxEebOmpTL27W/y0+ZyJy08FL7JCYPiin0w4HGOtz5lGz3Vlyb36In0/j7h9sxHQec+c6BOwv2Z6aNhDBRzsTJiayMTj3hRHISVrOCLTG9FCxUyGD0FkSOA1J2kxxVGqem3lmHFHN4Nry5+V0S5Dk0/lUJ6I82dUewQGeNtQtMr5h589PCt0M8B4I5cPpSQYCsyMguBkjh7TNdr4ZAAR6MHwmj0AmPp7nTYmfKx6BQXYsQs4SiXkvLdDgtN2TgDq7EOa1h+T5B8ONnOt0drecnSnJzcoAwedh/HCvjzQmt8QMLDwo49Oz/J7X7y8TpBJlZHGZmXsYsd6iQGcjDrPNKZVzMyRkNIkwEyIPx2YPpVyHk4SWN5SPNyAZZsAQzio2iCWLV0/I02uClbKEgE55yEFOWGm+dxjmmPQ30mHKJPZN581MANKQaiIDng87D/0prMHM0HIjniYLRCx/f35WHpa/gOlOYzQ8P5OsxUkGAn4GA8Wi+S+XKuBC5wxuHu/sH8ScPjhYZkweRRPSYEyKekkNhElsCcetJ4jzMYGJZ/LbvTPFSUjnEY42jMUkYQoWkr2lxkOxHkHcefFzBfVk2eduiHq5COIxILtIBBNzJ/nJAfCT/GSWmYB8sHOeG2LMfR7/6EQrYCcMwpxaGIGHMjzEbLornUQEzKMF0IWQ38jnT/z9XLOpeukZXHsYmqmPkdNq4+7lt22RkvsyuJCSapuPKWxCIAlFZoltVmw/BqL6Ict6MNw9z2IMUbIHcbZIZpop1CVLGq8FF6fmrIDiK8qKysI5KErLCaHH+9UTjg+EIbXrY6dEX7tL7FBNBybBeD93rXCWvc5TNuPhM2YLJKTWmvovEiWKMwgdoH6WTs7gfDpjeZzVifDF2utj30DC9fPgph2YwZU/ELSPIjznyx9B9PkPMt3owy7MaYNzz0iWVXAhaX7J9p/tzo/zHp87MhggQ4GciIgwaeGntbDHfjgTsvOcl/yznmXPEDYLZMDOh5AzYM6FmsHMIzA5y6C5/85/c5uR6UkO5OwIkbQjH5HoGXRYltQyIfMQPBsWd9x9/AYZaB5JwciSqp7OOlFFqdntUvAe99vd4uiOWSKztCOSz43Tz89yTNyVPuIkpgENxz+XaJZBzu2QyQn5jB6vRwB8krETOfygRHOGYv+11+9HBhYP1a+EdefzNRN68ajDN2ckCc4mweW86PzTZKV7klxOyIm88DQE6WjjHCaZTlLScd5mOgRVZ9El0IuirFRWE5qFkfZ0nj0hfDfH+6PfWLNJOdjD05joQ/HsvLzcgOfDm3lKOv65Gc7MMTck8/tyoip/CSXik/0cf5jt9w7Z7paQtoRDmwRCEwk4j98AMY9fTigvlnEGLtPQJdv3cbXnYZ8M4Hn45gCR3z7Ph+k4YdC/2DczL5Ds5lCNCXNIQHdTyfBUM9Nyrv+EG/z8X97DrH9nkKjISaArIgyLLoiR9x1dHJb7Mpz0SaQjFjj+NZ+XBst/RuSIhLO37Lz+kI0YkkFA6IB3yTKBxX+HOaZJwkv0ZeTGc4KQevbW24N/07sxhtDPYICTXT0D1LN8pGH0g7SaSornmirF5vP5raLAI7OdcHw+7hNqnxtfz4v42LEy9TZEaiI8OUiH1MRnITQ7Kw9+CBmQy2QunESxSUkNTf8S12fCFNnxmeVjKOVUq5uwdwRBicvNsqDCHFRVaw31OOGclod4giOpi6AzcIXZBjuDg4chjk6Jh5rn4yucfCi0xv7gbJUUnSyUEyg/z+l5js5z+fEcf6jtn+d0lj1mOD9N/8zsP/SaMln9drYDnqqmacizOPPBaWeAOG1I7vtTKZRwOOcNnCffmK7orFfLx3/ndPzzWxM59bTzZwLlc6/k/c6kwP00kBMh+OAtgiZingjBJAbnyHYCBWjJ5+nDc1bHXKu4rimONb8Uzb2YpFQCDcR62LYJ930M/GQ65kcJ7gwOPBOi+Zkfvs5g8/xe1sDOU+8fft7PwOW375Ho6V8a5H/l9buDgW2BmJ0SMJtnNmEulOphGBT6kHMhenvA4Y/+cH1Ed2c2EjckIvQ+qCVname9CLI+psJlqVRNyFJg0cJlyVGrkbbFTABXuleaT5auMKi0MeitB1zcRw7piYAh7IaC5uaLiCMitYSzQxiF876CoGacqfw5pjCf3ylc9KEexdz4v43YfK5JZq6iEWT5pNnrB6OTAcXweL+RhVLNDTjLMmdAckJ+EcBNC2TMunkaMskZ62IPw+T5NSHDkgYma7ynqhd8OMT5OefhmC6Ic/1UJywWsNocPudkVwqSZQxhwmMREKTal2VIJsRzmFK34oQcT6oPjpF21M81i/u1yHLVGDSGjEc2yISL48IMoY2B2MAlxZs0zHIQ/wpt9OgmyD7+7sEdOWdLnFdw2thkAOdkRssarYeOwLCI9kMpsuFFqMucNfGBXzCdkk04/REITPW+U6QnP3iK8WDz9/3cf5LEPRtRFJnPaOp6qIYYzeTnRWvV5PRAcAYq6gvRuikfnrt82Ju/HTwm88zMn/XJUwkNBJMx4/Fw8FWzpjzoGcR7itXIrOXLI1B9OLPYj5qKKCURS/3QKcQ8r57369MJR/Dw0ZFPhVXxj+Y+4NGZIEgpzGl5cS3zLDwIcac6Z9okE6fWcu6Y6TrK+SnTroRs8ZRYLix8pOB7Rv4R++R5s0e4cQbBD+8cuz8DwVDOm8GNnx9ecjCTiiSfQk6BqqkK+BFtBE6+yVlx0QfCN4Mv85EzBtIAfUxEzgD2ERycG0YixHSE7BHEsBMJiK6dEXwes5jnYX4mc+ehRAjye2jZhKOfnKGZiFkGkZL+N55jqO6mbc669Azw7bzULMPMI+kPG5yP7IESJdphMp9F4oszMPx4zWfJW89Yyz74nf/a6/cHA1uMpqxVKCWh0zQkIcCX5J5Gwkseoih5Y5Ib5RGqzOz48aCjV9JTWTdgp0KniLMUuC7K82asVajilBR8WdRQabjGMKROZF+uSkdpBogyBFpXWhEGMf61R5gX21U5o8n5cIN1DK5CCNHkE8x7EgTT6ebSm+mMrOdm9o+3mWvy8RsfNzuPwG+iCCd5O5ziqU44354ZQ8T3pxjK+X75hg/Icn6qPAL06SCZLjeCN52RqE+t+IQesyb6uPyAbm0atYnw+Xyv2KzT6MVHpMHmYbhH/vlj4BDnPxdm2qI0wGacxjn4GwHlh62zPBAp0UsEL7N2GF89xHNkdv7ms5P5nrNMAKeKGBEoBVw+fzfqkD2NT5R0ZtA7kRX9zV7wadQk9w52ijWlZcs1y9ZXMUoGFwY5MvzhOHxmKP4RGBRwPQlgMnJty2ltHjVhyezqsaHO4Hc6+hlYTCJjwJLKnCoIcnYQCDn69oTE7bEG5Nv7HEjzgOjnK7b8AyqfExYjuPczECIn+sXZyI03HUk6G3/4vriGaTjz74/wj3QCH2rekrLqeUI0eSknVS5rB1GuiAfupzOUxz7/kGH//xoE+Jj9zqt8tM2OPIYP+/TY39G2nVhr7IO5z2Y9Hz8/YyY/5x7M//LRJn082kwU4i9eeUZyi8Wvned5rutEMYTTsM31yOuZzzzGmUdrYrzXR3JiXox/CMSYwZDz+IHAjeLvlkqbntMgg7NztllPe/kB4YmAMdvUvWSH2dwvk1Pj5xJFrDIDvAy6JCYLik+xq5xE63COqpprdxYz4/8fiM+H8ofmWcHDJ8iHtUwbEjyORwn/wVP4YKf/K6/fHQxcLkKtyrLE2MnYhElySkRKMiqPWqcTfJ0MEubhnBHiuQk+3BjT6GTVSQalGJfiPK3wsgkvl8G2CKs6tQprEfBG6HvHA+ueUGxZI2MzMEJ3oHVoBZoq7VCO1rPGGySaR5tLRtmSbYkacDB5pR8YDDlW0pnywqSByCa8E2aU8//+hdd0nKYfapfJ8leJNiEhM8KAs+cptRlAnVc4t9TccH5+b7p8kAdUPAMG4v2jpv8hWDtlnSWFTAjzkw5Es0bh6YjPUsS0RTLLFenQz72c63WuZliWj7DaY23mdU4w8nGElGnYYvpeTULamBBtGhgjGOJzQto08EERm61F85rjPQcJX+LIyLZRy/qrdzy1JUwyMJAZrEcALMiZFTw6XOeh1pPUZBlcR3Y+iUp2GrzoV1fOYVCSxF0ccpJdGNTHPguVxdmZ8XDk5x7LpO03st/zSdjM+HiI1AlMcloIESl4xVNeWEtObWL2R8+HOCHpB4EsApN4yioapD5CzCWkY2PIisgMgIKcNluzZtVZdAaXHxzf5Hz8f9t7s+1IkhxJVKDmjMya+f8/vbe7M9xVMQ8iAsCcEZXMc+ZpipbFIsMXM12ggGA/Ie0TYPlj8Z4c/lWl3dkCIrQryvKYrdgMk71lUNGuePVYwz6O2cAk+9w5uJFNmlTjsQT5WL5sUF5HsuiswYfXBTgj5ioLlEFCIufYEG199Dci4aJsEIAJrxH4empdh3w3x2tXOEwnAyT47CdTaq3QAB5b1t8U78MlZkAQUfFPKZe0gVSkz7QEfx4G92ZWoyrHcznjhFbhNGZCKfziRwuBcG0F0ds5YPDpO1QKwM2eEruCE7cUlGuxfHADrVK/YNcnt4qAtc9e9Pj07U5d97+ByhzJI1fywVeur1sG/gx8PAKPj4XrITDAQE+s18I+F82bmXg9aVG/RFwNTOw20M+dIiU9WJQGi53MPh6JP38k/vUj8a8/Nv73nwt//kj8cSV+fAQ+rg8y+riQQYb0AsvHYrEIzM8XU712MhngEQs/1oW/VrDq2GsjXywZe9yyN7q64FLE9TXGWn5uyMQagFMYTSyJLJNrMUGZb2vmYW1E/z7iaVwKRW97HYf2VyY/GCDWVWZBNASY6LCe58PufQIGURY06OJDWLL6+GfAOP3tgkBZfF8hYst6FMb3ogZkKLXEWWw6NaNLtCVpAhcCC2pqFNrUEl8CcyEXSVGg06tUO91uKOcXG7CU6RYEva9UutJ54TqheuYb57xwDgEBLjaFYqwcTc/0cdOVgBDjGYymI86He6U+O+gD0FhV7Ea6qgNyw4Qjl42hIKCXB0zkvyGth/92qiPX8xQdhW6zyxQMASOZIoPAEBLe1+Oj7wPA7JearSBcc/SK+L6UrouHyvU6irrAIsoC40YxziOUnEVN1t9YGICAdELBr/V2upz2yLXrDWr5D49Dvviy7HiDSIQ8Y5zXtLilaNDWUWD+aMiyQNrcG4plyDBIkCtg8IEWJOIzATgWQO2a0GC+z37XWjjNlyWYWcRs0JssDP1vwDE6Gjg6kyDQlSBJm7Ufcke1lWdKf68e6e4IdLdmWxwXfa1GBWj35VGgI87GZpkvONjvlUeUeApw1FKY4xUj6+d6egmfEXXZPEAux1kQfN62NWxptf/+aHyrg73RQtyggDxhDRoicDzi1RM4ef1s5ary/Mf8VLUTzv9lMPDxOPj4uPDjB7AeYvxHwioSrx+MF3htug3WE8A1fGFa+UK9MPoaVBH2oySAjRUHPz6AP/8E/vVx8OePF/74I/Gvj40/roMfj2SL3ut/AesBRjQ/sBH6AZ4buFQWlgFgrPKW10NihQfvgIkY58WN8eEtrd4Ljn7dTDkLQBycWAobYN7yS4e7lJfhL4XuVVLNy5B3QoTQ62F7Pi0Vx4MaFW0TmEBgagC4uwlC9zDTo3bJ70vXl6lRaDnli8u4If0EAAWv8U8fTOAeJANZD8wkfQS9phOEEI3zsxUSrn9nveZX7Y8LEN3vpLk9al11nIOI2bUgjsuF1vqd/tt+twN9R9rEWarPvuE67RX8BGndaS2Fe71r8BQgbKJEU+Yp4JQVm9FMyvvElXE5bH7gWDQgBArI/72PQ/gX/Xopo5mgfUNmemLOPaeWKSvUA0Lvm46XeH+eED/gl/K8WL3vvMDmRbueX2dAdHhMv9vnJIFkcRfyjVPV42iRaXARAhYQUCHVCES4iuUJgrhoH2r7+RUQvUyILfS59uM5DkwcR7aEtGj3nv9uwOHYC3XnG/zZsQwWgFxvQ+NFgGvNvs7B7faDzoEWxJ8GSlDlf1dcQcgnLdIwKEFxlaI/FGYJN0rFOK7DImbgEk1AiuvAQTVp9T74N08heUiqa+T1DgRuaxsF7pgaKJCXnQzqDIItLpUGkuKrGLO19bYsum/8mTUP1MkWB8IHWGXxosR2rQ+DlOo/AZPWsCfEXPwBtLRs/XhbraOZg8Fqjh8QfOzT7tCvXF/PJriAxyPx+ADWQ4QpRrIzcX0Aj1fgYy/8/LhwSag6VRTAjZhtfkK2zkeO4wPHLmIfV+LPj8CffyT+/HHwr48XQUFs/HgcfDwOHj8e8u0v5EU/5Wa0AZ6vC9fzsDnMDjyuxGMBey+cc2HnRb0lLhWpbG3FVQmd5nEvEIQynWEpIjoubG1SroXcYgAW0EXT8+/PF81W9PNWgTOtV6VEWjgHAJmSTzHriaobQY8niGja7WHiiwy6H+L0fun5vJfNwPIVwxpGB8mU1cDAI1IBS2LGY8d9JXA3LXrcA6wMHaXfNxmhGQILEbnzmASDNCGmGZ0KVCqubF+z1sNMwJHfSJofCQKifCEWABFM4XOuuQU6MrtQUIBBVmMf2iKQlQZ2hOxxspT9WAyqvRYLHeXblpo/m85KBgiUUOPLu/kTWnQtfrkjOGzsvQnOZfvOha4Hki3Q3QzvxAaeFrgH+Xpi7xfOfoLmgyP3l/OndYZcxS03sOk2oUWIDV6AZBvmeCHzicRTwpJuyZWmz47jrX3xfwJ3ZqRhpumo86Q+fa0w/uXalNtS/v5i4onbIdZel0jO5uu+V1kekgMNnY+1FtjFlHzEwuhtd9tiY/ocb7/7hdvYHmMceXuHbwe6KFPW/UwbHvuIi661bK2llyJkLXDmREBHzADVB6FW8f7sUmA8ZoO128D6WX0tALvOEEsL8/7OIHD+BPdf98imm6Gbvz0qtRamFRLIyW27JyorTrOxsrHTnCvKpD9xW2p9Os4Cxb8biBhY1bswkbtYWNGIvtuNouwY+fvry2AgV9amr0tErNmoDo9SDwPXx8H1BPbmB5wrXJcJKNln4Cggq8DN4iHH9cJ6EGh8/LHx48cLf/zxwh8fT/xYL/y4Dq7r4MePC7E21voD67pw4qMAwV+PC3Et/HwB105cK3FdC3/9lXhs4LEXHufBBKgd2PnEq+UCF/gsHJXNtVmdQIDR5mwPS5PUicCxhgZUrq4Js465GdhkPMN8eozEU5vNhZGJ9h1MmEGRnLee4TV1y1CbFaKIxuCGRC7RzrCfBNogqGfjgcgPrPxQH5FAOmraOWnO986kaUufuNIBVnKpmMBhkzefUSBF+ffWiKLWT2uYIMAYh1iEKuJPjUUlhhJ1ULbAQGLDcS4JZ+ZakA8hqZrrIfcAtN9cRbVTVQyJ2kzp+TYfg6l32hMUDS2BCwEoJKql8+DXKxZOHFUNdCneXkPejumQF9pv3ZYRavX+LGMGBk8+bSFq5e2wUI2zE5b9mYlKDw42+KH3QqbqfNFSdlgY6DyfOOelJkCcCzMPlNdf6YYpgfiS+f5Spg9LNTEW44mDl846wUDICbFAmBp2DeQSjZC+GF6zcCWQebCO9isddAnWj5CFIaWQkIZ2nTBAzaLEjE0rpD8GUt72kJMmCEuubEqJsBnewj1zl4Wsz0ef8XdB4KusUPrOMCBqLlFf2abJkAlb1OTV9JemC7cMTQJTM/SyP+isAgO8UzyGQai7hh8+XuGdo5buTIUE5C514eyAbT3tHrDSQ5pkthQrWW7Q5cs5okDACyM7DaGT2vx43aytQB0GgZUIFZaSkA4wYNl0bRdKgq6LlxuICVSRtFwp1EpL2rMnS0mSkkMba7amFFevt0FUB+X7x9xBysppWfR315fBwM/XAdbGOgdxDqt4ieZjm1X7oYsFZB7A2QqO2sMsAm7lWlzkB2gc2kETbgSQj424njjrxUNzHVwfWz8vXOuFawEfH098/PH/sbjJYqkZBjZeQD7wBx6IjweuK7FeL5lTN05eLBaTP7Bz4+cmI0OScbJeNYlwBVMKvXkAiZUMXj2tpQqelSpgcfCMA+DCedK/HAGslYDqiENCl3x1+PgGL9mQMD+BuB6A/FQ8dB3u5upxjgOYWlFlIAgCF6vZ3gsGqxmf1y6uS1XZfCgfwHkgnwu5yNRp8+PeRW4gX+AKCOlKU9jYrCQWF2ItIGz8c8oh83lP+nlGOxPmAMiDlQwQPNdFJpA2qV6OSuFByAN3mPPnDAoiWO/+4KmsIVkzhCNePxV0l6msDlo9rlw4MCicLgxWGwQCuBhkG1cirvuqTtfKycTzLxbw2cYYNUAHuFFzviqd8+Djx0fdiS5Zrh3iYF0cbr5Ek2F3JjXPyKDQU60NuItcUwuBYTItc2/l7X+w/TctJECsi35+5UHuc5CbqXBQul/ug/1il0SmFnPNcyXPQTn67fs/w6XC7oVkb1vf26Uk4GysICh4ONtnOeJ/4aHsjCtQjdIyA1c8SCOppjlqnIVMZlzIVRDiSXleqoWxEMHSzifp6nGgK813FyKZgriPi6Dpt4CJ6yuUtS4TJ9VEa9HSxnRdFG+wK2NJ+NTy6D3H8FSYXThaXq4+lLRiR84lpSW3QmZliYpH3fNUJgXP3GMxUn0F+cFlGs5+bAEBoKxbdLUSnDu1lQGYBJEnUsG4Ujws6zKAs5TyuZjiusg3emfaQrNlkWSbIT7n8bg4v9zIfMoysPHcP3HyCJSyLslSltjKS/VFOO51Fbyax5y/gj0xXtrRBYLxl8J6zmEMzEsdQm3xuLz1cIzDuEc46LzUOe246Eb7aGBY8siMKyHXpfb0JM5rq1HZ319fBgP//RcXNNQz+fFQ7q1awCI76MMGGQb1gcIId0OvU2PM1FImvxJaQfAR7FesnPvDvxUsReUtEUGGfq2fCDaAxbk2LjCSFGDg0AYzCg5otbg2ayRcj4XHdeHjumhe0vkpU68IzPEPISTOFp/jc0ZxQPkmS8OoD1TcpxcC5fOpoB8zhC6/nBLwpSO3DV4IvDUDQfjCz4UUvU8eQ8xxZI2NsQLG5PSDUzgtxFldB39HZX+w5Wszu2mK9EEgoHb9gpClQClTR0FcWoLjspQZsEMz+o4AWOCGd16Dsrx+yg0oS0W7PWiyE/1Vwx09q/bSQM2EQGZevdFtQtW8ai8dHdjZSBIEvf+UA2M2Zuz1uRL1uFVvXP0dB69irDNT4DT/iHu82/HaNEi0hiL/QtNxelC9FnNtj3K4efag9T606GETcIs+I7KAQLhGq2kilf0wLEB9HezD4k1Y3r+NuA5y09JwFps3IdM9UbUOG5nDQqM19x4VXQEyEzNjocIsS9LxvaY89ywYS5Orlyubw3H5FBOjQE34HKHv/5XLfK4j7XW+rXHqtfbvD2dGQKXHZQVIn45eFtcayewYlr+7VjoNuK1248RjnlZoJXM8h2e8n+dMrFDgDGsphHC9U5Ll7pnPKSDUezrX5ldX8T6Z2Gu0t1iPHOvOV7bdw+LKx3uquTFuKSz96qfESK1T1t99Jv0aWC8i+l4MQO0CfRneYSs9fojkqCghBQgqlelvri+Dgf/6n7/YcnOxtO/HyQoSOWqR6wYchfTL321zyykUew/WGkvkVJPYN80SEdVSskxWC8WM6A89WOsFxE+wQ9qD9bPPwrlcJe7CA8DegY+deF6Bx2Jn4cfjwrWXehoU2wIO05mW24Umxc9Jmm7dO75EcQJMRxmaDmyXHRaBEkAdDWqtthnwEtMRsjZfy1P3GOnsiMHYHUTVh9M+/hykN9d+CBt/Q75OxjGkhtdm9zop72df90+xGzJ6tpJmtTeP91LwTRLgnYXMh5pHORq+/dNwqpkeyULMgp8SPiNfDkCyhfLkcLHKmD8FtJeEmWWD42ue9KcTwDjawk18aHGScNRv//g5pfWX4IAyEnIwSR3uMD0A7vjI4l2TGWJQnbULAuczBHpHhbegum+T1+rzJqb3ZXypeh/kURzWkcl3EyAGpOUAWNE1FoDax5lF0RUo7wDpqXgk5FE/edZaYGEsOsQSKf/7AdQ/43Jdfi+B4yG8weFFsAvKQtruMa+FQIzWEHlpHU9rzxPkFZ3ot3nbJwH7mTn3+hriSRDCZ635ZN3CwLmEIgXzVXt8BAJbgcjb73O/f/Y4CjjHLw+2KaFn42EFWkjdeIXp3SBQMUbHYICDXtsHARWy4ZiSeoCfmmPda6z6LmyDs5w5BRd7dxtURwZclplP6CqnBgW9NyMIM68q4LRWQXF+t+Z6anxWle0SONH7maDlwK2jnRm1MtjqOEjLOAr4fAPQDmaO0xajo06NX7m+bhn4n630KFYfe32wkyFwsDfwfNkVkFzUlczbD/odGcDVoADJEqPQewQBSdOMFAhWzt5sKgH5gpBsSGOrgk3q6taV+B9YL6SsTeD6A4EP+lwv6duvRMjs6Mq36+L9VgKX3c67NQ6monHXbALLo8VHIlfpJuM3A6cgrbl/QJRnP3n5y0XIKfSPoclNZm2Gc0wUKGuGs3ngJ0kqsVe6W9mWjtHhCujvSKaRsacDbJr4DksfEtEHMJyMb5fz+XUgZWrem0x3RaJTzQ7iWmKgzPZYMn1yfqINawiZ5TNbUECgrqMYBgcMcbk05zxl3pwOUWKSUwc49MWywmQAuXHsNdWa2PJFxlWcrfcgSA9bEL6injOVloiRgWFmDDVegoDvqiZD6CFrD8S+1BP96Hy5IxxOMu3HoMrAsjZ7MFhZMuI4PkDMcwhrViANjcfEQeG1j+IIMoDlcsUFnTQ30dBkogIFfj8B7K3iMEuuoNT+yCUVVdmK40VA7oAJrgbAspBJn7KsSPX08QQUQAvO0RVJj8uP0zqmVS76sJaXiCqvPP8DDIcG6rwJ04k8b6slIYV6hg9uCarwmrLQTQm3sQiOj+21T6XjWonL+1p5LEUkOX740kHzEItJ492DlHVdqbVqlHRe/Ez14VAWza0ex2lekwp+SQO2TwwrC43EzKe3gnG7DNJDfXasmoWCLHq3SqhjFfiFzjpA92EeAd/a2SwBvV3UrIqIcW1jrbozlzFFNUBZP+iI7EyHFM8WmEAYoDQFEfulZEISMOy4Pf/vrq9bBp4s5bjxwk7gx4v+yRUXzgaeL+DnoSk+F+gv3alCDVtTfmlTpUm45vgABOu6WMgvEhsv/Nwbf+2D/34CH4+Nj5W41gE/xrSTfQQ+8oWzgRMvHPzEyScyXtj5v/DKf2HjA6wuDyRYMObkUZDFlh9yIEyYKpwasm/1no/ygAHyQhMNTWjj+lT0wcIfcKR3AQPkMAP5kDkaXNqiadJjt7NtSHQbkVH3EHjJowPKg+azxff7O/Ko1mHx/Vze0hrxGkz8V9dNC0kKS/oxU0VtaF1hvAt9/0toZgWqTWgheEjwCIREIfgnK/KNg+b9WxEqp9wCyMLSMRY93pIZMHOD55wJqNAx5BOWpIZT2gjkzKBLvhSIPDsr99fMOssyoL9FMwmnocaoecE5FlMbgYE2wzv7wGsfkVUaGsk1KxpaNt1P2kHdf8nPz1IbRAoXLuRagGMiVGgJUBYHBBxspRp0dEsje2NSt0p0YHvnV0uxOouQq4bFlEirN1P6LCiUYrKDJia7d9Ca8Bv/2FBMDpgefQymoyx0jl5vySzNF84/URle3ZuBZgZFg0oD9d160yA0xrgTsk6Mz2BCC1pGXIfwqrXyum3Y0pQFRgV8s4Ve0ar2I/tRY6NqSPXCFG2zYduxxfiw9HS1m8+2DNxy6CUK/NyUeaBBCte+3LiwVdg8Try7soNccExRBmH6jsFTAIQyDRD1/0UhBiW11uQ/wKIi6HM2QEGlFk46F7J2LQUaHxlQ6lNIPnOQzrYBs58+BN7Nj9y11numjePengMcVyP8fM5+d33dMvCiKM/YyAg8dzKD4CJCer3Y9SkR8u/L7BJQHMCp5W0wsFFhz7YOrKvef2Xir7Px107818+Dax18LDAjIIDIi1prLqxUZbhgy42TrDXPboXqVXBY/IUNYV4FBnZCqWZumGIB0hHwAHBeJhhIyNBPUdZ/7vjb799thPBgJoxPWw2skBFU3lY9ZMtvj2I0JQ4CcDUtM+TQASLhSxtFVwuPt+HOc08ll8LlyjGTsJBHHdLfwYHJIAG0dSgT1ZlLPq24LuDwcFjAUFYpuCgMClCpYV4aVpfbekYNHsjAeiycTQsTALUaXbVeNdahHpqPQvvflpQufct1vXDFxOdZawcMszNlmCwALgZS0kqH/NQY6l7DhO6fUiIDGIRH+BZL7PHI1651cLXKzNI0UIBCJYeDgClA4b8WHV12T1RNflkFKi4iCBx3rAKHXRlNzxy+3ndT9CyKMq1WrupougsxeHYqldk3JA7C6+2Ifq1NTkElISz6dXfSSsNO30efdGDcKAjUsR45Dg/6taIDiRQ9pwrzTlO/aO4GXuc9JYCqCVpGveYdZ9VJG8Ntfgaqq2c2ECVYGgAihwUFn4XG14SIgaTuJfeWGyIREKj75lEsUPrZRzUBUKDUuxTmh2+m8CK6msSpccy4k5H1CAMGa+Bc5qjvTKjoyouANXG0q6dXpn8lWTSzYbN4ty+DHq+UXW4TmKQOnws8LX2voHSiZIX0Fyo3GKASvaYnmW57JccUX9rHfwIGnmzLunPjdQI/fiQ+LmYUsKRmwJGoWz50byv3VVHJmpxNq+6tTbNNKBraKRzAM4H///miJeBKFihbFPAvsDPcczs6Oa2M4Ci2dAfbrJ584LkXXpsNYJ7nxWYy5+CVDvrIImLZf1h21+hZKZWFrCXmQjnDJ22S7kC6k3lj4nvT1+ldpflzlfAACnOSFKIDNOdn8gh1g+uFC4pghghL3wFjLpzthKUCJ0hGex/P90jTXdKwi8JIhKAL5bquIj9X93NntzOEIseWcOMcAwggZc4PXHkBbqmaDPq6lurZrwtXsKql55IReKxraMWrtBtWjG7jLELZKrHq34+1pCOoXWgoHqU0/+EGOQ365kXXhkvrCorZNGvEdCSOE8reSDHCZNOhc6pk81YJ7AIEAhDeajO0YmwZtT8T6BG0NLKLRa3FCeJx7d7Psq7b0jJBUQKH3vjrEUzXQlYKYLmErkRcSz2dWTSIESkhugMiHRCrUUUz7HeNZf67AAyGRha93H0vdD8Dg6UE3CchQj8K9G3NF6oxsRF54dHOAv3P+0rEdY4CmUUz9GErLqoE24gJKSqUZSVS0fzKWrgdr3chbPeMzoyC/5pfCFhpPnGcEnsVUGPshAKK5faBPbQ6ywajFlNUpEzwE3zqNd0kYcDobCqDZwlQxQJwjVGm8nNoxaSbIEcGFhCxVFvj4Bq8MA1m7GJNYK1T7/kM+azTz18qJ5CpVsauhrtkFw6TVNPTYun5jgWo7fCjZbXr9aEs65iAqklhGgduMT427Q/1o0B40f34zedLLYjmR8ZPRWmmOfMxWaReL1c9/Nr1ZTDw1w6Wmg0ipQPgXAy8Y4JB1ObvfcBoXjPiMXAYPXUTzcI3EUiw+cvWv58ZwAu4nux1EHr28wX8tQ/+WMCfPxg4tTwWjdGR/Cw/+8LeTzxfwOssvF4bP58bz51KMawciMKPZbb0QqNkI4M1MA3ommR005gcDCXCaXCCkvDNgApimqRSa8Z/zHcriji1XvoU90Z+zmiiM9Hbx2mNsPZEQjpBYLF0M7/utYi10PXVATtDyry9DPdsgZDQFEMvAk6uKrI7srlMLJXYFxILOw6uhUrBcevelGBqtp1AqgofzjhgPJh7q7t6AJ1zjlpD7gP7DfjKOeA5+qBlheGh0HMp8KvNs5m2BC8ykRV8GvV+SnChUiMTDsG1QXmlXAQIMrSAE8YkcMWAMMzYppkRFLhuzbPEUSZ9FM1zjgsEUktjilCsgOM+AohaE5050DJQ5myNZenGVTPiZtK9XzOQTrO4jTOLYqL2EZCPHAEcp3DQ0QWbuhFVD8TUbvKm9qUzacsL5AqzMM/TNQxuZ7ROpe46QJV/2zKa3buk8cYAA4HSLmv+VjvTVr5rzFUM+bhSIWnL+fKzyqNBb41zWGBKby7h7KVoYGIAfj8UBn6c1fZ6mtcwdKV7lVBzQSbTBbNoZ5U6TWDPeRSHOjxz5H2mUfPiQFUMiF5X6nJUKpfA+UIyBRVD67ZwzwGc8i6kJ+WZk/H9VaRg93Htfq0tqo5F3tbuMxAocsqkUQStGJSVBb3tk0lVfAhapnzRIFDX1+sM7GGuCg1qszLhdaEW1TVZdoIm+chq3FKBLjo/qUmbcVKoAC7vCyNuLGAfnL/sOgD++wL++An8uBL/ei21MOZ4rB1f10KsS9aKjed+4vU8eO2F52vj50/gryfw3As7pTUGZjV1nAiZZdh86agEbTNTdWX37igN6kSynjvc1GWYxIoefBQtIAWUkuN3llp/HhKyPsj+T4FyK9Ru9bRZ1kJ/MEG3XAXG/QcPJro/xUxZNCVgP12BnEngxVwcoayflaP06jT5tYbIYeq9nThrA3gicJBn47o+JDAD5yOb+Uk4VcRwMXfen4dpkVB1ksJMSXON5bgbaxZZ2t7nS1kMig9gjXFWsAxEm2irNrI+e5biUljKmKZSMXhzLli3o3bC/WOES6StPvxclbYuNuzpDGBQn9CeLtmavOaOF9HS2XIVgWr8s4JgLQO4LtcFIbHYLG/ReAw+QmsZbaY2yLvt89vfny9bFyDG2NfKxXonAihwMKhdR4f5/8cgQX5Un5kzNfmiGwLGYw6u8Tk7g+45uUBFCUd7yPteFYfTJY9zxA5Ra126bzHsIWK8DwXoBKjKwmKQIkm4wJoqy3Q+o0rvnAMlbW/yXPtjoPD2lXkWbm4l7fvsDwXQ122TtNc9TqjkdcBxUo71INM7CGVp1F6g55+hOBQ1G2P2FlBV9/LMUCmOLNy8inJFLAxItJvXczfpeAk61KCXMTmfqHRVECTWUg5arXnxaidXrWq1mqaY0vmuYEGNKQdYCahaSm+d9ZYaj1yOoToDbt4EyZ6vXF8GA69Uk5odRTwZwD6JxzZy5Mk9zr/3UItPK1rUaArS+lZ2YF52oIe2HwcP5NkUAi+Ci+c5+LGBjwX8t+MXHsBjBcFJBD6uSylqoDvg9cTrtQUGDp7PwPN1yedGwX3E6By840N/ALxSaWAyeTH4jELh2HIIqM+9BaL9W2Pit22V5uW/U9pMGjlz5Q5Q0eGpBjsEAaq5nVyftZIlmVFZ040utc4HrYEW2obkfjEptOtkjjZbN8Pb3+e0tedAgUObgOBX12mK7vO/mK7GyPvNwkaZSGl6EWDXLyg+xVqb2WpOwo+6uQ9751HLVeIIXP24eNTna+6XaBl3tmtNxbFlrkdvWunuamJoSNCkqzRRaVkW+gQBKKCxxCgt98Lak4UL2ldf5n+NbYnjfTLTR69UBHCOTNuZSpVSWJWAU2v7UWvucZYfIcRUw4Et6zdr6nUb45lrOQQfmXGUNcZ7SmkbwObcz2lBRVfO4XsyS+eJMllPZo6wL3vKRQmzTMQ6Dc5DverjjKI/G9XCXPdlcaJTdEc1I6qd9Jz7+3pUTYZc8vs6lThL+J+ktYglalwPoajx85L7sOs+BkRy3vZq3MDa6ZiEOEDITYcB9gwk5cwOCzItMOPDJZhM0emTRBAuqSWQ4MH6ZX5uWjbz2MIUdY8qwpbAkgXZFTlNgcsyCFGgDBovtJeh88rnW6nwaT/oMePT3hlRl8n/DWDd7MhCDwWm9NINygVKaS7ek+O+tmJksllQGhRwnnZpf+X6MhjYDq5JqOKgxFgmDq3Hqr1t1IuyWgyMI6HGVUrfQ76YiAT2VmphcMa5WElKWnXkwdksN/lzJR5r4782zcmPK/BxBR5LNe0uBhu6ItrewH4FnifUVGlh76XDyvgDx51WRGwwsvMkVOmKAiRVapn7ocOTvS4VGKmtddqIN51ftUpjATaiAi3EivigKGulrGDT9QH/HORyOdpZB93WF7lx0FHsC8CUncOqLKIj04uz4VrysAjILXBiqCArQBYUIKOJ7Ah5NEAB0JYioJo7MQbDAEkdwiK7oNFTYCdZAc81C06cwTBnaI21m7idIp+P0s4SRYdmG1Nc1Ji9w+knlLG86DnP+Lom2hkDgJsSlchJa/IuepM9wJXAafMywzriBgTuPlaDgLYKzJE3D7FZNfu+AhpIIGVZO6A1o03E3f/CsRC50lEYYpwxxqX+HmbUgzn+ikm1yTwk0NFCR1owkpZCn7Z6e2X1Gji2GJ2QC8rnfFjV9KwTLZhM9+HfCUQwrZHuGko3RoFbsDZ49/cNp71zIvZhdr+Dss8uEwIg9rW4Cgi4lbj7l2RCn3E8+hSyFl7vd27wmTAPaAvFHMs5qZLU3mG+v4ZAbJ7gB+gA5GGmgBwXrEtqwep4knMTvP2rLVU3YDB/11ibh3roHYvPQmaVsXBGimcFKOq8JM2ElZVoUB4o60xglTuuYyxw28db/Mu672uvmP6d7Wbx7ewqiiAwyeUune/cCDybEDhiIJl+ApV5+38bDLwS7EiWMnOIQeQ5yAVccWGtidaalTYbWnA3KSPD6WN2j3jGzJG4K8hEhVTOCbyug1cAjwU8Aohg86H+ERgIZiAEXqDF4mBvZxNcqh3N579O4rlPgYAT7nAvBoJG0Q4y8RKfPGCDLZnGuMuwbySHJjAJmf8W4zFqx6HgthaSVwVRNRigJcBg4JUvlvu9FvWTCOQFMkA0GKAslPZsxOuJTJotvymf6QSqtR5YbjULWUjKTN9xIP7PqZbv1iBSgzTrJMMqJpqkKZR/tgFkROD5TGRecGIpgwTNuH2K25bB+YWAQoy35nMxmONknjnu51d8KA0Y/EbUp6dAA6C8XxQgq9a5zdLEm5oyynUmhoBICWVX8ustMysplvguVwCYYZp225XQY7DPtTI2bBL+pN20aZVCCzd/ukk5ekE+AQHo/r9lVGlwpJvUDQTqELeM3QnoaHomkM4TWA7SLHeN3H3eS/EiVxTFYOY0MadcZOxDwvgLZ34Y9UXN8wTQ8UGQdm2K9160APkUJ1ECimOKimWxGX66BNQF0SCsdtQbMP7OedBbyzQnhgVODq0ZgFNnV6TK0AcWLrrBxhm9CerkfVb5h3m/lxS8Rg6rhmgwZtlQsUnRlN4AuojoE92UoI1u+G1LhUFtHdH6nsZ4Qu4Of89nbUgzrf3KxOvdqlM7lTWXuoLn/3E7d4Ax+W2WAgUhPnri7bSmdT0uuN0DLDhkurvN8G+vr1sGsBvxH8CVgRSTg7PYrGiJA2QAsVZlBhwF0bjccE7Rkbih0257HMilI3TQhTJ24LUMAJjydGXicWgVeKhNqEgWKw4u+fHcWvccWVVOAnHw2ux0lZLMyV9svLp4mBn7wDmcSoYlG7YVZNktcEy40qjcZEjfqWqD8LHcivI3AVqr2OPAHZzzonPALXQHsRUj8p6ENR2dP1CjdxCYhZJ1Pl8G40emMbsoHqdra5uBeB+dy59IxotoVicT9izZ2FMs3gzXY9QalsIKH0J53g4bnrBCpOnIGov1dK3JoEOaiNHaWzS4K2HmZ8O58kBXMvTqeu+czS0NVNUmbXhI0SvPYhYvjnSTG8fEDHeQgZlXxItxACwCyiiPU9RCuZq5CeAKEYHBpP44EgTT9lHyoZ4srbXGJHNrMoPB31kxgGQxstXj9uHJeV8Mk6n2xtrTbzWXPiP1tUpRPLXY5B/kTTgqmS2gsZPF0pbSUlJrkdExBDHuU9mejtJfQCKoCIE9WY5jQnqRNdwcsUTco9Ch9N55F0rwOjS/liBKsbgFSyRdAW78ExGF/Ez/vntRkoQJ0jxG6wYGz7g2RCkkSJL8IphCJB5r4bGAjwuyvkJgoOQ3AeZxjk6WtdHas8QGocvJGuXSgal6oAk4BiANBAA4M8QKYl9Hx7M7FXhP3NzNfRSc2gmggtMBuyt8pCqXoM6xq996dQ24rKx1RV1I2LdU93kxsIZA2wErmFZ6dNrlknWavV6Aqnz2YdX4zGAIFuhK6uoI3hwr2V+5/oFl4Kkoz4u+M6HHyMWp+UBpAmSYHW1+1sFe9G+nUPWpvGozBWBdHzTHy+KxFzd2XQ+8MrFfG68IfFzAj+vCIw+uJBh4haKvk+NyruUVjAao/OoM7Bd3aUWCBYi4YS6TmblY1OE6avxxepNtOlMBH1fGty9wqSwqDwr9+6G1q4qJn6x3EiwRFNTBdXxliualzaTTdLLMQC2votwZOMBx+hfMcA/cwJ67w6CwiYBTtrmI6KSHIrCn7mPWMVwC2w6D3a/5SSGUvexblu9O67ZGJHQef9bmVY0bBIfXuoCzsZ+J3JudMpcivodFwNq8wUABhmjGyIDFQBn7U2ZgBPJs+vwVJRUrRxwJEHkEUSTUSWFlsvfQE6pbUZpig48W7GI2yjjg+nRhFcf/2Op2Tv8NhKwFgUv31lR7/sm0qYTcfT57AsMJueiAupfXfgXwcXU52KXmUB4PPYOtlW41+6pAMhGng1aneb4ov2jKWSKW+0u9HhI5EBvTylJ8X+5HrdFHXgr0slXRHOkUU8wJFD2eAOzKMzA9AGJHmWur0GIkro9GrNSadYoWkNuuvYtrvBVI+AG49orPT5hUE1h5sdtGfKgfCGRmtuSxVWiN1zplmy9ZaNhnLx6rSVVsDDQhgF0xX1vToVZ8BS2rHyvw8ZH4WInHI9nwLUgv64NBk2vTPbN2Zx6cDOSV1BJ3CmSRD67s2WcCuWl1pCWATa+2soMiLnysH3Dw4akF87mmOrCW9kD9cJ4CWSsWA32TsGBDnxE4oM5GS0UqvdKAOWKxZXdEg0hYznHgViiO6Sf6XBsEhPgCXzl45sEVgUc8SPOam5skkTpOnQPi3Kn0bO17CVxx21XAhmBD4O63YPt+fb2FMZxJPMz6KMUF7iNf74/PAKBpG6rpXcttJqBJZoJxcKlMBCidUUEfS3W3lzTskzhXMNI5aR5fh2jQ3dlWyqAcYlASOEx1tw9vy9US/NGGlsk7UluQNxGYYZRrUCBmgtaciiXe9iOK+eL+MtchnOzD11qQNfF5BXlxX8Kmf/kVM+WvzSyttQYloY9/RycaTwm8QDEwLn+XEzq1Nj3nJp4si0sHu7U5765deXhzYB680gRjIeMq5rasXd0qPXqd7hd5ok+Q5x9e4bbc6N/dYpSzLvNf7W8ZNBFjItMMGQUCzIzDSAHeaTIQMnkDsl6CKFDARk4agd0QQ8OeS1kGBI33lFCoTfrF9fmN+NW/6uiOeJhMfG7E07+zv/S2v+OevyCGeY7MJ+rv8juVKofyPb/Nq0Dg/LtNdZ/ub1phVgEkGAhKWPir/b0JZn584rtpWkkJiwZ8BTgK52Q938Vv4mRpubzPQoxzVEIn+YwVtgI1Vd/4bWS9OoOEMrOB+lq4rsCP0cDt43Hhx+PCY11s17uiOqo6sPeAwOhEsOsryHtPLvWWoJ3TLcVh3CJ+zdx9Z0FJIKbdrOY6HnfBidtbqDE1vVggI9o+kHMNAwKQb+7F3kLxuOksINjKc9Dlos0XAVozOsOoMkiaobdsAPeRabG+zs1t2APK2+Am+d5Ye+3s16+vg4FMahQRMj+roA62uhleLKgiys5IIuQKqOgSrDxg8+5RB5AtQsFWmwHmqUbQdCXhi5WILRR+AfkBtcQkQSnDGGx9kLhCKVoy6cY+1XGvkCxm0CB7qHeDE0GAZM1pVw078hlaD6DVLvXXr6JNv7g9niegjc8eRyQqciFuVIVGDlGU4ahpBFRvXsEv7199G+W7GG0cwdneDkuZJ94P0hDI6eAalPWz8EhJTgef3YHkGjc17RgwMK9dDK2c1PNKFf4wA9J9tS4VVR6JGS8yI6ztJgFymLp/JVMnuOgFLgsOZHk6DYVZ5GpBnKXWNoEh7P3Tmh2AKvbk2v5r+uCjGYXXrQD6233++WWo6iAvC8F3AAA0Ap1UNYV/4rao/k7w7LL6n90M1uZ1p8CIzeHvCehutxwvej39Ny2wDZohTa4+c7TvBmLBfiymRdY2cRaG7ynQp2fb9H3Gc3OMqwLJRP+RFXffWmW9B8yYnxKsBUp/Nees53m5QzvZAI4a6OO68PFx4eOx8PG48Lgu/Lge+Lj4t61HDGDkPqiljlyoqaC9RASDnROglWWB7livdykk5h2UFVPwU7gO2iqG1jFPFYYwAnerlLc6qoY654WANGMjQPfjjS4GYNVaOf24YJUVLI3HNOnVd3CpR31SfVbq81LYwPvCXVsLlPa6ZLS7xeOr5xQ9xbAUK4YEc93+/vo6GDhkWrOgzgm3o2Ue5CrTrpPXpqZ2ihE2Gy2yBSSMWfwHinwPbAP9akQCvNZCLP7OTOZQH7aYXNH5xXEUaQuZe7yiO7o/Eu0ptWE0BdOUd04S4R5aDvZmdUVW1bJWcpBx6eA2B/FG3JlkM/i/We2bQHXIYjq1sRBs/9AtspTX21pjU3hWUF5IQxkg9XZV8OIcRTCF0vNpXaPnW4ejBFq/G7Z5v1kGfCCLMQoltO+rsHzNM0ABZNtwulzxOMi3+ZgMSxvn7apeQ9qP31UTK2CngxcAuZrMhEMMOG+HLyqwKlOMbGyVt+Pkm3AomZnF5GaE8izZCwCzPLGvHUo/fAMCGhIMhM5Y379jFe91AebVoCSKJ/h5iS6N28+ZIKABq/f59tyah9YjbVUco66qQ75v3Nb0Ptjo72WRwlj4t4+XbtWZBb2otFAh0xZmrHVZ5I1nDWCSdwHSQgVjMADkKrRAeKxuPATRWij9mHvgrqk286NAyPs57cfUwsMZJRac1xW4rgsfjwc+Pi48roWPa+GxFq7HxXgBf9bWqwCwrnJdblU33AkKWlWCY5wDbQNeD9xifPqcNyBwzFKPu0CMP+sYFmlkCQBr3eIxXOyL1SjNh6aoXDCiKMuMSnt7rGecmtq3aPorFwGiXVIeQLC1lYFchq3qUWBA6ipvFAQuqXmlrNaofdQz/RzPsUAC9/W9tM2/u74MBo59MHDuv4OhAOXZISGkJWE1wYAjeOlO0AJak8ye0JF5yf4XeJPVJOUggQ3sCwxQTAWorcQKFmYpy8ARKgRwgSVKkXz9vFhWdq1Q8ZohWs2MD8tm7n3wSqiHAQHL1FyZyhQFBhJg2ctBbDGIhv/+LLREJzfzUNcWyGKGPABtLUBICPEbUjKzD4iJx4dAuziiVMYIvDfvr4mZ+XsJpQ2+51a8/+3v6pY+8zWeemEwOAIyA5Jm2igTY4wbR7qU8jsUsOaQan4StT/WtNu9ITdQ6NBf2UIUWYI6kApK8rh6ftYSptXhpCPvl8DBKGyE4dd+pwfLRzNNCdiD9u/7qnLQGtAnzbjmoXt80SrwXjGwX9OQUex4MMken+urI1EBdCV66x5RQuwdEKTl4mT4Wqvq6CYrJXFBFDN/P12mA/7K+ndCz8iE/dJ57tazGrBNgDoHrAFPLVgzQZUBLjWuVwnHboJoF2SNqdDgkIvJbKnUJg66D839yIJgANTxKPfzSOEzLUJ97gLAQ2m6l1wEj2ukassV+7iYrcUCPqHy34otOkmL6kqss7A31yYWiFLh4NTAXkwyzHyBAGcSxdyxweM8P9FZeOPS/FpnSCDAvLSUCeXbVyBt7aXB/OB95t1ig9VUqThd03sBsHHGkH0WvE5+3YoBlTEproPesvY/yuJ5xLv4KDVsL6tTkXUBns9AG1+6/pmbwMuQyr0vVhmIww5+WaOwFcB7lsWA/Vq9l0T+XjzUHSi4AJRv0OdiZyCuRQEZi2BgLXYxhEpwHIm9GMFd2rV8HTZjSW0E7vdPzZkAZjOW4FzMLrgtrovP5Dioba4rRF9znmyqduz+WgH7VIeFggO9B/U5HephXsrxd1NKwBGBoYzf3+w0Btfr5ySoMWt+xRSHSX/Cgh7DmHOEzO1hDly0qsDoRv03Gs7amNIxE4qyP2Xyu27CZPxdB+bO4HMccrsGDmgViItIPgVY/LXuzNCrRSuH6IrHow6pDzjXBO2WmIdYs64IcgBubWNLDPQdexMyLITed+5OT6ekr/79Vc7gVZyuh3qQ6Up74flB+16kOVisixmhNW0ztAWnSfSeWVj7Bi40WONyJnk0PU6A+LtZzhiBdqnIIC/+4MgoAOyyp9nZp17UrkZQVHASjvgu0i6G3ebsmanR1gn+u0ruBqQFygqAtgz4x9p1GCSM43a3qvA5vXZvvmiB7uvis68FPBZjD65IXCvxuBhA+BGs27KQdNWaNkzjkSI4asBbNSoY1EwxFvK30Eos69kZ4/WJqr/lErVFsNhRVpCq19iMuzMROlYDqiHg5e7Ynd6bluh2243z6ufAymqKhriytPQ5kPnzuWj+XFNUCJXGcLyv9897WO5WS1nZvpBybU36uAHZ4Tf5m+vLYEBPhs0lOxwKwuA8a4mxppDidZzWk7gHPSVamBQdLH2fG5g+CGcc0CAhbbe1i0RcakaxuogQU7k6TqyISYfjHMC97W+a+jDT2rWxt1wGErbzPB0GNrBaHhjZ2kqB0XeNgEJRJ3ZqeWz2k3gpA8GkV2AgGhY4QpjNSsQcFHBzMhBnl1bHkq2pR7eG9dK+fGKmFaCTzViTn7tgQdZIm2a3N8mkaw33wLRekEJk6l4OHhKZmdaa7BSEB1zXow6MUx+X0RvGHDCEkoGkCMNj35DLJ5zJAYZRx1J9hVR9C3GE8PHeok3AjaaQR7nXYiiZY43ua7YTxVBeb5aBtR5lJXTArifHtFg1hlJjFjYQitqLafhsHyMwlugOZvT8GX9gWvT7775nCuEFB9D68IYfWrSjvQPPbIFK9D0NuDuf2+uMynSw225ucgHGiAJHBOaTdfc18HW972nZBZMnujiUg9aKL2mvxEQyCQZYppkTZTDykWvfLhyff5uOo8S5/7oJChKhLAwLmW0FmQy/FTPvR9RHVhSVCnCkeIWySLjE5WUJ0LL28Vh4PBYeK/DxYDrhx5V4ROIRG9cKAgVRUVh79T4kECtw4cJrJ/K5ee+FqqC5kzKCDUpXnYvq4gmCqQahydoz4l/cAgK3Wc/HNFCuB2mDVfwsAWABVV/iKvqszKw9LcRSUCGrimj9iG+U20g0pBNasSFRrwZwaDFaYJruyqg4iCMA6X4SpEsBNu3VOQCu9Ubbpomrn2MQlAEWfPq9yver6x9aBhxBLsGFg2vd03h85t/wwGAoZuViGu8+uzAitoBDT7I/BIC+SqMltzK2GXZlVozASsYeVEAOjMIdjFO8WECgd5i9FhxclDWOBMYhheYyfvS6BW1O5uDTOObdBV/6QFSNexNB9HOAROVKR9Cfb+1kfAaw50nsOrODsHLct/hR1t9toksJAa1eKvCt0jBTwqm3pyHQZIC9dxzaeLU2wDQRN4HipXKzlwjWibCgOaD5vpZJ++Px1n3OfY8YOKrDL4UgRM9xPIaQM37UmhctBBS9nWyPvUrwS6Ak956CrYU2/ws1bEkBRDLuiqlaKMJsoc1Rs/oibpc11xpiLVvezs+7qJyC2QDyd/EBGLvpXXKnQhSdTXCvPVQgYGuSoivgBvRpPdIzzwA3Q1Z2++q8nVsGsAXeluU251IoboxcYxoWHQO6ShyuQ3MalMd9PgyYgyw2vn8PvAIB0TZP04EDAp1PH3DBHt9qgoUxqUDzSVfpxOBhsF1DYwRQTLo+fXAF8IgltwDwWEc1W0IB2IFHAB+4JIRDaY/2/8/1oRbPGKuNlYkrDrYqN0JjiLDg7xF6UxqMWjtOXFlfve+xaNPFzUqkVJzFneJtbWkandZU31LnE+OsKlh+VnF9v3KsvZVOgPUVTii7QOEQnZHmJ9xjhUxfJ4J8C4mbFloPbSBgPk2F8Hz+7L+5vm4ZyBYgp6Ys5qQ2tW7lG0Lu0bsyQdTwRerWxZzdLb5NYJRPF9wuF1qQdOeJtJlJVftkCjoHJRzmYTADui8/+uBKuHJcJLAtQFB7YZVLGq8Dxtbi86fJzsjZgUacfzP3qkEA8CCtFKJNYA1QcVCZGvD4dUMjdVRgJ9ffpyb9tdqrcwMOsAAqOiuWqb1xMM8qYVj9yrUMS22JDXaqfG2tK2QF0K3KOuIZzOOdQ+PwXnEOW2i3OgQigdzFWPusrBIayyk7qUh+l6yNOpcyp+v0KjYgl9dGqyF15IiOlkDDsiABLVYoAGkmmfQXpwGBzYq0OHHZ7FM9wFKDHBewaad6/exzaKCwZh0JXBduolDrx6m3eLhdv2Bo/vzvLnaKQzGsHlkgs2uLpIs3JVCEU2jaoA9VMS3K9wtA+ItHSWtpgCpibcDSQPsGSn9xObCzjn32OYKsAkelXFusMoNomWetO/Cn395U6rVbYg+TGVR5HQQC264gQNbJ1SWkygqwap268qAnMw6tWW3txtyvHpv5AYvWRFkIHivwuFhX4BGgW2CF/s3YgY9YeETiWhuJhbxkvbS53YIV5A9ruVbAqZ9BCGhNTAuAKZCbLwou6Zi0C7Z4y5hxyZjTd0x/LrgHZEvmVbQAePwlJ2CpbbprvXxnf+Ymm6NjN5ae60JytqhlJvJ0l8V2v9uBF3cgYHl1stxQkw/0dW+ytqz0/f4Yf7q+DAa4EdosHXQWrgCqVIvlz2lB78Y3FixevRaIvrs5l3/4ukttRrZ2QwE5FlNrlAdyi4uZZ5Jo0/DFjOCusdYJwaoAE25Kd2GcRYLiV3uRKE2e0eghgCBBd3DLkct0y91mIBE05VXXxjooqfhJaaNLKvGhdtRMJ+8DDAWaRA8yFd3WFQIMinz4HJyS+pvqElel9ZMiVK+/XC1upXrf27lvGCAQZRGxTnnbjmk9SRBwDqA2r51uEVsDLMsAK3T1HlVzIgVAudeNV6jRnPOYPX9n1EBBowIVJ0oLWCdlEbBZGMidrXVCAaj+T2mGkIYUS8VVkNznWrlmmiF/ps3bSy2dbeq/rXeMv395ZS3mr+ID3t0EtfglnDmmPhLZ9OKzbxoZ+9bWCLkRJXjdrTEm2XoevS2FwzNawyYud7zLb+aqZ58z5uWxCMCdk3AlwfLier/Ft46kDeVg7yfAfWinh+4TxuauW1lNsFuAuXrpagHnExf5izkV4Zy6CdcftX6muXrP47TQCgZfPq7EjyvxY7nKoAFB4rECP66lfzM2DEi8YuNYy6mqj6ShKxIrNtbaLAp0NiL2L4DtfQ1q1qUwCvh5JXX2Jug1WfSdTYOprLSxzeYrFWPAuIy5JnXfcMyB3MoR5WoxHbVKEs3gwJiPGPsBBFqWe2cNAobbx39lJZALHMwJAGNWNZZ5tvrsfSab313/CAy8X6kHqxdX+fZjqayihbQWaZqu71aB9yf5zbi9wmDALMbpg1jkMAnNB9yLfTrlEDD7kjaRLid8ijGxAxkZvd0ELtV6y10qpq/vCdXZ1EujBdNnIqkZ19yprpdZ1gBrh4v53pfFTKf2YubUepWCQqsAzU2QNMM+sK8/ddgqzA1Ntaqp4Ipz0ltKKzotLLSSsgxFz8mHIe57amTsMYVPumiixjvouYHIWP7J0Guc/LfBQNkdhkAmc79rnF5SRFJzsqnYQIxIF2cZ0Z8WIGlggN740jRBd4CE5Dzkx3xcloGlQRzX+Z50IFp/PCYIztvfN3qZ5PMebfi2pl7LX2UQ3NbZG5bWvO5srDJeJkMC4204zrjdLzNxNup5fizXYlgPkRWjYL6Tcq0cZ5O0DvHL6+bGGz9R6yg+kbh1FgzxL5u0M7KDOBMEdNWpFFirXQY1p4Sqo7aARxheS4BD50adFyNRvp/8pCgNF8lv51orxzWLpn0vUwTDZD6UOfBxBa6V+LgCP65U4zfgx2K7+IcDCIP0z06BQXZ5AlBTN/ausTXgALHhrLPeo/yFZpU3XgCAwYo+Uzk+V7xBNFU8N7GOuRk/5LgxC+0beMhoZW/Qea1ZotwF3eiKr99idMb62yXkIGA3Sropx7UzZALGe52Y371EqsNr8eg7GHAjLg4/1LDr1y6z311fBwN9Knvy0YsN8FA4EBNgKeCJViYYaB86b1oRt5T0KMIfhGstIEzFln/Zr5uJFCyGl31j+lYQo+GOx6lGJDTH8Tff43cuzPmIuuI2SUBaNtZSHIcElBhJJCrWLtZcD1kGDn1rCPxyI7kODZJ88zIAaAwp4T5BsAVE6rClgE1UVTtvsNeFBznHOobmOy0DnAItCuvTqJv5v5v9BMyLL9yu+e8hFE1Cs1Vx6vlGy0v/75ba9tBOdO3DvEW/ZcYLyLKVRVhxGuBV/YH0CkOugixz9wQCBAPjbyP+mt9d4Kdfydbn+k3SheMGrIWRBBqk3ZZN1/Uu3PXbAtfP7TV935DbmwXSOP8oa5YFEFJzdEqXrTFjvW2pczxFcLG1LAT+xSHMazx202F0Rb62pn8e+3tcBAPWdDY9nowCBA4ktAJA2hBYKjNQ+5o7PY0AjxQ3I7ldja7P7krrhlHvEwQk7DrLfD9PY38LzN837x238fftQOmng0WrydvoQcCeBIErFD+wEh8LKuF+sBezq0zcKTWEsR4U/nQbHSRe+vuzS7D/SkzXxx2QKh7DioJlIlA9WOYC3M4BsixwiZo2ShZM3vJ+peUHRqyP1j7HPd8YWGbragYN1Fda6+d0lSpYnxtnyefo0zPcOu4uPwwIbjLtH1xfBgM2e5UfPzyo1vicR+qZHRF/1MhMuAFHY09yLc2zDkxrjmVnw0KuDaxArBy4QTEKGhwDHBP2i7EuAmpMawhwMgJG41fkOLiBx9rkgYKgxDjegVmiUNCJgLsFhbMuAqXJOK6CkucCpjk4gKpU47WqNdDvFKMPa1rhMIvWdpAA9tDQUZYUlxGGujmq2L0OIydDWUhmVH5WKMhNcLmzPDCYuclB1olKN104sbEqS9/7K5PfoNwSj0U/QNqU59d9MItxmLmJiYsmfXn8/DtQwUFppqq91VrUXOS26UA5t5Xl2E4a/vH7LnhqEInj1tenDqjzzOe+9twJWhNRpkbSRR/+43zBYnpB+g0RqqdecugXwUQ6E1hTe5DwcVGbEpJvzEgvrHQLqeHkGa7fPANIDrN8u+p0OwUC+4zCAjiAWqk3XWSC4gxnHekN435wQDkI6ujszhSt1OGoc26a8B6iizmtCOS6imbjdEEd8ynbohxIVyMJCnozec/rBgc1LstEr5VnP/fKX0wHrdh0XOffC+ICNqizE2CdlUcJ+sVAwTgEAXr9Iw6zCZRyeC2nkC/8iETKJ85mdC8cJd9mvMgDgn1dXCK5d1G0HKmqtj3Nd+VANt16o5bDWqcK9HgdWfaAfPGuG5uKRdvw2en7psbK6AZbo2gdLU29lKPSF96gAMplbg1jBsSHu4/yqWCavsZtl9NgdfU7xysZ9YAWrS2XfulW+pvr62DAhHm2BN/i8N1By5Iq2xS/rQHjHsmfm93EfIh8rwh2HEyhbzJNyavcrC64oOYloBANwF2Nit1dTLmyBsOo86wmF64i15HlQOYLbS6y1gVLXfqEX9fQvt6238IUKGIJQH0SSk+HudrjcYmSpBVFH+TreKNNjHV0SIzlZ0ePIxhoZO3X2syShpV58DpMW7Qp96qoZxK8KEq/OOd1FroDo58oKj8W4qnYprxpc6znToYBdepC1PAFHwicDP/q/jVpTtRBZG1doMZhV8bJ1YetYKWChayV5mpmX7NRwNsxfXBu6yGaXAmsgwz21sgEIDPuESusumSR6oQZzE/fkHuqkT9M01PAZgemca5ZIIyk1fcvBk9TE7XynYi9i2a8wA7iDAUjkZQZuBm6x6uE+eqA29fBOxOl4BKtncNAXTMgf8L8GiPw1oBiH82tSdZP5n6T5RtU8f8O7gKwh4AEa+QLYNPdrllEANauFkoQ2Zt3EsDugKuihnJ7hc6zZCzseKMQxAEeeSlYWefOVfZW8DMyyWW0JnxsgTt2FHGPAuyj0uRAOoo8WOe6RdH3tZHYjJFah3wkTp3HSouDec9Fq+MhsL2CsQAf6+DHUlrhoij/EQt/XIwPeEA1Bq6Dx3XhsQKx2D784ZiYxa62PzPx3E/u2QWsD9DQs2ULXFdtQuZxyzqeO5l2K0YcWnwJ1XKo1D5DKfQCQjrY7uWwcJWJv+I+wLU9m+B8p3rRpFx3ys7aQdC4c1fqMdCRMWUtEtg3/Uz5axP9pcJ3LoW3Dgkhk0rjWoHzllodcZWyGGffFIfMcaZMF/XuvBIfSp/86vV1N0FaeA6IbqSmA1XsK9GpRP74VFVywEAzNkGGxsD1rhhRjI8qKj0CoVZ4PIsq3TlMUS2CbeKOQvW+pt/101iD7zu4zoyqNuKT464WRgebgoqivELp1XCHhEwt6IDWjVNo8kZgChS08aOEWYzHzSGKSR/7o/Sv+k6N0+x8fC9CzD7GeqnPYI0PHcOCwN7W5BLrIqO2OS7TyF4mVviA6rCSK6o0ZwuAcsUUercmZ7R+Z+Y2NvdcTo0vJb79d+1+WKj5Oxb0HQDksZx6X+6B8ZkUQ2nKcUNXm4K3no22Uui5Lgk7aS4MHIJ0G0OK+jn8sgCPHxzjPQAx6AYJVAXBwRwTTB2bWRJpqekzDsAmfBd7adOz94R/d28Hr01H6Nyrvd3JqECF91DZL9HLUoqGKy76RLGJU3iLi8VU/vnt3hONRJ2tHgPaMlAHrLhIrRsUX7BWWwWQgbj0+clmosFIr1XUUBoMmzfOZ6JuYsFYQ9c7NmF7RVU5Y+xB1roprBYXDlMHQRdohCvmb3LjZM2Ux1q4QOsA+axixHS+j1xUKw9pJw9jZE7cXInFg7L94vz/KNjnDoG9cHn75f07kowJYKGBjz9rZRK17/68R9HBgVSiSPtn3MuQrVIWywza9L/qGYU86lkAujfMYDINUGxBHETQm11j85uptWVDnl1B216F/jI/9ypq/dr1D1ILO2jJA2+i9uE0M27mOPahrhgbm/VmcStqpGHDj6e5dL5kxg10MJ5cARW4hnVnIP4RRySgzD6Y4zfG+Oe4K4+90M5gCsCnRfcenpNYJYQ8cZY4XktHIe3yELrtVldi5HxembUFiBpztAi0Cexont6CkeGLu+uhGQu/mgUo7LsMHYClBSnNOpsJsZgII5NjOa0q+oODMYYPIuza6YPhNb8JDO0L92iErZUWpN9B0ctAUbN+g4B1Y9i1H4MuvZGmSbtbvOYtRHu3E/KZZ+Ky2VnrCoToM8WIxvfemF1m++4hrUNKKe6DHGMOkNs4onvEc3QgYBYAiAjkOep8qLudI8ubLVM9Ru87l2sEkoqhmcGXGMrEreGT6IL7bNw1zLLFVMfsShAEztlFtZF9hrs40nw6KpuCp6ojviu4D6hYDoh2teD6O0tgW9Bw/UPslvao7tKaVEZEXwZta1k46F7i0yzOl2VtCN3bFRCl5vN5QjNHa2f6t5Au6JXv62dgxrnQniWrlkTggisMEgSwxXtW6qThrmwc/AmLL//tyZ1y7jIAm/tw9sF+jWysdKCmQbyDk+MNHJWnvSZ3P6IzcLD36f0z7d9v0X6Q1XQqE59cQscWuAGsbopSeB4WCkMewny6hjD2R+chj9zoeRvvjG+YGT2lpNbO9VrOVtu/Km1/MrBzytq/v77em2C3EFjZPLV0LQ1qS1hPFGb/szd2Ffk4kOzzZNwWk4clcNkoq/7mq4S/y4QORntaPHrxb7+VXtZC5nS0ZnOAIZxElNPv2+SLEZHS16DQYn43HSgoQMX48rR1YFKKsyd47AQAZCIOxTDccqvrcLjpxanvJ3rfEvb3+r0esPNuB2RAwBkROcxUJFyLZxyo14cO+3H2des9XonwoGIchsBAwu8HRuthM6NHXXZFMX8zJt0rxmchWJY3TbC12H5O9KFX8GAVmIlVvkD6JgUzJFxCPx0Qi2ZoA3jW00UbUYyG96a8yBLGZs4GMFGrWDvLtZDwR7Y5E8juWBnhEJF6fsYQq0m26dbXBRANJ+MG0yxymw6S68sYSjHgApJO821FoZYihv9eV2u7TTvkNfLB1p7g31/Fu08xrao0qD2x4kGXgm0vVm08y6vZzEHxIMcbLAGBc6Lou94foMKKFYGDrJluinM6HgVYlZ3iCiykM76dpZgMQAbHBNkMfzpGKLtX3hUqNxzU/Omm1L0yOkbNlqSTZSkKpcCEUqjPSQn/g7MD++fGfiXOXuzueJytBaTczBWVX/tgJLzNYIuuZ7l4Ll+fkwL0b9Yd+/3L+pCyWOm5p4TpqsdVloD4yh0KjDNrwp1hGhCP0OdcYruBGZNJuZZyO4WsSlZO0qy95U+mi6J5SWKsmddDHxZthvgIa7LEGPu/v/5BaqFwccfX1WPIZtO8vR9vrSJRg6/3SquFGJdn3P42Nx/JMrmyDCxz4hcLsxj6ZDN554A7vdG7HeU7xvgxUh2zGn/fMiCGSZmPFLHemJhRNZrxFEnpQ2JicShYHQhZcxnC3X7sap5UIEjCjupS+YczutRlShg4bZrKRgzmP+YRPa+j/w+0MHFHL9c6OD7I7/uZEtjBe3RxqFVLe8uFl9AyoXM8ZwCwiZShCPCU8B9ELoZAmjMlmn5sGTCl3plLi8LhAjiJdXMhNBNwPEWtY3MTMb03NlKAZ8x7PLlAl/dg0BxdR0maGaAkxhzqfYGwFUG/afb5WLbpDiZrZt/X/NuzBlgWtetfnGJEDQIKhBq4mumeIz+wAqay18x/O60WBrteGZ/n2wj1n6xJv9KKfndNayAUH1SmdO1RgxSu2yzz204Cu0OXRmqBxeA/NiQCK1iKITqgeRZssgDgHszgad/Ha+UJtIWiBo2EraaE9wsbTzjYjcXBVJocsmaALd1dVfAC5GchoyiF4STyxWifdYm3n8W+Q7KCHLBL4XMnns+Dn0/g+QJeWwrktvBqM3fzXgld11fwQg/68/pi/AtwoW6fEdzqwCSishwM9qel4NxkQJYpPyTMu6ZNFh3CzzPNJrjPBwLIk6MOGquzbJqf8sVrcOdGn94T+kvft0NDav7zb7s04+SvEmt+e33dTXACrsHup44oAQWOiUlpcg56NvHfjNmGQZ+uZshu1RmwBcLNSRweZs1PGLAOz53VOtjJ+VwxCcEbVGMchxRzxXW/Igz/n7/hjwxBlKjUQmBqe9Y05PJQep8UfgSuEv7iKq0t6KDSGhC1N5WXVHdm5MTOVI5tFP+//QwQ0LfjYWivd0ikJovqZGCa9xLJvgwjeJBBUFyLYGlGdDqpTaHZzLz8pFOQ4/Zv1L/z9vI8hB6Dj6YUMo6+/NWrNZ4JSse6AK05VryGRYEOnKmlfNfZIKGmNJh51li8Rqj91KjGPMZorHHU/tkx7tSwBjtDhN8ER53BQLl7KsAQjrPxo/M+BjH/Xiv1baiTx3NWtJRD89M8vU7176wIljHmO+eyOyzHMMwfvA815jA/6M9wzeLOLCcj9h57DAV0+xP3Ik6nfO7TpE9ajrYC2PJSZ1SfsTBJDz6KAMoyAJ0P04yFj/42LyzclN4FVJwE6+er50YqdsDA0HEB4Z+s3go0oa9uzhPWLjdjtZMuTPKqBBYj71+ZeL0Sr+fB88meMWcv5M6OM6teHhZkPl/NRyKHtbgJA0V4w+btmv7mke3dmpp0n4cq3lOKRWIqGvU8YMiDPh91Jx/aUVumXcWDIH0YxuG3tWg+02O69ex5e88gsNbjxAAscRejReeS1//g+npvggMYvcoRChTS02QCOGtMDO3fuTObnux9FlENKXyIzY8Wlhh9+x/XmHTCmpw1OI9ARCZfHZtFcC53scjrFLW+zR+MmDWzKZEhBju5elUxTFQVOqAJuJk84FAabNR94nrrfmWtX99xXQAG88h4LI14+odd8taam+vYkL5OMxkJy3PajxcwU0yttQtZ3ESvrlUtrrl1eWvbmWfD2txaFlrSWiJBPeXcBHcdXnE+E75zwxHntpYuEuQ1XJoXoG55SQvTqUM69jY6XdCME3Ndt83jfD0c7IhmbFvq8qpc1KYJBpFaEExmlKPGwwANir/IOmc24QIV4wE6gihEREdlHbAZVd07ZSGKaHaVogmL1vlDmqtPIQcQQIDO5qT1ZFeACWgFGpZDC9YM3EFSPR+1z/XQxOAfmmfFAlEDZ9U8Zo8sKwZ+PxaB8vKJocn/s9bmfzkWZWwb5j61oCWQYlfUR1y4B/qhSsamAdfxWwn3z4gloHJOndcGDUtZcoP2XNVULi+pQ+iq+Vzbcw5OOP3Na9fOpVDk/Tm08JCXKuNqb7gFZu5TPTZeASwVa7N1cStGADjIc7Dz4LkPnq+URSDwegVfyw88d2KfwCtT3V7lWky6FgoYynW7ZCVY2bK/4tD8/5koL7poJld0xU81GuMaiqeNs0H+PLNJzKtRpn7Ti/eqkYLOWvnEVp2NSWMhZuiS6AUU0a+RZmxlPbBg7zkOPmGAKB5Sc01Hx9wv4vcHBkr62+sfgAGhpKqYYyRj2XlH0fU9DYxrY/Pau5m2Lysh2gZYT+nAlgAj8KG+HAl19L4/1KJOhGZ+Vor6BHFm0mLsv8AC9bniYpyxbjWE/xA0k+m4C9Utavz2u/vRh4JcALRfFLUwFHoiflfHc9rLXAN6KcToDGaB8dn0sG+ER7ljCtce/G5RINY0A9BSfml37QEAOHe65+K1qu535Hoci7XxEqD3wBrc5jB0Yc3V90uYmbRA8d7ZBx/lQrhNiozU9zMRJhTfEWX6dUfFlQwwK9lpVD/oq+aAMRdbM2ptLMgSpusYO1fzndIbw6UksnNKqwMTJxCI8btpemjTJmnaQzkadeSzcK/o+Bh3bZzcD4PWbu6hxnuTy2mX0dTG5n70fRp4EhjAe1tvh8mp1vJ+b4nfABxLAiQuVHTEeGax7qanAh9+86YXkizt235f9Frynl/t/eAd9ZUmi3Eb5nxAQJO02q7E1q9bCGVWGG0/o9ykpOUNAoCVxHz7MiCAiindY0leJ7E38HwFXi9gn8WU0i0AkQxk2+dI014cz9l8pi2NB0rDbRZp9wuBecB9L8501oPWDNePSW26YyQcD9SxAgIFTZgDDNbBue/l2Jc7Ynzbz7erXFpvr/b6j9un44b637ff8yEzrfd2gMZT/qFVAPinloFiEgreiRxEJ/+30GYMwv/VdVsg+/+A2vwGBIU7zPcrIHHpwNgMniKgwko+AX5iSz3WFre5u0zfvx/w3BQzlPkeswJWjVHnBd2Gtj4NSnO0cH9bkZMu1nIHWPb/VmnZ8tpkNdWhttlhI2UZwJg+vC4mpDfG60+bE75pUj3Wyd2KY5a2fP/ewTkL1wVpysCK2VhnoGUzKK9tme06gPD2k6nA0jYT3396iD1cjzd7LQzoxrfGeZeiJ2mIaNKqYdxOd/0uwR89p/7i29VIgkVqNIVWJrJdVRG3Nq4eo4W1v1fmY33mGp+fc+016DHweRzXDJDiPQ+c6cLPn9vdekqGMo7/8X+7V0Byov72Q4ASvCtWBR/btbGGpcaM11ayWuG5iZwRDBT9eigmxhaqErwRMAgzANSQBvDwD58/o/LndN5Xe77cwK+trbUNvZL9/ZvbxketYA/swqqo83dU8TaqfQ5jsBCMPFhspDS9j7llddQ200UQeL4Cz9fBcweeZ+G5CQpeyaY+NpYd/e1eL5n+PRZzEkTxJr9s4T6F+TxXfZT3aQdWwiBAMCLNK5u/lG8+0Iwi7IKJWuTwuU9/DtaXPrF5x6HkjRdMKOqX39xRb0CAMkWvHQWdtxb+6XrXN38v1e7XP+paWHctl1Yz1IpbNBD4OyTA01WSvgX+HUuFXuM/ZLLWnq2MQvQZLubSB93mUhOwOwqWEaCKDsl8dtuUTyfxJht7QWaeFm+cx69PtuLD7tP0qwXx4T3NzEZkDJdLJkYIeC2Uib60n8zSZs/4O28EOwHbHQknUJJjxGcWQPs89v4Ox5AlfcpESYpmpHVx0l/crgDBPKxjefNX0MasYpVrIN9+aI+36d0dDa0x4nPE8o259hb5M6ee0nS2cbAUOR1KI+ps5QY1t3VO1HmhOVB/j0DPUobfeGXdQxtV5uHBa34VE/Lrdf8FLJCA71XIG0GUEbp455vFLwdl+yy8BeHWWMZ4y1RqYRqMO/F/FrwLCwwkXgUG5ixKVfG9T34aHwDkVipiDsEhc3+Y15WFTq4Ig4BoEOB/942zPtcLMohZa1oangJdO/gyFfjp6J2mgbJrDZdsOf5OuweQ1pY9wtXVMIGKLRrezOKxL3H12FbOZiguzf87GTD487Xw8wSeG3jlwjOBV4aK9zDFdCc1+LOhni8+06EeH1HAseJvRPid0XE/8ebzmaZUIkpaBuwiOKVglQUA+vvMe5jXiN4lVfvYZj08agRVTAUtD03zeQ+y9kHJO6/+XT8QwGOF5gLMgPffBh7C2PxdEf331z8IINSDAkJQOulBbpZClY6vzWJyny8e0M9v3g0qg4sVFohCr3qsmHHUQSCBcznspw0Hv3BoJbDnon5a3NEJzFfWYFygRQdjSiuZcCoX9RMDztvdJut6h5fNIOYNJIbOCDBcYl72P4+uZ9NNcJseZN6Wv7KNPnGLzH0XEr++FjK3NwO29TnVzanwS8KRSTb+zDvSj0H0byY82HqTkMRFb6g1CwvRCQYcWmbG4n+fel4Jqejb9X6jxmcmGuEjMOJixJAqfRU91CaRHL/NlPSksUclDAfN1PZpbBacjaNHLYlJu/9m++4ArzgdavDz9cGGY7weY1Dv5H7XbtuMXV+P380xUaaCtSSABQbCdfyjYgZCgMBBibXd8z89y4yYz124lsqTC8wwLc3xLKYvjqmrOk4wMP+e594U+La+n9ZUxuxRHrlpfsnwYt42A03f+YXoRt5Ig8kCwfValCuE93SMkHkblKOutRadYfP8usvn6wXspHvg+Qq8TuB5As8EgQIIKF6pGIGj6n8nCAh2gwBmFBi49JKbrm6gFh3DYwXQmY/0p1OhiuLrp/bU5xFIuSYOgbe/65M++cvN4p4l9mq9Pc4pM2Z8Fjj/NT+rcf/KIvD+N34hp6a8+gQi0sSwC1x95fq6m2DQuBfgNgYdltQBN7r/3VBur09Nse719tnBVNpVcL/ZFCt17IbwOAUI8tMCV2AahsZ8G1LWi7zv3SeTuqfvTw12fcY8nxbkbRJiKHcdpk9HJlTGkibzylNNqFFUSxQbyk6/dL9frY+f2zPMHODMEvDvQIEOEBE36EpSXAP9Atd9j9I0NPf/neB/JUzvPwnHhBSF/HJ4Ni17smXNAsQwBzipf88YCzMM6HCjo3o9Rk9srFvO9a45/HYRf/2K9ycmZQz7RKzbUxzEduKXVTDebt6CsIX8r34D3VP99/ebGM1AqS/H97xRuNBVCOXbylDBgyrZ2paB3u/6TCjfKICjfh8rFoPSAMRj4Wxp2zskexdcSm8Kg83K9AzIS1kJIgVIoFgdvYY7KECmBOmZFIb7Sli0t7uSA/e7DeL/jp1b4KTncDhAA2qvdQdx25Lon2nRUeptyqWTBAkssgRIGwQy8NqLwYEb2MeWAr12EjsIFpja57iDHIVzQBCAhcrOuBGxfkdTZmWgpOICwsKW67B1CGmdtUWO/DjRfIwAwWuetR0FoGr9J/MUn53W2rplvskM8+usMVT9DsRvFOUbSm7FAQHWNh9yqxrg/Y7XHfvPf6uUf/pO/nvO9H19X9/X9/V9fV/f1//j1z8POfy+vq/v6/v6vr6v7+v/qesbDHxf39f39X19X9/Xf/j1DQa+r+/r+/q+vq/v6z/8+gYD39f39X19X9/X9/Uffn2Dge/r+/q+vq/v6/v6D7++wcD39X19X9/X9/V9/Ydf32Dg+/q+vq/v6/v6vv7Dr28w8H19X9/X9/V9fV//4dc3GPi+vq/v6/v6vr6v//Dr/wC34Dc1rDXWkwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "РЈСЂР°! РљРѕС‚ вернулся РІ РЅРѕСЂРјСѓ, Р° РјС‹ увидели иллюстрацию факта, что модели меньшего размера РјРѕРіСѓС‚ путать экземпляры внешне схожих классов." + ], + "metadata": { + "id": "K8mLrveCb8eH" + } + }, + { + "cell_type": "markdown", + "source": [ + "# 4 Обучение" + ], + "metadata": { + "id": "aKA9znzZhGil" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4.1 Непосредственно настройка обучения (5 баллов)" + ], + "metadata": { + "id": "-Q-_aF7AURao" + } + }, + { + "cell_type": "markdown", + "source": [ + "РќР° обучение уйдёт несколько часов. Возможно, колаб выдаст уведомление, что РІС‹ исчерпали лимит ресурсов. Р’ таком случае Сѓ вас есть следующие варианты действий:\n", + "1. Открыть блокнот РЅР° РґСЂСѓРіРѕР№ учётной записи Google, перенести РЅР° соответствующий РґРёСЃРє Рё продолжить обучение СЃ файлом, РІ котором лежат последние РЅР° момент остановки результаты обучения РёР· папки backup. Ртот файл нужно будет передать как последний аргумент РїСЂРё вызове darknet.\n", + "2. Дообучить РЅР° локальном компьютере СЃ GPU Nvidia. Вам понадобится установить PyTorch, CUDA Рё CUDNN, Р° также либо установить Jupiter Notebook, либо сконфигурировать Сѓ себя [локальную среду выполнения для Colab](https://research.google.com/colaboratory/local-runtimes.html) (что тоже подразумевает установку Jupiter Notebook).\n", + "3. Подождать 12 часов - люди РІ интернете пишут, что через столько СЃРЅРѕРІР° станет доступно подключение Рє среде СЃ GPU." + ], + "metadata": { + "id": "1nfedIr79nE3" + } + }, + { + "cell_type": "markdown", + "source": [ + "РЎРЅРѕРІР° инициализируем модель РёР· файла СЃ предобученными весами:" + ], + "metadata": { + "id": "-DscrzkHlegP" + } + }, + { + "cell_type": "code", + "source": [ + "from ultralytics import YOLO\n", + "import os\n", + "model = YOLO(\"yolov8s.pt\") # берём модель размера small" + ], + "metadata": { + "id": "z__kgc14lle9", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "49af7af5-0550-4608-b547-6c530207d944" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov8s.pt to 'yolov8s.pt'...\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 21.5M/21.5M [00:00<00:00, 114MB/s]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Можете выбрать модель большего размера, РЅРѕ РѕРЅР° будет обучаться медленее." + ], + "metadata": { + "id": "eLITzsQmlzlp" + } + }, + { + "cell_type": "markdown", + "source": [ + "Всего Сѓ команды для обучения РјС‹ используем три параметра:\n", + "* data - путь Рє файлу СЃ описанием датасета\n", + "* epochs - количество СЌРїРѕС…. Больше СЌРїРѕС… = дольше обучаем модель\n", + "* batch - размер батча. Обучающая выборка разбивается РЅР° батчи для оптимизации использования оперативной памяти (весь датасет может РІ неё Рё РЅРµ поместиться).\n", + "Чем меньше батч - тем эффективнее (РЅРѕ медленнее) обучается модель.\n" + ], + "metadata": { + "id": "oHqqUwHsjjv8" + } + }, + { + "cell_type": "code", + "source": [ + "# РјРѕСЏ папка СЃ датасетом называлась chicken_data, поэтому такой путь Рє файлу\n", + "dataset_dir = \"/content/gdrive/MyDrive/chicken_data/\" # путь Рє папке СЃ вашим датасетом\n", + "os.chdir(dataset_dir) # переходим РІ папку СЃ датасетом, чтобы результаты обучения сохранялись РІ ней РІ папке runs/\n", + "model.train(data=dataset_dir + \"data.yaml\", batch=16, epochs=50)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2-xjpt9OjiPu", + "outputId": "2e545ebe-ba92-4555-d53c-3ee65d080457", + "collapsed": true + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Ultralytics YOLOv8.0.227 рџљЂ Python-3.10.12 torch-2.1.0+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", + "\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8s.pt, data=/content/gdrive/MyDrive/chicken_data/data.yaml, epochs=50, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train2, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train2\n", + "Downloading https://ultralytics.com/assets/Arial.ttf to '/root/.config/Ultralytics/Arial.ttf'...\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 755k/755k [00:00<00:00, 140MB/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Overriding model.yaml nc=80 with nc=1\n", + "\n", + " from n params module arguments \n", + " 0 -1 1 928 ultralytics.nn.modules.conv.Conv [3, 32, 3, 2] \n", + " 1 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] \n", + " 2 -1 1 29056 ultralytics.nn.modules.block.C2f [64, 64, 1, True] \n", + " 3 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n", + " 4 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] \n", + " 5 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n", + " 6 -1 2 788480 ultralytics.nn.modules.block.C2f [256, 256, 2, True] \n", + " 7 -1 1 1180672 ultralytics.nn.modules.conv.Conv [256, 512, 3, 2] \n", + " 8 -1 1 1838080 ultralytics.nn.modules.block.C2f [512, 512, 1, True] \n", + " 9 -1 1 656896 ultralytics.nn.modules.block.SPPF [512, 512, 5] \n", + " 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", + " 12 -1 1 591360 ultralytics.nn.modules.block.C2f [768, 256, 1] \n", + " 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", + " 15 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] \n", + " 16 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] \n", + " 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", + " 18 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] \n", + " 19 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2] \n", + " 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", + " 21 -1 1 1969152 ultralytics.nn.modules.block.C2f [768, 512, 1] \n", + " 22 [15, 18, 21] 1 2116435 ultralytics.nn.modules.head.Detect [1, [128, 256, 512]] \n", + "Model summary: 225 layers, 11135987 parameters, 11135971 gradients, 28.6 GFLOPs\n", + "\n", + "Transferred 349/355 items from pretrained weights\n", + "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/detect/train2', view at http://localhost:6006/\n", + "Freezing layer 'model.22.dfl.conv.weight'\n", + "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks with YOLOv8n...\n", + "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed вњ…\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/gdrive/MyDrive/chicken_data/train/labels.cache... 2043 images, 10 backgrounds, 0 corrupt: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 2053/2053 [00:00<?, ?it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/gdrive/MyDrive/chicken_data/val/labels.cache... 510 images, 0 backgrounds, 0 corrupt: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 510/510 [00:00<?, ?it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Plotting labels to runs/detect/train2/labels.jpg... \n", + "\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n", + "\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.002, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)\n", + "Image sizes 640 train, 640 val\n", + "Using 2 dataloader workers\n", + "Logging results to \u001b[1mruns/detect/train2\u001b[0m\n", + "Starting training for 50 epochs...\n", + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 1/50 4.08G 1.279 1.882 1.704 11 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [10:57<00:00, 5.09s/it]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:10<00:00, 1.55it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.276 0.443 0.281 0.104\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 2/50 4.3G 1.499 1.757 1.873 16 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:56<00:00, 2.30it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.69it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.27 0.512 0.252 0.0832\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 3/50 4.13G 1.543 1.793 1.891 12 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.31it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.68it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.462 0.616 0.43 0.169\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 4/50 4.14G 1.494 1.742 1.852 16 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.33it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.73it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.386 0.487 0.38 0.162\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 5/50 4.15G 1.485 1.67 1.849 10 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:56<00:00, 2.30it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:11<00:00, 1.34it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.66 0.718 0.645 0.323\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 6/50 4.15G 1.386 1.625 1.776 12 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:57<00:00, 2.22it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.28it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.499 0.615 0.516 0.246\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7/50 4.29G 1.378 1.557 1.751 14 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:56<00:00, 2.28it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.19it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.723 0.731 0.751 0.441\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 8/50 4.15G 1.322 1.504 1.716 15 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:57<00:00, 2.25it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.21it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.644 0.655 0.665 0.383\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 9/50 4.15G 1.307 1.457 1.703 12 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:57<00:00, 2.26it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.27it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.666 0.701 0.69 0.421\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 10/50 4.15G 1.254 1.445 1.668 15 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:57<00:00, 2.23it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.21it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.666 0.764 0.717 0.425\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 11/50 4.28G 1.252 1.415 1.648 14 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [01:00<00:00, 2.12it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:08<00:00, 1.98it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.698 0.741 0.761 0.452\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 12/50 4.16G 1.212 1.362 1.621 15 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:57<00:00, 2.24it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.13it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.75 0.737 0.783 0.499\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 13/50 4.14G 1.205 1.333 1.617 12 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:58<00:00, 2.22it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.22it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.688 0.727 0.748 0.461\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 14/50 4.14G 1.181 1.34 1.606 7 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:57<00:00, 2.26it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.24it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.686 0.706 0.723 0.469\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 15/50 4.12G 1.169 1.277 1.587 14 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:57<00:00, 2.25it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.20it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.764 0.798 0.799 0.517\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 16/50 4.3G 1.145 1.273 1.567 9 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:57<00:00, 2.22it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:10<00:00, 1.60it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.765 0.727 0.805 0.518\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 17/50 4.16G 1.152 1.221 1.569 14 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:56<00:00, 2.28it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:08<00:00, 1.87it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.721 0.725 0.769 0.519\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 18/50 4.15G 1.133 1.21 1.551 9 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:56<00:00, 2.30it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:08<00:00, 1.87it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.757 0.796 0.806 0.527\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 19/50 4.28G 1.088 1.193 1.529 8 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.31it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.63it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.699 0.812 0.793 0.543\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 20/50 4.32G 1.095 1.206 1.537 10 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.30it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.65it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.741 0.804 0.815 0.563\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 21/50 4.3G 1.09 1.183 1.523 7 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.31it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.63it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.773 0.788 0.82 0.585\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 22/50 4.31G 1.06 1.15 1.503 13 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [01:00<00:00, 2.13it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:08<00:00, 1.95it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.741 0.79 0.811 0.558\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 23/50 4.28G 1.038 1.106 1.494 13 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:56<00:00, 2.26it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.06it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.768 0.764 0.783 0.538\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 24/50 4.32G 1.026 1.113 1.474 15 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:58<00:00, 2.22it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.15it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.803 0.814 0.838 0.597\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 25/50 4.14G 1.038 1.09 1.482 11 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:59<00:00, 2.18it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.15it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.735 0.768 0.814 0.581\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 26/50 4.15G 0.9912 1.051 1.439 15 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:57<00:00, 2.25it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.16it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.793 0.808 0.842 0.601\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 27/50 4.28G 1.02 1.092 1.468 12 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [01:01<00:00, 2.11it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.21it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.733 0.771 0.824 0.604\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 28/50 4.32G 0.9917 1.084 1.457 10 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:58<00:00, 2.21it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.26it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.762 0.79 0.839 0.611\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 29/50 4.31G 0.9807 1.041 1.444 15 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:58<00:00, 2.21it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:08<00:00, 1.97it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.786 0.806 0.824 0.604\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 30/50 4.15G 0.9882 1.042 1.44 10 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:56<00:00, 2.29it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:08<00:00, 1.85it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.832 0.784 0.863 0.632\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 31/50 4.12G 0.9733 1.024 1.428 12 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:56<00:00, 2.28it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.73it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.759 0.753 0.804 0.572\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 32/50 4.31G 0.9709 1.013 1.425 10 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:58<00:00, 2.21it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.00it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.799 0.793 0.837 0.604\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 33/50 4.31G 0.9353 0.9712 1.408 10 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.33it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:08<00:00, 1.84it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.74 0.763 0.807 0.592\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 34/50 4.15G 0.9409 0.9903 1.405 15 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.32it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.71it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.799 0.773 0.842 0.632\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 35/50 4.28G 0.9149 0.9361 1.383 12 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:54<00:00, 2.36it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.72it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.788 0.806 0.861 0.635\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 36/50 4.14G 0.9449 0.9741 1.4 10 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.32it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.66it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.805 0.82 0.857 0.652\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 37/50 4.15G 0.8969 0.9601 1.364 10 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.32it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:12<00:00, 1.30it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.811 0.799 0.851 0.654\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 38/50 4.15G 0.9044 0.9449 1.385 13 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.33it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.64it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.826 0.771 0.863 0.646\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 39/50 4.28G 0.9001 0.9302 1.376 14 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.34it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.66it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.799 0.794 0.854 0.647\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 40/50 4.3G 0.9039 0.9306 1.369 15 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.33it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.66it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.776 0.771 0.832 0.638\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Closing dataloader mosaic\n", + "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n", + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 41/50 4.14G 0.747 0.7615 1.353 5 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:56<00:00, 2.28it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:08<00:00, 1.78it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.829 0.791 0.868 0.663\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 42/50 4.14G 0.729 0.7255 1.334 5 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:53<00:00, 2.40it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.73it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.79 0.819 0.865 0.666\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 43/50 4.28G 0.7065 0.687 1.308 5 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:56<00:00, 2.28it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.67it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.82 0.775 0.852 0.659\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 44/50 4.3G 0.6877 0.6621 1.313 5 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:52<00:00, 2.45it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.76it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.822 0.8 0.872 0.675\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 45/50 4.15G 0.6698 0.6373 1.28 5 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:53<00:00, 2.40it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:09<00:00, 1.69it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.807 0.792 0.875 0.685\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 46/50 4.15G 0.6589 0.6249 1.281 5 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:53<00:00, 2.42it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:08<00:00, 1.91it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.834 0.817 0.886 0.695\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 47/50 4.12G 0.6471 0.5944 1.262 5 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:53<00:00, 2.42it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.09it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.843 0.776 0.87 0.684\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 48/50 4.15G 0.628 0.5957 1.247 5 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:57<00:00, 2.24it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.26it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.817 0.812 0.881 0.69\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 49/50 4.15G 0.6145 0.5842 1.239 5 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:55<00:00, 2.32it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.25it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.843 0.771 0.871 0.685\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 50/50 4.14G 0.6042 0.5691 1.219 5 640: 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 129/129 [00:57<00:00, 2.23it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:07<00:00, 2.19it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.8 0.833 0.891 0.696\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "50 epochs completed in 1.096 hours.\n", + "Optimizer stripped from runs/detect/train2/weights/last.pt, 22.5MB\n", + "Optimizer stripped from runs/detect/train2/weights/best.pt, 22.5MB\n", + "\n", + "Validating runs/detect/train2/weights/best.pt...\n", + "Ultralytics YOLOv8.0.227 рџљЂ Python-3.10.12 torch-2.1.0+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", + "Model summary (fused): 168 layers, 11125971 parameters, 0 gradients, 28.4 GFLOPs\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|в–€в–€в–€в–€в–€в–€в–€в–€в–€в–€| 16/16 [00:11<00:00, 1.37it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + " all 510 510 0.8 0.833 0.891 0.696\n", + "Speed: 0.3ms preprocess, 4.9ms inference, 0.0ms loss, 3.0ms postprocess per image\n", + "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "ultralytics.utils.metrics.DetMetrics object with attributes:\n", + "\n", + "ap_class_index: array([0])\n", + "box: ultralytics.utils.metrics.Metric object\n", + "confusion_matrix: <ultralytics.utils.metrics.ConfusionMatrix object at 0x793b1ba762f0>\n", + "curves: ['Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)']\n", + "curves_results: [[array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363,\n", + " 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.99363, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824,\n", + " 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98824, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361,\n", + " 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98361, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298,\n", + " 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298,\n", + " 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298,\n", + " 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298,\n", + " 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.98298, 0.9789, 0.9789, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665,\n", + " 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665,\n", + " 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97665, 0.97308, 0.97308, 0.97308, 0.97308, 0.96981, 0.96981, 0.96981, 0.96981, 0.96981, 0.96981, 0.96981, 0.96981, 0.96679, 0.96679,\n", + " 0.96679, 0.96679, 0.96679, 0.96679, 0.96679, 0.96679, 0.96679, 0.96679, 0.9635, 0.9635, 0.9635, 0.9635, 0.96043, 0.96043, 0.96043, 0.96043, 0.96043, 0.96043, 0.95789, 0.95789, 0.95789, 0.95789, 0.95789,\n", + " 0.95789, 0.95789, 0.95789, 0.95789, 0.95789, 0.95789, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455,\n", + " 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455, 0.95455,\n", + " 0.95455, 0.95238, 0.95238, 0.95238, 0.95238, 0.95238, 0.95238, 0.95238, 0.95238, 0.95238, 0.95238, 0.95238, 0.95238, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.94545, 0.94545,\n", + " 0.94545, 0.94545, 0.94545, 0.94545, 0.94545, 0.94545, 0.94545, 0.94545, 0.94545, 0.94545, 0.94545, 0.94545, 0.94545, 0.94545, 0.94311, 0.94311, 0.94311, 0.94311, 0.94311, 0.94311, 0.94065, 0.94065, 0.94065,\n", + " 0.93895, 0.93895, 0.93895, 0.93895, 0.93895, 0.93895, 0.93895, 0.93895, 0.93895, 0.93895, 0.93895, 0.93895, 0.93642, 0.93642, 0.93466, 0.93466, 0.93466, 0.93466, 0.93466, 0.93466, 0.93466, 0.93466, 0.93466,\n", + " 0.93466, 0.9322, 0.9322, 0.93036, 0.93036, 0.93036, 0.93036, 0.93036, 0.93036, 0.93036, 0.93036, 0.92818, 0.92818, 0.92818, 0.92818, 0.91599, 0.91599, 0.91599, 0.91599, 0.91247, 0.91247, 0.91247, 0.91247,\n", + " 0.91247, 0.91247, 0.91247, 0.91247, 0.91247, 0.91247, 0.91247, 0.91029, 0.91029, 0.90838, 0.90838, 0.90838, 0.90838, 0.90625, 0.90625, 0.90415, 0.90415, 0.90206, 0.90206, 0.90051, 0.90051, 0.90051, 0.90051,\n", + " 0.90051, 0.90051, 0.89646, 0.89646, 0.89646, 0.89646, 0.89447, 0.89447, 0.8925, 0.8925, 0.89082, 0.89082, 0.89082, 0.89082, 0.88943, 0.88943, 0.88943, 0.88943, 0.88943, 0.88943, 0.88753, 0.88753, 0.8862,\n", + " 0.8862, 0.8862, 0.8862, 0.8862, 0.88434, 0.88434, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.88318,\n", + " 0.88318, 0.88318, 0.88318, 0.88318, 0.88318, 0.8814, 0.8814, 0.88018, 0.88018, 0.88018, 0.88018, 0.88018, 0.88018, 0.87844, 0.87844, 0.87699, 0.87699, 0.87699, 0.87699, 0.87387, 0.87387, 0.87387, 0.87387,\n", + " 0.87387, 0.87387, 0.8722, 0.86696, 0.86696, 0.86696, 0.86696, 0.86344, 0.86344, 0.86214, 0.86214, 0.86214, 0.86214, 0.8587, 0.8587, 0.85161, 0.85161, 0.85043, 0.85043, 0.85043, 0.85043, 0.84713, 0.84713,\n", + " 0.84388, 0.84388, 0.84025, 0.84025, 0.84025, 0.84025, 0.84025, 0.84025, 0.84025, 0.84025, 0.84025, 0.84025, 0.83884, 0.83884, 0.83061, 0.83061, 0.82961, 0.82961, 0.82961, 0.82961, 0.82143, 0.82143, 0.82143,\n", + " 0.82143, 0.82143, 0.82143, 0.82143, 0.82143, 0.82143, 0.82016, 0.82016, 0.81605, 0.81605, 0.81605, 0.81605, 0.81518, 0.81518, 0.81518, 0.81518, 0.80769, 0.80769, 0.80688, 0.80688, 0.80688, 0.80688, 0.80418,\n", + " 0.80418, 0.80303, 0.80303, 0.80038, 0.80038, 0.79925, 0.79925, 0.79813, 0.79813, 0.79554, 0.79554, 0.79151, 0.79151, 0.78755, 0.78755, 0.78261, 0.78261, 0.78261, 0.78261, 0.78058, 0.78058, 0.78058, 0.78058,\n", + " 0.77265, 0.77265, 0.77168, 0.77168, 0.76532, 0.76532, 0.76307, 0.76083, 0.76083, 0.75601, 0.75601, 0.75514, 0.75514, 0.75427, 0.75427, 0.75085, 0.75085, 0.75, 0.75, 0.74664, 0.74664, 0.73841, 0.73841,\n", + " 0.73762, 0.73762, 0.73366, 0.73366, 0.73366, 0.73366, 0.73333, 0.73333, 0.73333, 0.73333, 0.73258, 0.73258, 0.72947, 0.72947, 0.72524, 0.72524, 0.72425, 0.72425, 0.72425, 0.72425, 0.72425, 0.72425, 0.71451,\n", + " 0.71451, 0.70833, 0.70833, 0.69909, 0.69909, 0.69637, 0.69637, 0.67544, 0.66811, 0.66811, 0.65629, 0.65629, 0.65493, 0.65493, 0.63836, 0.63836, 0.63711, 0.63711, 0.63243, 0.63243, 0.60594, 0.60594, 0.60026,\n", + " 0.60026, 0.58728, 0.58728, 0.58057, 0.58057, 0.57333, 0.57333, 0.55765, 0.55765, 0.55686, 0.55686, 0.54091, 0.54091, 0.52649, 0.52649, 0.51233, 0.51233, 0.48728, 0.48728, 0.45977, 0.45977, 0.45897, 0.45897,\n", + " 0.45301, 0.45301, 0.44764, 0.44764, 0.44567, 0.44567, 0.43852, 0.43852, 0.43277, 0.42832, 0.42832, 0.41356, 0.41356, 0.41092, 0.41092, 0.40867, 0.40867, 0.39822, 0.39822, 0.39017, 0.39017, 0.38849, 0.38849,\n", + " 0.38654, 0.38654, 0.36344, 0.36344, 0.36337, 0.36337, 0.36145, 0.36145, 0.30552, 0.30552, 0.28811, 0.28811, 0.26123, 0.26123, 0.25811, 0.25811, 0.20873, 0.20873, 0.17736, 0.17736, 0.16284, 0.16284, 0.13114,\n", + " 0.11922, 0.1073, 0.095375, 0.083453, 0.071531, 0.059609, 0.047687, 0.035766, 0.023844, 0.011922, 0]]), 'Recall', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.24543, 0.24543, 0.31974, 0.36905, 0.4088, 0.43395, 0.45794, 0.47752, 0.49629, 0.51203, 0.52621, 0.5345, 0.54618, 0.55524, 0.56293, 0.57176, 0.57714, 0.58238, 0.58797, 0.59245, 0.59803, 0.59999, 0.60597,\n", + " 0.60814, 0.61165, 0.6169, 0.61931, 0.62394, 0.62875, 0.63067, 0.63295, 0.63473, 0.63841, 0.64239, 0.64575, 0.64773, 0.65067, 0.65521, 0.65738, 0.66061, 0.66224, 0.66491, 0.66662, 0.67008, 0.6722, 0.67308,\n", + " 0.67292, 0.67507, 0.67717, 0.67807, 0.68061, 0.68193, 0.68448, 0.68665, 0.68887, 0.69278, 0.69473, 0.69606, 0.69772, 0.69884, 0.70045, 0.70251, 0.70313, 0.70451, 0.70634, 0.7073, 0.70834, 0.70861, 0.70926,\n", + " 0.71016, 0.71077, 0.71279, 0.71331, 0.71497, 0.71668, 0.71781, 0.71897, 0.71965, 0.72033, 0.72329, 0.72476, 0.72646, 0.72672, 0.72745, 0.72899, 0.73035, 0.73092, 0.73181, 0.73289, 0.73424, 0.73556, 0.73651,\n", + " 0.73823, 0.73917, 0.74067, 0.74198, 0.74438, 0.74532, 0.74575, 0.74686, 0.74785, 0.74858, 0.74869, 0.75063, 0.75053, 0.75076, 0.751, 0.75134, 0.75196, 0.75267, 0.75365, 0.75459, 0.7554, 0.75641, 0.75766,\n", + " 0.75838, 0.75916, 0.76035, 0.7609, 0.76176, 0.76201, 0.76226, 0.7619, 0.76216, 0.76171, 0.76256, 0.76467, 0.76501, 0.76666, 0.76971, 0.7689, 0.7703, 0.77151, 0.77207, 0.77238, 0.77275, 0.77326, 0.77341,\n", + " 0.773, 0.77348, 0.7761, 0.77748, 0.77802, 0.77925, 0.77959, 0.77981, 0.78071, 0.78125, 0.78191, 0.783, 0.78408, 0.78427, 0.78446, 0.78465, 0.78666, 0.7864, 0.78613, 0.78587, 0.7866, 0.78701, 0.7868,\n", + " 0.78703, 0.78726, 0.78807, 0.78849, 0.78957, 0.7904, 0.79146, 0.7916, 0.79174, 0.79189, 0.79203, 0.79194, 0.79289, 0.79383, 0.79403, 0.79423, 0.79444, 0.79468, 0.79492, 0.79538, 0.7956, 0.79529, 0.79498,\n", + " 0.79498, 0.79562, 0.79845, 0.79914, 0.79979, 0.80099, 0.79831, 0.79877, 0.7992, 0.79903, 0.79885, 0.79868, 0.79851, 0.79833, 0.79849, 0.79904, 0.79949, 0.80011, 0.80074, 0.80026, 0.80083, 0.80136, 0.80206,\n", + " 0.80155, 0.80146, 0.801, 0.80061, 0.80034, 0.80006, 0.79979, 0.79969, 0.7998, 0.79991, 0.80002, 0.80013, 0.80024, 0.80034, 0.7998, 0.79898, 0.79852, 0.79901, 0.79935, 0.79994, 0.80094, 0.80009, 0.80029,\n", + " 0.8005, 0.8007, 0.80035, 0.79995, 0.80008, 0.80132, 0.80181, 0.80204, 0.80226, 0.80249, 0.80309, 0.80366, 0.80402, 0.80414, 0.80426, 0.80437, 0.80449, 0.80461, 0.80422, 0.80455, 0.80477, 0.80498, 0.80531,\n", + " 0.80574, 0.80519, 0.80491, 0.80541, 0.80527, 0.80507, 0.80487, 0.80466, 0.80446, 0.80457, 0.80495, 0.8053, 0.80563, 0.80592, 0.80613, 0.80635, 0.80657, 0.80569, 0.80617, 0.80516, 0.80527, 0.80539, 0.80551,\n", + " 0.80562, 0.80574, 0.80586, 0.80547, 0.80506, 0.80518, 0.80572, 0.806, 0.80631, 0.80692, 0.80723, 0.80751, 0.80755, 0.80665, 0.80706, 0.80754, 0.80787, 0.80722, 0.80748, 0.80773, 0.80845, 0.80808, 0.8077,\n", + " 0.80764, 0.80891, 0.80925, 0.80959, 0.81046, 0.81108, 0.81015, 0.81041, 0.81067, 0.8104, 0.81041, 0.81199, 0.81306, 0.81353, 0.81365, 0.81377, 0.81389, 0.81401, 0.81413, 0.81425, 0.81371, 0.81313, 0.81213,\n", + " 0.81233, 0.81252, 0.81272, 0.81339, 0.81312, 0.81285, 0.81258, 0.81233, 0.8121, 0.81187, 0.81164, 0.81141, 0.81287, 0.81302, 0.81317, 0.81332, 0.81347, 0.81362, 0.81422, 0.81386, 0.81351, 0.81337, 0.81369,\n", + " 0.81401, 0.81474, 0.81448, 0.81454, 0.81459, 0.81464, 0.81469, 0.81474, 0.81479, 0.81484, 0.81489, 0.81495, 0.815, 0.81505, 0.8151, 0.81515, 0.8152, 0.8153, 0.81551, 0.81573, 0.81594, 0.81572, 0.81607,\n", + " 0.81643, 0.81657, 0.81671, 0.81684, 0.81697, 0.81711, 0.81718, 0.81671, 0.81625, 0.81633, 0.81669, 0.81676, 0.81651, 0.81627, 0.81602, 0.81578, 0.81579, 0.81585, 0.81591, 0.81597, 0.81603, 0.81609, 0.81615,\n", + " 0.81621, 0.81627, 0.81634, 0.8164, 0.81646, 0.81652, 0.81622, 0.81589, 0.81555, 0.81592, 0.81679, 0.81585, 0.81596, 0.81607, 0.81618, 0.81629, 0.81641, 0.81652, 0.81654, 0.81624, 0.81595, 0.81566, 0.81572,\n", + " 0.81649, 0.81516, 0.81477, 0.81449, 0.81465, 0.81482, 0.81498, 0.81514, 0.81541, 0.81571, 0.81761, 0.81801, 0.81817, 0.8171, 0.8165, 0.81609, 0.8163, 0.8165, 0.81671, 0.81554, 0.81511, 0.81468, 0.8155,\n", + " 0.81577, 0.81605, 0.81672, 0.81607, 0.81648, 0.81638, 0.81614, 0.8159, 0.81566, 0.81542, 0.81485, 0.81425, 0.81384, 0.81344, 0.81186, 0.81126, 0.81074, 0.81121, 0.81159, 0.81179, 0.812, 0.81221, 0.81271,\n", + " 0.81333, 0.81374, 0.81439, 0.81498, 0.8154, 0.8148, 0.81428, 0.81415, 0.81401, 0.81388, 0.81374, 0.81361, 0.81347, 0.81334, 0.81321, 0.81337, 0.81358, 0.81378, 0.81399, 0.81321, 0.81363, 0.8138, 0.81396,\n", + " 0.81413, 0.8143, 0.81456, 0.81529, 0.8155, 0.81571, 0.81592, 0.81615, 0.81643, 0.81671, 0.81677, 0.81636, 0.81595, 0.81582, 0.8161, 0.81639, 0.81644, 0.81623, 0.81603, 0.81582, 0.81562, 0.81542, 0.81523,\n", + " 0.81505, 0.81488, 0.8147, 0.81453, 0.81435, 0.81418, 0.81382, 0.81341, 0.813, 0.81241, 0.81179, 0.81061, 0.81133, 0.81245, 0.81274, 0.81299, 0.81237, 0.81187, 0.81267, 0.8131, 0.81326, 0.8123, 0.81258,\n", + " 0.81286, 0.81315, 0.81343, 0.81372, 0.81265, 0.81254, 0.81243, 0.81231, 0.8122, 0.81209, 0.81197, 0.81186, 0.81175, 0.81163, 0.81152, 0.81199, 0.81153, 0.81164, 0.8125, 0.81306, 0.81348, 0.81381, 0.81409,\n", + " 0.81438, 0.81341, 0.81441, 0.81484, 0.81346, 0.81323, 0.813, 0.81277, 0.81254, 0.81289, 0.81258, 0.81217, 0.81239, 0.8126, 0.81282, 0.81308, 0.81337, 0.81366, 0.81326, 0.81263, 0.812, 0.81136, 0.81163,\n", + " 0.81206, 0.81288, 0.81376, 0.81321, 0.81257, 0.81276, 0.81295, 0.81315, 0.81334, 0.81265, 0.81201, 0.81176, 0.8115, 0.81125, 0.81099, 0.81045, 0.80981, 0.80985, 0.81007, 0.81028, 0.8105, 0.81113, 0.81084,\n", + " 0.81055, 0.81027, 0.80948, 0.80933, 0.80901, 0.80859, 0.80881, 0.80903, 0.80925, 0.80897, 0.80846, 0.80669, 0.80626, 0.80583, 0.8058, 0.80624, 0.8058, 0.80537, 0.80525, 0.80561, 0.80596, 0.80534, 0.80469,\n", + " 0.80403, 0.80338, 0.80272, 0.80208, 0.80155, 0.80103, 0.79868, 0.79668, 0.79624, 0.7958, 0.79615, 0.79505, 0.79439, 0.7938, 0.79336, 0.79291, 0.79313, 0.79224, 0.79263, 0.79306, 0.79261, 0.79216, 0.79168,\n", + " 0.79078, 0.7896, 0.78955, 0.78887, 0.78885, 0.7891, 0.78935, 0.78942, 0.78903, 0.78865, 0.78826, 0.78703, 0.78628, 0.7856, 0.7858, 0.78605, 0.7863, 0.7857, 0.78492, 0.78462, 0.78431, 0.78401, 0.78381,\n", + " 0.78416, 0.78452, 0.78362, 0.78372, 0.78305, 0.78338, 0.78246, 0.78193, 0.78147, 0.78101, 0.7813, 0.78165, 0.78226, 0.77998, 0.77866, 0.77911, 0.77943, 0.7785, 0.77871, 0.77811, 0.77806, 0.7784, 0.77784,\n", + " 0.77728, 0.77759, 0.77703, 0.77619, 0.77582, 0.77487, 0.77518, 0.77562, 0.77418, 0.77399, 0.7738, 0.77361, 0.77342, 0.77323, 0.77304, 0.77268, 0.7714, 0.77083, 0.77026, 0.76907, 0.76753, 0.76783, 0.76813,\n", + " 0.76787, 0.76725, 0.76677, 0.76629, 0.76666, 0.76711, 0.76747, 0.76783, 0.76832, 0.7689, 0.7692, 0.7695, 0.76989, 0.77052, 0.7698, 0.76892, 0.76803, 0.76794, 0.76653, 0.76556, 0.76458, 0.76319, 0.76379,\n", + " 0.76323, 0.7625, 0.76331, 0.76119, 0.76009, 0.75935, 0.75861, 0.75787, 0.75684, 0.75581, 0.75605, 0.75545, 0.75434, 0.7528, 0.75179, 0.75079, 0.74791, 0.74654, 0.74621, 0.74556, 0.74371, 0.74206, 0.74089,\n", + " 0.73986, 0.73623, 0.73561, 0.73475, 0.73379, 0.73353, 0.73327, 0.73301, 0.73275, 0.73249, 0.73192, 0.73177, 0.73222, 0.73204, 0.73047, 0.72736, 0.72657, 0.72702, 0.72682, 0.72576, 0.72496, 0.72412, 0.72065,\n", + " 0.71985, 0.71847, 0.7124, 0.71132, 0.71078, 0.71053, 0.71028, 0.71003, 0.70978, 0.70953, 0.70743, 0.70634, 0.70548, 0.70466, 0.70149, 0.7006, 0.69978, 0.6962, 0.69553, 0.69482, 0.69304, 0.68961, 0.68894,\n", + " 0.68788, 0.68514, 0.68558, 0.68631, 0.68652, 0.68614, 0.68577, 0.68539, 0.68399, 0.68085, 0.67826, 0.67769, 0.67712, 0.67761, 0.67599, 0.67291, 0.67332, 0.67081, 0.6689, 0.66646, 0.6625, 0.6612, 0.65954,\n", + " 0.65835, 0.65629, 0.6545, 0.65346, 0.65178, 0.65037, 0.64435, 0.63625, 0.63502, 0.63226, 0.63133, 0.6307, 0.63008, 0.62944, 0.62851, 0.62731, 0.62378, 0.62035, 0.62056, 0.62078, 0.62099, 0.62102, 0.62048,\n", + " 0.61994, 0.6194, 0.61885, 0.61573, 0.61307, 0.60908, 0.60834, 0.60769, 0.60705, 0.59937, 0.59362, 0.58957, 0.58169, 0.57889, 0.5756, 0.57287, 0.57084, 0.5658, 0.56326, 0.55563, 0.55355, 0.55146, 0.54865,\n", + " 0.54444, 0.5402, 0.53642, 0.53165, 0.52523, 0.52299, 0.52154, 0.51877, 0.51933, 0.51692, 0.50846, 0.50416, 0.50267, 0.49913, 0.48918, 0.48185, 0.47897, 0.47552, 0.47091, 0.46755, 0.46576, 0.4576, 0.45052,\n", + " 0.44706, 0.43811, 0.42472, 0.41775, 0.41603, 0.41086, 0.40601, 0.40314, 0.39585, 0.39283, 0.38507, 0.378, 0.37623, 0.36133, 0.35538, 0.35046, 0.34725, 0.33911, 0.33116, 0.31843, 0.30312, 0.29447, 0.28573,\n", + " 0.27841, 0.27109, 0.26909, 0.26354, 0.25865, 0.25254, 0.24841, 0.24229, 0.21851, 0.21211, 0.20652, 0.19916, 0.18619, 0.17956, 0.1576, 0.15419, 0.14403, 0.13222, 0.11991, 0.1041, 0.098705, 0.089772, 0.087324,\n", + " 0.084152, 0.076837, 0.073113, 0.069375, 0.066903, 0.065023, 0.061762, 0.058933, 0.052695, 0.050151, 0.046543, 0.041289, 0.038716, 0.033075, 0.026394, 0.024827, 0.023257, 0.015471, 0.011506, 0.0075242, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'Confidence', 'F1'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.14012, 0.14012, 0.19087, 0.2272, 0.2581, 0.2788, 0.29911, 0.31624, 0.33292, 0.34724, 0.36041, 0.36908, 0.38031, 0.3898, 0.39809, 0.40698, 0.41318, 0.41895, 0.42476, 0.42984, 0.43616, 0.43866, 0.44552,\n", + " 0.44831, 0.45254, 0.45836, 0.46197, 0.46714, 0.47255, 0.47472, 0.47731, 0.47933, 0.48355, 0.48865, 0.49256, 0.49486, 0.4983, 0.50365, 0.50622, 0.51006, 0.51259, 0.51579, 0.51786, 0.52205, 0.52463, 0.5257,\n", + " 0.52612, 0.52876, 0.53134, 0.53245, 0.53559, 0.53722, 0.54106, 0.54378, 0.54656, 0.55151, 0.55398, 0.55635, 0.55921, 0.56064, 0.56271, 0.56539, 0.56619, 0.56798, 0.57036, 0.57161, 0.57297, 0.57333, 0.57493,\n", + " 0.57612, 0.57692, 0.57959, 0.58104, 0.58325, 0.58553, 0.58784, 0.5894, 0.59031, 0.59123, 0.59522, 0.59722, 0.59953, 0.60071, 0.60172, 0.60382, 0.60654, 0.60734, 0.60857, 0.61006, 0.61193, 0.61377, 0.6151,\n", + " 0.6175, 0.61881, 0.62092, 0.62276, 0.62616, 0.62749, 0.62809, 0.62968, 0.63109, 0.63212, 0.63321, 0.63599, 0.63679, 0.63713, 0.63747, 0.63892, 0.63981, 0.64084, 0.64227, 0.64364, 0.64482, 0.6463, 0.64812,\n", + " 0.64917, 0.65031, 0.65207, 0.65287, 0.65414, 0.6545, 0.65487, 0.65536, 0.65612, 0.6561, 0.65737, 0.6605, 0.66102, 0.66347, 0.66805, 0.66791, 0.67001, 0.67185, 0.6727, 0.67317, 0.67374, 0.67451, 0.67523,\n", + " 0.6752, 0.67594, 0.67995, 0.68208, 0.68291, 0.6848, 0.68533, 0.68567, 0.68706, 0.6879, 0.68891, 0.69061, 0.6923, 0.6926, 0.69289, 0.69318, 0.69636, 0.69624, 0.69613, 0.69601, 0.6974, 0.6988, 0.6989,\n", + " 0.69926, 0.69963, 0.7009, 0.70157, 0.70327, 0.70459, 0.70628, 0.70651, 0.70674, 0.70696, 0.70719, 0.70826, 0.70978, 0.71129, 0.71162, 0.71194, 0.71226, 0.71265, 0.71305, 0.71378, 0.71441, 0.71428, 0.71415,\n", + " 0.71438, 0.71541, 0.72, 0.72113, 0.72219, 0.72415, 0.7231, 0.72437, 0.7252, 0.72513, 0.72506, 0.72498, 0.72491, 0.72484, 0.72522, 0.72613, 0.72686, 0.72789, 0.72934, 0.72914, 0.73041, 0.73129, 0.73246,\n", + " 0.73295, 0.7332, 0.73302, 0.73286, 0.73275, 0.73263, 0.73252, 0.73255, 0.73273, 0.73291, 0.73309, 0.73328, 0.73346, 0.73364, 0.73343, 0.7331, 0.73329, 0.73412, 0.7347, 0.7357, 0.73739, 0.73734, 0.73769,\n", + " 0.73803, 0.73838, 0.73826, 0.7381, 0.73873, 0.74085, 0.74168, 0.74207, 0.74246, 0.74285, 0.74388, 0.74486, 0.74548, 0.74568, 0.74588, 0.74608, 0.74628, 0.74648, 0.74725, 0.74783, 0.7482, 0.74857, 0.74914,\n", + " 0.74988, 0.74976, 0.7499, 0.75077, 0.75078, 0.7507, 0.75062, 0.75054, 0.75046, 0.75078, 0.75143, 0.75205, 0.75263, 0.75313, 0.75351, 0.75388, 0.75426, 0.75393, 0.75512, 0.75478, 0.75498, 0.75519, 0.75539,\n", + " 0.7556, 0.7558, 0.75601, 0.75586, 0.75571, 0.75633, 0.75728, 0.75777, 0.75832, 0.75939, 0.75995, 0.76044, 0.76076, 0.76042, 0.76118, 0.76204, 0.76297, 0.76302, 0.76348, 0.76393, 0.7653, 0.76516, 0.76502,\n", + " 0.76533, 0.76761, 0.76823, 0.76884, 0.77041, 0.77153, 0.77145, 0.77192, 0.77239, 0.7725, 0.77352, 0.77641, 0.77837, 0.77924, 0.77946, 0.77968, 0.7799, 0.78012, 0.78035, 0.78057, 0.78038, 0.78017, 0.77997,\n", + " 0.78033, 0.78069, 0.78106, 0.78255, 0.78245, 0.78236, 0.78226, 0.78218, 0.78209, 0.78201, 0.78193, 0.78185, 0.7847, 0.78498, 0.78526, 0.78554, 0.78582, 0.7861, 0.78748, 0.78736, 0.78724, 0.78735, 0.78794,\n", + " 0.78854, 0.78992, 0.79117, 0.79127, 0.79136, 0.79146, 0.79156, 0.79165, 0.79175, 0.79185, 0.79194, 0.79204, 0.79214, 0.79223, 0.79233, 0.79243, 0.79252, 0.79271, 0.79312, 0.79352, 0.79392, 0.79526, 0.79594,\n", + " 0.79661, 0.79689, 0.79714, 0.79739, 0.79765, 0.7979, 0.79811, 0.79796, 0.7978, 0.79821, 0.79889, 0.79921, 0.79913, 0.79905, 0.79897, 0.79889, 0.79897, 0.79909, 0.7992, 0.79932, 0.79944, 0.79955, 0.79967,\n", + " 0.79978, 0.7999, 0.80002, 0.80013, 0.80025, 0.80037, 0.80028, 0.80017, 0.80006, 0.80103, 0.8027, 0.80272, 0.80294, 0.80315, 0.80337, 0.80358, 0.8038, 0.80402, 0.80416, 0.80406, 0.80397, 0.80387, 0.80432,\n", + " 0.80671, 0.80628, 0.80745, 0.80754, 0.80785, 0.80817, 0.80849, 0.80881, 0.80934, 0.80992, 0.81368, 0.81449, 0.81512, 0.81478, 0.8146, 0.81455, 0.81496, 0.81536, 0.81577, 0.81564, 0.81551, 0.81537, 0.81728,\n", + " 0.81783, 0.81839, 0.81973, 0.82042, 0.82125, 0.82137, 0.8213, 0.82123, 0.82115, 0.82108, 0.82091, 0.82072, 0.8206, 0.82048, 0.81999, 0.81981, 0.81972, 0.82068, 0.82144, 0.82187, 0.82229, 0.82272, 0.82374,\n", + " 0.82502, 0.82588, 0.8272, 0.82843, 0.82929, 0.82939, 0.82924, 0.8292, 0.82916, 0.82912, 0.82908, 0.82904, 0.82901, 0.82897, 0.82893, 0.8293, 0.82973, 0.83016, 0.8306, 0.83111, 0.83197, 0.83232, 0.83267,\n", + " 0.83302, 0.83337, 0.83391, 0.83546, 0.8359, 0.83634, 0.83678, 0.83726, 0.83786, 0.83845, 0.83881, 0.83869, 0.83858, 0.83875, 0.83934, 0.83994, 0.84022, 0.84017, 0.84011, 0.84005, 0.84, 0.83994, 0.83989,\n", + " 0.83984, 0.83979, 0.83974, 0.83969, 0.83964, 0.83959, 0.83949, 0.83938, 0.83926, 0.8391, 0.83893, 0.8386, 0.84027, 0.84269, 0.8433, 0.84388, 0.84371, 0.84371, 0.84544, 0.84636, 0.84708, 0.84692, 0.84754,\n", + " 0.84816, 0.84877, 0.84939, 0.85001, 0.8501, 0.85007, 0.85004, 0.85001, 0.84998, 0.84995, 0.84992, 0.84989, 0.84986, 0.84983, 0.8498, 0.85091, 0.85141, 0.85251, 0.8544, 0.85564, 0.85659, 0.85731, 0.85794,\n", + " 0.85858, 0.85844, 0.86108, 0.86204, 0.86179, 0.86174, 0.86168, 0.86162, 0.86157, 0.86256, 0.86327, 0.86342, 0.86391, 0.86439, 0.86488, 0.86548, 0.86614, 0.8668, 0.86685, 0.8667, 0.86655, 0.86639, 0.86721,\n", + " 0.8682, 0.87008, 0.87208, 0.87206, 0.87191, 0.87235, 0.8728, 0.87325, 0.87369, 0.8737, 0.87355, 0.87349, 0.87344, 0.87338, 0.87332, 0.87319, 0.87305, 0.87342, 0.87393, 0.87444, 0.87495, 0.87694, 0.87687,\n", + " 0.87681, 0.87674, 0.87657, 0.87752, 0.87828, 0.87846, 0.87898, 0.8795, 0.88001, 0.88011, 0.87999, 0.87961, 0.87951, 0.87942, 0.88, 0.88136, 0.88127, 0.88118, 0.88146, 0.88231, 0.88315, 0.88304, 0.8829,\n", + " 0.88276, 0.88262, 0.88248, 0.88234, 0.88223, 0.88211, 0.8816, 0.88117, 0.88107, 0.88097, 0.88206, 0.88273, 0.88259, 0.88246, 0.88236, 0.88227, 0.88426, 0.88406, 0.88512, 0.8862, 0.8861, 0.88601, 0.88591,\n", + " 0.88572, 0.88547, 0.88744, 0.8873, 0.8877, 0.88834, 0.88898, 0.88941, 0.88933, 0.88925, 0.88917, 0.88892, 0.88876, 0.88862, 0.88922, 0.88987, 0.89051, 0.89067, 0.89051, 0.89045, 0.89039, 0.89033, 0.89042,\n", + " 0.89134, 0.89225, 0.8923, 0.89338, 0.89487, 0.89641, 0.89623, 0.89613, 0.89604, 0.89595, 0.8968, 0.89773, 0.90043, 0.9, 0.89979, 0.90098, 0.90205, 0.90187, 0.90331, 0.90398, 0.90498, 0.90623, 0.90613,\n", + " 0.90603, 0.9083, 0.9082, 0.90805, 0.91023, 0.91007, 0.91116, 0.9124, 0.91222, 0.91219, 0.91216, 0.91212, 0.91209, 0.91206, 0.91203, 0.91197, 0.91175, 0.91165, 0.91155, 0.91135, 0.91168, 0.91252, 0.91336,\n", + " 0.9158, 0.91569, 0.91562, 0.91554, 0.91671, 0.91799, 0.91903, 0.92006, 0.92146, 0.92313, 0.924, 0.92487, 0.92599, 0.92816, 0.92806, 0.92793, 0.92841, 0.93026, 0.93006, 0.92993, 0.9298, 0.9296, 0.93192,\n", + " 0.93212, 0.93202, 0.93458, 0.93438, 0.93424, 0.93414, 0.93404, 0.93395, 0.93639, 0.93701, 0.93891, 0.93883, 0.9387, 0.93851, 0.93838, 0.93826, 0.9379, 0.94042, 0.94238, 0.94301, 0.9428, 0.94261, 0.94524,\n", + " 0.94512, 0.94472, 0.94465, 0.94455, 0.94444, 0.94441, 0.94438, 0.94435, 0.94432, 0.94429, 0.94423, 0.94744, 0.94896, 0.94995, 0.94979, 0.94947, 0.94996, 0.95151, 0.95234, 0.95223, 0.95215, 0.95207, 0.95173,\n", + " 0.95165, 0.95329, 0.95394, 0.95383, 0.95378, 0.95376, 0.95373, 0.95371, 0.95368, 0.95366, 0.95346, 0.95335, 0.95327, 0.95319, 0.95287, 0.95279, 0.95271, 0.95235, 0.95228, 0.95221, 0.95203, 0.95168, 0.95162,\n", + " 0.95151, 0.9515, 0.95321, 0.95602, 0.95787, 0.95784, 0.9578, 0.95777, 0.95764, 0.95736, 0.95712, 0.95707, 0.95702, 0.96023, 0.96029, 0.96122, 0.96349, 0.96329, 0.96664, 0.96647, 0.9667, 0.96968, 0.96957,\n", + " 0.96949, 0.97303, 0.97292, 0.9766, 0.97651, 0.97644, 0.97612, 0.97568, 0.97561, 0.97546, 0.97541, 0.97538, 0.97534, 0.97531, 0.97525, 0.97519, 0.97499, 0.97494, 0.97599, 0.97705, 0.9781, 0.9789, 0.97887,\n", + " 0.97884, 0.97882, 0.98293, 0.98281, 0.9827, 0.98254, 0.98251, 0.98248, 0.98246, 0.98214, 0.9819, 0.98172, 0.98138, 0.98125, 0.98111, 0.98098, 0.98089, 0.98066, 0.98054, 0.98017, 0.98007, 0.97997, 0.97983,\n", + " 0.97962, 0.9794, 0.97921, 0.97896, 0.97862, 0.97849, 0.97842, 0.97851, 0.9836, 0.9835, 0.98313, 0.98294, 0.98288, 0.98272, 0.98808, 0.98784, 0.98775, 0.98763, 0.98747, 0.99171, 0.99359, 0.99345, 0.99331,\n", + " 0.99325, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 'Confidence', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.98824, 0.98824, 0.98431, 0.98235, 0.98235, 0.97843, 0.97647, 0.97451, 0.97451, 0.97451, 0.97451, 0.96863, 0.96863, 0.96471, 0.96078, 0.96078, 0.95686, 0.9549, 0.9549, 0.95294, 0.95098, 0.94902, 0.94706,\n", + " 0.9451, 0.94331, 0.94314, 0.93922, 0.93922, 0.93922, 0.93922, 0.93922, 0.93922, 0.93922, 0.93725, 0.93725, 0.93725, 0.93725, 0.93725, 0.93725, 0.93725, 0.93529, 0.93529, 0.93529, 0.93529, 0.93529, 0.93529,\n", + " 0.93333, 0.93333, 0.93333, 0.93333, 0.93333, 0.93333, 0.93137, 0.93137, 0.93137, 0.93137, 0.93137, 0.92946, 0.92745, 0.92745, 0.92745, 0.92745, 0.92745, 0.92745, 0.92745, 0.92745, 0.92745, 0.92745, 0.92549,\n", + " 0.92549, 0.92549, 0.92549, 0.92353, 0.92353, 0.92353, 0.92157, 0.92157, 0.92157, 0.92157, 0.92157, 0.92157, 0.92157, 0.91961, 0.91961, 0.91961, 0.91765, 0.91765, 0.91765, 0.91765, 0.91765, 0.91765, 0.91765,\n", + " 0.91765, 0.91765, 0.91765, 0.91765, 0.91765, 0.91765, 0.91765, 0.91765, 0.91765, 0.91765, 0.91569, 0.91569, 0.91373, 0.91373, 0.91373, 0.91176, 0.91176, 0.91176, 0.91176, 0.91176, 0.91176, 0.91176, 0.91176,\n", + " 0.91176, 0.91176, 0.91176, 0.91176, 0.91176, 0.91176, 0.91176, 0.9098, 0.90908, 0.90784, 0.90784, 0.90784, 0.90784, 0.90784, 0.90784, 0.90588, 0.90588, 0.90588, 0.90588, 0.90588, 0.90588, 0.90588, 0.90501,\n", + " 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90392, 0.90387, 0.90337, 0.90287, 0.90236, 0.90196, 0.90071, 0.9,\n", + " 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.89804, 0.89804, 0.89804, 0.89804, 0.89804, 0.89804, 0.89804, 0.89804, 0.89804, 0.8976, 0.89703, 0.89645,\n", + " 0.89608, 0.89608, 0.89608, 0.89608, 0.89608, 0.89608, 0.89097, 0.8902, 0.89002, 0.8897, 0.88938, 0.88906, 0.88874, 0.88841, 0.88824, 0.88824, 0.88824, 0.88824, 0.88764, 0.88675, 0.88627, 0.88627, 0.88627,\n", + " 0.88431, 0.88373, 0.88289, 0.88217, 0.88166, 0.88116, 0.88066, 0.88039, 0.88039, 0.88039, 0.88039, 0.88039, 0.88039, 0.88039, 0.87938, 0.87786, 0.87647, 0.87647, 0.87647, 0.87647, 0.87647, 0.87451, 0.87451,\n", + " 0.87451, 0.87451, 0.87385, 0.87312, 0.87255, 0.87255, 0.87255, 0.87255, 0.87255, 0.87255, 0.87255, 0.87255, 0.87255, 0.87255, 0.87255, 0.87255, 0.87255, 0.87255, 0.87059, 0.87059, 0.87059, 0.87059, 0.87059,\n", + " 0.87059, 0.86947, 0.86863, 0.86863, 0.8683, 0.86793, 0.86756, 0.8672, 0.86683, 0.86667, 0.86667, 0.86667, 0.86667, 0.86667, 0.86667, 0.86667, 0.86667, 0.86509, 0.86462, 0.86275, 0.86275, 0.86275, 0.86275,\n", + " 0.86275, 0.86275, 0.86275, 0.86204, 0.86131, 0.86078, 0.86078, 0.86078, 0.86078, 0.86078, 0.86078, 0.86078, 0.86046, 0.85885, 0.85882, 0.85882, 0.85837, 0.85686, 0.85686, 0.85686, 0.85676, 0.85609, 0.85542,\n", + " 0.8549, 0.8549, 0.8549, 0.8549, 0.8549, 0.8549, 0.85294, 0.85294, 0.85294, 0.85222, 0.85098, 0.85098, 0.85098, 0.85098, 0.85098, 0.85098, 0.85098, 0.85098, 0.85098, 0.85098, 0.85002, 0.84899, 0.84706,\n", + " 0.84706, 0.84706, 0.84706, 0.84677, 0.84629, 0.84582, 0.84535, 0.84491, 0.84451, 0.8441, 0.8437, 0.8433, 0.84314, 0.84314, 0.84314, 0.84314, 0.84314, 0.84314, 0.84283, 0.84221, 0.84159, 0.84118, 0.84118,\n", + " 0.84118, 0.84118, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83922, 0.83725, 0.83725,\n", + " 0.83725, 0.83725, 0.83725, 0.83725, 0.83725, 0.83725, 0.83717, 0.83637, 0.83556, 0.83529, 0.83529, 0.83509, 0.83467, 0.83425, 0.83382, 0.8334, 0.83333, 0.83333, 0.83333, 0.83333, 0.83333, 0.83333, 0.83333,\n", + " 0.83333, 0.83333, 0.83333, 0.83333, 0.83333, 0.83333, 0.83281, 0.83224, 0.83166, 0.83137, 0.83137, 0.82941, 0.82941, 0.82941, 0.82941, 0.82941, 0.82941, 0.82941, 0.8293, 0.82879, 0.82829, 0.82779, 0.82745,\n", + " 0.82651, 0.82424, 0.82223, 0.82157, 0.82157, 0.82157, 0.82157, 0.82157, 0.82157, 0.82157, 0.82157, 0.82157, 0.82125, 0.81943, 0.81842, 0.81765, 0.81765, 0.81765, 0.81765, 0.81545, 0.81472, 0.81399, 0.81373,\n", + " 0.81373, 0.81373, 0.81373, 0.81176, 0.81176, 0.81145, 0.81104, 0.81064, 0.81024, 0.80984, 0.80889, 0.80788, 0.8072, 0.80653, 0.80389, 0.80288, 0.80196, 0.80196, 0.80196, 0.80196, 0.80196, 0.80196, 0.80196,\n", + " 0.80196, 0.80196, 0.80196, 0.80196, 0.80196, 0.80071, 0.79986, 0.79963, 0.79941, 0.79919, 0.79896, 0.79874, 0.79852, 0.79829, 0.79807, 0.79804, 0.79804, 0.79804, 0.79804, 0.79608, 0.79608, 0.79608, 0.79608,\n", + " 0.79608, 0.79608, 0.79608, 0.79608, 0.79608, 0.79608, 0.79608, 0.79608, 0.79608, 0.79608, 0.79586, 0.79519, 0.79452, 0.79412, 0.79412, 0.79412, 0.79396, 0.79362, 0.79329, 0.79295, 0.79262, 0.79228, 0.79198,\n", + " 0.79169, 0.7914, 0.79112, 0.79083, 0.79054, 0.79026, 0.78966, 0.78899, 0.78832, 0.78736, 0.78636, 0.78444, 0.78431, 0.78431, 0.78431, 0.78428, 0.78327, 0.78235, 0.78235, 0.78235, 0.78203, 0.78039, 0.78039,\n", + " 0.78039, 0.78039, 0.78039, 0.78039, 0.77837, 0.77819, 0.77801, 0.77782, 0.77764, 0.77746, 0.77727, 0.77709, 0.77691, 0.77673, 0.77654, 0.77647, 0.77522, 0.77451, 0.77451, 0.77451, 0.77451, 0.77451, 0.77451,\n", + " 0.77451, 0.77287, 0.77255, 0.77255, 0.77026, 0.7699, 0.76953, 0.76917, 0.7688, 0.76863, 0.76752, 0.76667, 0.76667, 0.76667, 0.76667, 0.76667, 0.76667, 0.76667, 0.76592, 0.76491, 0.76391, 0.7629, 0.76275,\n", + " 0.76275, 0.76275, 0.76275, 0.7618, 0.76079, 0.76078, 0.76078, 0.76078, 0.76078, 0.75958, 0.75857, 0.75817, 0.75777, 0.75737, 0.75696, 0.75611, 0.75511, 0.7549, 0.7549, 0.7549, 0.7549, 0.7545, 0.75406,\n", + " 0.75361, 0.75316, 0.75193, 0.75098, 0.74987, 0.74902, 0.74902, 0.74902, 0.74902, 0.74848, 0.74767, 0.74494, 0.74427, 0.7436, 0.74314, 0.74291, 0.74224, 0.74157, 0.74118, 0.74118, 0.74118, 0.74021, 0.7392,\n", + " 0.7382, 0.73719, 0.73619, 0.7352, 0.7344, 0.7336, 0.73002, 0.72698, 0.72631, 0.72564, 0.72549, 0.72322, 0.72221, 0.72133, 0.72066, 0.71999, 0.71903, 0.71769, 0.71765, 0.71764, 0.71697, 0.7163, 0.71557,\n", + " 0.71423, 0.71247, 0.71111, 0.71011, 0.7098, 0.7098, 0.7098, 0.70964, 0.70907, 0.70849, 0.70792, 0.7061, 0.70498, 0.70398, 0.70392, 0.70392, 0.70392, 0.70286, 0.70171, 0.70127, 0.70082, 0.70037, 0.7,\n", + " 0.7, 0.7, 0.69855, 0.69804, 0.69608, 0.69566, 0.69432, 0.69355, 0.69288, 0.69221, 0.69216, 0.69216, 0.69151, 0.6882, 0.68627, 0.68627, 0.68615, 0.68481, 0.68431, 0.68301, 0.68235, 0.68218, 0.68138,\n", + " 0.68057, 0.67977, 0.67897, 0.67776, 0.67599, 0.67465, 0.67451, 0.67451, 0.67243, 0.67216, 0.67189, 0.67162, 0.67135, 0.67109, 0.67082, 0.67031, 0.6685, 0.66769, 0.66689, 0.66521, 0.66275, 0.66275, 0.66275,\n", + " 0.66109, 0.66022, 0.65955, 0.65888, 0.65882, 0.65882, 0.65882, 0.65882, 0.65882, 0.65882, 0.65882, 0.65882, 0.65882, 0.65866, 0.65765, 0.65643, 0.6549, 0.65385, 0.6519, 0.65056, 0.64922, 0.64732, 0.64706,\n", + " 0.64616, 0.64515, 0.6451, 0.64217, 0.64067, 0.63966, 0.63866, 0.63765, 0.63506, 0.63333, 0.63281, 0.632, 0.63051, 0.62844, 0.6271, 0.62576, 0.62192, 0.61893, 0.61765, 0.61648, 0.61404, 0.61187, 0.60919,\n", + " 0.60785, 0.60312, 0.60232, 0.60122, 0.59997, 0.59963, 0.5993, 0.59896, 0.59863, 0.59829, 0.59756, 0.59608, 0.59608, 0.59545, 0.59344, 0.58947, 0.58824, 0.58824, 0.58765, 0.58631, 0.5853, 0.58424, 0.57986,\n", + " 0.57885, 0.57647, 0.56847, 0.56713, 0.56646, 0.56616, 0.56585, 0.56554, 0.56523, 0.56492, 0.56233, 0.56099, 0.55993, 0.55893, 0.55506, 0.55398, 0.55297, 0.54863, 0.54783, 0.54697, 0.54482, 0.54071, 0.53991,\n", + " 0.53865, 0.53529, 0.53529, 0.53529, 0.53497, 0.53452, 0.53408, 0.53363, 0.53198, 0.52827, 0.52523, 0.52456, 0.52389, 0.52353, 0.52158, 0.51765, 0.51747, 0.51457, 0.51139, 0.50859, 0.50392, 0.50163, 0.49974,\n", + " 0.4984, 0.49511, 0.49311, 0.491, 0.48912, 0.48756, 0.4809, 0.47203, 0.47069, 0.4677, 0.4667, 0.46602, 0.46535, 0.46466, 0.46366, 0.46237, 0.45859, 0.4549, 0.4549, 0.4549, 0.4549, 0.45476, 0.45419,\n", + " 0.45362, 0.45304, 0.45158, 0.44829, 0.4455, 0.44133, 0.44056, 0.43989, 0.43922, 0.43129, 0.4254, 0.42129, 0.41335, 0.41055, 0.40727, 0.40457, 0.40256, 0.3976, 0.39511, 0.3877, 0.38569, 0.38368, 0.38099,\n", + " 0.37697, 0.37295, 0.36938, 0.36491, 0.35893, 0.35687, 0.35553, 0.35294, 0.3528, 0.3506, 0.3429, 0.33902, 0.33768, 0.33452, 0.32505, 0.31864, 0.31613, 0.31314, 0.30917, 0.30588, 0.30417, 0.29726, 0.29133,\n", + " 0.28844, 0.2805, 0.26961, 0.26402, 0.26265, 0.25854, 0.25471, 0.25246, 0.24677, 0.24442, 0.23844, 0.23304, 0.2317, 0.2205, 0.21608, 0.21246, 0.2101, 0.20417, 0.19844, 0.18937, 0.17864, 0.17266, 0.16667,\n", + " 0.16172, 0.1568, 0.15546, 0.15177, 0.14854, 0.14452, 0.14182, 0.13785, 0.12265, 0.11863, 0.11515, 0.11059, 0.10265, 0.098634, 0.085542, 0.083533, 0.077601, 0.07079, 0.063778, 0.054908, 0.051915, 0.046995, 0.045655,\n", + " 0.043924, 0.039954, 0.037944, 0.035934, 0.034609, 0.033604, 0.031865, 0.030361, 0.02706, 0.02572, 0.023826, 0.02108, 0.01974, 0.016816, 0.013373, 0.012569, 0.011765, 0.007796, 0.0057862, 0.0037763, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'Confidence', 'Recall']]\n", + "fitness: 0.715632899213726\n", + "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']\n", + "maps: array([ 0.69614])\n", + "names: {0: 'chicken'}\n", + "plot: True\n", + "results_dict: {'metrics/precision(B)': 0.8002760360575804, 'metrics/recall(B)': 0.8328095602605406, 'metrics/mAP50(B)': 0.8910527000755851, 'metrics/mAP50-95(B)': 0.696141810229075, 'fitness': 0.715632899213726}\n", + "save_dir: PosixPath('runs/detect/train2')\n", + "speed: {'preprocess': 0.2738330878463446, 'inference': 4.863942838182637, 'loss': 0.0007461099063648897, 'postprocess': 2.9573692994959218}\n", + "task: 'detect'" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Ваша задача - добиться значения метрики mAP50 РЅРµ ниже 0.8 для вашего класса без переобучения**\n", + "\n", + "РЈ вас РІ датасете должно быть РЅРµ меньше 300 изображений для каждого (если РёС… больше 1) классов. Для улучшения метрики РІС‹ можете экспрериментировать СЃ размером взятой Р·Р° РѕСЃРЅРѕРІСѓ модели (nano, small, medium), количеством СЌРїРѕС…, размером батча.\n", + "Р’ качестве начальных значений предлагаю взять модель small, 50 СЌРїРѕС… Рё батч размером 16.\n", + "Понять, что Сѓ вас произошло переобучение, можно РїРѕ графику mAP, сохраняемому РІ папке runs/detect/train/ СЃ результатами обучения вашей модели." + ], + "metadata": { + "id": "dn_4Y6sAmJmu" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4.2 Трекинг экспериментов (1 балл)" + ], + "metadata": { + "id": "zjxBTdhnUPsK" + } + }, + { + "cell_type": "markdown", + "source": [ + "Современное компьютерное зрение преимущественно базируется РЅР° алгоритмах машинного обучения. Практическое применение алгоритмов машинного обучения неразрывно связано СЃ проведением множества экспериментов, отличающихся между СЃРѕР±РѕР№ используемыми наборами данных или гиперпараметрами. \\\n", + "Для удобства систематизации информации Рѕ таких экспериментах СЃРѕ временем появились трекеры экспериментов. Рти инструменты представляют РёР· себя РџРћ, включащее возможность интеграции СЃ фреймворками машинного обучения Рё предоставляющее базу данных Рё интерфейс для записи, хранения Рё просмотра (РІ С‚.С‡. РІ С…РѕРґРµ обучения) информации Рѕ проводимых экспериментах.\\\n", + "Вам предлагается самостоятельно ознакомиться СЃ разделом документации Ultralytics, посвящённом возможностям интеграции СЃ [трекерами экспериментов](https://www.ultralytics.com/ru/blog/exploring-yolov8-ml-experiment-tracking-integrations). Для простоты предъявления результатов предлагается выбрать РѕРґРЅСѓ РёР· облачных платформ:\n", + "\n", + "* Weights&Biases\n", + "* CometML\n", + "* ClearML\n", + "\n", + "Для использования этих сервисов вам необходимо будет завести там учётную запись Рё получить API-ключ или РґСЂСѓРіРёРµ данные для авторизации. Подробности описаны РІ документации.\n", + "\n" + ], + "metadata": { + "id": "e5un7aRlNb4c" + } + }, + { + "cell_type": "markdown", + "source": [ + "# 5 Проверка работы детектора" + ], + "metadata": { + "id": "jgKxU3psRA5q" + } + }, + { + "cell_type": "markdown", + "source": [ + "Проверка обучения моей модели РЅР° моём датасете:" + ], + "metadata": { + "id": "vHXAlnn0PSNO" + } + }, + { + "cell_type": "code", + "source": [ + "!wget -q https://avatars.dzeninfra.ru/get-zen_doc/3337090/pub_5ea1b0172b5f267d73aefcf6_5ea1b0eedd625f3a39c04f2a/scale_1200 -O japanese_gravure.jpg" + ], + "metadata": { + "id": "rCnLZ_YWNy8f" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from ultralytics import YOLO\n", + "import matplotlib.pyplot as plt\n", + "import cv2\n", + "model_path = \"runs/detect/train2/weights/best.pt\"\n", + "dataset_dir = \"/content/gdrive/MyDrive/chicken_data/\" # путь Рє папке СЃ вашим датасетом\n", + "model = YOLO(dataset_dir + model_path) # берём модель размера nano\n", + "results = model.predict(\"japanese_gravure.jpg\")\n", + "result = results[0]\n", + "res_plotted = result.plot()\n", + "plt.imshow(cv2.cvtColor(res_plotted, cv2.COLOR_BGR2RGB))\n", + "plt.axis('off')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 458 + }, + "id": "iG3uZzyEOaE4", + "outputId": "c1939620-3526-4b2e-b93e-302018aeedc7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "image 1/1 /content/japanese_gravure.jpg: 640x480 (no detections), 13.0ms\n", + "Speed: 3.8ms preprocess, 13.0ms inference, 0.9ms postprocess per image at shape (1, 3, 640, 480)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASIAAAGFCAYAAABZp/7gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aZRl2XXfB/72Oefe915E5DzUlIWqwoxCoTCQAEmRAEnRGilZlO12t2S3bMu23N1ebfdqr17dbX/or72W3W77Q0uyLdkaSMkiJdKkIImzSMxjAagBBaAGoObKzMohMiLee/fec87uD/uce28UQCJrNXrxS91aUZkZ8eK9e8/ZZw///d97i6oqb15vXm9eb15/hJf7o76BN683rzevN683FdGb15vXm9cf+fWmInrzevN68/ojv95URG9eb15vXn/k15uK6M3rzevN64/8elMRvXm9eb15/ZFfbyqiN683rzevP/LrTUX05vXm9eb1R36F233h0898GVXFOYdzjpwzpEzO9pVSQgS67REiniYsySqIZkQ3qADek4CcMyEqqoIQ0CwombCEFDM5wzAksmakEZom0A8dIiBZ8OqJMZb78TRByDnhvcc+xpPIJE2g9nnOObIqKSW884jAEKO9NmdEwDuPcw7JiiCICAioKjFFEPucGBMiDpGGpD3b7pDgG0QaGucQwHmHEwcCR0eHDDGxs7MLOFLMOO8Zhp6cFe8dIoKQiTESQrB/i9B3kbZtAVgul/RDR9evcc4TQoOTQNdtgQg4YswIjtA0+CD2PKKIQFYlpoT3jpwyCLY+KdO2LSml8lnCwa1D+15OtnYkhqEjhEDO9vyprJ+IsFlvaNuG4BqceNq2Zb0+QsTRLheknAFbS4C+7/HemywEj4gjxgEKvdY5hzjHZrO2/fOOJnhUAXUoinMyvjZnkwXA1g9QzYgICnTbLd4H+j6xXC4ZhoGmbUETmd5epxnNivhAViFnJQSPqrI5PGTZeEBIKeJDMNlwnuwCTdPiNaJAzOBxaFTikBEiKXWAjM/sm4ACIXhiTIQQiDHjnKdtmnI/CrhxzdtFgwCx61DN5KiICKFpSUFImkb58d6P57PuUU6JphG8a1GCnWGneCc48eQsaHY47+nTAFT5KWdBBRFIOQIZUIahowkNmqFtWhDIPpEiqAoxJj7y4Z/5wSkiVXtogJQSKSUowkURipQSoWloQkPO4LIizpFSi3hHxv6tuSc1imZFNYGzE5GTKYykim8DGgeaIMShJ4htIALRZRJK8IF+6FE8IQh9GvA+EPOAAiqZrNk2UpWsiUREyaAgHtCEZLt/pxmScjR0hKbFiWO72bK7u0vjArEfkJTxqogoXbfFedhpl4gEU76pJ+eEU2gaz2azRUJLG4SE0nVrUGUlCzQOLBamAFQVnEO8I2nGO0/WTLP0OA+KMuSOIXckEtu+YyW75DwwxJ62EcQ5Gh+AcqhcYMj23pozITTkJGiGnCCrKURVRxczqkK37mjbwKA9Q9cTmobUJ7xzeNfgXCAnQBxOoA0LckosmiUhBJJm1GWO+g1ZFB+giwMpZ3zwJqg5IwGGZAogoaSYyOVAtm1L3/dIFsKiMW2JoqJsN1tCaBDnEO+JQ8QRAGfPI0I2+8HQR5w3o+V8YEgJ10JkIEmk325p29Zk1YkpAnHkGEelMXSDHeymJYkpOecD4hxxiATfMvQR0oA66IeerIm2aYl9RLKSAVxDSomYlJyVNpgx74YBVWXhAkkTGge6uClnTfBuQdps8cHRxYGsGc2RlCKCt6+YkaCkHEfjWg1vVdTDMNA0gRUtMfbEpITQgMDe3oqcOrxvUMl4B07td0Q8OSkKeHHkHImpA7Hn2PYDq6UAjkEjbeshJXIWRMxpuZ3rDSki7/2oiIahx4sWT0jMaongnWcYIm3bkMW8m9AuzIrmiMYeUiQXa2YWV3CApkwXe4JvEQGnGe0Tksx7Wi6WDHmgzz2o0vf2p4iSBtP+rlGcCDFnE37viSkS44CI2H3lXKyNkIqXJ86hIsRongXYQvrQoAgpZYaYUDWrlVURR1ESJjRDVFBFFTRn4rbD+UCLeS1eHIumNY8kKwQH3pnSUIHsaEJgGAZy8Qy23Za9vT1T0o2j3/aExpNRvHhUM148OUVab4cJFZpFIOeunGGz7jlGJJvhCOXZkma2Q48TwYnQNC3D0CN4VsslQ4ysFi3BeXJKCNAslsQhogKxH+wwp2xellNTNhoRbxY0oya4mkkxmhX3HifmmeZseybeQTavOA0ZRBjiQAieEEz2Fk1j3lVSYlGe3nliGmgWLTkl+m4ghIaUBrpuTdsucIId9OxAlDRExAmasimhobdD6wXNCVQggxOh70xhJc3EZN4gIjjnGTpbO8nZ5CZnmsbjSHhJZCLONcScixHOiDiG3j6vRhPDMOC9EIcB55ydNRGyMwdg6JVesykgccVba3FiS749PMQXZ4CmYciJQdW8QufIKbEVoWsaUlZSUparXbwPpBhtjRsz0CEEYh/tvqLDh2DGLDR0cQuaiamn224hK94LodnBO4eKK96oeeH/f1FEqkqMkaFo8X7oxsUENTc8LFBVum5D1ogTh2PAacTlAe8U9dlCCAFxipLIKZmHkyKiHu8CiYF+c8jOaocYIzIcsgrQ5B4EJAg5ZYJ4mjaUBdvSdx2SFHxrljwEeuyefVF8XdebcJvOQYGhH/DiCAI6bEjbSCPCIuyYOxo3BG+b5Lyw0wg5DzRNS0qeOHSoGwheRq/RNy3aKSFnPA4PpCGRRWi8p/GCaMKJw6sSh46lk3FNvSRC2uKyMhwe4eKW4DyiihuEhXi2cY1qz3LpGSSaUus3qK7xriVFoZGGJrREEpR9jAlWiyW4gWVjFjTnHo0RNOOGHhl6HK15qJJM4cTi7jtQhRjXCKbQU0pIhtY5E8aUyDkSnIMEwZkxSH1EUyamSNs0xcANNE1Dij0LyQzDwImFBwaCK/LizXj1/YBzLaoez4B3HUETMUdWrSmhOGxYBU/jhDhEGgUvC2LfsRC73xx7nIMcI03ToLHDiSMBwQXECd4paEdAiCkSvIcoiAo5DSzaclCzN4U39CRNODJtI0BEc8Lh2PZb2kULWWlCIGpEPeZF52DyIOAFxAGYsXXekVIkk2hdQzd05OEA8eC8p4nRFCnQuNaMTc4GE6gjaaLxgdgdEVAQoRkG+nVmq2JnQRTNkRAcOQ8jDFPhi7BcMQwDw5Bx4ondlrZxhBxoXEsIC2LsERJgnqj3zQ9WEc1jRc2ZYegQMmjGezGt2jRIjuTYgSScyzROaNnQBEG0RxhIccA1sFq0NK2HEkINeUvOimrEiVlC7/bMC5EAoojm4iJmYrTFIiezSpLRbHFyci19Sohkcu7JbS5eRiTGyEIS7WJJcBC8A6UIt7m1ToRtFwsOMtC0nryEEMB7C9vQjhgTqls0BWCBXzb0/RYAcR5IpBIr931H0y5IMRVP0NM0hm3kHMe1zWpYkVkTR0pr2qYhxlS2zA7iatWYB7cLzWJBHI7YpC07J04iKDEH4pBIzry73ROeg25rgpUMSxs2B5w5tUe3PcJ5RyaTWlMe3vfQCs5l1kO00A4tmEVH7AeC9zSLQD8MBdcAEHzxQJwI2SdCI/T9wNAPOLfA6RbnlOXOkn44pAmBFBIhFLwRIWsmZ3v25WpZsA5wvmEYzEsY+p6+X+NDg/eJHBTvE9IKqW3x3rNZr1m2ruBFhyRJIx4WY2LoM7vLBd5num5LN0RwjqzOwkDEPB8EUkJCIDQNm75n0TSQtuaFJ4gJBKEJ0LYOT0bzgA/mhZ86uwQEyYrmgeSiGdMQQJIpm2SYWM6GccUYISttCKQ80GrC5TV7J1acOXOS0HjWm8B6vWaz3eDdlrZd4MWxXC6KN2mYk+GvW1zwtK0n5wV9r/R9Z7KaB4KDBoMYur5jWPeEdkF3JDh1nFzskpNjcWqBBodvBpAtKTm8axFXcF/NYxT1A1NEOWdEldYLrvW0vuFou6bRgdB37C2EpjEsxy+VduEQl/FOcQnQiPcVwFLQSNNQYmElq7AswKABYQnEYnVFy+ebByVkfAAXDF4SlRJyJHLOtK0jkdmRUO4dnHicr2Cjp+u2pLxl2S4IYi6sLg0k9sWyn9hpUTVBNEXMqIxTzqgElICTgODNhIlDc0A1Is6wDQOoPTHVTTGl6pw3i6HBXGTtycncb8WAd7NMHiEjzgBGC2QbCxHU43xDP6wLRrXEuWCJAFmRciz33RBjz7lTBmSqOlLKaG6J/RF+z+EchNAS45Z+GFAGc7cV1LXgHIvFoiQKBKeeNAw0AbxfFkDamyBqJqvixCEuEeNA3yveL7B4rMFLSVL4RfG4sfUSV5IMQtusSNHc/Da0tpa6ptlboAopJpAlGTMgczA8Z0VcQk+1NE1DVqVtGkpUjhTZcuKLkldyalEUnCVS0GAJFYFBe7QkPqpxTkMco4WUEn1yHK07jtYHXDx/lkUbTCkFT065hPYWouUYQZbF4zElm1JJuoh5QM6LhZA5k5KSUqTf3KTxZ1gsdnDSIgT2lpl82oNb4aTFsaSPPUikHzZodjRhCeKJsSWrslpaNOJdg5M9w19jZOi20Cmahayw2UZOntrBtzsjdpWzgstIK7Quc9QdcmWdWXd7LJoGcdA4j8bhB6uInHN4Z2BVzpkce3b9mlO7jr1Fi3MZFVMSThTcYN5ISviwRNWN8WqzWJo3Vd5Xs3k5Cqg6vA+oFiUlBmpDzYIAYtYlqeEOBqI2JauWUAw3oWS+KtCuFEXiPM6HoiIMB5iskkDO+MaRcxqfv8b3WQ0HEhfwwRVlUBSQgohDvUPVslWqagq0CYY3ZUVRfLMomZ4GTQ7nbSuczzSyGD9Xs4W39XOxM2TKME2b3DY7Bj42Ds2GW4lzBEwpCJ6macDpeHAWrcXzeWX4nn2+J+eWXTlRPj/bc4UFOYsB0snA65wifbchtAu8/bqBlM6XhJyWpIAp+pSSJcVUcWVfh743D7RYTssemuKPaQAdQDJOGsQ3eBcIEopydTgfcc6PHiaUzKgPlgjBQHlf1td7b7ZBmK2r4H0e5QMSWaNll7LDSYOKkClhhsi0BzGiOY/fUxQ5fwLlDDlFEMW7gIhHg46ZZ3Ty3imYmThTwFIytVkDmb54oEKjHs3K7t6OKS48mj3g0DiQMhweXufEiT28a2mWS5AB3/lRqUMqkYRlbVXNw0zJgHrnhGbh8O2iZFuVM8HOprhg+JTaa4dkillipsXRaGYVAkmV4MKIH9/O9YYwIrPGZuUXTSD0R5xoG7wOBN+g0pARy6BZqgDvZbSOIUwfp+SiFBziTVhELO5GfLH6ls3KkmzBSooVMXjYZcMRfLMEaVABNferbKh5MU5Mg2sBDAUhNEKKlsrWrPhQnkwVseTOuDwigHPg1LAZ58ozGXDtxKO5LLjH0pyUVLOY1DsKKBuqgs3lZw48qDgg4L2MlAjvPBmHuGAhgS+WSMEHT8YD5RAkEF823wuuKPacE84HnGsMSAekKrSqpFFcAYMt1NUx+aCioxB6Z/ulmhDn8OJxhYbhmrZ4Cwbi2vtSEhkJRAnNqEuLIVLEt8XDMEtbEx92OBfkHFktveFe1BTyolApFNcUY5b6slHgnVoyQWx/KsBbP3lMR4OFW/bdcp8W4kvuAWcKzhdZyjIqTOodN2F8JgQ0DTTeZDeKUR9UHLkkMHzV2CjilbYciaxmXLVk/Jx3OFVSVoakBN/ixDzCqAPZ2d0bkCR4MaB/98R5XFigatlT5xxNK6AOkQBEgtRM4qKsR0M9muINzFe18Fg1k50ZXHUmw2ZIG/NuUyJkNXrH5ojc7OHa5eiZ5jGz/odfb8gjsoV0xrchs7Na0baCQ1DnidkVjk4BKkt2QXwqgYZpb0YXHMbbdEXQzNQVgVSyGtai5m6YBa9pSS80Tu2Yu6bIggm4qppLW3hEKmpZnPIcaBEqcajLo1VVFO/mIaIpKMqhLCJU9Ef11Ewg7NaTeSM4O6DO2WeL4OqmFP6O9/YsVTSr28sYirli/QXvQvlsOywZS/WLs8/ywaFknEuAKTFUyGqK2fkGTZiSQcthdJTobjQEKgbgi+Sy9hbAFG1EFW4LpwPtas9CNxGy5BKKmUxkrV5vGK18XcHqmYnkkgUqPCNLl5p3IILkhqR2MNG6r7Y/6kwmsgj4ZdkLOyjOi62VM+/U9rdQOfLMQy4KMKsioZ1+v1miOdME85wsOydFoZUwUmvoPfHrkjiy2J5kSTjfmGeEYokwGT8DqV6+Q+rnlvVVS72yaBqDDbKAlJAbwZfzUeUmA+KXBG88MJEAKiQdCujtQb3taWjQXMJMX4xdVc4iZa+knFVzDGxf7FveOXCuwCKZvNmgYeDya8/TnlyxwJn3/Qau21ZEVQGkpIXMGAk7O2RJhglIwIUAdGQyUsIW582dtIPpjPfgTLtSQqacK5Dsp42tSslWGilZuRqcVOthvBTbJFMRltJWsnkZwsgbqlut5b5ySmWBPRlBvLdQBClekAm+D8bxqFa7Hqbq1WnxgABiUSCq3t4P837MQfSjS1BJoQaHVJOa0er2uykFmssBBFPKFRTWwiPJSsGR7IBUKoKWNYxxIA093jeImmKw9ZARL6l/F1xJt3ukUCy0HDhxlsrREmJpwcTq6yCXkKJ6Hb7orwq8UrxAUMnluS1DhUixwvbwqRx0VzJAWn4n54x4KRw0GT0I8AXzycXAVRqFWfyMrZFi95vRomCUGlRlSlhkO4SKeXi5hvYFx5JRrgq2WPYla+UMGY4nbVMOeQMplddjh9sLMSVQN+JDVOmXCgtY8sD0v1Zhp/VNgSQKWRchOY/i0ZxGmTRZtc8XHFmLZ1S+KmVEJSPiC1RQn88UkXcNUDyiEtVadFDOqhM0Jrpug2sC+wc3OCENsruL8/5YFPSHXbetiLyAegPNXM74lMgxGi/DebMWmukLM9O0pyNlxWvJFFCE3pR9sS4mtOax1lNh1tw8mnRM+eSyoBaqFdDQFyEuILKI4HyYuYUmOE5B1PgyjhK66EwAVG1Dalhh6DoleBnDPVWT1iSxPFUxFSogy6JKtYSGVSiKNSw+YNJYvD/7XdUqwJOXpChBKcJVgohyIEZMRyx8kPGweCRLyfrYmrjgcMFS9lJuE4z57YqhG98XyKOnqqOVrF4Pmk3Bagl1ZQpp7RDJ6OFVL1o1MX5zvGqQX5R+lQvzCQzU9YyHV7CfO2eWXcTSzVWH56K0xxONEIqlzwaa2aEp+yDj5zN6J5O3AuLt0I4euxh3S8ozAkg279mYxqOklWi5YImSi0jL5ImpmhERKZ9bscbJwxHncU5QehRT0JoGBIjFOxVcYYHbntpaCaG8byQjFG80ZUQUL2aMWr8garJVCFoUtq2rSiIpxnfDocnhi8dftIFhucUzpllx8oTjzM5NXnvpJk27S9M4QtuQc//6jf+e1xvyiJyY9uyHLQvtjNzlloZdFGvhfVto+xV8NcZypfjXw1RZl9Xamntrr7CSj+p6uhFrqOGeK+7jdHNGTLO/ukIYnLIb48tUEK2udfl80qgcqttdFUh5axAhuMnVTKlgTSVsAleIckUXiRSgrr6PTvdQrJ3hUr5ohaqw6nmpuEUJXShqvFrNgk3ZvaRCE3BF0C17RGEK1/ujMMxNOVDCxmAhQQF1pYK3UjAmnW693kMNT4FyWPzk7VTFRfEXFRPuebg87mPBt8YwsRgHLQpJLbwRCWNY7rSEylqoDVoVvuFSIoyHXWbrWOXMlNDkXdYFnWgHjPJlxmYiZNYQ7rh3VwxluT/7fV+etW6WjJ9TU9nV52cmZ3VtRozs2Ko7oGZLKYkZ23MpBpWq7EVKXKG4gvMI2Th9MCpGL9NaiOlc8ye1N4PtpJwzIUuNbuyeTK79eC5xDnG+lAkZz/B7nb8/7HpjhMbivpucK8vVAt+0UABJVwBMcaC5Zge0uPDVEzAylFbPAorLr+RSL2XukatefMEFXLEwlCza7IArY1YEGA9k9bbGmL5m5opbXn/ZSQEgBWMPu7l1stelhFmokrmLqSf4UDwVP7qylWrgXKhiDuTi9ppgOQfqG3OVq1eIw5cQ5zjzW4obPGX/xHs7wqqoMyDX1rQesoLnuVCWKVdf0w63q5JXWN1VgbgxLhmfW6QuhY4HOhd2MDOFUV+bKEqjkDItWC7eVgk3aw2Y0QzszuagpkjdTyEnmYR+xAqZvVZHz3r8d5WDEmepaKn9MzKkL97JGHKOBmjypsDoDIgQyv3XmkA04XzNAtt+4qvMlBqxcV3cuL6T12335ctBnZdPzYF0+52qcJSCpY9mzXCzgrmWsLbic2CAveZkoXQc0OL+VqqBaib4hhzNEMU0mPwKuLBAgkd8Nun0FRLIM9modYyTkTTDVErAqGH9979uWxHFlEjqSGkgDRtOn2nxbYnHVVA1AEsEI+7ohOmY61jAXC1hDgHFtK7d6oTBmCVy1NIJKQKhWt63bmyehNLc+WId64GU+v1ctmZyhcfNxE9Aba7HxvglTJ5/8X0F54UYO4Zhi/d7haNUwOniebhixWUUtAr41ps1gZCCi2l5Ztvk4gUWD8P+X9eyCnR1nQrIKYxrVd8/l8JdihdRM4gV46igJ5hFq6FSiT2gZC0nhT99z5SIq7HUpMjK3ZYTUd6Xsmd5FGTv/aiAwNL4lQYhroRyCN41JHqz4loPYfFYKaFnwS9q4etxT7kaMV84TdUoFIU8W7Jxs8s363pNly97ZFKj2RVP2m6sAvO2h8Vw4McPmMH05WcW2tp2TR9UqRWjp5SZJSSK1yKRrKmskxvlpRammrFI5Dwgmk0R5YGUBXzAiSOU4lsnDnJEdSAPa0CNZjLYOU2qqDRGYdDqYat51W4q41ARq2DoO9pkrxuGgcVioqL8YddtKyLzOjwigQQsFy2+jeaqV9fY1ULKslnFEwA3ZqusTqtsrGkF85qq58RkSRjxlZJBy4zEQgNlp82j1F2lZJm96baFSaLcDHCsLrFV6Fu4VY+mGwWiuvc4XwiK5kEslu3ootqzyijLE6N04puMXlbdSLK9p9bvMwr6XDDFTQpWch4VYw3hlEmhVOWrxUUfNYvUeyjKfL6pUjIs33VN3sFxT6Hcn5iVHkOeMfyYcJVx7XIaw7zq3UzKrWTWKkA6C8ERM0JSCadVKaovz+/H+0ppCm3quys6hso1JHTixzDsmBKiZtFcee8a8kxh15gwkGpgGO8ZkUIPqYas8MpmT0u9J61UFD3mfc/cz5FVTc3SzW9YFEhlL0v0IG2pKStKKPaIDsULjLPdDATflLcq9AJ6hn6Lpq0ViXsLBePQgwphuWDuMeaSdQYptWWGEyfNdF3PKidiSuw0jdWD3sZ1+4poXEQtFcitaetmFhKp4QJu5nHgzHpIVSwYaWridTAKaB4PlGME8HIuAlWyDiUdC8fd2KRa0tlMyq0u/uh1UTy1KpilDB2FIux2j8Heq9ycFI8jFyXiQmMAsQuAtz1Re4+6QamEkSKCVs9AqotvtWLkEtaRAGMrWwgj1Pg95ykkGher7sb48wIyaho9KTPsM9JoUcDmjRYXncIBkpmyk5odmns5dekmN7uS+EYopLosWY/5UvOfTf4dow2q95LLPZszZdhb1jQqn/quWozEPKwxeoaFnPPwR3jds4gxha1uK5WbVAvdXA2jylq5GXAt9rymxCacq8p5pV0Y3mzFwKYkSoauyhiUvS1ha/V6i+dWZbPobBQdkzh59jNRhxScymTTOGmKGNUhRbRf08hg38uK+IamXbLdGEGy7zogM2hCU4eqlV6pCIMqztt++BAMfvLVCDGG2LiM+gAxod6xjQNZoI/WgSDnzGKx4nau21dEZWOdSGEIZyb7PLnv4ibrXzfIlI8zl/h1wv09L508AYTCgBUjHyojZ6MKWWWrztPdFbAcAcDC8pwftpwtR2MAb/EtRKDiXOXgGRZQvR0QaYynQ8negKVZYQTo5vd23Ks4tqjH1tcUSf39CkxWns2MPlDLBJRCGJ0r5XlMbu+RxwxlMQg1nKqL/b22YB4ejJ6AfM+f13epz18zatWTmIOWeRaOTOvDsff57nv5Huv1fa75PX+vtZ94M2pUguqUlP99NxEvF8VeXXEdb9h0yPRcghERISPyvcOv+vzzn83/PckeU5hYvDPDJO0+p6XJZKyaQTE2etZEyiBhQdOuUNfQrBxZFCSRU0fstyg9lGJfdS1CCznjApCzMeNzBldoIjKddzCsL6XEetONZ0hVZ50svv91+1kzweqrsvF5U0yE1pXiyYIdOHO15wI2WkWdu85y7N/G2BamDMikZKRai9EtNzbQBOgef//5v497EvU5JvfSzZTdHEwkK1Lz+uWzGJVYLUUIUDy3Ck7yBxyuufIzS6+jwFfv2hL7yfBiFSxFXdP6k/tevZiqqLS4FzmlUsowcWNGCE2qB2oZM1vHErLBsftNKY3rYm77dx//6ZAcP+xTg7xZKFRY6K9f/9f/u3o2tYJ/LJasYWt9ffn/8TUWapO0199nLdb+g2Slej3Hr+NZ2SlLNv0JNTP2PbxGodzPBOJ/r3urz/965Txfl+o0jeGvQqpcPIsdqWC7E4d6IWZl6DqaYPWJITTgGsQ1xpwm4bXBxUTfZZSEk/L74ktHCzXumTSEptyETOfJ1sQXPpKtRY5a4GElJYNJ2vYHrIhSTOAN68lRi8ZTQlPTvAVEda9z6QtWcVxRHBeEiroLRQnl45thIVPZqBoKfA/r8fprfmCOCZ7qdOBKqFKhAAOC8+wA1N+dwi7rEFhocLW0Q2v49d0K8bvuhZIGn1l6c/En8JHCzDZgdibwBWSe41jlLY5bUphAcyp4nWGkKjC+TvjukxKappr6kcl+fE/+cI9p/vwVRH69sZh7RSMm8rrP+F6K8Lu+IcyyktP7Tp5vPqaU5vdmYdjrQG6+W76M/TxhUnVtpvV8vTda5Ennfz+uuP+wEHg02pPAj8mPakHqeyp2G+p8aS+yi28TKa/xYYk46zuFpmLkHIhlxdqVo1tfR3Oyfku6saZt0aoRXI5oHPCLMPKnjjsVxTtU4z6tViu896NB/IPO5uuvN1B9b5yW4B1ZHDFbB0LNpU6pKBIljlmQ19/D5NlMB6um0i1UKB5Gff0YKZffm7xhKr5Qfzr/jDm4WhfCFU+k/nIlY7kZrlAVAlXhVSFyU0VSVUbfdXhHRWD3Vv+umsmFCwSMm0ku76AVERCMfOZG5SaF55SZUtGU5IAl8Sb/PGsaPRhrtGa83GOepFioMG6DrYyxykUs5HAm4aa4Jo+rPiMzt3wKVWWstK9e4fw1df10hnUIlUxqn+e8o/KNpvD22Lbbe4qUbGPNjJrSzqq1ImcybFJCrJnSnb+Vlv2wJ3XFmI4rNj4D5edaw4zxjQoPaiajlo0sP63ExlFAJs8PoPK25ga6yp89v45yBGLexiiUMq1jAY9NbgTVQLM8iVdjYFuipYD/2fY5qxEhfbvHShPZeeJwRL85ol2VbhIoaRgQ6XHtoqx3qSUszPaRXyVWOL7ddoRlmhVGT4Xjf9h1+zwiBJcpPWKEKNYu0wWHSioegWMq06gp67LAWuPLMBPUyRprKZIVkbEo04IV8xIEa1lZ3d5RUERGy1M3TFXxFJxKZyGfFqBWrbTDix0GN6b4LZzJbvK8yqfg8ySSUxcAyy5g/sns5+XWsKxbLu1ALF0byBm8WkGwWXMQAoorDNfiQUjF4bQUn05HKZcPEQoml4XMlBmiVLzPhdsInWF8VqjbZqGeZRirJUujkpkfbKCEJDpyx6ZVmrCWeo2hePVKSghcvaxjHhaFlFdkyYknlj5NCCNY7Fxp+5szXloqB0sLg1pL+O5cpkIFIjXcqp5rdXiFrNUrtjV1QuE+2XtVlpLWfawKIuVC7jZSrOAKYbbik4yfVSkix9fl9WtVPs/NvHyxRnZjuYxO6y2llhFn1BPN0WQheCK+RBZakiWmNFJh2yNiyRaNNIsl2Tvc0ODaZXleq0FzvjC8NaGyKPfhCxLhx+ABgZwGJGdSzEVH69j58vtdt62IQihpvzwQs6Pve2LTsGBKp3/3VRe0xJNiYZcBwXlmekxIRE0zVE/B1YVXs7heDCiTalGcxbP1QFZrmJMiLhUFVDfdehtVi14VCrkUfpZD58r3X+/xTLay/Nz5kQfyOptdf2HkObmUsXRryYZlBTdTLJKpLFtBprXMCS+Vn6Lftcij91fvox5uldI7eubWi5T7dVauU4yE5KqwLI1fAs5CUpieWaBYwVmoWkK96u1UBnc1Q1IOVHFezacoXlttGTsWSFP33THxmLCShHowiwuWdRi9ZftKYxhQs1KjsdOqcMw7UeLM4ykcMKV48cexoaoQTLGlafmLltERvNbR2/EApXtCrUmr8mN7OzHlVaf2K3XfnCputtUOnZTYaB2rYVMDowXDEcXuM2vtzFhCyQofYEbeVSVLxlpNrHDtAh92aEt7khoq9ylZIqaWg8wvkVImZPfhgzkhTRPwwc5q0/6AOzTmnOnilqYUs6bU4WRRrP9k3eoCfjdYrFbmUQVtdOPzTBlNaXnTsKlsVAWJK0GyvjdlI4rGLxuliPUdNq0yhUxjAWNRRVlwrhlLETJSKvCPX845hrFyvkxiEFfKHcpUh8IfyVIr9kvYoLmkYE0UVc1Nzi5axbqW/FWuB5nxgCIOp5FK4quW3jCm4nFW9nr1Puupn9EjcrHWxnrVsiZuJOFNCsE8QqQEdSJTZlRNYXlnDfKt+NQzKnUgZbWC2rJONewYi3bFyK8AWYz1LaVANtd0NxV/K3stflQSY/LClhV1QpKaxbEraX2+wlcaaQpaQsE8e6+iZMv+15Q7pWsDozdd2GMy3Yfpbl/ez0Jjq00TjH/pjeFcIkZTDu5Y2KU4XEnxa1YkV+pLWVExecqSyv2Vs+DyKM9VFecSpqoq4iurP00Gn8rxs2eqrYizQrLccWFlg2s8JGOjN6knxs74eVQ2+LTedV/BvLPQGN9OJCPOOg7czvWG2oCkZJoyp0QIc+08ueCvv8wjqRkb28j9Wwdc3T/AeT/yQYYhsu1Kg/umITQ2QgWN5GQCHnyDAkPsiKWeJeaMw+OwUNH7coA9aI7TAciKOB0F3qyLt7YVApqzAbRZS/VzMTXlcPd9TxNKX2wMDwnOuuh1XTcSNnNRTJMPpRiEptbrO5tCkGDhRU7Z+jTnDCVu15Ro2oamaay3TQEktRAarX1tMGujWpS/Hbbd3d3SCjaO44RqJqtW/CuMI2vMoRpKCjZSQcdRyChhtacQUtXa44L1ry7rVAl69cu4Zh6K0qoZV8QyfF3fj16aK10PfKBMcrFWo84bnyilhA9+bHifJFqjNGmAiHMQpIYeFfguHk226SXVEOZk5RneuZHhPWZQixeTgTjUKvZy6MXqtQSh7/sS+nmGOLBctQz9lpylhInORgQ1wegupRH+/LNyNmXqnCPlTBP8qH6bth25WPg8Kg2wUh5cmrwpKYMr1MLTCtqrqpWzlPevHoLzdaRRtZMKal6NaKLxNQMrNDi8X9CWxmk5ZfA18VC83opVlfKlnDIpDsQ42Kih5gfcKjZlqxY3dzCjY4vM+jA19kzFm8kYY7dYxtHyKV/8ymP4xQLnTMPa1A3o+h4ffJlPJmSNBAdgPZ9tllcgxmHkFBlXwRqp1UOmarOaYhwYMx6CkbLEWLiGWTUlrMlltpctuKrNPKtaPpdOepYN8LMCS9vobdfRlFlk/WAhhy/V/xbFGB0/q5KTWJOrRklxGOdcNU3LdttbpzxXOURW76Tl5xVATqVzZBXkOuMtxsju7i4xxeJeR7y3sTfDMOCCL72lzXKl0ti+8aZghyGN7r9zvszZsr1sFjaJRBWapiH4YhiKw7RctjhnUzeoysDJODOthio++LEOyUYZ5SkkJVqDsEyZzJEJ3jBFNyqNRNRsvZHF8C7nSteAnMcQshY+V0pBCLXsRkrX0EBOych+4ksVvYV4bWvlDLUrpmFbxc+dKRNx1kx/d2/F4eEhNputVBOIeTc2RMGmZPR9zziBwzes13ZQ+64bM37VY1VK+nvZlF7qrtSOgWrEl3FEIQS67ZZluyyybOcspkjXD1TOWe0TJcBytWS9PqIJDf3Qs7s6gWomSGa5CIgoH/3oj1kfcQUvgdB6hpxIyTC66r1bOxdAHEMcRh6hiCsG4AecvoeE9w1OHa5piYPF6WPxXw0FKpu3MjFL71+v3uJXaWjaPe5/4G68jzgSqU8gDc1yUcaq+NH7qmnAWroxd6uPp5LtPqqQDLOxLPUQZLHwoY7zaduWbr0evQPvPV3XY+62eVfDEEEKfQFluVyagGtpATETcuDYfdcKfCWjasI49IJmj/PWsrMOU5ynlyu3xNp4pBJSiR3QYIox+KaW9I0hS/VOm6ZlvV6zXC7KoTfLXrk5NZ0952yllKx/TDnw1Yuqe6HKqFwrN8iJKTkLfTLLZUsuM7cq7mcHl3EfquIUPxE/U5ngYp0002jRYx6YumROfBvnoGmWDH0aa9Nc8NZuOGW8GOl2iFo+z/auhlm1fYn3pmyzGg/JjJ0ryZCIKqXB/oDg6Lp+lLmmaRhiRwiOvh+4eOGkKZjQoFmY86li6sjZmPM2O83b/LqYaBpXqg0VfEtKEONAjNHGIFV8rLghFXNbrVas12sWi0UZVlnPodV4tYtFMXSOmNL4zDZmydqWDGXggRSvO3Y9mjJXLr8KOSGiBUMyfpF5mZUYWz0dJYsB/qlky0NTCJR4YvruKOn/J0XUNA1kR44JUQOmXAGfa1aqauOKAUlpVlZfU/+ziaPR3PwcCT6QEbabLT54uq47hi/Vg+3LsLwqmECxMmKjYIpQ55zp+562tabpwzAAiaGUL2ct/XS6VDr22QHZbDZFiUWaJhTPyYDr6l3V4XUpRhL2+1Xp2cEu867KJpvydKOn5pzDh5aUtxZTlx7QlS1en0+LVbQpJIr3jU1pDfY5QxzGnk71kFalOAw9IozvZa1SpymjwzCM02NDCON6j4I+U/bTRF1no2IK3maKsqdpPUPsicNgFlFMcdV1tzUJZQ8YfxaLV1cPbNd343p0wwDMxhPNlLMdtISIDRskKSJavJ+SMs6KDgNSws1RIaZECFYA670vY7FAcUUBWP/s5XLBthsmHKUUh1b5m5Nhh3KvMmZQtbSXtbMRy+d77+n7gSa09P0AOZnHULy8pvElk1jHbNl4JcSXThGKC7YebVEmNiW2fn6pl6znoutAIoqMZ6JtF6Oxbhob+GiFw1be0bae2A8sWiwzWYxCSVVQW/pKgSxq6C6lXcpiuTAvMdocwcViahn7/a7b85uKwFTh7Ea8pKZTK+XcQGWpPacVjPxnLmcuGRVX0lTVZazZI1c8nqZpjjFiJ69GpimWMxZv/XkVEOccOzs7M0GB0ARC8IYPeFMQdqgZFVs9CGOMXTZw/vNpTHI4dpDmxDyY13fZIMh6oFXzKLxVYQ7DMK5vfV3f96Qi9PVzgHHKR4ppVCowKZ2u68a/1/euB3qctVYOYf290SMqyvj1Hmdd6yrwORsuI06xsVFKKGO/6x70fT+uRx2NNP96vRdoc9ICNX8W2raS1cerVnKLVLxyKFkyX8Db0uzNOWuRQSLGziw75n3Ekq2bGw4RpWk8TdsQgudofUQIYWbEIMY0rlXtt1Pfq3rE0zqlEVPKeSDn48p0sVhYvdfQM5QpuDFZb2wfhKwDOQ/E1CGSCY2AZHI2g9oPW6xg1bCrtg2jbE4crKn42xXsNARf/jTDEEIoyZSEk4jmDmFgfXQTa0hoXpHlUCsfSEcFVP5pihMZjbrJcRqNzu1ct62I6uEHw3VC05RwxcbsVvBq4hOVuiYKsjVaDcZYvGIoTWhGi1OFsx6MuRKy4W7DMS1b53rXa/6zKY0LcYhl8WykC2T6vhsnwG63NousHvj6+1V46qz2Kny1qnheWzZtErNWF9Nr5gex/rsewnk42nXd+ExVmOoGpyLUkxGYHeSZ8pgLZlXm6/V6PEhV+Ww2m/H1FWSePKlpn5RMP3QMscemtlrYOQyZlJj4JGrv1bbtsedV1dHAxBitTe8M3BaxUdt9suGTfbQugdWi18GeOStxSEUZTomBlGxIZ1/lQ5WUBmzqTCQ0fswW1TVomqZgGpb1Ssn6OzdNGNcHTLkvCmww9xTrGtVJrSYzhjHZpAwtSrC+l6WzUzIOVPCmQJom2BlwNbkDbRtKuJUYhg7noO/LzPscGWLPMHTENDDEjpwTfd+zXq+LkbSMsOAZhkxOQorKMMTxPJl8WsY2iGPY2uy2o6ONzVfLhm2aopllc2fXMYgkT4mKEDxNM8nS97vekCLyIYB3NIu2WGQbl1Ir5WsflimlWzg+Yv1Kag9pXyZdhNCQsjFRFMaNjnGwDFeOo3tfr/kiVmHpui1KLj1aciFdptFLqkqMQvnQmI2vVPga9cD1fU8dpz0eumINrGtssXAaS/vpWlVtXzYYcWCzXdMPfelW1xegVabPIo5YmHkWmZi2pNwb3uFr83FBs6PvIrVRuuEdtfeOjIcgZx2VpFnvND63qo6eTlUIVcH4QlirTfaRydpV72oMa7wr4PdgGcLy5csQAqNBGD637bqCOznDC2XyiFUZxxjX9xgGa+auhbKRhmiTKTBYYK7Y23aB901ZU5viqlkZYkQ1s+k6YrbMT8pVGm2OG2Lp65giQ8Fium5b5CWNoUv1eqqsrddrfDCujoVNFr7bnkyea4yJYTCuktE6Sh1cwXbW6yMLAYEmWBPovrdEQs5KirFgZXnE4WqPcUpiaPysVLLCRY4N1wwFT/VTJjMr4PG+HY3THLNzrgG8fU4OBLec2PYYNUBdKDhQwSULAmMdNwqMAORhIKeIJoNwmnB7WbPbVkQ5Jeuc6G16hINRU7ahRdQK4Kr1ymqVwGAdD9UL6sosMcmkmEoXx0AXIzHXIlbF5pZFVNMY+lRvoXoj83DG1aLbkT6TR2s2DztyVJz68c9hG0EZlUJ9bd1EqQudMz44szwaybk3ZSpK1sgQu2I5tKRHy7DCxpdZ6pngbUaWYV0GKJvChZR6Uu7JeRh7HuWSAYkRQligWcapo3FIY4xes3cTfUImEFKktO9MY9hZvbqxlW9RQiF4lEwINu2i73tWq9Vxj6vwXlJKowXPRPrYgdgadUMHznhBKlYonTVaFqiMipbCZ6qe2hgqaSYNPf1mg6gydP0YwlfFUL2LoU+lvYwnpkQc+qnJnhM2XU/fZ0JYst1GNtuBrk92eLGsaD8MDDEWTC+WLE9h4JQ1q1CB98fDG2uQN2FvIzUiQ3A23jsUQ+OdjVBvQqANniYYNJGiYVp7J06Yt5bshPsC3C/aFicBsjWJW7QrUGedN9Umu9T+SnUWoOlqYbu1PUESi0VbsMh8LIQ0hWRM/6ZtLRuOJ+UG3+7inckb4knqQQr7X1zhnM5iZ1Ua71g0Db5MZNY09UH6ftcbyJoZCNv3A4LSDwPIwgYDammRUKaXqsp4MArtzu41T7VPMRWr7UrzMamTDHS0tjU9XAV2jsc0JdNlGMgEZFblU/8+H/JW3wNgs9mMYUg9nBPGY/c+YSU2IaNp2lEpGg7gRyVGAYct89aNLqpzlrXwnlFJ15E2OVv7T+faQt+z94wF/6meyxT2TVXsAMvl8hiuZBwqWCzaKfM0Uzo1hq9xe80QieO4C61KKE2tavhXS0qGvsOHhm0ZUVwVXwjB6P0plexRGNfaQiRFxObVbzYbw0NmoW41KlVZ5vG9MtvtdgyHbD9qaYtxqizS9cewp5rhGX+nhG/OTYD5PLSthm0uE9VbqxjQHKxummb0uiuW1LYtFCDfwrspO9kswtix0J7HwlcRZRh6Kk/I3jdDCBbelukaNUkgNlFgxKZs7ZsR8HauLcB0U7xi4zClaOB2SkrXdQDs7OwYFcQH1Cmr3T1EG1xoQWubm1qSk8vEr7LG2TDdGRACZR1XYzJDpy4K3+d6Q43R+r7HOY+XQB5ktEg4Hac1jCznepCLBS0xSPGC/ERtV4qmHqj+pw+u1H9pWeQpxBpB22P/tuK6qmgqFlE3MMbIYrEYXfvXY0zTmN+JyzH1N6ruqSsM3ErAzAWknQSsLvpisZjCFmczoerBGjdGdMxcaXYlJDOPxMbk1FLKZNwcIKaKp0wYxphEcIa3ee8Z+jhm2mp2ZAxPYTxw9hyxhGUTDrjddjShHddkGAbLknpL9fZxIBQCHgohNBaOFIbtPGSrf89Z7RBuOkBYNosRxJ57cPWZXq8ARu/XOWLszGtQ80id+DF7CqUcKThQU+rVK7RpqpM8zxVgfe+5TFRlWjG7+vP5880PdjWepoyUnI2x3A89bWv3Vt+rfkbbBobBogBfengfM7yFCV05UCRby6ZpRqVY0/GGfXVFFp3xhPoOxAaIIom2bRiGCe9UCmMcRxYbT+WbhuBXZY7bpPy1cLBtrUyRTzGVjs+VNbNcLsbkx+1cb4hZDcbSHFJvI0vUNKNK0ZaaTZPqjPdQNtzKMoyB2XU9m82W3T0jVHnf0DatLRrFytWpprmGKbaJNYSax7oVta/Ko25OJTnOM1zVK6iHrCqH4/wjyzqEArbVZv1DrFgReBfwYbLSc+C1KkvvjSQXh6kNxcgzCnUahC9p+IZh2JIzhWsSrOxDUrkfC9l88FTHqO+t255SMJayLmYAlNQfn65bhbWuQc5G+a/Eu3rtrHbKFsroFQ2FS1PXsI8Rybkwh8so4jwpwwoIT6Gd7ZXxptx4eI4DpxT+THtM7tq2PcYLs4yRMAyd4Y9FkdaEgmWmluP61MRC7ZZYPaUxnNKJJjKXh7qfVSFWj7bKiRUwTx5RzpkubmiCtRGOUUfvchj6Y95oLBwnU0xaFPvEf0vFK7OhmUJKhnuGENgOPcNspPxisSAlw+V88KWzZWazySwWrWUXvXncIaxYrVYzOTW4JZPBO7y0rHZPAA112qsB6CZ/RseuySjDNwU7E1VRC4aVtbm29/3+1+3XmpWm45rKdMho2MTUf0cqLWu6yo1R6slSzqgKeydOEIIRsGpTNSibIYKWIYkpDiSMIOd9oCnKqm3bYyFJjKmg0FYKMPRG6Jr3NapeQT2YdSPG9KLA0HdgrCgj68WhWLeEK+1LK2YQY6TvzFNIMRGxItsmGEfGhLmC2MaVUqzMxEHhu+SyBuZah2ZByrnMZCuZRhyhDSPnJSYD2ueAo4GTzfhcYNkR7wu4mHUi6/nKCbFQ27AcE0RfB0CKHQTLgDWl7KLsrth4Y6VyTOyKUfG+JaWtDS+AsSRFkTKkUhHvDZdINjPee08cOnywcduVLGmyMKWa51iMd20xVHkEjXd2dkd5MAU62GfmWLhDhT8TWgsznGXV5pNfqzGqYY5qZrFoJrwIx6JdknKibbzta0nzjzSTZNUAzinLhRszfE0brOFYaEqJjLGQl4sV2+0GSoa5juu2yb4GC9j9tIaN9hFxvmBC9n615c6iXVBrDo1d7gnBs912JldOSHlANc3CPSW4BpFEyka4HGIyfVPOdX0t2KRZ2/fSbaI22BNPHzPtYgku4EMD3rO7u/eDVUQKeHFlQbfWY9jVn2iJKUvMWEHDWQgkxaOyDS1AtxMb8OeM0bvdmmBorr1V7LDVjY4FWKyWrlq0yaMxq7Ja7YxhyPigBayrVrNawQl3SvhQ22iE+a3P8LjJbTZL3hSPa57VEdp2UYDLzGK5oO/XBVC293KhMGydO0a462MpnxlBXMvnDqkOlizFq7OsluEMUurxShuBkqFJaSiAe6UKTOB0tRguTMWnfexp28VIkkPEUrAkxCdUI6KJ2FtIYJ0epKRql6SkNnmjMqtxDEPCBaXrzPOlTIKRQusQZ72IcqqZJ5051JlhyAWMrXiSwQFOPCJxrHk0ZTxl4oBCqjNMxtba+vbYgTQ6h5ULTZgZQGUpey903YblckUq9Y4523sMg2VOa6KgykbbNGiKoBEh0zQChdfUFdoKFFZ3oQvElKy+TFwBzQ08dw6kKUM+s5AT7OzssdlsyxqZsTOZttpMwdYzhIov2rrEGFkuVjivxJhp2oY4JLx4YtexWFqfdpwp7yzWB2sEWsSTcyXmApQBoclZ+KgWHWSMwJqxzFFMx3HNP+i6/ayZ6sjDsAxMM8bksyN7jCdT42ojLk6Uf2QClA2DsAzGnJNj3kt15WV8rzmYOU+bztnAJphToedisRgPYn3NHNx2zuY2VT5PFa45pjORHd3ojVQlOY/5q8c0hmmxdMWDgo0ZBuSDP3bfYLphXvJRvbY5RlaLKOvr5nyhOV9nsVyyXC5omoblckUo4GddS8NRLNEQ42BYRdyStSe0YsWWRGLuyZLoh0gq45tTtjHGUR3ZOVQyQ9qQ0rqEBaUuSozCkeJA40v7kTSgKRLTAE4YYo84wTeeVOrxFBhSst5QWY97HDkxxI6U0wj4p1TndB3v9FjxJuPqNCPYb7JWvcmKsyS2220JsSjvaXVopjjCGG7WfRNxo3dc92LTdWUEj2NImU3XM5SUvmWTjRoQUxy5VpWomUvm1cJbKeCyeXmV52bk2DTueTXKVbbnfLQaRlYZNfm08pAKWQzDgPNWcKwM5NzRNNOZrVFF7W1Vkyb1q54/xUJQKdY2DmYE5yH/H3a9AYzIGotJCVtcEYppXlQ5Sjo1vYKpQ56IlPSgm8DgnIk50rZLVKfwqSo7W4DJwk3s6YlNPWeTisiII81ZwXUTLW6PI1YzV0RZMykNzHsN142fp/et9siEt4YMNdNSPbT699FzwlKscSgAbM5jSDuC4s6VTTbPb85InSx8JHhvbUGLwpkzr733Y4HpZrthtWqLMjMPxQdPv+lG4F7V+DQqZiWXiz1in9Dg6HtrWTKse8Bx5fJ1Dg/XpJQ4feo0oQks9jwnTu0waEI0gURcaFCEoR9w2ROaBbC0cDOBbxwOT9QyLVAyTbssa9wYJSJbJ9AYB5bNZHgmhnhHzhU7Ko3TmJjtdY9en7GpchK8L3s9Ke950iIXCMFyLA2p3GrfdccOdfXeKuZmSQt7FkHABdplC4Wj1RQScEpWG1fvabPZsLu7i2Zrei/OOiOGxhF8sJIQJq9Q1QDymhRJZZx00zR0XTcamZqoqcpgJJOOA0oZQ/SK2TnvWSyLfJTMY8lJgORCkSj9s1z1TC05BZOyc6We8zaTZm98nBDUfkB2MIRF+Rnjz46n0Tn2UFknb6TOqdeizLRo+Grx+34aXTtXTjU1XT9nrijmCqgKVq07mwO1x7MgU8jVdVtQT9PIMWB87qlUC1iFsgKbFZiFGgpWan/t4ZQsVCne1dHR0ex9DYysfYkrEXHuadUMViiKcl46MX/m+p5dty2ZsyUpZvquH61gzSzi1BjM2ZGio+uEJx7/Bl9+5FGefuppbu4fkGJivTbSX81kqiqrUyd58L3v5qc/9mO8622XOLGzSz9srB+OtFy9us/LL7/A1Ws3eOmlV7h27Trr9ZZhSKShZ9FaWcWpU2e48847uePiHbzlvktcuHiGU6dX1iunHpBxbZXF0rybGAeasMASCR1TgfR08OZ/el9HfEPbtAxDf2y9xlKNlAnBMm3G7bH+OlXBVa/cuqUczxAaXll6O1lTJzRnht72QgrNQIvBqh5bShHNNcU+FDggj59XAfIqZ1Wup2oEUwI7OzvHSoqqfIzlPaU1jOFUJQymEiYjQ1TiYCc9p4R3RWnVZJTUmsRkGfNCr7HnGcYuCRZC813Jkj/ouv0pHqrE2NOWdHBKiWZpkyCbUtRZ/BZgmuVO7aySqtKxfjwGCJc+LRmSJJBMaMpo4NSP8a1Iza6YYPa9LXhVAOZhGWayXC4NCyjX3E1drVZWTQ9UYhxQMgsmOG27RLOM1rQqswK9HCuSra0m5uFVFcoqCECh+0+Kst7PhGkYVmJu8uThbbcdtZlZCMUrwIBJK8ydwo1QwFXnTam1TQNipQNDzEWGBDCOifeNUfJdw+FRz9cff5orr97gN3/jd3jpxZeoPCprWRGMcFpc826wcKq7dshnPvllPv+pL3Dxwln+tZ/7WS5cPMujjz3OY48+yQsvvGzrXRqNWS2hL32MdZw2autWveTE6TMnueeeu3jb2+7jwx/+APff/xb2Tizp+g34hjgc0hRlmEk2irniEq6MlXbWHM9CrNqDyjGkWAprI943ePHHPGiAQS10DCXhUPG9rIWoqaXTg1rZRQ3TLYMJsR+ozRG32y2LNhDCEmutYr2mhiIfbWsgdN8DGlkuSmFqMi/Vu0mWKlcppjxyeMS5cvjtTB4eHYyyaQkWV+gfYtnp1tOXrPVysbLkTow0YsYDzcUDM6rGRMmpEQrUEeNqQK9NG1ZBXIPzDQ4huNJ65Db1y+2D1TkTgpv6EuHJonYzWhSqGFytmo1jVJWR8/gxjCt8Io2ILIvLp3gvxcW02rUQAj5YqwTzXqaQbc7/AHObq3egOlXr28JNh7+CofX79c956h5gGPpjri3AcrlbwpnamTWPbihMnz+3mnPMIhYuUFOIgqbolFq6IQXADE3DdrtluVyyWhkI3YRmDDW8c6Qh0szCQREjrNX2nGOxrkIqStCVVLDtpaOPmc26Z0D43U98lmefepFP/v5nLSVfKqgtsVCsX7Gu1ie6ENqyVZOfO3eeRdvwC//gF9lsttQSgxGv0RoOWVrZiQ3960s/6tpytyqo/ZsH3No/5PHHvsGv/tPf4uzZ07z9Hffx4Y/8MB94/3vYWSxIyQxc1sqhgbZZkKIxuvsUCSKlj5Cx0Z13LHasfUZKCZ+Nz+Zk8iSnTJxNQ600i7rOOddymJqZCqPRynkqiA0hjBSWrhtK8zsLwWMxgBNBU1guFuTk2Wy6AjfYuKoqL3O5SWpTVmLagpjidSU0rcrKZC5hBVQyEohVbRpr5Yl1XUfTmmczDNaqZLG08FrriKzy3KNSKWQszYJ6S1hbtFZ7JlkDOs1TUuT7XW9grlnVitXiT71xv/fr62GfEQMLELlYtoC1KRAxjZszDEMqfJOpFqrGnTU8mxMUK1Zj1qw2bp/GylSPp4Zl2+2WxWIx4khV+Ww2mwkwLFyPGlq1bUvXdWy36yJ0tgbGgJ4UQd38eq+VqTuGQOO6SHG1J+9piMNYV2Wk0anZmYGxaeTW5MLdmWNok0Ke8ZqyEsKigKlWH+dDIEYQPF/60mOsjyKvvHaZJ7/5FI988WsEMYb3sWLX8v6arfmpw1ryxhi5cO48Z86c5cqVK1x55abt+Yxt+3plf4yQWuq+nJ+KdS3EnvYZscZqV69c4+rVa3zm049w/vw5Pvyhh/nYx36Ed7zrAZyLBWTd0nU9oYRqMVrZCqWdr4W+0K83o+KomJtrJqNTQ5k5JDBPRsx5Q69PEGRVvCoyK0uq8lEN2jykql5USonNdouXOVt6ggIqBjkamZQ4PDw8ho3WyGG52AFyqU+c5K2+V/U8KydKnHHFnPhy7qb3rHsn5d8y21ej2ZSfUWpRSx937/yxzPTtXG8ArG5KJ8YSXkkgp01x1yeW9Hz6RfWIhIlIRknF1kb4FKyl6yLLxc7McwEtFdZ1IacwSUerYyBhX0A+iMkARVRGBVSxk9cLxzyGfj2xrSq5igcY9jCUEC7TtrvEyCiU8/KT6dkrp6Uf33f8UyxetzKJTExDaSwlo+Da800saBMKGfGAtm3ZbreoGnFy4RezZ/LEsa+S8azWRz2H68Qv/qP/mdeu7nPm9AVefvUlvvGtJ3FYt0ofBE3gm4azZ89x6dI9nDhxgkW75OjgFlmVnZ1dnMBnP/dZnv3200jptOCcN+A7Gxt5nsGqzzUPgbyYYku51Li5efOz0o/KeWpXQ+cC11874Dd/8/f5l7/3ae666wL/yp/4ST760R9hZ2dpjHw38dNszwx4di4QU6RZtmNSI6XEom3YbDbHGOj1fqtMVKVRy4LmeGVV2lU2vZta3MzD8/r6GOOI49R9rd5OHXNe5bZ6LHXvR4MmFNZ0IWoiOHzJ8lFIxG4EsMeWH7NrTPIohNCSU2V+TMmhiglrzmUU1XGDWsMBcQ5SqXF0rjTMF9qmPV469IdcbyA0gzr62GCJ6SAXbVNeyHd7SVVP1X66GaKCZuvRnJzDuwW150u1QN5bY7W62X5mPasFtUNW2ok0YQy/KglxThOoIPG8F8+xEII5KMpYGmCbU3hAzoRtiCZIadaDp953Xfy6+fNwDUojda1pUGWxsKZny2ZBTGlWmX+8/1G1Sp4JNK81T/N7rSFj03qGoS+4mPDCC6/x1//G3+PmzVs8/PAH2b+15umnv41GKdm4xOlTp3jHu96B+JbLly/z9NPPcHR0SMzW1WB3d48TJ05y7dprDMO2WEMB8UR1pGik0LqWo0KBmZIxQ9T4ia+VSnrbzUJq2xfHRCi1Zu/iPENUnn/+Mn/7b/0j/sU//wT/5r/5Z/nQh97H3omA0uGcWrGo9/QxEoJjd7nHdtjiSlbJilJrD2g9lnyY72PNUr0eN5yD4mP/on4YvRznHKvVktoJocrJGGLNssRt21odX3mv2vakKsHKhWrblmGzHeWrAsM5WYnIUJq7iROcyzODlsfPmoehoAxDYrXcMfyqWR7LNkrZTVVTTHPv/vgRn03VLV581u8eL/UHXbfvEXkpfaitf7VgaXk3ukAGXDmM5DbdYe2jWwYuijVij70Bnw4p6ehcBC6Pjbi9D/TddvS5LO1d+xYxvsYHwfrTBGoj+LoCEyfJwqGUB4v7S9/qiYcxKaJ5CFivXJiqWu41hBYKZoK3OU9ZwDshBDdSGKwD3pS1sAMQiBrxwSzfWFc2y/pVa1UNj/Wptl7HlQxZrf8IKgfzSkxkEl1ao7kBt+Kzn/kKf/fv/s/cOlzzrne+i5vXb/L000+TCvDcLho++IGPkFLkka8+xuHRIeNobAyYPH/hPKC88urLIwXBO+vzk7IxsatHW5nRq9UuFy9e5OzZs1y8eBHrKmjEuxN7exhpMdIuFrz86iu88OILvPzSS2ONkteMA/Z2rTRhb2+PEydPcvHi3Zw4cZKmCVy7dplf+eVf57d/61P8W//2v8573nuvEff6gSyKBEfUCElsQGg0/KgfeiQEMkZivHV4yIm9vdK/e3id4jEipvcBV7w0G1Zp3pf13ulLOOSK92C9kGCijlTZqlhS/aptX0wZtOOZQSihtbV7jckAfRHzlmOMLJdLK7kptWmV+FplNsaKSU1DL6pRCKEhhAUp5eI5Lem7VOd4jhiP1MkmTN+ciC5KFiXngVw6Guw6T05W1X871xtI3ytjr5qSLrR5UICrPAIDcucD4iyOVCpHE7UMUOxKX+doJK5QWKuhCfTDFid+JO/NGc1TRmzCRgyInBo9pWSHf84lGYaBpnUFrOsI3sKaigHVnjfzYsfqXptVaUbuyAiW51ymsdZtMaEJwUPK4/3ENOFFKVlvaHEGOtbnyVlx5NG61tCuXbQzF19IcbBRLy4Q09SrOkXLtNh6ZRKZqKbw/5df+TX+6a/+DrEQ/1555RVWiwX9dg0oDz74IPfeex+f++zn2d+/ZRwn56yotJSa3HXnXRwdHXJwcGvEDGrYbcP9pna3585d4L3vfZA777wTBZ555mm+89x3eOKJx0nJGnjVA1lJgcvlkt29E1y6dImH3vsQi+WSb37zmzzz1FOs12uODg9ZHx1x7bXXbPBkehQRz7lzZ3jXu97OBz/4IU7sneLRrz3NCy++wI/82Htwrme5XEHtyOlt1E/K1slt0baAEtoGRFgsl2PypT5LpVlYmYUpoRS1AM5qrV6csN1uRmKhyZ2xt0XssG823cgNqyHf3LNyznqqhyaMtWLOOYL3DJrxxRuy3I+M92OYWmKxaIyoWc5UVuv5FIrirPhXCIH1ej22UZ4wxhIex2TtP8QwH6d2grPOcWdzFGTKn4Eoe7s7IwnSlXA636ZLdNuKaN5ytG1bUuzHqRhSosmctQxwm2Jsy2woLmM1TVqmHODHtHVKRnwS58yjkRLf56nZ+khSC/POh4WDkSdPooZgOU1tOCrPQtV+3jRGb9/Z2TFhKuSy6urOLdeklATrwU1ROMnSm8WtrgC1cPz3RRjZqSMLnJIxcVM72Rp+LRYLNpvN6FLPCZjGhE6o9FYeUFvyCoSmhjSp7IZHs+eXf/njfPyf/jo5eSrJ9ebNGxyIAbgf+tCH2Nnb4zd/8zcsG6hmLJwXKr/pLW+5n8PDAw4PD8Z7qes6x1Huu+9+HnzwQY6O1rz44gt86UtfHItmK+g650dVSkbOie12w9HRIVcuv0LOyu7uHg888AA/++d+lpwyX/zil3j55ZcKryhBFpwX9m/c4NGvfZU777zExQt3c99997I+Ur79zFXe+a470GzZtSlLeRyEDiEwpGSZpzEzVir1C5Zk7VYy1nbW0uUpTsqkyl3O1vJVAR8WpL5mYv2YzKjN9+q/VXWkooTGGq8pkdAYcVDEsVrusl6vi5G3HkIV+5m8aGW5sP5Bw0jujPQpFrm3IGHMCM7uOedEu6iwS7YSj2z1ZqiOLXhr+VH93RFPEosu2sWimGPzkBtZUEk93+96Q9X380wN1N7TubT4wDwYJkWhBTsSKZyEck+50OenGdqutBSxY2ozrOz9aq1K7fHjvCvNwygAtRVhOufGFgu2QAboVTzIOU9OQ/Hqps5/FmaFUUnUeL0KWT1Alu0YxmzdcrFgyFYjVK28iJhFq8BlEeachrF3kKpap8s8lQXUw12fsx6QeXan3o8TxXlzefsu45wR87KvjHPzPLM2/PpvfIKP/9PfxKIDKaGpxe0pKz/+x/4YXd/zyU9+orjdhRipmZKh5oEH3krf91y/fo3KWZoD/Dln7rnnXn74hz/Ec8+9wG/91m+NRmtOHK2vnTPTR1BUaw/FYrxyZn14wNefeJwnn3yCM2fO8eCD7+FHfuQjPPLII3zn28/gQrBuhSmxWfd8+9tP88wzz/K1r+1x//33cWv/bZw+dYJL996JSLKZ7F4gTVhjXdNKJE0Vn5sBy1PGSovBCdTKeVsre81msymlE5WdHYu8e7ptX5jGx0m2qlp4b4YVrbcbFqtFMWqRxXJJ30d8sr2JMVuD+9h9V2Zv0fji6Qc8ZX6f8yyXS46OjqhdKmACw2vtZtuaA1BxRYM5bPqMFPhB3fGR2RVHGy9VyNZC2NrcCs5Pde/f73pDzOo5wzfGaCREjAeirvbPmRB+exhjVY+xplg1b4xarIsjJfNqVMzFF9XSkjIeE2Z7AyPWmSXOpGQhSy23qJ6DExkPxAh0O+PEqE51b9ZewZSIEf2mCRxjLY6b4u1qgbbbLc1yMQKPNf1PjsdAdbBQtb5uTMl6P3p86ES8nDN87VmaQk4rKdcUaZwQsyC0oC3dNnLrZleasts0ha987ev8/N/7x8S+DjAsxL4SUv3Qh36I5WLJpz/76THzKVTWvFnHt7717Zw4cYJHH/0atbRmnopv25aPfvQn8d7zm7/5WwUYr8W9U/q3flW5mWeSqjAr4FRpQyCVTgGptJa9du0qn/jEFXZ2dnn4fQ/z8Hsf5DOf+jw3btwsnDZQMQ+x64548skn+eY3vsmXvvAIf/Ff+1k+8qMPsbu3Q85dyVROzdFEpgJtX8iB3jmblDczElVuUxpQLUXZYsp03mSvyqStg5W1VFyzJiCqZzQHvO0+PNutYT5K8WCzksfxP2WCiHejZ7VYLIqxS2hKaMEpLR+b6fqNlYxkoyr0vb1X27YjJUTE0t0ihmnWjKPt08RzY5YJfv1le1A6JJQ6OYsibk+3vIGsmWWwjFgYaduGTI+VOFbcSEeAVTOF+CRlvrj1LDJWamHYZqPOWyc36507DLWNLLjGWosIlW9hBYmUgXgx9pZFCp62nfoM2eG2OHaelrf0pLmZ+OpiWpoz54GUYeiN6LfaOUEskxJ0sPHQMUVC6UETWguTvDgD7JNNWQhWPVjA55JR80K7CDauuY58yYkgUtptCK03FnTXd0guJS8IkoUmOLL2xNSTVZCwy3PPvsojX3qcR7/ydV577RoHh0fcdc8FHn74QU6dusgv//LH6bc9Ih5NJlB1Euidd97Nffffx6/92q+a2+5cNWgmaCrcf/9beec738Fv//ZvjcJYMzRmyVf8qT/1J3n88a/zzDNPAYzKqv59EsL59ybJnNMocsHbhpQK+F26O8bJ+G02az73+c9y9tQpfvInf4pnn32eJ77+BLnSmKUmBzyaEy8+/yJ/82/8bT73+Qf5q//BX+LM+V1c40lDIrQ75GQsaMOJrBWK5AFVR2IqSq6Z3Bri5cKVseqAxp65jOvOSUCUxcIY/jkZJULEDGD1WOeKaWT4h9ZaEw/2e+KFjCn2zbYj+IbQNHT9puBVjjRUsqQgvkVc5SlZRne1WqF9CSlFcHkY17tiRtYqxXoaOfHWqM8okuQyGqwq6zkEAhQmkU3nHXrzwpLCUEZUyw8aI9LSQbW2d1VNtKGkwKhN5CfBUyiz6G16gFCmeJSu2+bhyNiC1KytUfGdCBLMw/KuzvyePiGnkgnzU9FnXZy5JQ6vy3448cQULZNS8BvbENOZXdfRd8r/+7/+/3Dvfe/g3/jL/xrLJuAybPoOF0p2jDJgpe9ZtKsxm1c/13Dl2rHSwsTahErVso/BW32RzT4vnRD73hqO+2nWWNYB74W+s7q+167e5Jd+6Zf45tef4dzpc9y4do2HHn4Pf+Znf5q3vOUuQrPg//Vf/w8cHh3MPBMZrVsILT/1Uz/Fxz/+z0jJfKHgw1hX1TQN73//+/nYT/4Ef/Nv/nejIp9CAWFnZ4+f+7m/wO/8zm9z5coV3Iz/M/eGpt+dANn5VcOzeo/WiN3+vbu7S87K0dHhsc8XEa7f2udXP/7PefDBB/noT/0Un/70pxji2g7KTFj7nEiD8vkvfIXnX3qJ//y/+D+zt7Pk85/9PC+98ALXrl7j1v5N/up/+Jd569vuJ4gZWSlyPq/6r3trDeor3ifjnlYD45w1qqtrHhpfwh5jYfd9LORDW6OK89S1EhG8M5jCOwOenbe+QlIawISmKXMFhbjtypBL86S73ib52ujzzHqzGUMxFwK8rsvFiAvpNNyzTkK2lH3dm/K0Mw9HkYmao0K7WBXnovTiEscQf9DV936qB6IApCJ9AbPqzWjxYHTMotnvOlzWUZFIaRlrDyXjtNj6/vOUZnV569gfxdG2YYznLYw5DoipliGOMY7CNHex56Ger5XYXoDAzZs3ePWVq9zcj7zvQ8/y8MP3A4nVyjIq9UB576kFvya8ntoaJY59lI+XpsRhwCYpuNLt0aPOWq7WSbXzDGE/dKgMKCsk7/K1rz7F3/pbv8ByeZJL99zH0eE+/6f/7H/Hex68H9yGlBJf/vIjPPLIFyzcklqOUvEM4Uc/8hEef+xxjg6PxrS0KT3DE370R3+MS5fu5pd+6R+z2ayZs4rBWkj8uT/3s/z6r/8Lbty4Dljmby7cztlcud3dvVnvKM9i0XL69Bmee+45bt68cazE4fTp07z1rW/j0Ue/RkqJruv54R/+MI899igHB7eO7eug4F3kq49/jUt33cO73/VOvvHE13DeMwzWRwcxgCKpJVCuXr7Kf/tf/XWCwGZ9QHDKu9/5Dv7tv/Svc+dbLlDrGouEEsKEg8wxzypDlcpRw5Uxq1sUWS08tXUxLDGXVr/bbXdsTeu01jnfqmI4c15TTlY+0ZR2r6I6jjofSoM4Hypp2BFCgUY001Q5d5PCqTSCUBJANsghFfrMcT6gyehx76YkbKcXqo0Gz1rhgFzoJN//egMlHonQWPWyGVc/KhatsPwx9TNdWkKV8e4Fm1SqWgoUK628ch0K8a+MTslas1ZuBIXnTFNzlScA1dq7gjpGBTS3btVbMkEwyoBmq8m5eeMQEE6dOs23vvVtPvTBd+OdsB36klCalGWg4k+VeGhzrGpsbBX3VkDonEMaR4oZ62ZoqV7B03U2A6ve09wyurBA2OFTn3qE//5/+AXuuvMe2sUOR+sj/u//+X/CyZMtyIasA0Pf8ku/+HFL5RdGdqqWTR3LxYq33Hc///iXfrEIuzXlcs5x9sxZHn74A3znO8/R9x0vvfTiuLb1fpwL/IWf+4v83r/8l7z22mtjGFbX4/TpM6Un8sB6vWG9fq1gKrbx589fGLNQd955J8aKj6zXa27cuMkLL7zAH//jP8Ojj36Ny5cv87WvfZWPfvRj/NZv/WY5lKNEIWRWbUO/3uf6q1su3XEHN28dcms4suwrChpZeMe506fYXa7oD9esGXj/ww/y0z/9Y7zzHffhvUKw6bG29jLu6XhIwtSLaGr1aq2IRaZK+CnUnBSYiJC1jrOyB5j/bJSl4r3XThHVC5tCwzJWSIwnZNUDiquZYBfMWYjZajU1EJzdX9aEJqUJnizTvaZk89Ws4HUq3zKSMCUjXjC00fOZM7ztXoITS9yEhqGwvbVk2263+v62G6PF1Fvr1lTmuWdIsXbUm5RMBavnPpw1RXPj91JJcQIjoG3g1vEpoOYJWaHetlsXL6kdPYx5KFYzEtVjmTOdx033lT5QWzDUsKDwQtTxxOPfQMSqpq+8+ho5e1KUQvyaJmra+9XRMgDTvdUx0CK1kXtRrGk61PMygaY53mJk6osDQ+949KtP8T/+7X9o7TLuupMXX/o2/8l/+h+yd7JF2ZpHmBd8+Yvf5DvPXCanBquFM0/PgHD4yEd+hEe/9mjxPAtwinDfffdz3/338clPfZJ7773Eo489ekwBmcw5/uSf/BN89Stf4dVXXxnvt6698W0OefXVV7l27Rp93xUlDMvlihMn9nj3u9/Nzs4eL774Ii+++CIvv/wy169fI2fzOLuu44knvs773vd+3va2t7PdbnnppZd48MEH8b6ydjML77jr/FkuXTzHboB4tE93tOEDD71vZKwvlw0PXLrIA/ec5/QqoOtD1jducuXaLbJf8Ja3vZUomW2yEVG+TBUxaGDqCjDKqOoxmatM6rqXi8WiyPGU7azN6NqmHSkcNXtVw7Gx9m6WUasyVj+z1is652iKscrZ2rpQz4Aota+0jQ9yBG9Fy00IrJaLUrg8n3JrnmudPEzBC1P8HsWqOkEf43kv30dKJtW7Yxk5bhMfgjegiFQdlWeb0oCSaZrlmIECD9kXMtjE7hUylNaTqZABHWKzj0ZlVXqZvC4tbBtuwrFoV1Q+0LwsYyjd9sw6TQKk1K5zeQQG+2FLIuJ84MXvXOHGzUgXHTkNpNSRsvDst75DUKENDdevX7c2E67MOs+GM3lVfOoRCm0+WUe/vt9OGa+o5ORMkSUDMX1RXCKGm8WhZu1K83uSjRvWgaTWm/jWQeZv/vd/n27IPPTQw3zxi1/gZ//Mz3DXHafR1IN6UvRsusRnP//lMqa5tGVRa0krRbDfct8lnn3mWwiJnDq8g92dJVevvMpXHvky73rn29m/eYPDg31q76EqdA899F76vuPJJ78+rrHRL6BmK83qOxwNmoQmLDh7+ixd33Fzf59PfuqTvOfB97B7Yo9elSSOIWa2my3rgyOuXb/Ovffdww//8MP8iZ/5GO9861t48vGvc+cd9yDS4EW4cPoEb7l4hqUXDvcPuH7jiOu3Bl65ecizL73CXZfu4S333sEDd19gFTv6W0dcf22fa7c69jeJFB2//Vuf4VOfeowsK/CBlMrctdQBNtnCuUCKakopWQ/puQceY7T+zwwgkZQ7vFeGYYtzBY8cUul5lPG+RSQUj7/BiacJbcFMXYk0rDVOzVoac3s2blwjWSONC1iv+2D1ZT4g2ASO4Bdjq+UhKl0fidlA5yFllMhi6QsFRum2tY0JNG2Ddw3toi1TYUq3ihLF6OsVi2a8UzQPOBIikWHYUPujw+vGVP0gFFEdk1L7GYtj1h2Pov0mL0hqACkZyONkSMW0Zzf0xBKejcQoGK3wvNdOUxqEz8HOaqXqIZh3X6wbqZoLSC6lmbwB4HFI/OI//Mf8l//lf8N3nnsVyucdHW549cUXEIU0GMluGDq8F45ubfj1f/4vuXrlgGEoRcBjFul4i9dagmJZEx1r82rLj/p7NX62UNFi+KaxwtFhiGy6yP/0d36RK1evcf9bH+DFl16gaeCnf/rHcBJp2tL+FuHwcMMzzzxtMLqmQgo1tC6r8vZ3vI0XX3iOlGx6rSl0oyGsj9a88x3v5sd+9Ed54onHxucQMerBqVOnef/738+nP/1pRKAOG6yTU0amrQjeeaTs2ckTJzk8PLJx32KtKD77uS/w4z/+E6U4tO65CYxz8PnPfYrf+e1/wZe++Bl2VksefO+7+MY3HudtD1ziLffcwem9FbHvOTw8ZP/giO2gJO9ZnlrQLOHui2dYxsT6tevcuLXm2v4RNw63HPYDQ7HcOSl//+/9I5595iXQljhYAiRnC9WdUAYGuNF7rHVW1WOpJFYrZWFMV9fvG1+sprCtowRYP/NhsHn3ICwWyzFMDqX2zjxMN0YJ02DEwuyHcdy7K/w24zflQjEwCkEqgHHOxhubg+Q5J3yofcx9GbmdiUMiDgOViGh0Fx1btXyXN1TT+6Kl/7zhorGUsLS3WeJx24qounLz4suU4jiZdHINv+dv28OrgdhDb02nLGwpxD93fLQPTC0TjhPgtIyjHojJvAhb0EI5L4e7urax9CRWNa6ERmVzuOHKq1cYtgO//CsfR9yCOCjPfecluvWW0LRIcOzuLtGcGLqBz3/2y/zOb3yC//Fv/QP6PuD8ktrZseJP9c/qulcXeD7poV7zXtxWXmJTSrz3hZbf8uzTL/LFLzwC6rn30r08++1v8eBD7+Dc+RXiBnxQEEvvPvboNzg62hbAm/HLBEZ5//sf5qtf+6ptuptY0QDvec9DPPjge/nc575IVZhzF/zP/tk/ze/+7u+OhqOGEVnzOEDBeivbhN5L997JPZfu4vDwFuv1dgR0QXn11Zd55ZVXeOjd70ZyRkr3AXFwYqfh7jsu8OpLL/PCCy/yc3/xX+Vnf/ZnIK8J0pP6Nev1ETdurdm/tSZm5eSpPd56/z28574L+OGAV55/lmGI3Fr3vLZNHGRhcJ7klNqGNWvk1q1b/M2/8T9x/bU1mqehoCE0uBk+MxlFZgp6SnjUyv6UlBrNDYM9k8EWU3+o6jXGaGOlu647xlmriq6WMlXDW8P7ejYq/6zykSq8MHLNZp0j6vtW8qINBTX6TQiOxdJGetUQ0PDbUuxb4i7nHOKmYvARvIcy5MK8uRBamsZCs+VqNXYbvZ3r9l8525jJ3bKaHVNCeWI8M3k29ouMHp5xUIw9ageuxN8yxa0T1f547ZUtiGWprDWolFRqwYb81Pd5zpWo9+FdsKkFQ2LY9pDh8uXr7B/0OL/ksUefwKnQtEvUCTt7OzTOEXA8+82nWTQLDvY37N86YlvSrnAcn6rx8TztW18zthidWdY5NmTz6avS9Pyzj/8OgmWUrl69TEoDP/MzP4WIKd+ht0meKcL1a0dsN7WGi+Jx2XPvnTiBOM+NGzfN6pX9Synx9re/Eyeey69e4emnn6GWEVQBfve738316zd46aUXj4VqFZSdcDnh5MkT/PQf/yk22yPe+9C7WO3s4lwwb3qSDB5//HHecu99nD97juAcq0XgrotnOHtyF4bIjWs3uXH9gE984lP88j/6h+wtPIc3rpFz5trNAzZDYu/UKd7xjrfylrsvkta3uPniSxxeu87NwzX7GR76Yz9OcgEJDeomLNG4Mqakv/3sC/ydv/OLCIuSGldiGo6NoaoAci5KpBarxhiJQyJFBXWljYZD1RSJ9d6uBa/TgEiAeY3XPI0/T1RYuD6Mxnkk5Yp5XcvlcmbEJsVZM811YASYUR77YqknZyly0JNyrRYon42ws7NTvKCicKphmu+iTk0CjfLlLVOp5hXXLOAca/vDrjfkEc0fqpZGKBkttSnzNPr3Yl+KyFhZH0JDTHE2OcHSovOpmlVJzdsx1AOwWi0R0clLkiljN3/46o7mbETJ4Bs2h2uGbkBUGIbMjRtHoIEnHn3CWkN4T1KrZl8uFzhxXL38CjlGUhwY4sCQepiNujZsqD5oIesVblTN0s2fZ5rlXjMRdvdWbqJ8+9kXePyxJ8iauf/+B3jllVcIoeXeey8VKoACDSk6Dg87um08lsWss+AAHnrvQzz7zLMFn6olGp73vvchvPe8/PIrbDZb+q4vY4lqZrHhR3/sx/jEJ37/e+6nm3l7DzzwAD/6oz/GI498mUv33s1f/rf+V/zpP/0nRsyjHgoLpSOf+szn2d07xflzZ7n7znO0LtKvj9i/fpPDWxv2dk9YBu+o4+j6Le66427e+9AHuHDnJd713gd569seQIeOm5dfYVgf8drhhqsHWw575cq1A1546Qrve+9D5DjYaSkemaplhHLKCA1f/PxX+cxnvoRzzTHDUWWwAtKuyP2ciKhq8pWz2gipZF0xTU5tT9fr9bjvx6bAlEigyuscQK4Ky7ClqQ93fY+60ccTNhNOVxM2FVuqMlezlNX4KZmu25SJGzK2GlED/mY7PUrWd39bSumrMtITEONAvd4Y/2HXbSuiecXw2L4gRiQLTkLhFEwu/ag0UJsimRNOM2gpDNTa1a0ZY3AoIQs1ezgxUGsGIQ4J761VqPXYrZ3lzI3UDMG3eL/AuwXWrLxYhCaQsvDiCy+Tcod4swo39jue+85Vbrx6Gdc4aBcMeWBvb5cUM1evXue161fxyxbalr0TO+y2K1rfFnyoKW65kHUABlLeknOPEkdlVK2bKWQD0usoX3HWlrTrezQv+Nznv0ZfFPCpUyc4OLjF7u4OZ8+esfV0pcIe4bWbB3QxFXfe421uDzkqOTre8fb38M1vfL1QIWzo4j2X7qUbOr7xzSe59y2X+PZzz9q7+UKZyMKHP/wRHv3ao8Q44EVwirVfVWicx6MEVT7yQz/MuXMX+Je//3uIE/7aX/srtMstf/4v/ATve/htpDiwapc2rrhMkBAGGhk4vVqR1h1xG9k/6OkjvPX+t3DHmZP0hzdZx46PfOxjvPOh9/Pc889z9tQubn2LW6++xNHNfTZd5upB4kZs2EhLVBDteeabj6NxYLlYWgpajeOWUmFIB0FcJqnyt/7OL/L0t6+QtEUlkXRdfo4NxPRC00xTN0ZD6a1I1XnDSBbLOrxxaprWtsaWbhYLNl1HFiGp0qeBQSN4cK0nSaYfOvP2ByMl2mjx0u/bVTk3HVENf85p9LzAHIWx55YklFIkTAKxseZGFfE41+CkYYjTmU6FfOlK9jcX/pCv7yNTOG5taG2cvIonkq11bIbGexrn0B/0XLP54gIjKClSxgtJKeWYfc0r0J1gqdWcyyiVyqQWvLNC0RTjMVCsatVKIrOQB1Ap0xXEHkEn17s2pDdukm1UTD05D6WRu+dLX3yE5WJhfXjaFiHw1a88YaFTG1jtroDMhYvniEPi289+hz4mVjt7uCAsli2aciFZmqp1zjoI1D48U42bo20X45pMaWCwZveTBTThNgF59tnnqTO1dnf3GIbI6dMnaRcNIpDUKsZfffUKV65cZ7vtivACmq3RGXDixCl2VjscHh5Q+ennzp1js13z1FNPIc6xs2s/98EOlk0gXfKhD/0Q3/jGN4652DXtn3Nmudzlox/9Sa5du8EjX/4yw9DxF/7VP8U9d59BdMNyEfmP/+O/wr2X7uKd73gHAizbwKU77+CeC6chdmzWh2z6gas3Dwih4c477qDvt7x2/SpH6y07eyd48ptP8ejXvobkxNHNaxzevEHsOg6O1tzcDmwxUmjjAyd3d7jnrovcd+kurl17jbvuusvmbbmpSLSCvylZB9BbB0f80i99HFiQ1REaGxIpUg1w7bE0pc5r87kxlK77KSXuKxyjRWtdMzNKs2ht7DVlfFRJ4FTLa4rNzludclsxO+8r701IpUmfm43Qrh713HOtyZGYLBNohl3G6COnQiIWM9Y1zE4p1mx+8Xjq1I5StjMmaUoiypp0lYGp9v1aF/e9POnvqV9u61VMdUK1fUE9OOjU0zjrhM9MxL+aTStAn5swEcNKpoGFtRBvBEpnoGBd5DnjdB6+VUtQXycu44OScm8UAHE4H+i7yPPPv4TV/bRWhpIzX/zcZwhekBBYrw/RNHDP3XeyaBd89UtfRdVmOC3bljYYViVecV7JuR+tT/V4KMC54QNT18kRq4gTf2S6b5tyu1l3PP/cS2UKgnBzf79wqMLImHXOs1zscuPGIVev3kSxcdJaendXcuW73/1Ovv3tZ4Ay+rpx3DrY5+qVq6gKZ06fLZX1OgKygvC+hx/mW9/6FkdHR3Zv3tmXM2rA3smTvO3t7+DzX/gS33rqaVQTb7v/Xv7cz/40O0th0QbaINx99yn+L//X/5T77r/EHRfOcv+9l9hbtuh2S+46ttuOdrXD6XPnuXTpLlQH9g8PONz2nL/zLhbtkr7rWR8ecbB/k7YJ/Mk//af48Z/6aTYZejLNInDh9EneeuluLp47ixfHwcEhl69cIcbIRz7y4ZlRPG4k+zJQ8Utf/Cpf/PxjaGrIaQLsq8xVWsb8PMAEF9S+VVqGRKYyXroferLmETecwh8dhzOOfcZ1yhhXuRg9lTTRKbTgR/Oun/Vn8y6dNjbdmvjlPCmmmmmuWS1FC8nRnrct4ejUY6yc73x8xuB4TrUWS3u23basr3GRaqvbH5giAkZsw9zcgpoXjV279x8HM2dEx4of1RgaSixbs1xWalA3bCLSTaD1XGHNsZlaBlLDuDGrky3Nvl1HyA1kx+XLr7F/81apq2pxOF67fJlXX3oR54XVyRO0TcA74e577uba1et868ln8K5FVbh44TztIhDaCjyHsoxlllWyQkjvFyVEbKmlKxUwrKzT6lnUdbEeN44rV6+xv3+rFKGa0so5s912JfVbrWAgJ8f+jUOb/hAcZhtqrK689a33881vPok4SyjE2NN1m7IHnnvvvY8XX3yZyteve/aRD3+Ez37mMwX4LvsAxJzIKEfrIx594jEON2ucExov/Lv/zr/J7p4wpJ4UHTFZ9ue555/lW089wbmzJ1i1ju7wFl3Xc+PggM3Q0QTPmRMnuHVwi+v7N5HgufPuu8giaIxsj444ODzkHe95L//Zf/5/4+f+N/8G7/+RH+aBt7+VOy6c4W1vuZMTi5b14RE3rt/gypVr7N86IufMCy+8gJYi3mrE5s32XKl/jFH4e3/3l0ixQWiPZUDn7Vjqns1Lh+bF1rVcKSU1rx2rZawHnyL3FbOBWX9uJqUWQngdW3tSNHZeZm1mZu8zJ1yqCm2zxImnbZbGOyqlRdPEmmGMZMDqHavHDhTnotbR1Qr9cj7r78k0pNGJM6wxW8b6dj2i2y961eMD6wQYtr2FUq5UmElJjzFpytrkbM4xcs7RLtpxE+1roNsO7OzsjJtqpLF8rI/1XOtXELsu/NhPpjBkt9seVfj5v/9PGGLi3/sP/gpPP/UMIuALqWy10/L4o4/SlBabPjQE59nb2eXCuQv8xq/+M7rNltWZc8SYWLatpQm8QLbNdm5ipFqRYyYOcRSw+WihKkS5fH9qD2LDJ53z3Nq/hXNWV6fY3DWAg4NDYozs7i7KGOPEMNh8rRh7dlYrbg3TVFtFueOOC7zy6stU7heqJXx1eNdy4sRJtqVTIyXbdunSJW4d3GKzWZc9su4D1RtKMVNHIVeC50/8xEd4+OF3MuQOCGx7z+VXX+OTn/oUjz7+DVKOxC5ycLhm2HYcbHoWuytOnjhBHgbW6zX76yN2Tuxx8cJ5fPDs39wnbtas153Vl62W7Jw5yye+8AV+4zd+m+32kPMndljfeI2DzcDRpqfPGRVPwoGawv78Fz7Hn/0zf5bXrl3l6PBwVgNWPZsA2fPyS5f5lX/yL/hLf/nPoiRcnko1qsGbNyOrha8itb95HAmMwbdlTp0d1OA9/dCPZ2C5XB7L6KpOo4mq7FtX0Ole633Ekm6fM7jn3lsF1YehkCedG3EnG1e1Ofa5yHQ6/djOBCpnyZWi7FzZ1+XVx3BrzaVjqdC0TcF/b3PMK29AEaUsFSQ3F55M13dQBiNSxlGXORPWroJZXxO1Kn3FWlzEuAVOUVti5uxxLuK9Yxi6Wb3Z5KK+vmi1/lmtTbUQNhGhaOtBeOrrT9Fl+PZzV/jm15+h9UK7u2K1t+Lma6/x2Fe+xcnFkuQcbbNL1sy9l+5GeuHTv/tpXGjJoSGJcNfdF3HO8/x3Xuaxx57mZ//VP0HWDTFamwZxDl5XglK9t2qJjKVtvWFyUgZNM88ucXiwHjEMLelU5zz7+4c89/wrvONdZ2maJa88/6oJnXOsDzacO3eB/f197rn0Fvq+Y//mDa5f3y/DFUvzuVIZrVlpl4Ftt8Y6BWjZQ8fDD3+AL3z+C6Og1pIegwIMm6slKM4lzl88yb/xl/4iB9uBblA++6lP85UvfJlXX3kV31o4KYOyvXVI3yeyc1y84xyrdsHhwRHrbU8XM2fuvItl40l9x+GNNZtNz6aPxAzr7Zbf+8Qnee6l5y3czoJuBw6PIttO2T/aENUBwbojiLVXyRaT8KlPf5qf+OjH+O3f/M1RiVYvAHHglKiZX/vnv8lP/PSPcuFCy3LhySQ0l4JTNaKhzf+qvcits6IVPtd5elIIg55a9JxSZNm0JGd1Yzkl2iaQipENPrDpzbi0rfV77mKP89PUlmrQaoBYE0gVmpiXjEwYGKRUxyllUlzThkAuSZ089IgvwLPYmG8E1HljcUvGaMGe2rqwsohqpYUrYb1TIXU9eWXEy1z6jd/OdfvM6qax0KLUVmW1Kl0T8KnUfwReZ26bEZ+mFGDWTCrcHxEKa9WzXC5GNzCVvjRVuVTawDyWnrutcy5P09iAOBHHc88+x8GtAxaLFS+88ArPPvVtclRc03Bj/xabw0O6owO8g3bRknJmGBIPPPBWPvfpz7N/7SaK1Utpztx995102y3/9Nf+BZ/4xGc5Ours/g2Goi9jdCYC5vGRMyMhrvy3WCzH1+RsRYjVvXfFS6uzv+IQ+cojj/HMU5d57ttXSTGQkjFyr169wunTZ8hZ2Ttxgh//8Y9x9uw5bt64yYRX2SGp63nvvffy2tWrkxteRu+cP3+eb3/728QZN2oMKaltKgz4VE38hZ/785w/f4GvfPnr/Ff/z/+G3/inv87VF19l5RoWEpBtYn3rkKOuJ6wWnC04zv7NfQ4Oj9j2Pfe/7QFOLpekzZaD6/vsX79Ftx3YdJFtHzl37ixvuecuGAa6w0NuXLvKyTO7/LX/47/LX/0//Ds07RJrwWHecEWBDcD3XLt+gxdfeJEPfvBDjATbsj8XL57nxMk9S7dvtvyTf/LPjbBKoZtoDUeqfFf5Kzwe56ns6HGtC8O4rl3wnhSjrXGRDSfTfdTOkE1oytp6VqsVoDSNJwTjyMU4jEmcqoAqrlo9pDlvyL4/EVhrhwhfvBwf3DgnrxaOLxbL4nEwekQW5cxIsuUs1/8LlNbLk5/UhOOUiD/segO1ZmlkT1smauDM6dOj4rAmSvZz68eSZ0i7FpxhipmlhnE6hVZz76HyNOYh2OuvGmvPR/LWP7u+x/uGR7/6GK23KZuXX77CwY19xAWWO7v40NKt1+y0DU6UU6dOsFotGGLk7rvu4V98/NdpG89iuQSUzfqA+95yD9dfu8Ez3/o2Q5+5fu2muc5is8lGKtEslJwTNOdge73/ycuzVOnZs6fLiHErYGybhtVqhYjw2c98ifNn7+cXfv5XEVkRe8hZuHz5MqdPnxoTBzs7K97+9rfz3PPPj+Osqy2tB+rcufO8du3aqBxV4ezZM1y7dm0EG1VrqQe0bSA0pVWvZJxX3vb2+/ng+x/mF/7OL/Ar/+hXObpxgPYDISundvbI25541NNtB1Yndjlz4Sybo0MOD4843GwhOO669y58UDY3b9Idrrl1a822z2y6SGgDly7dxdnTJ4nbLbdu3ODo4ICPfuwn+C/+H/8ZD33wfn78J9/Hn/nZP1EMl6Omvi3r6EYF8dhjj3P27BnuvPPOWWiSuXr1VXZ2Vtx33/0Ins999ktcfuUA1Dg7dYKuGw+qtX9xXixZobkkJbR85tRryXt/DJCurWuqbNQm9iGUycZ5QEksloEhbgmlDMPu187O8eky+dhEkCnzlY7JWA33UEccjHvnHKxWi5HTNPe0qsFyzkJ8mZFCv9clzgxU8DZGvgLbFYv6ftcbqL4fSGlgGDrjvaDmViIzKndtgZHRwl2oKT4pjcJMgIUmlJlS5VD0fT/S3cf4V/WYYqpX1e5zMHEetgE0reEoj371MTRB0yy4ef0Gkm3kSruzZMhmXXeagObIcrWgbQOrnR1evXyVl154HlEhNC1e4M6L5zlz6gRPPvF1hm1iGDpu3LhWylCsa1+95/k9VSxsfr81YzEH/XK2rNbZs6dZtC0itsZXX7vK+fMXOHv2HK+88io3bxyyaFf87u/8PikZc9d7z82bN1mtVty8eZOvf/1J3v2ed7G/v8/7HnqfsWNrbF9aV5w+fYqjw4NxTZ0T7r33Xp566uljbTdq+GsdMiv2lUCEt771rfx3f/O/56knn2I42rJZb1G1Do77+zfZbjtuHB6xOnGSRdNycOM6Q7/h1npNs7PDxbvvBM1cv3yZW7cOuL5/yFvf/V5oW06fP81bLl3EM3B0cIv9/Vvc2j+kG+Bt734XftHQx46UNvzFf/1n+NAPP0jWHiO87tA2SzQ7nDRIGdbwe//y9/jABz5A2y4mGgWJl156nsuXr3DffW8lp8Dv/e7n8bKgkhNF+C6Dl7OFaKEMdvSupU5lmRtWW/MJv5kP3Jx/hWCj2GPsCiFVGIbORjWNJSNT4mYuW3MWNXDsLNU/l4slTbNkuTSjZuO6LWy0cVShwABz5TeduRrtjF797LxVo5VzLqO4/Qg33M51+6FZ8PjibqLWnTqNGZ/aP0dQ6hQJy9rUL62ekkJO0TJApeI+p1Rwo2laanU759hKDeXmYRpMNXBzjg44nn7qWa5eucre3kkWiyVPPPYoTRCWq4Ztv+Xo6ADJibbE8qvdHZwT7rjzDn7j13+DtliuxWpFTIkPffAD5Jj45O9/krZZsmibQiazbpFTvdI00M6eZwKp68iZWiypmmmbUKyroDmxd2LFiZN75hZ7x3Pf+Q6XLl3i/vvv52Mf/Qke+cqX+eAH38+nP/0ZY3kPPadPn+aVV15hd3eXruvYrNdce+06N67f4PyFC+zu7c3WNnP//fdb4zNnrNgael24eJGXXnpxxmmqmb2pq6X1rXEsVgueeuopjg4O2b9xk367Qcksd3c42K456jtuHB6wOHPShgwcbUmbjv3DA5YnTnDx7ruIOXN4cIvD/VvcXG+JoeH60SEX77mDvVMrjm5d42D/Oge3brHZ9nQDHBz1/N2f/yWuXjsgR2vVu1gO/LX/6C9x73134JwiOM6fvzA+cw3Ttt2Wb33rKT74wQ/a87iCbDrHZrPhhRde5D3vfi+f+fQj3Ly5Ll0VrMSjWvnJ6JmXb0NDtSj7Kot5zDJVmahKogLVc5qLqrLZbMaCYitFsdBJsKb0OUeaptZlThDG6O0w9QGvo6umxM5ATCarlKm8qBZmde21bT3R+74blU6dbefku72hkbhMfU6T11jqDodZf/IfmCISdZCF4FocAY3C4cF67EgnoiDDKOjltyBnfAYVy2Y4aSGX4r6S8qvKarWzyxAzzjeIC4ibH4RiZZxxhKyqvy4GZXEtjhYHwS/54mcfxSmoF442BxxcfQWvEWmXZF1y+NoBu42SJKKLHZIGrt+8yXp9xHe++SR7rafZacjLlqOovPPdD/LpT32OVy6/httbENVx+vQFchJE/JgtqAIxx7oqI9UHwQchNJmUN/gmk3KHc9bcTSSxXCof/tDDOFpyyrzy6kvcddcdPPHEk5w7dwc3r1/j7W+/h836gK999SukvOXSPXfyysuvIOrRBKdOnuK5555nuVyx3XRcuuct2PghIzs+9NB7GPqtMd6dow0N58+d5cK5M2w360JYtbYUwbWIehwFtFZY7e5w/uIZFm2g2z8irXuyJk4sW9aHh6xT4urBIafOn2O1hP5on7iN3Lo1cOrCJc6dO8v21k36/Zsc7h9xa6Msdk9y5513sBNgpQP9zRscHvasN5k+ZroyDNLR8OrLV/j5n/8V2sVJA1Vbx+nTLf/Jf/rvs7u3Q7ft2Vvt4hDrm6w2AUWBp599hna55O5Ll8w7FE8QgTwQ+yO++c3HuOOOi3zuM1/DyYoCC+GwNr6rxZJQWqDEIZeWHAAR1Z6hXxO8kuIWwZre1bR89S5FoCkz0SqovFwsbHpKBrIZZo1CGixDK9rQbTPbTT9SXwoWj1WxmByqCjmD9y21TU9WY1qn1JHzYOeutM6xEdEWanuvLJetHUkYRxlWCGXuBZmM27SPpBEfhKa1zpgZ6NNwbAT9D0QR5VT68JZJa1YpHqamZ4VLUzXjMSU2A64FKRMrq7auLifHiF0wgbxzrTqSpZhGOlu8XadlAghxSDzx2OOIwGpnRRoGSibV3HJxdIeHrNqGlBPLEyfJeDabLV/63GdpDKujWSzph4HdvT2cd/yTX/plGr8wAS94jg/+WDFpvffqDdVWnH3flekLGVUPBJws0dzQd3bfIkoIyk//9I/b+JtC5z88POTEiRO8/NKrPPfci6xWJ/mhD/0QN6/fYLVoOTi4RR55GwZwXrt2jeVqyeHRoa1bUoTA2TPnWB9trVeReHLKY49o8zwjxdfG1fVWK+lpvOfMyZOcXK2QruPwxg223YaUBs7unSBuI0MX2b92g3MnT7LjPcO6Z9tHbm3WnD1/lgunThFv3WJzcMTVm4cM4rjz0kUu3X2O3VWg2264fuMWR1vYJk+XHdskqG9JCO9974OcO3eBL3zhEb75je/gxIipi0XD29/2Fv7KX/lf471y9uzZ4nkah8q6jdup+tSnPsn73/+BsdK+ypb3ju12zUsvvcSVK9cYemshm/Jxbz0lw9CWi+XMqzEg2nAZa8M75/jMq+ErE7oC0PWMmUdjYV0TmvGcaS68N3Hs7u6Ms9ase4VFKlWpWbhoSq4C1YvFkolALGMDM6mDT8W6VOasY59pI1HrCK7PEzD1mieOQmk82JSBlfO6ue93vSFC45xoCErbNlZxkgU0lMNVWsmOr5vi5DGjVtxCc1Uty1A5EvV1cwLYfBHqRs+LAM0lrFhGJg6Zl194mRuvXaVOk90ebQilwv/UqZMc7N/E545lCDjfsHf6NIMqm6Mt3cEBizaQvCOHBlR4zzvezj/8+X/AdrNltdxhtVhx553n2dtbkutAurKh8xEx3k9ky5Hx6hwpKsEtefLrz3J4kBBWoA0htITGcf8Dd/HjH/0w1ut5wVe+8ggf/OAH+PqTX6dtd/nFf/irXLr7bt79jvtYNMLBgXGPHnzw3ezu7dAuWg4O9lmtFsQ40HVbagbpne94kFdfucJ2M2AN5YTTp89w9qz1k67hl5QKch9sSuqJvR3uvHCOhoyPCT3cEI/W9H3HandJHgyUPjpcc8fZcyxE6I+O6DaJw03H6TvOsXdyxeH11+iPjti/dUizc4J7H7iPs2d2QTv2b17j2vXr7K8H7nvHg1y46xIJhzrjBkWEZ555mocffj/nzt7BP/v4b+NllyYs0BQJPvOv/Mwf4yMf+QAHh/ucP3+O2hPrzNnTozKJMfLII4/wwQ98kBrezy39jRvXuHXrgE2ZM18zRDnbpOCKA1a8r/67aRagDu9Cwe6sD9E8rW6v1xFkHnGdqpDGUhQr6aiyNNV5JrLGkl1NhCaU4YyZpvWExpST9+aBG11E8G4arFifQQScBJqwMPoJjm5b2NCvw4jq775eH8w5cmNdn079m27num1FVHsyjx+OGsYjAioIoXCF5lfNlpVZsJVo7SasomruOQA9f7DXa+BaOFqtjfEqDBg3y+domyVf/fLXLJHrbE7V9mhtPXwL1+nGtdc4tWrxOdMulhAatkPk1Zcvc2phZRyLvT2yMw7J5ee/w1NPPMZyscSHBUPM/NAPvx9kAisrUPl6SsFcwMeWDsFIjRcv3sHf+Bt/m0/8/hcQ3UF0hdAizvHAAw/w5//8n0fEcfXqFc6fP892u+HsuXN8+lOf4ejgCj/yI2/j4OYr3HHHBZDMcrlgZ2dltAmFS5cusVotAGV3dwfIvO3tDzDEns32iKyV9OY5d+4CL7zwQtnrZFnPMrHl4sXznD51kls3riMxIcNAv93QrQ85e+IEosrB9oib6wN2T+5Zds07bq07Djcdd911NyeWSw5u3uTWes1rRxtOnD3L3Xecx2vi6OCQ69ducOvWId0Q6ePA409+nYcefDd7qxUeZdkEvFgnzE9+4pN8+Id/lJdevMrVyweQbJ5X3x3hfc9/9B/9ZbJuy4BFxUngvQ++b7TeqspLL73ImbNnOX/+wojp2b4ZD+bxx79OCDU1PrVuGbNcfhpRPvfcrWmeI6XS0bN4OG3bjt0K6jWX75par3I+r2urSs/kvmBFooUxb9noWh8Xo00CzmrekWUTG0TCiHP5Ef/TwtiPDENiu7Ue4yPZZnymqcyK2c8mOor9bBgGDg8PicNA1/U/+A6NjKlR67RnyHhhfBoDiilVOvutiT40KqQUE30/lAW3rnDVSs2zEvPUd/0KTVNiY9vA6tZ6L/T9FjBG8je+/g0a720EEHB0eGDN2BYt277nYP86y9aqg9vWJnTc3N9nu9mws2hAM8u9PdrlihvXrvH1Rx6hEdjbO0lUZb1d84EPvo8hdhwcHOJk6glTN2mepq+AZa3P23aHiEucPLnDv/dX/7f8L7/ya/yPf/t/ZugD0AIe5x1XrlzlJ37iJwih4amnnuIDH3g/+/vXaVvHiy88xTvfcZq+u8z582cJ3pi4Z8+dYrEIhrfsrths1rRNy97eLvdcuodbBzdZ7TTcuHEZ75XTp05x5fJl7rrrTm7cuD4qILCBhxcvnMOJcv3aVYIIXhWNicP1IavVkgAMfcfNzQFhGVgsGwYS1w5usU6Z0+fP0Qh0B4ds1hv2NxsWFy6yPLlLt95nfeMGt64dcng0MCQYUjK8ISiPfeWLXLr7Aid3FpxYtewuGsMk0sAnPvFJPvaxP86TTz5jrWl9YNF6lgvHqVNL/v3/4C+zs9uWxIYjRjixd3I8NDlnPv/5z/FDP/RD1D7jzk+lN1euXOUbTz5lSiFPYPU8U2ulGjp65977sReQlOgg+KnlR2X/15bHo1yHUDDCiQ9U2+1Uj8sOtVBLpqQAOMPQjZ1Ta2fFWp0/NWNLHB6uj5VQDcNQxnlZ0ifnXPhFE+9ojH++T4hlXDpv/dfBypC+B8D9B123D1Y763erxEKumlOXFFxCJFnHtrlnJKaolIA6jKmKjNRzNJBzU9xY6+ljfXQm1vSx+rFkxDHnPKFxVjFe8AxyJKfIjZsbXvr2s3giQ9tyqz9iiEeEhSDLHQ6POnzsaIKQfcupMxdYhMCrzz/HbqssW4/fWSKLJd3hEZvXXmW3gZMnTjJkQdXx/offx6ndlr/7t/8e/+AXfg3NLRrj2NtlLMItuNQwdDZqOyrgcdKQUo+4jgsXdvjf/8f/Hr/9u5/gr/+Nv89m63BN4AM/9CBC5tmnnuMjH/5Rnnj8Ud72wANcvfwKD77zXaz3M313xJnT57jx2jVO7p4iDnDPPefYWy25cPEskQFxHZ7Mst3hfe/7IF985GucOXeB7dEREjtOndhjGGCziZCiTdsVx97OinsuXiAMA/uXX2WhmVUh+F29dcBq5wTNao/Xup7Xjo5YhcCFZcMiJw5uHrH5/9L2n2Fypud9J/p7c+Wqru7q3EA30MgZA2CAwQwmcYZhmCRSlJUsyfaasmQfS7bs1dp77D32ru3LQbbX13pl2RItUqJEiaTIISdwODkBE5BDA+hG55yqK7/5OR+et6p7RtLxaC+e98tggO7qqup67ve+//c/2AEdHQXSlsBulCnbHlXHp7e3h460gW9XqTdcNso2yVSOMJREu3QiQdIy0URAsbSO7TTYvmMnlWqDet1DoBOGKhsb67z29sv0Dw+gGhohasRh8dB1j727ezl75hj9fT0IRbCwuEB/X5/EaABD1ykVSzi2z0D/NpqfVIRMlwkUn5ffeBdNkxijokhtYdPhwTA1DDOioaBGBE8fIfxoFR8VkSBAOrP46Kq0YGuSEn3fb6W2BiIgJABVSK/0KFzRNA3CMMDzpW+Xqn4wMVeu/i1AmuTpminHMKGhayaWKXlwhqHKROYodUOoMt5ddvQK8Xg8elz5oQ2FiHL8aIHOWzvHrS4SstGQ/25oCqoIEYEfiZR+hIUoDDejhJuovxp1SERjlmwB9dbdAJoETWXzlURcI8PUJTHSD1oOcM3ccGi2x5uA9CbpT0YKbY5xct4GJTIqE0xNzuI0GjT1O9VqjZhuoCA1ZktLiyRiJqCixGOopkl1o4xTKpGLxwjCkHQmh3A9FmdmSCYsAkPFSCfR4jF8VeHcww9y88YIV6/cYGWpiO9tYgZbQXal+R6ITc2Z7wdoqoGhJ9HUOOVymR07e/jxLz7F62+8yW//1tdwnZBCZ57BQdnB2I06XV3dmJbJ3n276OrKMzS0ncnJZcJAY31thWQqRaVcR1dMtg3k6e1pQ/g2w9v76O7MEzNNMqkcc7OLqGgEXsjQtmHsukM2l2JxcVZuS0JB3DRoz+Vw6jXKxXViOsQsnUDVKFbKZFIWsXiMcr1OpVIhbpq0pTPoZpyNagPX9egtdJDSVeq1BqWagxMIOnv6SMRT+CUHd6OOazt84tNP8vNf/qv09nbS290lU24VFUUz8TyFxcUiQ9t3YVkpQKNFohUBo2NjXLx0DduVEgURxUKrCDTN49SpA/zS3/oFLMNgeXGZrq6ulhsoQpL63j7/FoePHKHp/dNiI6MwMnKXet2N2NOb1h9N/ZaqNEWwJrZjI5qBCqFM9jBN888VuDZvVPF4vEVFkZ9vufWSY76MAkIJMAwV01QxTLU1iTQLQys8IqIoSOeApie6PHexmIVubCaPtEYzEbZuljLTbHP73PrwRtcmHWVLpFDrHyPJSbjFc4s/C638Rddfglkt/myH0rSXbI5PyBZtqy2miF6PYLO9k3iRXMGrKhiGjH1u3VHYbDubP2/rL8uyrE2sRdPkz9cMBBqKqnP14hUZ5ywC4lac0mqReMTtiScSlIprWKYpa7UVI1RVRkfukrVMEqpCqGmYVozK6hqK42CZBlY2Qx1BzXPJd+TJ53N89zvfJ2YlZWEUm9KMZove/IVrmt7iFrXyzBQNxxbUKgExKwlKyBNPPMCh/Xt587U3+f53n0cJFR5+5AyDgwPML8yxa9dOxifGKHR2sGNHJ2ceOMDcTJHihkOj0SCbzeI5DrMT43R1CNoyCu0Zg4HeHIV2k51DAyzMzhO3YohAsHt4N7uHdxF4NoX2HKvL86iExE2Lro4OnFqNSrGIJkKSliT3rZfL6JZBOmFQr1ep12okDYNcMoWq6qxWbKqOR3t7G4rv4lQrVOs2vlDo7ulF01TKpQ02Nhxi8Ta+8PnPk01qLM/c4id/4jMMDm4DFGzbo1Sp4nkQBPDuu+9z6OAh4vEYmWyaeMJCjhOCp59+llLZJhTyEMV0E11R0LUQw/DZu2eAz332E3iu3WL1b8U6HKdOsVikr6+fpgeUBHEVlpdWuTc2HdnyCjzflY+hhjLoIMowk2ONStOLqmnl0VTSbwW3TdNsdUHNwtR0U/A8CVvINTzR1ivA812JdUXuCs3PvxwDlVZxbBaMTZ4dm0ZpW7bRW7FLhLQtaZEQW0ukzcfbCjk0/9xsBppfs1kLZP36H7Gx/x8Voq3kqSZBTJqnR2VGyAKj8EEWtCLHT5qEOKKVtu/LNAlpZh5FM4tAEiIjBnYoghZFvgXifWiNKGdZQSAU/Ki+Xb14DV2TGhrfC3EbcjumqRqVSkUSDRSBH4Yohsni0hp2uUo2noDAx4gnqdsua/OL5GIx1DAgm+8gjEyfTp84zve++S0W5hbJZtpJJNKRRki0MIaW4f8W4F20wHs12nwEPPPs8zzzvVdp1FTicZO/8lM/jhUz+MHzLzM2Okc2l+XosUOcPn2SUPjEExZXrl4nDG0O7O9jYW6NRsMnkUjTXminVisROBW2b7Noz6vs3VVg11CcbX0Jjh89yNzcJL3dHaTTcY4fO8jS4gSffOoh2vNZimvrmIZKWyaBU6tiVytohGQTCVBjbJQbJCydTMKiVnewazWyMZNcIo6Cymq5Tt3xyKQzKKFk0pdrVSCku9BO6NRobKzRKK0wvD/LX//lj7Frr8WnnzrCw2d3sbg4Q1dPN4lkEss0yGYSJJMGpqmwXlxhYuIeXV2deJ6NEynINVVnZWWN8+9cQVENQBAGPoaio6FjmQqG4fClL32Co0f3Mjk5SW9v75YDBqoquHz5IkePHkV6OjcPFoDCrZu3MU0LlBBdV1qBn7KAaK0DqWw5uE1pQ5MF3UyzaH6Wt2aigczRE5FtDUJDU03CQPKDVFXHNGPRuKWymUj7wfV58+bXnBqaBW6rjU7zHG0WF4n5appMZlUUpUVUbh3dLYum5vdufYzmih8gjKgLIlLp/8hTPJr09GYF1KOtj2xlVYQii9NWUOvDAFeLfChAM4zo64PoDtNsFzWMaBxTlU0Poub3hx8SkLY0aQCqxsLCMqtLS6iAUFUcx0UFTE3HMGOsrK5h6DKoDkXFjCVYWFggYRpoQoCmksjlmJmeJa5r6IrAisWRuI5GKhbn5qXLvPfWmyQTaVRNo7e3ly0qlz9DO5A8KdGyRGmuTQ0j5Md+/BNslCr8x9/8HUrFKsO7tnH27CmOHz3OM0+/gIJklSeTJvfdt5tMOoFlxnj9jfNkckmSqRTZbI6hoUESSQshfNryafp742RTCppSoq/XJJs10TSF3buHOHL0AG3ZJJMTt3jyE/eRSCh4jkPMtGjLpRGBR7W0QeA5ZFIpAIqlGoYRIxuPEzg2lUqDTDJJRyaFrigUN8pUHZ9MMkVM0/ADj2KlArpGRz6Db1exK2X8RoUnH7mf//2f/iJHD25jY73Cv/03X+Gf/8uvUCzVMQ2DQkcBQ1cJPJsQB8NSMC2Nar3K3n37cFwpgWjxXITC95/9IbbjE/gysVeauJuoCmhaQDwh+Jtf/hlc12FoaCjKKZMSo1CE1GoVNjY26OnpQar2A2k7rBpcu3YTTbcIwpCm73drQxUp+WVHIjukJhuw5QwRdTS+L9f1juuiRGNTEAhU1UBRDGwnoFpp4HkhrusThApBoEkMFRM/UEGRHB1N1z7QkTSZ+s3t3odlGJuYjhrBJ1oE4AdR9yYB+UajseUmDyjye4DWVliIrUTizYIUhiISaEsMNwjClpzlf3R9dBuQD62hA6GiqiYC6fMrkMxpwk2uhHxDQFGaYW3Rdk2o6FoKVTEJhY0fuKiKEYG7IsogM1sv8gN8C2XTHrN5R1EFhG5AIDTeff8GmuITAoqRYn19DUMVCF0ljKepLK7RkTBkodJMnEBQaZQZTCcwhYcTj7Hh+/iNKrlUgtBUSbV344YqhqqxMH2Pqq4R1y3MeJZyrcqPnz6Igi27uvBDWjIVgtDHc6N4a92UH7IABB66qfBTP/sU/+e//13+03/6Pb78d36Bc489xusvvczjjx3k4nvvkM8leeutt3niY59mYdKjq6uD2eky1++u0DPYh9A36DE0Gm6dgf4++vriCL9BV7pOKVRoL7TTcJao1Rco9LTR2bWTP/367/HLv/Qwu/f18QdffZfKaolc2sB1HWqlBmHgkc+nCIWgWKxhWRbJRAzX8anXAvKZLMmEjhsErNYdGkFAJp4kqat4wmGjXiNuJmhPm7huBacuWcNf+NIneOTx+/jWt9/gtVcvIkI4uH8vu4YOsby6QhCz2d43QLG4DvWQhh1Q3qgjIuO5sXsTHNx/lFs3bxCGEgxVFZX52XWuXB7hgTN7JYva0PBCF8fxkF7eIX29CX797/8iz37/LXp7+plbmEEgEKHsIi5dvMxDDz3MzMwUmgJ9Xf2srKwyMbXI4lqFXFbe8IIgwNKNyFNKAtW+J5OCpSuiQ1P8ahgmflhHUQV+KFAVE8OQC5PZ+RXGx6YYG52kXKpTq1fRdQk9uJ6NYZhks+0AWDGN3Xt20NfXTX9/u8SKdJ0gcFER0t9cKChKFFseOTI2k13ljVGghApCRBrPMCBmJag3auhGk0yrSwtkNORhlpIQQbOoqa0iJHWmGooWIggjy2gNRVOiLi7Reh9+ZIVoK+O56a8i70whIWFLs6SokYH9FnJicySjZUYoR7gwlNKOZsWVHdKmhqZ5oJsVV4Jpm4SpD2rLQEHl7sgdTE1FQZqcOXaFdNxCUVVc15MOdYqB7/lYmTSzM9PETR3T1KSZmRljfmaGtkQCRVWJZdJgmYgwYH1xnlgof066sxNfN8ik0uzeM4xhhEDQaoV1XY9sMgWhkOZncgXsUS5VWVm2Gd7Vj4qPrjn8wl/7SX7jN/4Fv/Pb3+DgvmO05dIcOtrD9597nZPHnuJrvzeLZ6sM7rDYFRuiLa1zd2Scvv4OhgazuK4gFCm6czEyiQqaBsm0DoZgdcXmzsgST3xqGxevLPL2y6+yrUfj+JEcY2P3qBSL1MpFwtCjWq2AgHwui4JPtVIhmUwRT8RxXZuGXSebSWKZAtdzWStV8YVCPpshbhiUg5BKrU7KipONJfDtOtWGgma6fPEnH6bQ3smF1++yPlVjqFvj1OkDhGGSwR2dJNqP8Mz3LmGaWb70pZ/nT77zdcqTc6iKjm5o6IbO0tIMO3fubOm1AFzXw3ZCvvmtZ7jvvn1YGrieHXkh6UjxtUA3FPbu6adaOY4VS7C4tICKKr2LgFq9Rq1Wpbu7h5XVBUzTZPfu3dwdHWFqco7CiZ24riMXHZGI2PNcQEY7maZcdAgkq1pBww98NC2G6/n4rmB1pcSFC5e5dPkaDdtHVTSsWAJDM/E8mZ7s+wp2Axp1l0atGHVXgpmpBUCQy+V46NwZDh3YiaaHmLqG57kySSSUXtYCuUwKQylObpnBRXpIN8KMmqOcaejyXIqmNzayCDXPlrKZGbhZDzaHNwVaxnletExqqvg/yvWXwoi2cnpURcUwTGjNmptFqskf2Iquf3hk27pJaLaT8s/aB8Dp5qFuAnTSsP5DyL0iUDRwbIfZqWniujT2d10XEQQYmkoQCjzPRSXE1DR0zcD2QmrVEhnTgDDEVVU2KnXCapW4ruIrCloyie35rC/Ng10noRskk1mElcANPE6fPhGxt0NUVYodm6+1ObNLUpwEra2YSTqT4sb1O/yf/+ErzM2UMIwEbfk0n/uxT3P18i3KGw0uXrxIcWOF+0/tZKO4Qmd7J2+8eolDhwuE3hLZlM/Q9ji7dsTY3h+QjW+guqscO5xm794sy0sV3rs0QahrvPHmCJYVMrBdZez2NW5fv8Tjj+4lZgnu3p7h7shtAq+GU6sS03Q68lkC36FSqpCIx0nELRy3QbVeIZ2NYVqCMHAolUuoKrSl48QNBc9u4NbWycRUMpaF74eUGg4xS+Vv/53H2b03wbGjPQRumc58kb//9x/kiY/38pnP3I+ua/yrf/XbXLx6lYvX3uTK1fN86QtfYOfQEPlcmpipEwYuvmczPj7OoUOHcRyXer2O7TiESsjt2/d4/fVLCMVEKCpbSYGmaUYLEo+TJ/fyuc89SntbFhFsIdAKwfXrN9i9ew+gMjE5huPW6e7u5p0LFwl8NSIGbrL/W92BolAul0FREYpOEKrYToAQKvUG3L27wH//vW/zn3/rq1y6dAtdTxKPJTEME9ex8QObpqmaphrEY0k01SDwfELPg1AgfPBdwcpShW/84dP84de/Q3nDIwwMwkBDUQwM3URVJQdNhNLjKgx9fN+Va3pNkbQXTQrUg9BHU1U838P3fAzTaFFr5GYxOmJ/TkFRFckLbGLG0JSCRU4Fofgz3/MXXX+pQrS1O2l1KK3iQrRB/yAg9uHHaK72t+I/zerZBHmbj71Vc9b8mqbhU9NmQdM0aceJoLhWpFIsYyhyTK9UqkiRp+QtbZQ2MHUFTZHZ8zXbRROQURUUP8ANQjY2KqRNE00RKKaBr6gU1zfwixtkDB1UBSORwnZDDFPn5Knj0cpSjcDGTX/jJuYlvXFkMfU8G0X1+MznHmLn8Db+t3/6r3jxhbfRtSRnz93P4FAvilKlu7uLr/zX5+jp2E5xfYKDB3bRqIYkYklUVsjnG+zfl6O0PsnqwgRd7TY9hTrtabh74xo3r05imBkKnTt4+aWrHD66g+JKGbcecvBwLyfuP8Trb0zy7HMjxJMpdC0kbhjkYnH00MdzbHKZDDHTwmnUcBp1suk0hqbh+QHFUhVd0yjks8QMFadRp9ao057UyVgS8C2Vi2QyIb/x6+f45KNdnDpS4OLb79PeWeRnv7yHbEece+M+//rffY9/+s/+kKUlm2PHjvHzP/8T9PcU+MH3nmd1dYZ6vQjCh0DgNHxpqFapMDw8HH1uFBRN/v7+4Ot/SqnkEorNz5LS6gg0hB+gKi79/Rm++MVPEvhSziAPr8bGRhHDsEgmUkDInbsjpFIp5maXQUgRqet5kZo9iHzc3dY2TGAgSNCwFdaKDW7cmuC3f/v3+S//5WtMTM7hBwKhKHi+Qzxhkm/P0NNbIBaXwlPPc6nWSrheHVULMEyHtjaDQkeSbds62bmjl97+HKm0zp27I/yX3/pvXDh/BVWxCHzk44eS/qLpastULZGI4TiN6Gc4ETtbR9OIFBKSS9T0tN4UaytbUesPF4VoDyVayokgglBMo2kFHfw53/hnr7/UaNbkLEhjNAnShZFoFSSnubnGb12iZcclBZRsvqhNKwT5epuHdysetdk1bVpoyC2bEpHFQkLh44UwNjqBIkIIFUIVvEASy2Rooo7jOmTjJqoQqJpJrVYnFTMxhGyzHS8k9EPSmbjkJOkmnhuwsbxCj6WBCInncyixGK4dcO6hM4hQ8IMfvMgnnnwUVZXKf7lRIVJVS+vGwJf6IHnX89HNBp/41EPEY0m+8jtfY2Jihs//5Kd5+JFT7N7Zwztvr/Li89f41h+/zpkH97G+UmT3jmPMTi6xrS+OYcR545UXceo6e3cN096usrE+y3NPXyPX3s3B4wdYLi3y/sVxDCPHruFhfvDMS5w5c5JCl8VGOWRmIc2v/cN/SaFg8Nabb/HKs6+gI1hcmiOVTGBqOvVGgyDwyWayEh/xPcrlGqlkDkNXUYWgXCnjhwrpTBbdDKg3Qux6nf5Ok1/7O49x+JCG7q/w3vk6g30d7LtvB+PTJZ5/ZpSlFY3rd+8ytHeAE8dPsLy4xne/9Szb+4dpS6dQjALHjh3nu9/5IU5DgGJhmAFjY/fYs2cP8XicUIQIXRAzU5RLNf7g69/hc597hL7ePIIAz/clB8oXEGoy4VR4PPLICW6O3ObVVy/IQxjKonXjxnV279nL5cvvoIiAsbExTp44QblcobPTAuERKqBrBl7gYRoxHNtH002WFotceOcKd+6M4fsea2vraKqJrsdxPU8yj7WQjnwHQRBSLlfRVA3Pd9E1FUUJiVkaQzu2s2fvLnYM9pJvy0pwW4DvB6BJWUalXGVtucjE+AQXL17m9JkThKEPQmK2CClSl2av0o62SS+JEJ5WA9ACm9Xm5BOp60W4ZWG2JemlRdeJMKSI/Bj4Ab5t48RtYvEECSv+oy1Evi8B5SjyKHoyWovAJQhBcSGMSFQiUvVKajWa0EAJEEq01tSkxswPZHIFHypETe7Fh42fFEVBCcHz3E0iJALDyDA+No8BoCn4mNhOg1zSQhMKjWgTYcU1Qt/DFQZevUFHRxyBhxPoVKsebTEDS/GoqRaJXBcrM/PkdBkb5BkGqhknUFR0S2Xn9h38i//Pv8P26zx07kHSKRVVFSAMBAGKEhIKhRCFlbUKr77yNkePHmL3niE0XELF54knzlDaWOfevSmeffp5Hjn3ALZ9jcef6OXieZOXXr3AA2cP0p6r0Nfr4toOQbXOa2+/x87hXSQ6sphWgouX77GwsMqp049SqZUpN8bp7NzByy9f5r5Te5ifW+fQoT0kUzEmJsr8o//lK1RseOXNS/zTf/Z3UeIm+0+f4dEH72d26i5/8Ltfp1qsoKgqyXQaNwzxXA/fdchnM+iaiu1KBrWuG2TTcYQSULU96tWAw3vb+LW/e5z+XoeAkLlJwcBAkmy3yjvvzWCHnRw5+QjPPvMqn/z4Y1RrVa6+8yYPPnSUMyc+zssv32Lvob0kswdZmFtlz+4D3Lk9iUBDtQSlUpHbt0YwTB1TN/ECB8+u4Xs+zz73Ateu3+DIsf0cOXyAwwf3gGXhenXJ8VdNQtdF0x3+xl/7cZYWVhi5NQFCR9VhbXWR/Qd2S6BVyM/+3MI0lXqZLjokEVI38IWCUC1KVY/bI/d46833uTc2GZnW68TjMQwjjgjANEws0yAWkxyi5ZUlLCOO5/qolooQHulUnJMnjnDs2CGSKRMUH01R0BQnUsALmdkQaCRjOulkju3b2jl4aEAWC8WRzHBVoAjwPU8Wn1BEN3DkYscLCTy5OFGEiqL4EVQCuqVHmK4fEQCbY9cWrRYRm1qJ6AYYCDwU4WIYBp6QgH0oPBy3KRr+ERUiXdciJF2P5mPZ4gkRyIdpAVeiRcpsPm1VleZVoWi2aZvrPllkonV9NJo1x7Vm8WnGBTU5Q5I/ohFGxvuqohAImJmaxowsNxQU1EAQ043oqSnoiooeWVoKN8AywFIgFCo1IcWzmVgSH59QNSiureDWS2SzJoEKsWSaeDxBw3E5sGcvX/29r7KxsY6VTMgoX8xojGz+4kJUBQwD+vo7ePLJh/m3//b/Yu+eXfzkl56SoZNqyKee+hjf+94zHDm+jenxe+RyPgcPZDn3yAHMWB/vnb/EuXMDJFMb3L09yujdGbZtH+LRx89x7eoViuuLmIbJQw8+hO8L8u0KmTaF2zfG2DPcS0dnnGzao6+/jz/+1rt87fdfw3E0TL0BQYnf/a3f5/LVm6wsrfP+hXf5jX/4dxjcuZvRm7dQVQXX92jUa5i6TjqRQNN06vU6ruOQTqbQYxaegHK1RsNVOHJsP3/rV86RyS+zXCpRqSkIEvQU4njBOkcP5xm75/LaS6/wwJHdTExOcfRIN2f+6qdZWwv5b7/7Amslnas3rtOWTaJqKsO7hzj9wCeYnlni0uVRXLdOUw60a9duLl+5FOmbZHDD9PQimUyWsbtTPPf9H3Jg3y4OHznAtu3daIaJogoct04sEePX/t6X+bf/5r9yb2wSocguf3Jyiv7+fqanZxAiZGZ2Ht/X8VwDQ9OoVR0mpuZ47+Jlbt8epVyq4nshhmGRSFikUiksy8K2bVzXIZmKkU5nWF8vynU9giDysYrFTR46dR/3n9xHMmHS5NdJ8zO5Dg9DgWHoEZYl3SbCUKa4SG5egOt7NCPLhRDoqk7DdbGsZsgj8rwKAUrTNz5E003C0IvoBn50pv8srtviAm7+7WZhiigpoKJrMeLxNKpiIoKPhv585EIETYxIOjNKRqkUm4JkCodCjmdbq1CTY6HQBK2bL6DJzIzyoqJRaytjeut/Wx4wCLQoGaHpqeIHAtd2WFqYk26LkfbFEApxzcBH0LBt4rqBrqrEkzEqnkvC0tAIcRWdckOS9XQlwBEqRixGZW2DfNqSW5B4GnSL0AsIalVuvn+eSr2GGU8Sj8dJpZKoWkgYCMZGxxka2o5lmfg+4Ploekh7PsE//PW/zX/4zf+br/3uH3Hy1An6tw3w3vvXeeDsWSrFu4T+IvPTLieO7+DYfUPEk90sTDpkkjmuvHuZ5eU1kqk8vb29jNy6QiwOuUwa1XDp6dMYuXmP/Tv7EUpIOlMnHm/guSUcN8bXv36Zb3zrPdxAhiG0JVPoisb5Ny5St2W+2PrqKhcv3qJYroGq4fo2DdchYVlYhtw21uo1VEUhnU6h6RpeGLJetWl4AfF4G+slj+efn2Vu5gaVjTJVOwQtpLug8tM/cYZCrsb6zDQ//cV9LK3YfOKpB6jWQ/74W+/zxis3Ka5VOXBoB48+eIiOvhx79u1idr7Mq6/cxdI7sZ2rCHwURW6LarUqJ0/ezzvvvCsPjJBEwBs3btPb3YveluXqlVEuX7qNFTPYs3cX24f62TbQQ77doFDI8Hf/7i/xL/6P32R2fgFV05iemuGBs2eZmZ4nDAW+L3jl1Qus7B5i7O5tbt0ZpVKz0XXJrUsmcsTjsQ8QGRsNSbrcs2c3GxsbzMzMkMnkcB1HqhKi6Od8e4Z9+wcxYyGGGUY3aBHxfPyWqX0T8wpFIFOTBYRBFE6hShG6DHcEXbdwfdANi0CouK4jQWhFQgR+GKLpCkJVCYMwwnYgDF1UrQmmRAVoS+3ZyqyWWHYk0VLlmx6GHmYsjqqFmJaKpn+0rdlHLkSmaeB7IITEejRNI5BmbE02YfSVYTS7NctX6xm3qpMkREVe1NGaMwyUFhC91c+nWYQ2vX4FTf+iphC22RWFvo+myFz2uhdiCAU9BE8H23Gk3iz0qdk1Oru7WVueIwg9HGEQuIJsxpR8KCOO6zkkTTBVga9qEE8iNJNqqUJpaZFMXMWIJUinMxw+coimj7Oq6kyMT7Jnzx483+XunQnSqQxDQ70IxSOfj/Grv/ZlXv3hK0yMj+MFIT09XTz33AucPradWMwmk27jq797ns984SjF0jyHj3Zx5Z0bDO/YRXG1xKPnjjE5cZOejgJmIku1Iih0ZGnUV8i1xbFrgumZee7emiWTTHHk5EGuj9T40+/cwHcFKd0jndDQFajUXaoNB01VSSdUTEVw9+4EihGjrVCguLJI2tTloXA9PNcnZugYho7QVQnml6t4ika6vR3LUBG6j69mKNYK1L0YbuRbvrDm8Sd/coNf+evH+dgT3SiaTb43y+tvz/C9Z64xNTFDPCb48q9+jHMP7UNHp2w73LgxyQ9/eJNKXWdx5S4bpVUM0yBmWXiuYH5+Hse1actnqNdrm1swFJaWl9AVla5CZzS+qIxPLHFrZALbaRCP6XR1ttPXO8hDDz3Et//0eziujUCwUSzR2dnN4uICISHP/eAFRkf60QBFs0ilLHzPA0WQSqVa6avNAzs0NIRt29y7N0mj0QCgXC7h+z5WTMPQFXbvGeTJT5yjLW+hhFIl34Q0RCgkYz/i0m3elAMc18My4wihEnghRjyD6wWsr5eYm11iZnqBuu3SsCXG12g0SMTjZOIxOjryDA4N0NPTSTIVJ/AakepeEETx7NHBbVFvpJZt0+YGJBG0ubxX1MgKWtn08obwR1+IXNdHVQ05BoUikisoH+Qa0OyIWuqy6ImrcsaNrDolEC+iNX/TP1eJvFYEhq7j+R7NvO+tuWYyX3yzs5LAm0q1WsF3ZGxuKAJEGJKMmQS+R6AaNBoNUok0IHA9h/aYTjpp0XDq1Os2ScMiBgSKQrFcxTIEhUwKu2ETy+TxjTiuF7C6MEfWktEriVSahuNw5sxpQiFZpNVKrRXhrKk616/d5JFzTyKEFclhfGy7CNSpNQSJlGBlZYZHHj7Oy889zdmHj7Hv0ADPP3+J0bE+du3RmLg3z/HjOymtbzA0WEAXSxw+0EUu386t24vMzDQI/AL923KUVxd4+ftvoBkhZ88dZttQL/cmXX7rt16k3nBJGZCxYmhCoeY1qDkeqmaSsHRiRkjoNliYn+fU2Qc4uHeYmK7wx3/0h3T39tPR3kajVuHihfNUShu4IazXK+ixOLlkCkU30FWLQlc3i6tzbNQ2EELBEQ1UAapi4uFipWKEisPKSsD59++Rbt/Djr0HaMvE+Ss//ThtBcF7l8d5/ZUxVhdsfGFw5949Qj1kaNc2nnzqJ9E1k2e/9zyhKUmkgfCw7SpC+K1RRcYKCVbW1jDNGNu3b6Ph2pRKReIJC9EIcGxBudxgfu4yvi/o7Opkbm4O3/e4d+8eJ06cZH5hgTAMqVWrBCFYsZgkzIY+8VhUKBybIAjoLHSQb2/HcTxWV9coFtdQFB1V1UkmY/ieQ19vgRMnD7L/wB6SyTiBsAkDB0Mz0BRDJiYj4ZAPTgpyWaQi49OF0ECYzMzMceHdq0xNzVOr1XGdUGI3mnQR0CKIw/NWSJgGiDFq33+RXD7H4cP7OXnfAXr7O9ANhSBwUDWV1gapdY7DLZ1QM0BVgBqB4s0xTkgMi1CXAaThRysxH300E4Zka+LKihcIlECBQAMtRFU8QsWMao+cQYnW6EL4sgUkRIRapEvZJFSJUKL6cgEnzcqb3CRV1/GirkdRVXRV/8AIJ4SCGwaUaw3wQTNA1UE3QDd1FCUg9DVUoWIackVbLdsUV1bYM9TLjTv38Jw6uUQKVVHxAgPXdumMGXSlO7jnr+DqBioKy7PTZHS59tQzaTBMDu3ZQ3t7BrteJZnSWV1cxNAFKAG1aoO11WVW1kt8//lXKXS08cDpA7z79pvs3bOPju4h3rn0EmdP7eT1F17GthVGx6sIc5kHHz2Foaksz5UwdY9ELM7Ywl3278ug6wInSPCd71+kUgl59PHT2I0Gb706z8L8Al29HZx7aD+ZrE2xrvKf/tPrbGzUaU/FSaoagRpQcjwqDUGATspUyVkhOiFl3+Pu3WvcGrtNuq3AU099ijvTS9ybn6Ozu5Of+bmfZWZ1ld5QUKxUsScmMSwDoSoEgUcikeLAvgM8++xzGLomNVqBjqLq6BrEMgX+4Ns3GNyWZefQbj72xDBXry9RyNb40uc/ydWrk/zw5RkKnZ18/ic+z93RNV55+TzHTtxHWz6LFdOYnxgjmVD5R//gp0mmCly8Msbrb79PcW01ivvWMRIWZsyiXq+jKgZTc3PUbIcjB/czuG2AWr1INW1R3FhHEKCbglD4JOIaA/1dzM7N0WhU8DyHRCJBvVFHhCHlShXTMqX9byAwNZN0OklnZwcCQSACZubnEIFOvVGX+GbQTDJ2ue/4QT791JOomkzt8AMHAwVFmIggJFDczQOvKqiYcgSTOau4fohiWDTsgIvvXeP825epVh183yYWNxD4mJYk52qRU4Eskj5+4KIJGYEei5w7r165wTsXLnLq/mN88qmHMQyTsLVoao5lQdTpbPqxyyvK35N6KlR0LDMyfYvAdV35URci5DjV5G0Evsy2DoIAJWq/pJ918yGj+Uxp/nnzUhTwfB8/8DEM6XuiRkb5H7CfDIKIOq5AGGLoOmEQYFlmq/WWXx8SBA1SyRiKa+P54PoyyZQwlOOaAoriEQTguyGu7XH8xBGmZiYoVxRMVcUnpG7XSJoBShhneO8Q1VGdqqfgFNexfBfLsCAUJCyo+w2eeOJR5mdn6N9WQFc1FufniFkWoS+YnppC12D/wSGGhnp49eWXefeNl1mdm8ZzYzzcu4/jx07RqC9Q2ljlxP2HmJ5fJGUOYCsLDLSnuX1tllOnd3Pv9i32DHcQi8W5fP0ely5eYdfeYc6d28ntkUna8gNAjP2Hhjh4qI/KRpXpmSrPv3iT8dFFsqkkuuIToOKFOrWGT4hCNh0jqQvU0EaECvGYiRY38TCp1+v83n//PUxNkGtL4y6u8b//i3/Lk088wSefeJJ3L7zP6Pg8ppnCdh0MXedjH3uSN994g7ZctoVp6KFDd1cBpxFS2lBYW/J46707pKxpHju3g6OHuzj+yV6mJy9x5ECBh86dYn4Z/uSbb3D9+hh4JvMTc2TTCh978ijnPvswVjzOm2/f4pnnv83c/AZCk8CrbbuEgYMQ1WiZoRH40g5mfn6e+bkZTEunu7vAzuFBensHSMZirK8XcV2PTCZLqVwlmUwyOjrG+L0x9u3dw9VrVwgj69ehoR0oqiBuWtKDyveYn19EILBdh2rdIWal0VSLIFDQNZdsJsW5c6c499BJwsBu6bSa9BZV1QiFJGDK+OposaM0WixmL1BRsHjvwi1efvVNquUammYRBmBaBqqq0FnopF53aDRcTEOjXnfI5JMMDvUzMNBLWzZHvi1PPB7HsqRjZLm8ITd0qoeqGFiWHuXqiVYx2orztpT4W871VvW9QBoYCiGF5T/SQtR8M5q08Za8gk2P3c0nuYntyBFz65wpRzE9Yk8bhvTnCYKQMPyg8VJzla+pWgvQRpVz7Fb7gTB0sRtlCu0pKvNVAlWjUq8TNzVimoqwXWK6EiUrhGRSKTRFsLCwyhMfe4BnvvcarhegGAY0fPIJGR1dcUocPjDIO+/fJqMK9KRM7tA0jWQ8YO/uIwxu7+Xp773P0I4eVEVldWWJbdt3UC5usDg3TyaVQFN9slmdz33mHD/4zrdQw5CBwU7efe8VhrZ3szQ1RiFf4MzpbhovzZMy6gwdzfLWD19h3+HdCGETS2l4JHjuhTvMzq9w/wMH2dZbYPzuJAf37+LO2DK79+fw3Tovv/gmhc5erNgg777zNrlcFsuEVEKjWrOpbzSwTINcysJQQ+KGQlumCyFUVko1PNtnvVQEDNKpJMmkSaNRp1haQtM0nn/+BS5eusLGygaJeIrAh3gsxZmzD/Daq69TqZRawYGGYVCrVVmaW2XX8F5mZqfxQ0E1UDGVJC+/cpXHzz1BTF1l754kHj7Xbo3y2//1XabnHOr1Oh35FF/8idN86pP3kUoKzr8/yXeefof55QZVJ0TENGK6RSqlY+gmiUSaSqWC7TYwDJNKpUZ7vkC1WsV1HGr1KtMzi8zOLzHQ38PQQB+23cBxHarVKqZpEbc0OtpzLC4u0NfTg6aqBIFgZWWZ8fFxgtBDVxWS8TgIlUbDRtN0XN8lDAXra0V0wyDfnuXwoQOceeAYhfYMCi4IF4SOYNO2tumr1VQRNDPvgsAhCAWalqBarPHtb3+bkdsTxOMpRGhgJWIEQcDQjgHCMGB2Ro5nQRBAqPDwuft59NGH0A05pViGgetKh0jTMHE9GUSqmyamaVCr2BiaIeuPErGzRbQUFx/cmjXxXxGNcUpkyROEAj8MUDQVP/gRExpBVkVpSRmBxIoMV2yh+ISRCj/Sk6nR2KVqEUtTdkOqFtkiCKleDsIwUiDLF9nSmQUBKqHU9Qi5mtV0lSDaisntiHyh3Z2dJBMWdVXgEshKLBRy2RyV+ioxXSZxCkJy2RR2o8L7713jH/+Tn2Ps9i3ujq6jJtN4DQ891PCNkMm5GX7ly6d5562XSMbaJWUfE6GpHD++l1RHF45dY2ZqnNA/i+8KQt/DMk3mZudo1Brkshk0NDynTrW0RqlUoa9/J7bjcOBgF6ZSpRYPaLPidKYqPPnQLubmx7l8YYJMWmfnUIKV5QaeG3J7bJFEpsBj+3aSyVSoVmY4fmwnC8sr5Ds0rl25xdLiKo8/eZhtQ9385/98g0QqRS4fQw81lhcWqVSr6FpINp8glTJJZ7Momk5xo8Laepn1soPteZiWRTbdju/7rKysoClgRe6JnudIuxHhgSK9oYZ37eDChfOoyqZLg23bOI6Lric4dfIU169ewvdd3NAjl2kjlRJ4ZY31kkdXp0HFTfDc8wu8/eY4O3bsxRdjFAp9/MJf/xzplMbV69O89tIVrt6exhM6G5UqgVBRhEJDkV5Phm5SLtVwPA/Pt6Xvjw+u4xOLxcgXCuwpHEBTVUqlMnPzs7x7+RbZbJpCIY/tuTh+Ha9hk02nsOs2kxP3yKRSrKzbsmA5NrG4hec6rK6vkct10NXTTzyeol4v07DrWD0JNF3Q3ZPn/tOHyWXiiMCX3Y8wojjrTS8iEGi62fJLap6DUKioSpx795b5/a99i0bDR4SSsa/pIel0il27hrk1cpu11RV03QAlpLsnx4997uPs2LENRQllJDoCVXGJmchRK6ijCB9DFxiaCkGArlo4jWb+2WY307TS3dyEywOoapvEY9G0s9VNpOJOtNxcf2SFSFEEuqbLVlL4GLqO7wQQxUoLoSIUiZo3kXQhBKibwJbS3LA12dZR9yRtG0SLHt6UdKiKjMDRNKk09n0fFTUqaGorzVJRDW7eHGdpeZ2ung4m5xcxNZnJ5fohbW1p6hUHn5BqtUEhn8bULVZXKly7docf/9KD/Md//zS5znZEzSEMVBzNo1ZvoIoyn/vEYd65MI8lTNDSKIHD8K5uphfruI0qnl3BqdsIoZLNZKlXStiORjaXQFF1ShsVao0yS7MTpDNp2tt7OHHuAa5ffwmnPMGeXQOUV1cR7irt7Wnu3F5g8t4qP/ETp9GFyerCIslUgUSvge02aGu3CTyDTDZDqCmsrBd5683rtOfa+fEvPkAiA+ffu85aaYnunhzVyhoba2UCz2GgN8f+Qzvo6e1ianyBG3dnKNZd/EBhtVTDFyqJTBpD09koFwk86YWcjFvETRPXbhBPJfEj3KF/oIeu3j7ev/geyVQS35NbI8syMU2J0ezes5dbI9eoNyroukHMSpCIx8EXqGqcRDbF+PQa126V2b5jkCPHzvGVr3yXT3z8cXbv7ubCG9dZWy3R1lHgwSceZdveIm+8doXqxhxJS5BvixGg4bg+rhfgBwGu46KoQvpFq9LPvNGoUSytc+/eGKCQyWTIteWxYp0sLS1QmpyRIQHpJML3MU2L3r4eZucW0dWmhQvUazamZckoHyWG7/rcGx0nZiUQ+LheHcPQ+PgnH+ahcycIA+nMIPlteosIHDRdKnSpGggDH98LsGIy9tw0YzQaPqN3p/iDrz1N4GsYRgJVs2nYFfr7+8hkMly5chnHjtT/qmDH9j6++MXP0NEWB2T3oyAZ/6qyyQ9SVFlrVKQgPBFPE2oKju1FzcRmESLKf/tAorIieUktBmFTbqNqLX8jVfkRFyI/cCRrOgRCQeA4KARoqo/MolSikDk5wm1mncmUVyWQaQNBNEfKzRsoQpXaryBE2yJuba3xVQ1U+QaomhFtzogUwwnKlSqqFWdppcb0/Ao77t/DAGmM2Q1MTWOjWubgoZ3cuzWFE+ikkiqVUpknnjjNCz94i9dfvcW5//eDfPZzh5mcNWmLhVy+PUcsHsOu+Fy7NMrHH97L0myVjMhzc6KCrod0tCvMrDSw62UMxUEECnXbJpXyqRbHgQ56dyRwgzST0xMMDw9x8e1R+goZugbyTE/fxVKSGLqBKqokUgLHb7BRbLCy6nDo6H7S2Ti3Rpbo6u0FAaXSOoMD7UzMzrO4YHPsxElefe06lapLT+8OnnxiJ+trRV57cwHFbEdT1pmfmkQXCruGOnjk4aPsGO7j8vW7vPjy2yyvBLiYlGse1ZpNPJkgG7NwbBfHlj7XlqVhGTG80OaJpz7Jyy++JXEMVePwqfuo2zbnL7yNrmtUymUMw8CyLAxDp9GosWPHEOtra6yvr5FJpyUeqAiq5RLpRI7ungzFtTVyMY/PPrWL+VmdP/3Tp/nZn7mfaqOKZy/x1Cf2Y8VSXL6+yNPff4t745PkcwX27+kjnU6QSevoikMA2K5KpQFTM8ssLM1I7FGRKcSmaaGoMmnV932CwGZhfgotsvRw7DqNWh1reAempuP6PoYVo29gkMmpSTRVJww06vWA3r4Uod9A1QWmaWFqWrRZVti7ZzdnHzzBzuFeVM1DNHWZut4SHIRB5GGkS/Gp63uooaQ/u06AopuUqh5Lc2t8+0+ewdAMVKGiq9JZYOfwNlwnYHJyEk0zSMaTxCyFwaFOPvGpR8nnY6gELS1Yk2Ijmjf/aEnUDH2IWSau5xEKaf8hhDT5U4SGIIrT3kJN2JR4bMWH5GPXajXi8RRaXCWIQjJ+ZIVIdh4ymVWu8APiltnqev7c7yGqW6FAi6QeSlRgpI2kiqZJOrqiqARi0xpWflA2s+ObbGu5stdkGFz0Tlx4+136uvswFIOFmTl+7uc+zjNPP8/iYpkwCCmub/DIo/fz/POv0l0oUFypUFwv8dkfP8UPn73AvTt1Hjw3jP7OHDsfP838//0C6xWT9g6dy9fG+fHPHGZwR5oBq5PR0XdImIJsHNLxgPX1RSwrxtz8CmZSMNALd1ZnSMQFneke1opF7o5Oc2j/dizNo5BPkI7pvP3OFQZ7MuwaShG6DVx/Hk0Z4Oa1O+zZvZtUXGV5oY6uZ5hfWCKZMOjt6+S9dy4zObvOJz/1SW5cG2FgYIiVtRX27Oni1rUxTDPOnuFDfPVrL7C0UGbvvhxPffIke4cHWVlY54//6DuM3F2l4qYQehvl0iqKGjC0vZ9kMo2qKKQsi+XFJar1Bq7nyRWwGWNlo0qmoxNN1egf6GVs9Dae55BOpyiXy6iq2hrHhAjp6uqmXK6ytLQsI5DDps4JDMOit7eT3cMGe3d3kNBWmZld4fK7y/zczx4jna8AFgFppibW+c53X+TCezOoWppUIo8IBJmcwZEj3Txw5iCdWYv1DZcbI0u8d2mKZX0DIyowCFqaP2lEL8mw8XiCUrlEIpmhu7ubXC6LbdtMT02iazC4vR/f99A0j+3bOxm9O44vBNVKiXxblnSyHdPQ6ejIgeLT2dVOX183hUIbYeij6xHXTQjpuaVBGFnHCmTuvHR1VLDrLqlkgiAARTGYnlrmlVcuMDc9hxCgGzKGut6osWf/bjbKJcqlMqmoC61WN0ilTM6ePS21afgtFwzpAKG33AjU1jrfw7IsmlHTQmx+fRMKap5s13UxdBkp1ry2Lpaa042qqsRi5ubo9mFv67/g+kthRCC3DyJC9lU1atOIHP+FiJJfiSpwM0VsyyM0q2mzvYvGMt/zUfTNSJ6WH3VUiJqErqbiPowidtOZNNl0gtnJebo7C9i1Fa5dvsYv/fLn+MOvP8OdO3Wmxxb5zCce4syZIUZH1simLUbvTPKTP/Pz1NcXefPlm+zZd5JCJiSZcPnMU0f5r7/zOslCDxtrayyvl0imQrr786So0tOWJa4HZC3B0tw9du3oZ21hhs6eFB3dCS4VN+jM5MmYderqOvWNEm5tle72GGpQ4uaVt+jOKcRUh6Qe4+LlUe47vYuxO3PsHBrCtht05Hu5fvk2NadGd3cvyUSaHz7/Fqur65x+6AGWFxc4dmQno2PT9PfkmJ4cZ9fuQVaW6vze732X9nwXn/zk/ewazqDic+3yPf7wj19nYdUjES9gaICoMzzYiR6PYWlx7JrNxvo663Ydx/dwgxChGTLcUISkMxkOHMozOjrGlWuXUQlbbpqmabasXFRVxbIs4vEkq6vLyLw5pWX9oigKRjzBet3h6ReuU7e38fFHdzI5P8cjn9mHrupMTei8/+4Et0dWuDM6y3q5jGIIBoZSPHDmAEePHKCrqx0R2LzzzjtceXeShaUK1XpAqMTwBSRTqagweuiqimEaxBMJfD/AdR1KpTK+H7C0tMj8/ByqqtDd3cujjz3C3r07GejrIp3UqJRXKZfLXLs2xh/9wTP4nocKHDxwgJ07t5NrS6BqPkHYQOARihooKpJkLT/jWrTk2XRPBDkxSA6daaZwAzn2LS0s8Ud/+B0SsQz1moNp6miaj6L6nDh1lKmZWVZWV3Ecm2q1KlUOwuPBj3+CnUMDKGqAqpqEvtv6fTTdK5qRVs0bfqubUaSthxNJrJoa0UAaHEVcvuADhUUydUSrD2kKZXUlciIQH908/y+3NQtpAdQKCrF4ZE4VgVgf6Iu26uS2Xq1fQpT5rQgZLNc04o8+sC3foy3dkKJE7bWiRNISWQRPHj/CvVtfJZMR1FyTC++NcfrsML/4157gK//9Fe7drfDD597kl3/lM3xt41vUGxYzs6tcuzzOF7/wIH/8jbeZn3DY1pNncXmOh87s5Na1PCsrDh39HSxOztK/rRdd9zmyv5PSegklACt0sURIb2cHI3enUDo6cRs+Pd2DmLrGxkodLVBRvAZubZneLhOnUmXq9nUef3yY3u4sV965S6Y9jlBNNlYa9PbH2SjZXHznFpXSCueeOMnacoN3L1xCUVSO37ePvh6VeKKNqekJ4jEXTRMcOjjMjSvTvPHqLR57/BxC2KzNzpNUE1y6NML7748iNJ1UNkUuEyOViGOYhvTsXiuyuDRLYHtoQuD7DYQC6VwG1YwhVJNEzGRm4g6EFmsLs+hKEGViSd1ZMz9LCMHhw4dZWFhkYWFWug26IZlMhkajEYULKuwY3sWVa7cwtTxvnl9BVdI8/Mg2rl5doLjhk0p2sW33fSwsXyO3Xufkg6fYsbMXBZ/lxRLPPv0GxXKNqekFihslHEcKjDXNwLQMYnELXVNJJpPYdpFarYqownpxHdM0aWvL09PTTa6tTXKcdIObN2+wtLTM17/+Ddry7fzY5z7BUx9/kO6uPG1tOtsHH2FuepWXX3yLuyN3mZuewAs88vk0e/YOc/LUUXp7O2h6UmmaJNIFgXRdkBsxCAIPFA1NMwkDlVrN4dLFq9y5N4FhmozeHkNXTLAEiXgMK2YQhB779h9kfm6RhflFdNMgkUig6SqWqbN/dx+PPXYGIaQ7o4KOqkpJVGvdLkRrw721CEkMV5oSapreuqEQFRahKNHv+i+sDq2f4bkuoSbtjePxD2vT/uLrIxeilixDBdeTCQSNhoOixBHCp5mhrUT8Ibkl2wpKt6AvqRvzvajAuPhiM2q32fFsjeRpjmiyrWzqzGTigaIo6GrIY4+dZXZsFLfeYHUZvvmN8/yj//Upzj6yDcJJJkfXuPzeHf7633yCP/mj99DULl59+R3Onn6UT39+N6+/fI1PfuoQ/sIshEU+//mjfP33L/LkE2dxqgtoeorSxhqn7uvjwoUS5aqH37DpziVIJm0Syhop3aJW89k+uI3lhWXm5uq05Xvo6hKYiktHR4bL4wtkU2k629OsLha5NzbLFx54mLm5IgPb+gj8kJnxRWYm5/n0Zx5ibb3MyK1Zjt93gpGRqxw60ouu2EzPTpOyVDr78ggsrlweZ32lTldXhtnxqwwPD7LnxGGef+49bo2MMrSnnd37BhgYHGJl2eHatUnKGw4bpXnqjSKZtMn2vd10dfTihgoz86tUaj5LqzVy2QKV6gpjC3cZGtzDQG8vUzPjGJZFGAa0t7dTLlcwTYs9e/YyPT2N4zjE43Ga3YDjOKiqdDTcu2cv43dukY6Z+IFGKHwuXLjG8SNxDu7rwUoUeO/dOV76wbMc2N/LidOncFyHZMyhq9CBcWyYO3dnefGVi5SrVYSqkutMEI8lEX6IaeioCpSqUlCdSaUJwhDH8XBcF9/1WF1eZmV5mWw2R7Ytj2079PX1cuK+E4yPTzFye4yv/M4f8uYrb/BLf+un2L2nC9d1+IkvfYprV2+yurZBZ9cefK/B2mqRF3/4Oq++fIGhoW0cPXaA3buGiSdjJOIxVE1B7nm0SLjqsLy8weTUHNev3WJ6ep5MOosZl9wlTVERmkDVQROCZDrO8K6j3Lpxm3K5SggYpoVhKNTrFY4ePcqPfe4xDFORXVjYXJsHkngZFaAmNWBr8ITruriuixUzJf9H11tYT2s1LSTOq7a6p63is01lBSICqhUtIiArfESs+qMXIlXR0UwVQh/D1AhDyQeSbOiAZsicogSEQt6dZFcqDZfU5t8ByDRzufJXBIEAVddlIFvU+hmG0SpATcyoGdGiqkR3GYUw9AlEiNBTzK9UOXv2KO++doGFmQYvv3SHhz++h0ZZo7vT5sWX3+TwsR/jzOl+xic8Ru6Mcu3WPCdPxujstrl4ZYyhbR0UN8q4oc7HnzpBImFRLHmM3Fygt0tl93CaqakYM/OrKFqdZFIhEbfRgjnSepZq1aZne5KZ8RoBCqWSQywB81P3SPTn8N04hUIBIZLcuDHHjt3bSVhp6sUlBvZ18c5bo0yMrfDQ4wfwA5+ZyTkeOLuP2zemOXP/EUzVo2GbOA2VdEccVeiMjq4wM7nC7PQyfd15HnvsNLYb8Pqbb9E7oPLkpz9FvqOTpXWbN98eZ37OZmWlTHubyn3HtrN33xl6BzpxfZU3XrvJ+VevsbBoY1gZtu3YzezCPOVqBdNMSlZvo4FlxRCqlNuUyhu0t3fS19fH++9dpFDIA4JarUYmk4l8mRRisRinTt3Pm2++iaEKAuETEGBogjAQdOXbIYjxp3/0Ftm2LP+vv/s4ZqyKUAw0LUvgxlmYq/KNb7xOueRRyPXyN37hOKXqKrdHJlldKeP4IU7VI0ShvFHG9Tw0zUDVTdKpFMOd3SgIQiEJp+WNsvRXSqWYmZrh6pUrDG4f4sc++2kmxie4evUy/+s/+U1+6qc+z6c/dZbOTpX/6cs/zW/+5leIxdMUGyXa8lnidoxKyWFsbJp79yZp5vt1FAp0dGTYvr0X27ZZXFpidXWV1fUKqmaQTCbJtRVwXYfVuUUyqSx+4CGET92t0d1TIGalePfdq5RKVRKJGLopfZCq1SpPPvkwjz92v6RMIJdAEOCHHnFLmuIritI6T1sTZ5uOFrFYDN3QZOx0ZJIm5TFhi5CsKLRsd1rM7xbwIvFeVVUwdINAiVweFYWPCBF99ELUSqxUm09GRumGQqA3RXChTMpsjm5bYC02lbCbfiYy/12laSGyNX1gqxfRZvKF0jL3Nk0zUjorhKHBetFmdmaZhZ42vvxLP8Y3vvpdXn3+OidP7mHXzj46OzwUHL7/9Hl+7hdOMTF1ky/91BO88ebbHD+2jb0H+3j6T0cZGOgnE/cYG59m5/BRpqeWOHRkgPfOj0EYw4xl0XWN0lqFtkRIaFdp780jfJfQ9zAFpAwXPXSolCE3aJNKBvh1n8U5m8GBDkqVCvduz9HR3klfb5zRO/fIpixGb8+jqDF6+vP093dx7cYIRw5vY31jlp6+NOl0yPqGz9Vr07TlCoRKjrfOT+B7FulkjNMn99PZkWN+cR4rrvD5z+4lnVGp1+HqtUlmZkOUIMWhA90M7TxGvi2kLWexuLDOt7/1Fm+fn2R1PSBQY2zfeQTDjHHp5g1QPayYieMLenr7uHn9Brbro2gh7R0Fdu3axfi9Ka5euYKmQblcJp/PIx0pPQzDoKOjg6NHj/GDH7yAaRroVpxGwyXwPep2lW1dGWqNOiszMzz56f0kUkmKRY+xm1XGxpeYm68xP7NKZcOl4Tgk4yni8QSqHtLeofFLf+NR4vEspbLgzp15bt2e5K0LF6HeQIncF+uNOuOT460RJCTEME1sx6NcLlEoFGhra2N8/B7j49McP3aMz3z2c7z88ot89avfZGOjxE//1Kc5cuwA5x4+yeide5w8eZT5+WkQbmRobwKy09B1jZXlZaanJrly+RqWZbWcRT1XoBugYFAq1VBVhUQiQbVaJpGIU+jqJpVKcfv2bSwzCcIklcoShr6kIzh1Pvb4g3z8yXOokSzkw2dE07WIIqG2ZFHNWCEhNiOyfT+QNrG6lHEpkZhTRN0QW8iMH07maZ3wiKKjKioB4DgOiWTqR5/ioeuSQ0ToR08oSnplk+CkaLTA6+bXNIuOzPEKQZUui1oEcjYZnHJko4ULfcCTmk03xzAUCFQaDTeKdlG4ceMu7bkesul2JkYnsc/u4Jd+5Qm+9t9e4vvfeo2f/sVzrCxO8tSnHuWZ7/+AtZUix0/0sLQ6xyOP7GN+dpGevjSdvXHOX7jK5z57hkIhzbXL12jv6CcRVxkYiFFaL6GqbcTjCclGVQVrqxsMD/dQaO/HcQS6sHFq0kBMCWPEzTqGqbFRtKmLkHwmReB61EIdS1OoVUpk2xI4jqTkJxMhO3Z0s7y4yLbtBXQlJGXFiSViXLk6zvTULEfvewTHsZmYWGDvnsPcHZmms93EMBv4rHDgWAFD9yAIqawLbo8s4QcpFDYgtMHPE9omE3d8/ujCeW7cGMN2DQLdIpnTyHd1YTtVZmanMDSo1huErsve3Xtp1CqcPXOaixcvs//QLlZWV7hy+QqqqpNKpVp4UalUim4WPl1d3Rw4sJ9nn30Ww9BJJhMIdFTVI5kwac/2sb23jXRHnlhOZ+TWNLdvlanVdbRYgcnpBhcvXyedSXPo0D4OHd7BwMAAcUvF92sgAi5dneW1177N4lId19MxdAtd00kkklI+gUJ7ewcNx2FhYZ7AbkSfLOkJBILV1VVS6STZbJZqtcblK+8zPjHKAw88yOjYGN975hWEqvBXf+YL/NWf/yL/8v/491y+fJl8vo2Oji5su4bjODiO1yo69XqdQqEL23ZRo87E8zwSMYtUNo2u6zQaDVzXJ5WKs3N4B/F4nKXFJRbmlzCNGJ4bouvSDDAULroecuLEMZ544kFMXWzBdTZHJsdxsAwtShnZJEk2i1Lz/yUMIvl/0s/JkJ5OiE3GdITpilC0Ru6tjyebB3UzZNSTzykMpE3zj7QQNb2AdFXBd4NIemG0VPiKotKKEZRllWYHJAgjVqdkRSsKWIYpbSxFiBIppbd2Q5sSkQ/mfAsBy0srCAGFQgeKorBreJAfPPM8+/YOMjd6l+9+903+8T96il/51cf5zjff4PJ7tzlybBfzCyN89sePc+PiPU6cOcTkzDVy7f24Gyr4DQ4c2saF89PcuDbB4aNDXHznTfJt/ZQ2Vunuthi7tYjv7SSdShBLp2jYNvPLJbxQxUqmaTjQnk2wvKITCBNNh1QqztLiIvUKbN+VIWF5FJ0K27fnmZ1eYX21Qn//AdZXJth5YCdXr9wh35FndUVlZbFKOpbG9zVeeuE6Dcfi9NkHWFlYoKsvxcBAL9cv36W9LU+tsUEsFqevP4njq0xMBty+Ps7aShGhuHQNZDhwaJCBnmOMjc3y9mtvMLtYJZ1r4+zDJ/ACi5n5FepOjdX1OaoVD9UPMH2XNtMhl0lxZHcbFy+/R+gNMTzcxbWrV6jb0kJCdgB6q6uVEVCC++8/zcLCPM899xy6LouVbduoqomhK8RiBv0DA1y6dJFieY4DBwscPzbE8eMnmJlQ+MNv/BBLNfjSj30JBKwsz/PS829TLtep1euUy5WIQtIMs5RhBaqqYurSq9wwZJrGysoKfdsGOH7iPiYnxrl58xa+H7RupoqiUKvW2H9gH2ceOMnNmze5ffsuL7/yA/YfOMy+g0f43vdfZdfwLh46s5df/dVf5F//699mbbXI8tIqiaRJR0eezs4MlmWxsVGiKVK3TKOVi+a4IfFEjEajRjabYftgP7lsjiB0mZubZXl5Wer+4ikgIBE3KZVrGIaK7TR47NxpHn3sLIYmUJUQRWiRZbJobZjjiUTr3H44pLSJt8p/34xuV5Cujg270SIeR3uoiL6jSNxvC0YkMVt57puXtI+Ofvb/T5D7/0EhajKdHdeRTzgM8D0ZDhcIaQcSCr81pjVnx+bYJT2EVEQokyWltCOKB4qc/4MwaLWum29WBH+rEg9SFIWu7i7efOtNavUKwzuHMS2N+x84yuy926gazM1V+Orvv8Iv/a0HeeTj+3n5uYuYhkf3thSqUSGV03j+uVc5cfYo89Mz7NvZA0qFvq4CXYUqlWqDtbUGu/fs4PaN6+zccZh4Qgp1FxbqpFMW6YzPjOPjBA7VWoN4QqVSswn1OEtLDbK5ArazTjoVZ7TokUkZdHRmWJpdIZlQSMR8SsVFenq3s7K0xPBwL6trRfr7t1NcrTN6e56jRw+zvLLI1StTeL7KsZN7WVpY5+D+HnTdZ2p6mrW1ZQIBu/buoFop8uZrcyh6jHqjSsUuMbi7m4OH92LGLZaXVhm5fRcrZvBjP/kxjEQHY5MrvPHaNa5dukmt7JBOJelsMzgy1EahM0f/QCfJZAzTSrO0WsP3h5maK+KHYDv16PcLiJBGvUYQ+oShoL29gz179jI2Nsbi4jypVLIVSphMJmg0XHRF5cC+/dy5fRu0GGPTNgsL8+zcdpg71y/i1lS+/IsPMTk7T8VukEq3k06f5t70MJcu3uLGjTsYpoWq6sQSSZn8gqDRqCNEgO+7OJ5HqVqXN0ZF4fr164yMjHDgwEE+97nPc/HiJSYnpiN8RX5kb926zenTJ/if/+Hfo1wucnd0lB/+8GUmpubQVYOv/M7XObD31yl0Z/m1v/9l/sO/+x1U1aBet5mbXyQI5snlsrTl2xjePQyCSKsWyCQZTUU3TeKJJJVqhXqtxtjKKKVykXg8gWN7+J5A12XyiGOvy5taIsXHn3yC+08fQlX9ViFRDa3lfqqoKqIZmhglaXi+h2WZLdO25iq/abHTLJBhEOL7ISoKuqpGRmlBMy9S8gE1dQtviC1TjwwJ8zzpKimi7uj/LzwiASiaJm1AFAh9j0AEeJ6PrhkYRrML2vJfRQLdYcTKVKOES6FI3+ow9CIvtc1RrJnBpGk6rifTCHzfQTckFyPwA+4/fYrXX32FyfExzp57mL7+Ic6cfRi37DA/M83Fi3O8/sY8jz6ynVq1ytWLd2k4PRw40s/BY4NMTi/x1muX2bt/kPWag/BUfL/KQF8HjqMzOTnP7t2DjNy4ye2bs5w4vQ0rluLOnQVOntqGW2vQkTWp9w2yvFwhZuq4Toy67eLaLtv7ulguLpJJJwjCJNkOE18obJQ2OHxwgErDo1SyOXI0ixcUicVsRClgZXmN6ekJHnr4NCsrKxQrLl092+juSROKBocO7mRpcZ67d+5RrwsOHD5Kww64fWecrs52BnYOMj52j3xHkkce/Rih8FkrlVBdn7aOLIX+FLWaznuXpnn9tZfYKPt09xZ49NHjDPTmaM/EScRUNEPm1dUaAZcu3+Hy1QmK5QDHN2nvGiQXy6NrFRpulXjMwBUOuqERipDTZx7CMuO89+4lqpUaqqpSLpeJx+NUazWy2Syu22Df/v3U6w1KpTKoCht2DbsRcO3aezz5sW205+LAKvnOLkbGbF574zp37kzi+SHt+W527xhkbX2Zaq2K4ztoKriO3BSFoYKi6vgNB8/38CLAXEHgey7Xrlzl3ugYDz70MEeOnOAHP3ge25b+ymEg+KPf/yaVjTL7D+zk8MHdnD59kJmZJb79zRd4/bW3+eM/+QG//Cs/xcB2jX/wG7/Mf/qPX6G+XkcoKmYszmpxg+W1NbLZLKauR+oBX0YOAVY8RaGrh3KphECgqRoxK4Oq6FimiaZGWfQo5LMpjt+3l+P3HSCbk06gm1iQjx+6LfwnDANUDUToQ1QQNF2jYXvEYlbE6WrmASpR4oZKGMpxUouwKmWrDCuUiyVV/WByrIIi44OUgKa/d1M/KmPVPxqH6C9ViDaLRBB1MvLJA2yUSuSyJqapb94ht1xyxFQ/wNyUqa3RzEozlnmTzNhMCNF1LXphGq4TtLYRCoKzDzzE22+9ybe/8Yc8+bHPkcvtYHKmyIlDu5ibmuLpP3mP7d3d7Nu3h/XVdWpVn4vvznLiZAenTp/lhedeZ3J8EdPoYMeOXt547Sp79x1kbW2efXuHWFyaY9v2QVbX6izPh7Rn+1jfqBIEJovLZTq3JehuT+PU6wgjRCg6pTWbRr1OW3s3ZVunXrfp6cpj6C5Tk4uESojQTMan1yj0bSdUQ5LxGEGgMTE6x+pqmdMPnGJttYSuKfT1dhOG0JFPs7S0xqsvvc36+jpDQ9vZuaubamWNQmeezs5upiaWiCfSPPrwERpujbmZJSamFvECgWVmaWvP4Poha2s+y0s2u3YM4rp1COuszd/GLpo4A9sQRorFVZtKNaDWCLl4eRzN0AmFhaInKfQOcnPkJnEDrAgH0nSN7q4Cn/jUJxkZucsrL7+KacbRdWmFYZoyeAFFYNdddg7voL+/h+9//xmEkCGAqWQ7uufQ158l1w5rayHvXC5x6/ZdrFiKE6eP8PmfOIfX0KlVA1RFMpT9wEEoIXOza6yt+9y8Oc61q9dRVIOOfIFt29Ooms7y8hLl8iqO4xAGcqv34os/pH9giM9+9rO88MIPKRaLqCrUGjVefOkVvvfM9+nq7uSzn/04Dz50il/+lV/k9JlT/MHvf4OFuSJ9fSkKnXH+l3/8S3zrm89z/foIjl1Hk3gvpeIGMcuSFjahQFMl0a/R8NgoVti+fYhkMoFt2/JQR2OSH7hASF9vjpMnD9Pdm0fBRzfk4zYLT9M08MMQRhAG6Nqm42mTEtOM3trEYBV838XznAgWUaOCvHWxJFoatU2IpFmommSdQApjVQVDNdC0TVD8o1yK+IhfeW/0fTzfQ1Ek8FyvlsiYLgPb8tRqNdKpPIgQLep4QkUlFCqKChogP4UaHiajk9P4gUO+LYmq+qihSijkuBeLxXAc+abIMVWhUqlgGIZcw2oqS8vL9HR1SbzK87h26W0qxQ1UtYOn//hbdGZ1fubnPsWld99neXaR/+nLj2PGNnj99evs3Xcf01MT9Pb3srHh4noe1fICwzsKqGaGN1+/KK1fwwbbB9KUSg6raypuYwMRmFgpC1UNWJpf5ujJYdYWquhKHVWzKNdDKrUQnQrHj25nZnaORKZArewTIBgbu8vQ9i76Bwrcvlcnblr47jp79/Rw/cptbC9Gb28n6XQKP/BJpePML5VoK7Qxcv0e6WSWeqNBe6fKtoECnlfHsnQ2Sg0afhZdi7E4t8LU5Azr60V6egsM7RwmlWlnanqO2bkl/NCgVvUoFctYcYWujjTbB9rp6s3iODrXr65w/tIk2e4hVtfKTM3OoRoy40pVTDo6ejh23wl++OJzGGqIoWmk02nOPHCa7u4enn76+5GJGIAmQwJDnzAM0HUD3/MYGhri/jMn+Na3vim3O5E7g2JpJJSA3/j1J2hr93jj1TILa2kaXp1qeZnluTXcegOfBo4taGvLEk/oxCydfCbJ0lKZUiVkfqlIpVbHdR28IMTzQdUtkskk2bYEyWSS9bV1VlfXsR2HIFRIpzM8+OCDXLp0idWVRUA6hPb09LC4uICqaGwb6Ofnf/GvcPDQXtZWl7n43gU+99lHAR8hNELfZHZumctXr3Fn5C4rK2tUKjWECCPbGwtVNdBUEzNmEUTbNdMw0HQDSzOw7Qbt7WlOn7mP3bt3ku+IAdK+Vdc1VFVv3axNU8ayNzeTsBkNL72uzZatcvOYGzqtecrzvMgLW6CqMvQUYTA5ucDZBx/C0EMQHhoahBphM890C0YkU3xkEXJdeOGF1/GRgudkMo1uWjz6sZ/40RWiOyMXJOwceoRhgNOoEldq7NzZJSu0GkNRpNOiFNepCEVDABoiKkQqHhZ3J6dx3TpdnTnARQkUKWjdklfm+z6KqqDpBrVqnQsX3mf//oN0dhZYL67x7jvvcO7Bs2RSKcLQYXzsMppf4tq7l3n/rVscPjLMz/78EyzNTrC6PMvx+zooVwU3b65x4tRBxifH8b0466tVjh0ZYPzuKMlMB3Nzy0zMLLF/9zYO7EqRSGjcHtlgW38nkzPzFLp7mZpeZ32tSP9AD0bg0dEWIFSDyfkGmpEiE3cY7Eph131cN8QzFFaKITdv3uHgkZ0oOMRjbdy7O8OhQ3uZmBinp7tAvVFm2/YCpQ2PRs3F8eooZowgdOju6mdqcpH2fI72XIyllWUq1SrtXQVcX2VyZgPPM1hZWKGrp50dO7dT2ShTrCxixBJ0dw1Rb2jcujGC59XZubOb9nwCfIXF+Q3ev3SH2cUSXhgj0dbFykaVat3BDcDx5KFEqHzmMz/OndsjeL7Nyso0p0/fz6lTZ3j5pde4cvkahmlFG1WFWMyKwgdV6vUavu/T29vPwMAAN66PkEjECYJA5n3pGq5fZc9gGw/cP8T8UpFitY1qWeHOndtUSqvs311g354Ce/blI2W/SywGAp9q2WFlxWViuka1YeL6KhvlIo2Gg+spGEaKxeUV/NDBdR0c20NVNWr1eivPzDAMzp07x8jILRYWZiQe2dXN2toavuujKRqGofLpz36Mn/ypz4Cok4mbEVcHKSBVm8JSg+Jambm5Re7cvcPk5BSrK0WqVZvAV9BNKYC1TJN4PE4+n2fn0AD79u5kaMcAihKgqiIae5r0FQMFLRrNNotLc8xqAtKttBs0WvYdRLBOFKy4uRCSdSmIUjxcRzAxMc/Zsw9h6qEUtqMCOkLdXN+3ipESIPBRFRXXU3ju2VfwhEkikSSXy6NoOg8/9oUfXSEavRMlJCgBvu/h2DViap0d2wuowkdVLQTSgBtUQkVFIMcvJQzQFSnT8DAYnZzD9xp0dmUJgoa0nVV0aSESzdJaZKok5bIq9brN9773DIPbBjhy5BArq0Vee/UVTh0/wq49e7GskJnJt4gLG2FrvPPGNfq3pTn7YA8bG0uUNioMDGxnfqGE69fZvq1Aad3HdgTrqyX27W9nbnYB17e4dXsRXZgMD8bYsydHtSpTZHP5DKWij24qTE97rJdc9gz3obNMIg0XLswyuHs7hXSC+LLN6tVJjGyM7PHdjCxv0KgLBodShF4V34OxsVl27BwiFg8wdYV0JsnExBT1esCe3UOsrS6TbUuRzmYZn9ogHksxNz1NcbXCnn17SKazzM6v0NbegRvIRNpCocB6cRnTcOkd6KQtl2NhqcTUVJlkyqItb1FryBA8XQ2ImboM7zMS+GqWmYUG129MMDG5gOvBWrGBH+goqsG5cw9z5coVbLvO8eNHOHX6KOP3RnnrjfN4ngAhAV/dkJallqVRr9eiuJqQ+0/fT3d3D88++yyqauAHCoZuQeihKT7JeImf/ZlTDA4MMDPn8cPXb2JqBkePDrNrVxdtWVCUBmozRkoEGLpA4COEjuOruIGF61sIkqysClZXK4yNzzMyMsntO6NslKTEo+l1vra2iuO48j1AWsecffAsd+7cZGVlhXg8QSweY2N9XR4EoaJqgtMPHOdv//LPk8+ahKFMTjV1U3JvVCk1UdAisz+B54c06jZrq0VWVtYRCuiGRjKRoKu7m0Q8TjwWYaaKNMhXkAVF0/UovVXmiIWhg6pKvFVRwHU94vE4QRgQBnIrHQQhhm5+gF8UBD6moX7g74QQ+H4I0Wjl+yqTE/OcfuBBWYhCH0Uo8ixv8UpqlQ1FdkRyxNN44YXXcQOVVDpDOpPDisW5/4FP/w/ry0fGiFrR0CJo8XeEoiJCgUq0glcMhIgM0xQlikShtTlrzpOEMhGSaE4NhYwnCnyJNfi+SxAqREMdigqGofHpT3+CN19/laf/9JucPXuOR8+e4s3XXmRm4hanzz5Mf99Z3nv7NZbHL3H6zH5su8z45BQ7hvMsrlR5/fXLHLvvBOsbKqsrDZxanXS2jUJ3nrm5NfoGNDzHw3fb8Zw8i4urpHNSNyNIoBsWflAin83S0x1nvVpHs9LMT82xJ5+kUXfRwoBMkOD2t95hqGEQZH2m7FX8oSQd7SlUrUQ6bvL+ezN09/VhWYL+vnZmphe5/MoI/dtynDi5m/KGg2EYJCyd8dEV1ssKywsjtOWSnLr/OGvrRVx/jf0Hu5mcXMZMJWnvUNHUDY4cKmDGfYrVCvcm1gi8JDFTY315hcXFgES2jcHBNnq6dBAaM7Mu128tcOnqBabnStRrPp4PihrD9VQ6u7rZt38vF86/iee7xBNphKLyld/9KiL0iVkxyY9xfcwIu/A8n2q1RsOukW1LsXffHsbuTXP+nUuoikI8qeO5Lp7XQA0a5NMap4/tY8dAhhuXr6KYeT7/6RMU11xm56eZnBijvOGxuloiUC2SyTj1apl03CKTMenrzZFMJZmeXWFxvsHKWpXVUom19Q3qdQ/Pl1HRYehh241oY2SSTMYoFNqo1xvU6zaO7XH+7bc4ceIYge9TLK6Ty2akdQcCVQWhqJw/f5l6rcb//A++TDIZomuys/CDkFjCiigsUnUvhEwbTiZ1kskCA9sKkdwibBELw9CXZMWI16OpevRvzS209LiWQLPR0or5vk8slqApHpcFIsJghdjskpBx8EEQtrhFQLQUIkqh1VAVVUIiqgphiCKPq1wusUlzaF5Ky41IYsBhKKINniAMfPk+fITrL8UjkrE9qhwxlabG5IPgdLNNbFHBRZNVLaJ2MpTFqpXg2qyyCqomSVOaZtKkjQehoFqtYVkmsViMJz/+Cc6//irvv/Uiw4N9HDywg/npe7zy/W8yvOc0PR17+e7vfYvFyQX2Hephx640gR+yd28H5VKNP/mTFzl+/H7UfIxsLs7NG3cw9QTd3Wmcikc2Ldi7I8b164scPXaAsYlJwCCTybBWKpFtTzE5s8HA9iHSSx6ra0u4to+m5sm3D2AoaZYuLdLvxshWXELX4a49TXrnYRA2hgGVmoOqxNne30U8oXHr1hLVosOunTsY2tnJ2J15anXBzl09zM0vUStpmGqM3Tu209FhUS8vMrQti5VMs7hUoburk3Jtne6+FLqusbS8xPT0CtMzNerVBsmYSf9AFwf399Le00bJtpieqXD9+irXr05SXKthxWM4XkDS0kloQXSjUegf3IPjwvvnnyEMPBTNZNfOPSzMyfHa0HXJkA+kwbrr1vF8D9M0iMdjPP6xR4jHs3znu9+T44uqoJsmqoBUzCJ0XSxL58Defh7/WBeaMsvZMzmEpjC3OkFHIcX2HQNoRgZEksmJNS5eWmZyfIaL79/Bc6KVtPBRDYFmaMTiaSwrRXuhg85CitWVdTwvxFYboFkEYRCZ6kG93sC2beLxBB0dBeq1Op7vcu3adY4cOcLFi+9jmiadnV3U6g61Wr3Fu7l65Sb/5b/8Pr/+638TFFd6cumSU9XEbIzImlXQFMAGUUem4nthxMORox3RpmlrynHz3G31sf7zSL/N89SUQW09i81LiGb81uaI5ftRMIXSzBlUZW5hKAgVadHzoSP+ofGs2RnJ8yoE6HpTeS/4qIuzvxSzWiYB+K0apKmaFLa1whPlmi8UIaLlDSDD1yS72o90aAFBZLwvRCD1MUJmpIUCarUGumZhWTKWGgVeffU1jhw5THs+z5kHzzI12kaluEAmrrOjP8vS3Czl9feZnwrZu3s7s+MzNKqzLM9bLMxmOHRsgPtOHKVYHOHS+9fp68+yb18X9913hJdeeIuJsTscOdxPcl8Xuga79rRzd/wuw7t7KZfXuH1rnKEdXRQKKarlZaoVh3RCJZcVlBYb1KoKgWKhmXHq4+N0OSqa8DEdjbawzEBngtG1BVQtx3pJkEpmSaVN7twdhyBLR2eabNbn9Vcu0dGdZu++nUyML5POxelL6YSBR09PCter0lnIUG00mLi1wvKKoK1dIZNNcfXiDOsbJVTVYmFphVw+zYn7TjA42Eko6lRKDS6/P85SMUDRsyTiWQ7s24ESuLhBnUw2Tr6QoLvQRjqZwgl1SvWQtVKDI0cKLC9uMDO3iOusEoYO+XyawBc4Tp0wVPA8HyE5uezes4dz5x7mxvWbvPzS90jGzWh0CKSpe62KEiq053JYpsLI6CR3Rw1On8yjiQah2qC/t4CnJfC8JFcuLXLl0iqOrVBoNzh5dDuDfSlcL+Da9dtoVoqG08ALfGLxFI4TUq1UCcOQgW29uI7HwuIiG9VKxDMC6ZejIUIVx/GAOrqhomoWsVic69evkUjEse0GKBqHDx+hUbe5evUqMsPL4Pz5y7z19jUeOHMI1YjOhth0jGh5uyvKlnQamfMWCh+l2b3AB7bGTRJiczvW3Ig1JRpNnl2zcG0tRhAJyD+ktgc10mdu2pHout4CrVU577X4iqEQaAhURSNg05t+q9RDRGv9qETJI4+KacZQ0Fqb8h9ZIWrSuJuzpiQeulFrtuXrtnx90x5A6ubkHIoi7QYkn0gSsBQhCVVB6KOqGvFYkvPnL9LX18O2wV7isRjHjh3lm9/8FgcO7OP48eNs23sYp9pFcfY6u/YW2NavMb1Q5ujRIdaGlqgea2NppYKuBtSrOtOTFcxYlRMnDqCIm3R2ppgaH6dRcXjo8dNceOMiY1NVVis6O7e3EQibzq4OJsZn2LMzx9GD3bxz/g7d7Yfo7ergyvlRBnb0km9XmU+olMp1khkdHQd1o0EsCBG6j13zSboObqWEovj4DZdkMoMhNpiemabQ3sXykkfDrnP18mV27e1j53An8wtTbN/WhwgbBKJOPpsmVDTWVgJu375BvSYY3LGTrr4kSwtzuI7JtoEBhGJRqjicO/cwsZjKRnmDy5fvoqgGiaRJe6GPQA9YmFlidfoe7QWLfE87vT17ULUE62tVrl6dY2pqnvmVIqsVm1Ldg9BEV01OP3CWm7ekIVpIE4uQKvwwDMi3t/HwI48hhMIffO0PWVsrEovp2FG0jggCROCjaTCwbYC2XDsjd+4itBTPvTjL0O4ctbU69YrJwmqRyaU51td97o5MEwQ6pm4wG4d4IkkinaZ/ew9f+KnP0paFaq3BlStjXLo0QrHo0JYvIALB2L1JKtUaRLhMLBYjkUiiaSqNhkOjLh0pZcEJI9mFTXt7O5VKhY2NEslkkvPn32RwcCcPP/IQFy6cx7EdvEDl63/wp5w4cRgzpiC34+oHYtJlBxJgGFrUJQT4fohh6BGeE7QKgRbFZW1VF2wtFEHg4/u0itdWxnSzMH3YQmcrkN3kF26u/GVH2ZJ6AJ7rEYqQer1GKmagR5u6pnMG8IFi1LwUwDQsAkUnDAShxp9L5/nzro/OrI4kHqqIMuoDgee7ch5UFFCac2eE0AshkXghFbqyizLQMFAic1kRKtIWU1EhbLKnpdzj1Knj/PCHP+Dylbd46IGz5Ns6+MLnv8BrL/+Q74+PcejYCXbvGaStexd3xy9wcF+WRErn5o077Nu1ncy+BI5jYFo5FhYaVKs1+vtTLCzcZv/BLmYmVrnvvmPYjTLT4+McOjTIxNQyupmiVAvwPZVKZZ6erixLs6v0Dabo7i1w5fIM+w4cJp1XqdY8DEWluzPD0lqddNanO59jtF7Fb8isLCOZIuerbIwtktiZp1qqkmuzcLSAXMZibbVCteJjexW2D3awf283tYpNX2cfiysLqIpJX187c/NVpqZXWV+v09bRTX9vO9VKjXjM5dSZncwvlrg9OkVbPks2Z+E5S6TjSXbtbMOK9dFwBPcm1rk1ukQmneTg4e1kEkMois/NkVn+6A+eY2auSqOhS5M7JSRAo+YpoGWJJy0+/fnPcnf0HgtLJcyYgarIUcB2XLK5PE+cfhDDMnn99Tcol0rouokRM1tbn3K5QixmUas12LZ9O34ouD0+iis8LM2kUa5iKAY9vZ14XoG2HoMg5rK4NEogYiSTCoPbOtk2kKWtw6K9Q45fVszE0stks12ce2g75crD3Lw5x/M/GOHatVGCUCHX0U4QeJQ3ijiOHLGaB9UyE3S0d0Y+Tg4T42OM3p2htLpGb+8Ac0tLCFUykKemJ6jWKjzy6GO8+tKreK7P9OwK77x7nSc+dhRNkcB36AcREbDpFKHJbaIqtW2yCIStoIEgAFWVmIoS3axRQsKIkBj4Hihy9PM92dFsZUp/2HNIiwTpzVW9QJrXqdF4aNs2hmECGqoKmqYCAUqkW9OAeDqFlLCKTYLjnyk9aquxUBQV13NRLYtACDQRys7xI1wfeWt29+47EigTISIIqNcrmJrN4EAbhgIoFoECith8QzbbTAMlsgEJFIuROxP4vk++PYmiyighhMAwBUEg9UJyxgy4PXKdketX2NbTx/79h4gnE7z82vfx/VVSiSQHdp8mdDzu3PoBhw/3U8gPMDc3T1umQme7ztJKlVxbH3ZDY2lumcGdbQgzxHfi3BuZYceOdpKJkFplg5iZZGqmSK0esm1nD7YTcvm9S+zasZ3BXTHqDYWJezZ+GMPzTHIpja62NRRfUKnE0ZM23Vo7t/7N6+ysGuiGwPF1FN9huiOg92ceY5F1kkmfQpeJoShcv75Ge/deRkdHePCh7RA2WJotMT65wvY9g6RSGebnisRiMUoll0Q8h8IG7fkY7fkUq2WPyZkKyWwHuXwMz7HJJAXJRB0j5lOvG8zOutSqSULi1H2oV8rkcwmSqRDDqEuQEQOhJWi4KvOLDeYXS0zPzoBq4roa1bpLre4zP18knkhz4PABlpfm6O7q4NCRo6yvV7h5/TZrG+sYhtYaTXzfRxUhvucRhiGdXV089OCDXLs6wuzCAoESoKtgqYKje9v50k8eZGRklHtjPrWGg6GniCe6CBEYVkA2kyCVTtDRESNmwUaljutAdaPBxkaZUrlB3fZoOC6lasDiYpmRO5O4gYtuqnTmC4RhyNra2paDLLv2vp4O/tk//w26unI4tsvU2BwLi0Veu/A+S6urLC4s4DoOApWO9k5Onbif1159jbprc/ToMP/yn/8qMUNiT011gOfJ+GZFk0CxphkEgdRdtkiGTYxGBBKe2DJebX0fm35CqmJIIW80Km0FkJucoubP3ypyNQwDIxr5mn/XtF9WVRE9lxh370xw+v4zaFqIgidpCaFGwOaY2apuKAgl8gvzNZ597mU8RTphJhMJEskkZx/6sR9dIRoZewffdTF0Fc9xCDybuO6yvT+LFgpQTMJIeQ9sgtUAzQ4IlQCT26OTBL5LRyELitTD+IGPYUYukKqObbsYVgzXcVieH2d+/BYxIyAQJjv3Hmb87mWSVoCl+5RKNslMhok7VyFQ2L1vB71dCrkU2F7InZEZEokUnZ29zM0VqTkBbdkkvT1xZmbm6Gi36M65aMJFURIsrflMzVcZ3N1P4Li8/dJVOrozHD05TLHYwAsy2LUScc0jmbDJpy3WFxuk4gVWXlshfHuJgmvQ8Oq4ikYyCAjisDCcIzjZQdeATk97SLVWRVh93JmosL0/h5kIuXF5lOp6hfvOHKHmVWnUA/K5dtbXHJKpDI67QWfeIplQWVrZYKmkU6n6rK8vkct00t2bp9BlYeoKS4trLMxXWd8IaNgeppWisytDPm/R158llY3juS7FYo3llQZLSzbr6y4BcSoNj/GJMTbKdYLAIFQEqDphGCMIdQZ37CDfkcZ2Gty9e49GIwRhECIxwc2RQUAgkySOHz9OodDJG2+8TmmjTiKVQzctdOGih2V+7qeHOXgwha5pmFoGwxC4tk7DS2L7JqWaoFrTmFmsMT01y5XLN5mangBVpz1bQNUMKrUG5UodQYCuB/i+RuQWg+c7qIraEt9Wq1XqjQahkLiGrggOHtzFP/nf/h7xhI8WaiAsxiaX+L2v/Qm/8Fd/jhdeeIHXXnuLatmhq6uHHcPDvHn+PJYJv/V//XMG+3MEofOBQhKIphJBRFKI5pglweeWV5Au9ZTwZ8WqW9Xuvg+6prcKyVYG81YXxub3tfIBNQ09wps8z2uNjyC3c7J4WUyMz3HixCk0NZCFCA3QCLaA4013DQUFVPnzXFfh+R+8jKtIcWwymSSVSnHmgS/+6ArRnXvvEQY+hAG+6+DaNVKxkMH+LDoKAoNQUf5MfIjUnIjIZEkjwOTuvSkC36HQmSUI3RapSjcEgS+Yn19EN2J0FjoB8J0y9dICi9O32dafo7SxTi7byerqEiFFBrYXmJtewq5VWZpbw7ED0mmTzkKS4d1D6JrO6O1RZqdWyXcOksyl8Lwa02N3ybUN0FmIs63LJpeWYY/Tsw65Qh8LSxvkcwZ+XeHmSB3FdBgezhMENu0FlbBRw6u5hGoM6jmq7ywTvHaPtoZORk+gxnTChMHiUonupMWs5eE+NIw6qLNtKIauVtioazhhgnjcYGquQnllmX17e4glHNBUfD/LymqVSrmO54UM7uhGC31mJxeYnl6kHgp27dvDjh3dxGKwuFhlYb5CpSZwGgG1+ip9QzmGD3RRyGcxlSTV2v+Xtf+OcjU9rzvR3/tFZKCAQuV4cuzTObBzt5gpkpIlyhYVaCpYskayxuOxPY5z7yx7LF9fj2Vfy5ZkibIlShRzN8lmVOecTs6hckLOwBff+8f3AYXTpOzWMrHWWXXOKaRC4d14nv3svR+XtZUS5VIH1xMomk46lSGdSdPtWXR7XRTNJ5qIE4mkEWqSatNhZaPC8lIByxWsra/QsYIxuOcLul0P39ORwkfT1SG7gSCTijM9FQSDra+tkRvN4Xo+na5HLBJFdWvccjjPRz92FKE0UVSNeDSBobn4rkOzZVC3dLZ3OmxuWayslygWypRLDVbWNnFlwC96nk8kFkM1TFqtJtLzGc2OgVRo1KtI6aJoOvF4YlBhFMslek6woUYlWML5Uz/9o/z1n/4AEVWiSAUp4nz5y9/koQcfIDeaZm11kz/8g8/xxpunmZrZgxGNcf3qRf7u3/lFPvLBe/H89gAEfN8PfJnSDznWoLXSdWNQ+QwqGhGS2CEB3a9qhnPeA/O5zrCXa3exRJ883s3x0nV96HYC7R0VkRBBaqauK2HlJVhe2uKee+5FUz3ARfgi0C8NnWslBFZFURFK8FiOLfjmt5/GVYPM6ngsTiKZ4P4HPvHDA6Lr13aBSPoe7VadREwyN5VCkT6KGh1URMP9qhDBbjKQCEXDw+TytSU8z2I0n0TiIP0+EClIHyzL5cLFy9y4coXpqSkW9yyQG0ni9Jpsr71NMlIhnYmQikcpF2ts75TZt3cKXXWxLYuL5zeQIs7Y5BilnU10TWNhbgzXtXj2hVMkM5Nkcwl0VeXapWU8q8PUWIJ8foSxqTye4/P2ycucuP0gBhapiEfNirBTckgnFXrdHTKpODHTwOjC1ZqBYs9g/e43OO4IdA26zR6KquBFFaodjVETnKjJ84bHxM98AFdsMJ2qois2RmKMnWKHjq2TiloszikgPSwrzamzm+zslDl0bA9C0SmXHDxLILw6oxNJZhdn6dgeqzc2cCyf0YkRNDPO6kadVMZkdi6PZXcpVepUi2Xsrk6p3Mb1VVwfXM+jWimhChVV1UgmR5iamSaWEHR7cP78CjdubLNT6xBJpLnv/oep1lqsri3T6rSxHQspFSLRBK4TtCA9q4uiKGQyIzz88MP0Oj2e+d5fYNsWumFgmgbpbIJarYOhSk4cGuHRh+eQapNSvU2lolLcEpS2ath+j5HsBMdO7Gd2Noagg6ZqqIqH4/qcPr3E954+Q6edCdqxZoOeYyMUEWyUbbSJGgZjo1kqlQrNbjvUEOnEYnE8XLq2hWNJhFRRhU8kpvPb//5fMj+TRJUOQolQr3eoVYos7pnCcRysnsLXv/ECf/K5Jzl4+FYuXzzP/Xef4B/9w19EitbNrY8SdDGqqiFlsK69nzLRt2QYhkHPaoch+7utWb8C2Y3IkajKbms2bCwdhK6Fiyb6U7H+YwCD1mx4MhcMn4KYD9uCG9fWuP+BB3eBSAoUYYQinF01d8B5qQQbScB1Vb797WfpuIJ4PI4ZMclkMtx3/8f+h/jy7t33sh8FEiT7SyEQqgARiKwQPjKsjUCEVZBAKsH1FBmMdQMtg4ttW0g/HkTFehLP8ylXGuhanHgixZEjx9i7Zy8n33qL73znKXRNcvTAIRZmj6CLLjvrZ7heOcOBAzMcOzhHsVggkYBkIsZ77j3K0nqN5Y01Thw9iC4kha11LN/h3vvu5Oq1Kul4hmwGZvKLFLbqqEqSkVyWUr2IIWz2Lk7y3a+9xoGDM5y4ZZLcKCiaSm2nxsLkGK6UXL+2xUgsgxs7iOyOotomvtWiq/h0HZeIEcHUdKKuRTfiYZpxbFsjNnkLpYrAVmzyqQi1RoOJsSwra2VmpmIhAapw+sx5Uhm4/a7F8M2bpKE2yE/EmJxII0Sb7a0beNJkz/5RUHSWVuoYvsPePRNUalWWlm8QMVRGEqNMH5nEiEdwPYXlGwVuXN6g0+2xZ+8MumkwMpLC93ya9Q4Xz2/TaHTpdT0ycZNkwmBu/36uX3qLUrnF+OQMtt0O4l98UKQHno/rSZLxOI899hiKovLS88+zs10IRI+GgW3b+L6Ptd3B1EwmxjLceecUcwtZai2NSCKHafqYmkE8OsVaucmzr7zBd599nTtu28ePfuhujh6MYhhdUDxmJvfynnv3cP5ylxdfvMjZsy00RafZaQeBbp5Pz/JYXdsgHo+Sy+Wo1erYtk2z2UQCkXgU4XvYPQtfDUL3vvWtZ/jbv/JT+E4gUs2m42RSGgIfw1BRFfjJT7yX1EiKz/zBF0nFo1y4eIFmp00k6g2ytwzTDKJzBpMtN8yElgMNj+d5gyTDYd1P0F4FWUOB8juM4fC5qVULJmP9YDMlqKxEIKsZ5o+CMbuPEH2ACyowRQkmbIoaiBs1TUfKcMW8oiL80OT6fcrqgFQf0NhhW4ivBMMtX2Lb1ruCl3cvaAwd9xIfV/rYnoPna4HsGTcAo0GcR7+HDJTXKDJkz8PpmRKw/wyk5gqmGSGlKpw/e43trW327JlibnaShx66n3bzGG+/9TyN9jrXV1axWw0WRtPkM1O8/uIVVFNhYd8M8USKRtNjc3ON7FiOO+46RKW4g+p1mFtI0nNVio0mR0/oVItF1lcV9i2mOHhwmnLZYnN7k8m5DGOZKLgOhjjIhQs1Lly1EGqDfD5FPp+m3ajT8SA1ugB6jLYXY25mkWIigi3bqEoEx+6iaRqaqiPpkc7kKNkCxsYhksQWKSqdBIpTQHhdOp0Oe+cnkL7ChQt1XD/O7MIkx2+J4UtBrysolCukR+I0KjtEYwbpnEZ2PI70Y2xuNSkXOzTaPVSxTiUeIZlLsDAfJZE0sC2P9fVtNs62UBSFsXyKhx9eJJGI0nZ6oBuAganF6VoeXfcIvivotD08T2DZXTqWzfziKEsrBeoNG09EcDwTTTWxLeioPcYmplncs4+Tb73N6uoKhqGjqgJV6xs1NSKRKBKFe+46wsKMYO9+hVNvv0m7G8N2FZpNi831Bu22gmdE2Ls4jdub5frFLf7FG5/l4KFJPvE3HiI76lGttMnn57j1DpO77n0fWxtdvvPNszz33CkMw6DRbGFZNp4vabQlEc9jZmaOws5OwA95Ho5lc/jwUc6fPxdmJim8+urr/M1PfZx4xEC6Pp5no6hyYCLVNHC8Hu97772UC1U+//knUBQolavMzY8E73/Xx/V2wSYwbsvBmB4CjigIlAssTf14j8HInWHCWRlojQb8kxfIJoTiDybOhGdNVQNR5W7bBohATtCf5BmGhusGUTuO7aKpEdqddvB4mjIUOPT9qmogON+hNQsZygnQ8VwHz9N4x9V/CEDkhjknMkBTXQ9jP0Sghr75SYbxkn2STfFRZBjsLQI9Up8Y0lQVx5Eh0MGJWw4yPprk5ee/y5nXe4xl8xzYd4z7bnuIbqfB5vY5phZMTDzalS6ze+fZ3Nhh6UaF9c0W8XiM/Pg0164tUatsMzc7xtREEteVOLbCznqTfC7G/Mw4TCosL28TiUA0pjA9M0K9AvVKncUplX2LJhFzlNWCz779+1FkFb+9QzoRo1VSqOuzbG/V6cQFty5OsBMzQYkhPIFwPcx4BBSfrvBoVTu0jRT77r+HvUf2U26VKG23iKQ8JjM14rqGT5vlNcjm52g1NjmwP42PQ6+rcOXiBoVyg7nZGfbtX6TVbnDtSoWtnQ61WhvPbjE3N83hxVGmp9OoEQdXldSrKuevd+naDlNTOW6/dZquZVGr11jbLKJIDdtR6DoeparF+lqJUrXJTqVNp+fT7kgkOvhBkqGiakzNzJMdHWNlbQXD1BgdjXLk+HFMI8oLL77E0soqjh20R1JKUqlkEB8THrREIsHigQO8efpNWg2D++8/yH13TeB7Kig+qKO47kGqoMrgRQABAABJREFUNZVry21u3Ggwmpvj8OEfQ6pt1jaWOXV+Cc+T6FqEt177c3qWSSYb4fCRWe67/xbue889/Nc/eYrrS0sIVWNzp4DjePS6DivLq8zMTkM5MA47jkO9XmN6eprV1RWkhJ2dIpsbO+xZyGNoKiGjPTRpAlUVeNLhox97nLdPnuH6tVWKhTrzC2OhFaOvnA5ar/7t+tPk4X1jfaDoa4H6rVPwvd0qpP//N503sbtdo8+0+L4PMthhP5zvFQCcPbivIOws8Kz1JQau5w3uM1gh36dbfgCL0z/nigjEyr6H6/tEY2YoD/ghB6MFGdPBA/VfLNu2wI8N+lhEAFiB0joYScrwFQ6ClG7OoA5WT4f9rFAQoehramqMD//oR9hYXuXkK69Q3bnBwf0zmJrJSGoUz1JpuFuMz8RIJCX7D+7n7Ol1Gi2X+cVZWp0WuZERpnI5lm5cZfnKKhNTE6h6nFxmgrXrK1w6uUw8FiOTHyeejhJJwM5Wg6WrNaLJGJqrMj+hMjFlEM9HKeyskU54jKUV3K6HFGkcZZrs7CEinkK3UMMt1VHjkl6rDZaH3ZQoEZVI1Ai2gXQtDHxMVXD46BHOOTbldhet2aHS3SQ7qjOam6FQKLF3/yTNdo1r12osXd8gkchw5233BAB0bZlcNk02m6dtd5ienWBhPkHUUBC+i+N2qRYsdhoeyBhmJIInGuzsrLJ0XWL5KsmkSX40w/jEGLpm4HgKXVun3vLZ2mmysrxNsdRibaNAu+NiexLLsUmn0oxOjLGyssz8/AGS6SzdToc33jhHq9lCChfPd0PFPfRsKwjO04JP52w2x9jEBC+89CyJSJZL55vsbHfYM9lFETFcP0qjAdVmG8ePMDaWZWpqke2tLp/7868RT5i890O3ceddB7F7NXqdJsePpPnqkxdZXmpy8u03+WP5ComUyb69e5ASatUq6VSaTruLkEESwPraGpNTE+iGSblSZXV1hTvuuIutra0gPtUXXLm8xMJsHlc6GLqGbbsDFXPg35Ioqk80Lvi5T/0k/+wf/xs21ne4/Y4DgYTBUOn1donrPvHct4gEnNGuWho/cBG8UyGthLvk+4AyPAkjPF9+eJ+7j0O43lsMbuP7fihC9QYgNyC2CZen+mqwNHOoEhKDg/z9F6Uf4RLmFwkh0XRlqEr6YSc0SomqqeFiQ4nrBCtwhaIg/cDg50sfRfQl4D/gPkT/yQcyqQBMFVRFxfMDU57r+bg+GPEMe49mmZ7fx8WzL9HqLLP/2DQaJVqNCqMzcTqdGk7NIzUiue1Emp4bZauwgid8FveMEFF9FhePsLpepdGwGcmNEo16TE/k6bYznD2zzfLKGiPdUdQ1j2QswuFjM6yvLvP66zusjs8QTyrEE1HUqE+95WJ4Jo2GyeUtjYpRY2o2jd1qsnzxJLlem4imofkKPdcliopQNHqOQ8tukNEivPK9Z9n70feTHTE5fOIAS1ckUibQ1B7xuMHm+g4L05OsLJdpdU2aHZV9h/eTTIDjLDM9PYrjT1PYLhPTJAf2JSmXW1w+X8RzWwhVomlxep7JtaVlWq02qhCMT4yxuDjN1IE8ZixFz/ZpN3u88voW169vUtopUSo3qNR6WL6L7fuADlJDSh2pRVjcf4DZmSma9RqVUp1SuYVubmOaBoauk0zHabWbeD6DrBxd15GeZHx8gj179vLmm29x4fx5TC2CbbkYhgpSw+oJ3j5XolROUq5q9HyDzGiEZKRLqbjFhYtXqNRaFItlvvndF/jox+7jr338NsZHFcZHE+xbeIQvfekUX/vGWSotn3qrxckzZ7AsO9hn1vPIZDI0mnVGsiNYPYvNjR3GJ8bIZHxqtTobG+scPnyYc+cu4HuCCxeu8eEPPhiaPX1M03yHSlkLp4SS48f3c/vtt7K2voUidHzPG9rd5yHlbv6P7wcbcvsrffoVjud7A75mcEA1bTAhC7an9vU+u16zPindDzwbcEIi8Ln1gUvTVIR0B9teg2MdVlmKGlo81EELCAGN8m40if0FjME+Qx9VUXAdF998d/DyV1qw6NhOoMy0HRRJOEELIjy8IHgI/MCF2ze8Bj+oQMjglybxAtUoQRiarplIH1RFgB+gqZQuvieoNOo0Wy3mDt5DTJxga/MceNvsm48Tj1vEIyquG2Wr0CGdzhCLqSzMpXB8H8sqEU+Z+L7P3LyO4+oUtktUiz3UnCCTUXnwoRE2C5KVFYvZyRmyuTjt7ja3Hk1zbO8Ey6s9zFiCuflRNKMOVot23cHWJ3EieTQSOJ7CoSMHufLkkxxNRdB1iXQVUCSu46PZkp4No6NpNKvLSKvG9tI6k9m95NMx8nfdzunnN1FJUSxWSCYirG5sMTI6T3tth1uOZdB0B9NQUJUEhUITX8DU9CSVaoV6uUp2JMXCXBqFKaqNHtdubLBd3GHPnknm5hbQzQhSSNqdFsVihUp9A0/oJJIpFA1mpsdIJKLkx7u0m01q9TLNTpduFyxbJZOd5ODxO1laX+Oll5/n8ff+CO4lH0OPBG/UwHgYBKJJHyvkXgQKZiTCsVuOI33Byy+/jud6gaNcNYgmVSYnDHLjo/gyzd6DCcaaMTY3PU5eWOOr33iO0ZEMH3zv3fydD/w1LKvHhYtbfOfbr/G1J17i5efP8L/82o9z/FiauKnws5+8i/0HJvlPv/8M20WLWn2LSCRFPJrGx6fZbpFOpymVyuRyeaamMiyvLDE+MQoSCtvbLC4sYmgqrmNz8q23uHjxIQ4dWEAqLq4f6KGCSl6CF7QzjmujqC7v/8AjfO3Jp5AoCNVG2qEGCA2BhqYGqvVgh/zu+BxCc4IIokgECq7rBet9QovIcEU0rAsaGGHDyB0pA9BTVRX8YErmBVkkwbILXxkYY/ugpSoKuqaH1ZLADbZMB7yv7LeGP5js6efIg4JQJNFoBCvkxnTjL2nn/meACMK99oCuqEglCL4KdENBLxmUZsrug4fvUd8jJLWDkCcZKjI9Lwh48j3wPImqgmtbID2QKulkmngsydWrN7hx6SxJvctENsnSDdgzEyMS62BooJoab51apdWqkM1lmZqZITOSw/VtpC9YXipi9XRSyQy50TF8r4ttK+iqZHJMkIh52D0o7GyRTguSaQeZ6HFLLk213mNr+xKm7pOJK9hCo9zuoMVSJLUks5PjTORH2IyaeELQaDQQ0qDd66GbyaDcVVSKxQYpxSGb0NE3CohDs7gZA8/yMUem6W1ukRlJYKo2uUiS7cIWhw5PId02O4Ua9YbF9mYZRY1gOcuk0llG83kyIxk6HYWN9QbVaoN0WiU7liY7lsL1oFYrYjk6PiO0OoJqxWJldQXHd0ikI6RSOvlclIWxBBOTk4xlD2LoGp22Q7vjUyh1KZQ6XL1+Guwyc+OC8tZFIoqFlAJNjSKQOLaHpgh6toWma+hahH379uH7kjfefBPPA10xiZomsZiOK3x0scN9d9zKqTfWKRc9rG4Dx/JotS0q9S75pE2tuMN/+b0vEDN1Hnv8Tt7/4ePMTr+X82fvZXOjxm//u6/wyMO3MppPoSuSmcUxfvPv/yz/4T8+iboJlXIDx2mgGxrZ3AiGoZPNZikVS7RbXQ7sP8CNpevMzExh9XqsLN/gwP4DXLx4kUazy//nX/8n/s//8x8yP5dH0g7J5yBzy9QNXMcLlMf43HLiEF/+8tewXRddCaohVah4oQtd07Tgw1vuViK7oWah1UmC74OqaANivN9CDVdBfa/ZrnCx79RX8fzQ4xagG1roN2OIRxrmc1VFC4MIA87Xcd0A1JDsbif8fkAZRHyEPLEg2ALiegJN+8tv9z8HRCIw62kKIHw8z0FR9JDQCnDclz6+J296wfpxHgCKEIHWqD8tI1Sfajog8aWDpgYWfEXT8FyIRWIcP3qMw3vn2bhxjuVrJ9nZLrO+YhGLeGQyJumJDIdvnaNcGuP82assrRRJJmNEIiq5bJJ0KodmRFnZ2GBrYxNNaCRj46RSMQy9Rywi6HQcioUKkUiEVFonk44RiXgYhsLUxAiacBGuoFpX8Iij6h53PnQr8YSBVtxhXCqUah2mE3F6LQtFC1rXnuWTSiap9WokUknq1S71rz7JztIlDv/iJxDJCdDyVFoaKi5xUceM64yOplhZK4Jj0u5EqVTaRBIjLCxMMJKJoKox1jYqLC0X6fQkesQknjSRwqXV9Mjn44yOJfClwdVrZbY313ClSnYsx8GjjxFPmhhRBVOTaErADxQKBVaWqtiejo9Bp+viOgLdTDE/YzAxNkG53KZQbjE1OoanElRCHSuYnkiVO+68k337DrC+vsnJt09h2Q7RWBzpi7CCAITLWEbjPXcf5cBUmq1Cj1vunGJu3MRQW0ALX5W46LRaEc5fctCjk6ytLfP1J17m4P49HDs6jaJ2eOx9v8LLL76N5eocPjHP9771EmfObzIzuYf1G0XGxsbZKWxjWxalQglVF0Qi0XANdo9r16+Tz4+wurrK3Nwc6+vr7Nt3GKGY2LZDudLk3/yb3+Ff/at/iq4LzIgeRJloJlavhxIG9/nSJxrTmJ2dxur1iEZ1pBtUE1J6qJqGEH4oWtxdJjpcGQ12zg8OenCI+5EiuwTzzdVUv10LqiNlF7yEclMrF5zLoP3rb072vGBJgqIquH7gbRN9pbaUYQhRWLX9AFiQUgbMr1BQFIhGo1it7vdN1/5Hl79CeH6wdQM/cE6DxLasMLsgHGuKIEwpcLASOHsVFVXREFIEe6cIXhhksBEWvMELp+kaiuqjqALHhs2NTZZuLCEVj+mJHOOjOaZnPsTW1gpby2cxEz6jU2lst0lhu0y3I1lcnKPT6mKaMebnp1CkQ71eoeuUyOZUJiYPgKNQKXbxXZtYUmV0NEbUNNi7mOfqlWV2tjtYTpxEVGJoFprWIaP5VKo2jjmGUCIcPnQLqbiB4rU4/8RXmVjdptlxaPtBbrdQFRKpKFang8BDw6Nea5JSYxjFAv5zNS6Wyox94qeIGnFiM/vplXtM5w0QDXxNJxLV2CyXiCYSLOxfwLZs6nWHne0aXUuhWmlRKjdIphPk8iYjE1MkUkkUxaDZ6HH27SpCE6RzKRYWo3RtD9t2cHo1apaNoIsnodvxsDqSwnaDStlis9Sl3nawHR8nkAch0Ehnshw8fITry68FChRhE0/GGMtPMD09T73WpF7v8vkvfhnfl8SicYxIFCldXN9D+oEJ8pYTx9gz63DvnVlSMYXc1CgnL2zzystF7r97H9mUDppNOm2STsDEuMLzL7/JsePHuO22BVThoapVHn5kH1//+qscOjpHRNdIx9v82q/cy/UbJf7bHz2L3ynQsDTG8nlqtRa21cN1PZrNZqBxk4GgcGNjnZmZOfL5PJZls7G5wez8HKsrS3i+wpUrSzzxxLf5G3/9QyiKg6YFiwZVRcVzw6gPDaTvMjExSqPRJJFMBdN5RYb6HBG2U+HULczrGb4MCxF387p2wWQ4e3q4sum3bMNha0IEhUH/9qraJ7z725GDbKJQgoxj28hBSOHu8wr+HlIsMCgehgnw4Ho+EgUr1EMpqoL6jjykHwoQBQIsF00J1oW4roPr8f0PJHZH9IoqdsVOQxdFEfiKgiIEjutRKVfZ2NxhZmaSdDqKrgefMrOz00yMZ9nYWeHqpbNcrNeRPswtTLK4dxrVKrGxWiCXizI7kycSAdcLpi+dpsby9RWEhLHxGFMzCXTNx7ZshO+xOBPF9yRWD+q1FpVSD8PUmZ3PMb8/ztZ2PXiTaYLMqE5MuFhKmq6xiNIdJTuRp7e+zdbXv47zwivISpOk7RKNRVFMHctr43sumoBarUJuMo6pRGi1HZxeA6UpyF302X7ySU78vb+Nq5TptFcolZcZz0u6PZ9oLMvkVAJFlcTiNrqRwOoKNrYULL/N3GKOO+/dSzptIvAp7XisX28RTSSIxOPMz46hRcFXbHzhE0/oaJqHioupR1AVE1uquCSwW9CoCbYLFuvrVVZXlrBcKFWDMX7H9nFkl5Nn32J8eoKp6XkisRjNZpuNjQ1eeOFNPN8nGo8QiUbodm2kELiOi+fZSB/2791LLhvnyuVLPPSeY5w+u0Gz6VCs9Mhm58jP3s0ff/4Vju6fYmFhhFpjh8OH8ixM5xn/6Cxf/uobtB2D6cks+VGH48eS/ORPPMTv/+7XuXL5On/to/eQvn+KffMK//gffIA/+ewbfP6JV2lUa8RiKWKxCK1Om163i6qGor0wb2drc5NYLMrs7Axnz1/gxG23sbx6DVXXcRz4ypef4N57jnPo8DSeHyyTVFBQ8HG8QGfkS5uFPXNIApBRQm7F9z18x6UfpeP74XLS8GgMpl9Dh3/Y3tEHoX7VNAxG/TA0uNks63s+mqIN7nu4mgIG8SCe5yMUSai3CTkjFUWIkFtyEaqOCN2iw+3kLiApoTZJhlVdP3NeQdffHcS8e7JaaAQtrMR2JIYZIx5X8WVodPUJ1NYy0CL0I5KEUIb4o35ZGixaDFSmkpFsBonkzOnXKW+vMxKPMppKEU8miedGmM7nWJh5HMtyuX7tOna7TKfbY3YsycKeFK1mi+2tEom4Ri6Xot4M1jzvPZTDdRS67R4bBZ/RjBIow90wNMoDVfrkRkwKio/nKPQsH8OvMjmWBC2NquhUylusV9q4ygg1TbJaK3O7pXLh9/6IkbVL5ApdVF+BaARNUeg1a6SSccrlJgnTRPO6+HUNW4NWz8EYybDZ62C2uuilBoojSCTSVG2P8VSGRNJF83Usx8eIRrC6Ljs7DVzfJhlLcWAxQ9RM0mzXKDU22NiSSFdiOwYiGsXGot1QWNoI1ihvb+6gqgrxZJSJ6TxzcyYLMxmE77G0Usf2Ezi2Tafn0BMJphaz3HHffcTicYqlGhsbRTrtNq1mj66l07U0llffpFBu0rUgmRhFB1QhkJ6N6wNSYltdfOmQSqe447b7qVbKnD71FlHVpLxTY8/eLKNjKZoNj7ffWOe7X/sy1argrdcu8+DDR/hrP3U/r791lkbtOg8/foQf/8QdfPGLb7Oz1WBqYpY//W9vsrBvgp/5+Y/ze//5K/zuZ57hyadyfPhD93LfffN87Mfu5drqBhevdqh3LDwZkKkRM0KtVg/J4bCIR3Dl8nXq9Sbj+Tw7W1vEzMCO0mq2qDdtPv/5b/JP/tnfxvN64Pv4QkUi8HwvSGCUPgcPTKJpKqoSpFbKUEEdZA+F3jM/2Io8nGT6TqDoixqHR+wM3aZPVt9EWIcWEEUEky8vpD+GXf6EYWXB5Ezg+86g6lGVIHPc9RxQFPRQdCkAVBECK0NA2Ld8+GECZZ+89sOAfm+QcPBDAyLfl0hP4kkPhILvQa9nE6q8Qr3QLh/0/RcZNpn9Ui+IH9A1Fc+D3GiORx55mG6jxvWL59lavoG9dIWp2VEa2wZGVGBGJKYvqdcbtIttymsW2YzJ2OQI8XQS0zRwZRSpRrl6bYfS1iZWq4llgWIkcXo9NNUjP5YiljSJJzXGkpBOmmQzJpWazdbWNq1KAyOSRzWbRCNxooZkMr/ITiuH0KY5dHiK6toa2soqYqtB3IhRbHYYjcfodttEDIHv2VieS9KMgGcgtRieFyy9K3cc2iNpWoakaUZQ1AhmPI0Wz9Pq7iDKFj1H0LVUypUOnbZDqVhBKAFHUZ8eYTwrGB+Nkpkcx1MMelKhUXcoly1arQ7tbh3VgIOHRjl0cJJILEUilSKWMdC1DjHTQcHl+MgI+AY+DrZv03UNGk2fYqlA/aqDgkYuFefQnmkaTYntxnCJcNvd0GhVqDfbrK+VWFvfotezqHc8HFdBCIN0OsPBg/voWTbPPvcsruWSjkRQ6JFMmnQaklevXOf4reM8/oFRHn58nitXm3zhz9/g+Weep1mt87/+gw+wtVnid//jN9l7YD8f+rH7+PqXX+bS+SV+6mce4o//6Lt871tvc+8DD3B9tc7llQLX/tM3+O7TU3ziJx7hZz/1y/zu73+ZzZ066ZFxrl67huM45HI5WqGY0feDakBRVEqlIrZtY5pmsFnE6gXVgFR45dW3WFvbYWw8hqYE1YQSVhaKCALNUsnooGqRQgQtigw8ZgEQyEEoYL/KGU5gHP7/4WC0YR3SMID1Aah/CUCHkPje9artpjiqoaHWCUFRoqjhJubwviJmZJBnpgoFn+9/nMGZDuqkEPCCbKJ+e6cq6ve1n3/Z5a+QR/Q64OFYFoqQ4DvEIj6T+TSKdJBCwUdDFbv6hOARgtGiIiVSODgoXLm+he/Z5EZTqJrE90LWXzroAlR8PMtic22Jws4Knl1jIh9lbDRCLK7gSZter8vm6gabKzsUyj1GchOMjedABPyMrnkkIj4xLaiISpUmxUKFdHKERMogFtNRNEkm1iFiSqLxJIoexZMKTk+j1VbptCzwbbJxgSE9lssj7GgHOHDiPqI7da79w3/IdEvBGI9wcaPC0VQarVNH2F10U6ftuqTTUWypUa/bSMtBz49xxpWUD80xk9QppUd48G/9CsmEx9vPfYG55AaqX2Jzx6fTDJTnZlTHVxR0I4KqmRiqga50UHFwXKh1XGypE48pZJIqiaRLPC5B8XG9KD07SqsL1SYUyx6NegVVsZmbSzIzladeCzJ8XM+n3lSIxhJopkZEN/FdhVrFZXV9jaXVLTa2WlRbDp4IWuxoNAMEI2xNF6RzWZpNm2x2kkq5QatVx7JtPNfCUKJEhMfsrMVv/m/3kkhKmvUEz7+wwonbp5mb8FF1n25P4+zJDl/94hkyYxF+/X/9IDtbdT7zhy+wttnhZ376x3n22Vd45PED3H3XXr7xldf56jdOUu96FKt10skUdrdJMmJw9323cd977udzn/sqvZ5kYmaWF198HiF8cqPBWqK1tY2BcE8JASaXy9Js1cKKqIsQGori8tM//TF+/ud/DFV1A3mKL25qf4ZjXIetGIMBzRCvMgwew+P04Tas35b17wN2BYnDY/jdXKOhGJ4hTinQEWmD63meE/xdKGiKihSBn83xNE6dvsSDD9yHKTyCFCKBFNpNJEuQFhAUFLsVmOTZZ1+i2bXRtAjRWIpYPM1Dj378hwdEly6/Gsr8/dCf0yaT0hjPJlGFOwCifiLRTegplACIsHFQuXR1A4HH+EQWz7fQVAPfF3jSDVbbCoEiwHJcfCHQPItWpUB5Z52YVmNqXCKUHkKRCN+kVIbllSKIFrl8htzYBKmkRKeGcFoo0gEtMA06DliWRqPi0GyC22tgdbv0LBfXV+g6EtWEWDRKKpEmHVWI0iBitKh2xrnenSU9cQsncgc49Ru/zqiIU87prFRLjNQsDqVTtFY2mM5mcHyHiOniYdK2Bd2eQ298ihd0jTt/+ZOceulZknsPQDrD8YkkjeIZcsYFpqZdfC2GlDE06dFs9+hYEtszUZQ4qjTotBs0Oz7NrsJ2uYJtVclnE8xNZ5iYShHXPZrNNp2OSbMbw3JVep6PK20UodPrwtrKGq1OiczoKIv7DjIzM8H1q0u8+eYFLl/dwnV1pFTRDJNYwiSTHaHRcDAicRrtJpblEYtlGB+fZXp6CqH5LK0sceXKdayej2lGULWAc3CsLobiEzfb/MKnHkCIGo2GiRGLMjk7x3e/eYXbb5/kwH6TaLyL9AWlks/Xv7nB5FiKRx+d5c2TN3j2e0Veff0CR44dZXXlOr/1r3+a8Tz84X85y9e//QrltoVuaJi6ht3y0HRJKp3i7rvu4+Sps8RTSRKJOK+//hpCgdtuvY077ryNrz7xBKViERD4nkDXNZKpGK5r02pagXZY9VhcmOA//sffwjQ9FHx8l0EgvuM431fV9AFkeNrVr3T6vrJ++7UrlNwNM+sLHofbsf59RCKR0OFgD6Zi/etJKZGhA8IwjMHtdsExcD7Yto2KgqoLEAEQvfDC67z//T9CRJXoBAZ3D/UmoWXwcwZCZqSCUAJK5rvfe45a0yIeT5NIZIjEkjz4yI/+D/HlrxAV6wdCLC9AeLffgn1ftSYHJR78YEGTEALHdoIXQSUsj0FRJK4XjPM9KSjXGpy/eIFmeQvTt4lr4Nstzp0uYUZsctk0Ec0EoTAxJshms3io7Kyvs9yzMFWLyZxBMgrRhAqqRFV8oqaCltUxdItmw8Bxfdy2h+NrGLEEGAI9HsUXEs+1iSY0DDONbHnEhcWBxXFa21V6tsPWmMraSJL3/M33U75RZP0brxKLxkCL4nVcYskItUIdxYzhSbhQqlA/cYw/e+LbHJrJEY0mmctPcenJL3LLw3NkIwaG71KqdqjVPfyuxFF8FCOC5UokFp7TRPMdVBeUrs5cfhItNYGuSFB9NjfrzEyaJJKCWEon5WvYroLjmrhOjJ7VodXuIZQU3U6EYrnLqTdPcfptiyOH9/DpT70Xy/U5fWaV51+8RLens+/QrayuFojFI4yO5phRJddXrpPOjlKuVrm2dIN2txGaXHVisYAjMAwNz7GImAYTecEDD8yTzviMjc/T7fm89XaBz3/hq2hGhtdOnuGvffxxTLXHseOTZHI6kXSZ3FiOdqvG/ffNYPVi+LrJiy+dwe52+IPf/Q7/9B/9GJ/+mw/R6tR5+c0ldsoVjJgBEeh2LBrNHk99+7v40iPdTWIYiyws7GFlZYXTp89y972389u//Vv88Z98lqe/9zyuE7xnTTPYDrtnzxhnz57DB9Y3dlha3uDA/nEkXnAIQ2AY3rY6nA/Uf8/ruj5QV/e/N5zC2Pd8eZ4fRpWog5YKdnmj/p9+O9evdIZjQ4QQKGo/KdMLt8T29Up9sPIDV0RoylVDYjmZTA7O8sCVJbmJixKhRmmAATLQB6qKOrCu9Pmqd3N591s8FAXPdRGA7dq4vovrCQT+QAIPPlKGK6e9UMMIIIJVM4FIM5imaWqwm0kSxucJieN5tNoOcVMnpkE+GeM999wG9kFK60tUdjbY3qyBGmduzxxzUyaJmAoEo2jpd6lUHEzNQBoGjuWxutZGekFeSq9ro+gmqgLJRBpDl6iaw+RshAOHRgmS8wxabZWuFay6dl2JK1QUYYNuMTOWw0gn2LmygjqSxd+zCJlRPvvyNQ5PzqMmM+xJtunVGriOhZOOoiFwFEHXljiZFEtba0zNzyG6LvLKVeb3TlDd2cG60qU2XiSSmEJVYkQTCi0EzXodu+FRKe3gehbTMzmmZ7KMpFQs26HZ7VBr+3Q6Atv3iCY1en4siCCJgeY5iI6kuFPHthQ0zaBe69J1FTJjk0zMJ4jFU+i6Rr1R5+KNIqMjkkcemeDhh6a4dr3JG69tYDUK1DsqN5ZX8aSLoqtUmjaWZaNq/ZU3PkK4SOlimgae55BMxrj7xATHDhscPZagXW/wyitLHDq4yI88OMYD75nku0+v84UvXOGrX3mBv/cPfoUnn/oue+cXefyxu/jGV19ldv4A5VqPhx7Yx1ahR7k4z6mT53jljfP8y38t+aVf+iC/+EuPsbHxRZAqhVqFdDKBFAqtVpdUJk6326JSK2JGIszOLlIsVOn0Onz2z/6c++4/wW/+nU/x6AN38V9+/7MsrW5SrdRJZ7IIRWdyapKtzU1sB06fvsLRQwv4bmtwiPvm1f7yRs8LTNwBsMjADiJ9NE1H0zQsK+BXd+M0gmTLIKNaCanXINFRUXZbtD4qDJtf3+mKD/4N0PeU9Unk3fZOVcM2TRXhpFvBcz1UIcC3gshnRcUXPsJXURD4Ypcw7+OUoL9GKFCEB7HPQREi8UC4P1wgQoKu6biuPTCsBqt+QsVmOOAboCQiEDAOOOrdEaWUMtjiKvv9bpBf4uNTrdb4izeexmlWyWeiuFaLeMzA0CXJZIyZ+XF80UPVVC5c3MDzBMm4TnYkSj5rkhtNMjISodNTaDeDHe+VYo1GpYll1cjm4yRH0piai2nEUBSX4maB67V1uq0WdsdHqmnS47PkcmmiSQVPNNFMj/zkGFeWm6T3mzQtj06nS8yWtB2LZ59/lauxS3xkZoZINoVTLOF7PlKJ4WsOLauHlkgQz0R5/4l5mrbDwmaBeKFIo7BOprzO9Ow+1PEIS+tbuOoYekQQMzxGZlK0Wz3yI2OkUwn0aBzftelZPo4rAJeE6ZOIanh+FMvRWblmUW80MAyPqZkEs4tpDhw38HxJu2rQtprcuLLKqXPrLK8UsW2JVHSisQjZXI652Rxzqx3m5tLkJtL8+E8scOJEkW89/TZXb9RwvSiqaeL4bhgNaxOLxQbEqmmazM7OMjExSae9xZ13ZRkdabK67DA1PcZdD47w6gubdK0se/cb/OiPLrB//zx/8Htv8Gd/+iS/+hvv5VtPvMRbZy7y6GOP8eUnnuGO2+aoFWs88vB7uHS5wMRsnu3tbV5+8xrbO5/l13/jx/mN3/wI/+yf/inZRIZWr4VAJxqLUq/XiUQ1dHSq1QqaanL77bfx4ssvU693ePLJb/HLv/CT3HX3UY4c/uf80R9/haee+h7dTotLFy7y8MMPsbO1A4rg+vWl4BAKJcjreQfh3G+rdvOnJRCs0hIIXM8fVEdCDAsQZVi1BJMmoYaJagNRcD/MzL4plbEPDsP8kKqq+KHGaXjE36/c+twSBG57VQ28asH5luFzDqZ76tD93zS9Y5fPCmQJId8l3cDXRj8D6YcIRH19wC7IhPuPhimmkNsJfuBwpBeC0yAqRLn5BRsIrrQggGlmapy5j3+Ebr3M+o2r3LhwCml02H9wgokJE0VzcLwo0vaYzMzjeDqlQpe15QqFzQ7dbgNVMYhEo5gRCXjMzEZJHEyRSc3juRaup+LYCo4j0LQYo9lFXDdYhui7kq7XA02gqBoqUZr1HtItEnWiVC+6WLe6pI0YnY6Df+oSI+85wU8/8ghYDu1rSzS6XZSYwECnVuvhuzCSilOttcmWCihnXGZVj8x2mZGRCL1zbxOJguUn0bw42fEEW+UWyahkNK4DNiMjMTpdj0KxRWmzSm5khFjEpNPp4nttPLdHp+fS6jr4ikun59PoGHiuw8lzBRKpKIv7Zti7f5qx0Thze2KMz95OreFx7doaly6uU6l6tDs+aysFri0VcS2d6ZkJEinwOpvMT+c5cmie/OgEZ8+uUbO6oChEYyaJeArfl6TTaVRVYWJiisuXL3P+/AXSCcFj9x2nUbURaoZnXthE1XWO3X47zz1/GleMc3Cfhxmr8+iPnOCVVy9z7uQSP/lT9/Df/uh1/uS/fYlEMo9U0jhim9/9T3/O/OJhTp+9jBaJ0O7abJQ6/Mt/8Tn+j3/4M3zqZz/Af/rPT2LoJrbt47oe8XiCZqtGxIwiJfR6XeqNGjMzs6yur/MX332BH//o+5iZTpJMCX7913+WW08c5t/+29+l17VYW11hcXGRGyvLbGzu4DgOhrr7Ph5eiBi0LQwddj8kKLxAFBwGnAnRX5ooh6oMOQCLYPJ0s3Aw4JF2xY43PSa7hHlQoQXVlhD9VUEiDPDfjREZiB99L9gkIlS6nS6OY2HoBiJYrxOIUcXNlVf/Z+9fdp0Uu0Fr79RI/WWXdw1EAXoH7LztBLu+JeHKEqUfEQt9VXXQQgYVkRxC30A57gcmOz9YlYJU8D0fU9PwQitJbmyUzGiaI7ffQqO0yfq1i6wtl5icjjAyCk67TaXQoNXqUK/blKsVpubzzM7NM56dwoz4CLWJ77fRFAtF6YIlMSJxpKXQbPkUKm2sThvTUMjnNFIphUhEJ+KY1JuwsbWBKmF6PEk2k8W61iWyVqDx/At4N7YZsSyUhoX75jkyk3mELxFYtJfWmI0ZxE1o1GqosRiaJ+lENeL3naAlVJK9GrKwjd1wGIknaOoe5bqFbsJ2aYeejLK2WiAZ6zI7N0erVQR0NENnbn6KpZUSwu9y7NgoUUNFV1V8xcbxEhTKoKrjpLJ5hNKm023Q7TlUKx5rS222lloYpkoq7xMxXPYtRJmZ2Eu91qVRbrFV8Sg2TbYLDo5vsrS6g2dJNjZ3iJ4rM5LNkc6m8Ts9Urkciwv7cBzJ2uoGxWKRer3G1atXQ7WvitV12F6vcs9deV55fYW77r2fncI2n//sM8zP3cLn/+QtfuITB1ncN0m341CtzrF8o8Sdt0/zM5+8k9/+d6u8/NLb9Lrb/JP/90/SKVp88cvfoNPsYSZMlKigaVtYbcm//ddP8Pf/j7/BLSf28fwblzDNOJbVQiCYnppha3MH0wzG16VSgcU9e9nY3qRWa/Ptbz3Lpz/9UZAOmmrz0EO3k4j/Xf7vf/kfuHH9Krfefic3VlfodjsByCgSx7aHVMvuLkcTnNLwsPdbMGUACEFWkDIAF1VVINyGMcwZDU/ddm0h7ve1Zf0JW5//CV57fcAlCaGFt7HfIQ8Izrfn+RhGBN+XaLoWtpV9Qvr7ja83CxoJC41gnbVhGLiuR0x9d/zQXwmIhAjIMk1T8KWH6zjBfEwAoby7HwEAoQlO+KF6NdRlhj+07+0uj/OHEDOwfgSP1bG6NFtdfF8FNcP4vjtQcalWt9m+sUQiomPGY6QTEcamJcejU3SdHu1ujas3moENRe0SMTRGUgmEotEsVilsB7lFaFk0M0M2PYavuNRbHh1bUi5uU9zpEE2MMZrPk4j41Mo7OI5FbmqCvLtN7/c+w1gkTbXbxFBNRtotqmqarmuR71VJZ1IovoeIeKRGoxRbPRLxUaqeTndxjq1KA02zSagmI10HC4WOqTI7a2CMuoioQa1pMD62wLWrl+j2Njl4cB8CHcd2uHrtCuWSh+dI1lYu8dijR5gYjaIIHxTBRC5DtQFXL9zAMDVm58bITbjMTDvBr9xX2ClVKTfLJDIjzO0dw9RUhCfxbZ/tnR6nzm5y8mINPTZOJPowvqKiaBKvZ9NsNNkqbFJuVKl3WqytbuDYElU1MQyNZDI5OBRS+iiywcREmmRM49Zbx/nGk9/moz92D7/4S7fw2T98lYtnrvNfWw3e+747uev+OVZWSuxsaFRKBeZmPX7tVx6jUvgaF06tsHx1h499/AgrN1b53nOX8C0PVzqo8QS+B9vlMr/925/nYz/xQd66sAaY3HbbQV5//SWklGQyWRqNOt1uF5Csb6xy+PB+Ll+4xNN/8SKf+Mn3k0wqSN9FEMR7/ON/8r/xz//5/82NG9dRFYVGo4bneqDJwYEcVAF9zkhKVLXfzgQSlv6Hs+u6SCHodxiDKZnS940NrY6WQYjg8PppVd1d19R/3OHv9e9TesH9aaEymjD6tV819fVEhmHiOIEHTQgFQ9fDTsUPwSg4lIrS1wv+IHxQwi5yd0UREoYnbT8cIFJDvkcGy0UQPjogpIevyL62KQCi0McTlEaBsKovEQ8uAdJ6ngPCR/peIAjz+iSchoJGu9nlxo1VilvreG6DbquEIn0mx3MkFpOkc1nicRNdcxF0GdMTCN9FQ0Fi0GoJdjbbbC7V6PVKCOFgRiPsm0qj6yaKYlBu2lTLXdqVKr7dIaK5pGMp0lkN1bRoWV0WpuNEzAjVGxbWjQpjnoHpWpgOOFmV3M++lzc2ShRcyVRsjsViicpKkWitRLfnoC6MsFSxsI4fxylXOFYokFxbIuLaKKrA0wSx45M49Fi50iKWzZNMGZQLNR564CjgUq02icUTNJoVjh3fg2kYFAtllq4L3nhtmX37Z5leSNLttWm12mSyYxy5dZ5q2eXk2zuM5E327o/iWg0MXSebS5LIjbG0XOXSuVVUEUFVFSans0xN5PjgB3I8+NB+Tp/Z4emnn2N1q4eDASKKGkngKYJINA9SYtlW+CGk4NiBpUTVBJr0mcklOHRgirHxKG+dbHHkxBy33HqIP/7jV/mVX7yDX/70LaSTcf70C6e47a67+caTZ3jggXt467Vv8tKrktGR/SRTNX71bz3OP/4nX+E7336Tw79+Pw88dIwrV2tc29xBjWvguugRnWq1gyzU+eM//zb5sXGWl9YAydTULJub64GIdXIiEC622lTqTd73vkNcuXCZre0Kp05f5YEHbiGIovFQVTh+fI5f+18+zf/z7z+D67rYlo9jeYiICTiDEfw7R/PS7ye4C/C9gbhPyv5mj+C9HixLDFz8AlB1HddzURQNRYgQFAVG4DgPgKZ/LiHQC3leaDsBrc8fqUGnoiDQFGWwJHW4NRNCDLiqgKcKiHTPFWBoID2kVAICesD3SoQfih1D/VU/CloJSXJNUwhWI/2w3ff9DCEvcPV2bQuFCIJ+IFpo7Qj9Hf3x/c0U0i5nFKB6ELyvaCK4PbujR13VmZ+dZX5mDiFdPLdDsbBGp2NRrXRZ3SpwY61DLCaQdgfVb5BJOZiqjew5GNEkNjq6GiM/OU06M4mh20g8NKHg+wq1ukW82yI66pPbk2MkMYGCiytiVDqS1fUm0xNT2L0qreIO5Vfq5JQ4iq5hdSw0U6fZasLaOrelcyiZFNtRg86eMfb9zXnOv3Ce6rkVHvz5+zn3jTc5OHUQ76VX2Fsq0uh2yEQjNMoNouko0aRBNmOTGR9lu2yxul5EEuP1V1c4cnw6+E0ZPgt7J7m2skk2HWV2doSZmRi+71LYqVIte0xMZtF1h52tKpUrJSIRwZ79U7i+ySuvXCWTFBimyoVzq/hKipn5SWbnphBC5a23rvDEk8/gexH275vnyJEx9h5Y4Nf+zj4uXtrg2efOs77ZxPVU7J6OFjXRTAXDMPEcJ5CUIOg5LiPJFMcOZjm8x2ffPkEqDbo6wze+fpbDx+7D6m3xwvPbvPexHB/52DHadppXXn2N//3vf5LP/N6T7D+0yJe+/AxLVzb51C/czcRcjEPHxnnh6fM8/vAxbr/nMC++epmGa1Ht9uh0WkQyI0gUao0mri/odNZQVZPLly9x//33UywWabdaxKImn/jJn+SLX/wSnuuyvr7OzMws62vLvPb6KR56+M5Qldz3fdk89NBdXLm6ypefeCoIxvd2qQYvBIFhe8Zw4JmqKIihw++6LhJQw9b1nWQyBNEcqqoGurqw4ulbMYarsGE9Up+PCRIXCaoTGaqnhR5QJ/6umrs/+nccb3BePS9Y+64qGoIwaREBMsir77ecg+f6A9TW/VYyeE4/7KmZCGUFQsEbgE3QjqmKMkDLXX1BCEIycNmLsFIalK9u34MSSN4VFKSyqwLddf0GoilF0xmfmkMqgrzlUSl1KO1UaDUrtNoFSls1DCRYbUaSCrmxFqqp4rsdXCdOqwtIG+H5NJutcE3yCJOjGVJJHd9t0LF66FqEa9fL1FoqyVSKnfV1xnOCkdw03mKSytsXmO0Kuq1usHUUje1vvkY8m8JXHDIHDlE4ukil1+OKA6V4nIfHJqkmEmwtrbO4U0b128Qc8OwuMSS68CivbNKsZyHdYmLEYCabYb3S5LWtLS5fs7n9jqMs3SjSanXI5Ueolro0qjssLOYwNMn0RALLaVEsFIjFRti7P8qccKmWHC6ev8BORUWPpqjUfIyIy70PHeP61VWeevJbFEs9hKZjxlKoRhRPMzh1fZ2XT14kqkkmxlIcObqfxx59HxubRc6cvUqp3MAmiufoNBst4tE4c3MLTE2OE4snKRbWScVq3HtXlna3w6m3Stx5T5r3feQAf/ifv4vdy/Nnf/oGt9/5MTxZYXY2g2Ie4sa1NT704dv5nd/5Gq4nOH1pi3/8T7/Gb/zmx3nosYc4e/YJfud3nuY3/16CD33sPs5c+hKGFcFS7IHlyHN9bMsBFGyrhx7XuXHjBocPH+Hc2dMUCwXqtSq/+Ru/xm//h9/m8uVL3HX7fWysrXLxwhWsnkfEVOhvndG0wGX11z/xEV566RUajWZA4BLYGm6OvQkPlrYbA9v/OkwsK0pw+2G+ZnjpYn+32c2ZRbvg1ge+d+qRB6R5H6j8cLrX1/WJm71rUjJ4jhBs6FE19ftbqgFfFI7tBeEkr5+HFHj2gmROG8d1Qm3Su4OXd9fAMdTrif6/w/3c/Z8mvITYMwASQp4gyKvpayaCcnVYkv7O8Ke+IMuF4NMEgRAGChq6qpFKRNkzP8GBfXMcO36Aex+4i+O3HuP2e49yx/2L3HP/Ae65+xB33HGAsVyKeqnN+ZOrXLy4TSI9zvTsHKqmsrJZ4ezFVW6sWyzvwLeevsDpM1tIP4pKj4MHoozlJRYu3mIU/Y7ZwCvk+rT8HlpKYzweo7NTJdZ2GXn9PNOlBqdeu8qtxw+TTJsYMsrthw9i7BSZxKDXcTCkgtNqkzZN1E4H/VoBilmKJYWOBa7VZjwnuOWW/Yyk8xS3NpmdjZDLqqjCpFxqce70DV598QqXLze4vtLDkaOkRvMUal0uXalh2zpj+Ti33zXKidvH8TyNQlFw/uI23336NAsHZvnf//GP81M/fQ/T02kajTbbOzW2draptBq0fY2Gk0Aa86xvR3nuuRu8+dYlXGmRGdXIpnUO71vgnjtvZ//+fdiuy5Ur13j26We4dPEim5tVhJIjnsyRH1/g9ddKJOKST336BNubb7G5VeC//rc3sdwxRnIJ9uybxfHaJBMae/ZOUq1XqLSrFGuC/9f/9Tk8NcP47BSVhs/v/d53SKemOLB/Dul5pFNpFEVn394DSKnQ6XSCaFUkvnS5ceMGC/ML6JqOpqi8+PzzHDmyj09/+ucQQLcTRMdsb5WoVVtIGRhIg0MmEdjk0gYf+uCPMDgKYazqwMwq5U2E9eBMhBaM4dG3L3cNrv33/3Dsx+AchN/rg1D/9sP3PRy23wc5hlqv/tVluEAw2GXWz54P2rV+S6ko4eYddu0hAVclkdKjT6vscjG7txWIcOFmkNzqvwMk/3uXv0IMSACFjuMGasxQ26Ao4R6lkCbyPY/A4NdfJTIEUiJ4MXzPRekTd16QXi2kwB2Uu8EPtrFd4NrSKla3RrfZoNfugGujKjbRiGBkJMpYPsto1mR80iMZk3hdQauqs7VUZnt7g1qlhu9ITCNCxFQwYgbbm1skEgmEqhOPG4zlxllZ2aTdaXHo2Dzp1BjF4jYz0xqm0cFuq6xv7DA/M0tlzwj1NytQkcR0DU8B33XpedD2I4zFXTrPvMziRz7IhYun+ImffBhH9zl+YIZT7Qox6aKacVqdHtLQ8D0X1feZ8FVWX7nK1Cfv5NLqMnFNYWoxw0jGw7cgkzJJRnvInEW5VeKOe6ZoNVIsX9thc73CvkNHOHu2hI/P5OQIyWyEV19aZd/8COmswfzcCNGkwvJaFz1ylPJ2hSeeOMW990xx171z3H3/YU6d2+bFl65w5WqNnmvQVTyIKJxfuYwhokSMCBIbw9Sweh6KX6PbvEbH9rEkdG2PmGrg+zaxuM7pM6v8f/9ti8ffv4/Dx+c5d85ic1kyPyf5xE/dw7/7d3/Bc88vsVXs8Jt/55N86cnv8LEP343uO+RG4yTTcarNLkrcQjci/Lvf/iP2LOzHlj5bGwr/5rc+ywOP3s3zL17ANFSazSb79h4cfMq3223y+VGqlSqJRJoLFy9w6OAhLlw4R7PR4Otfe5K/9au/xKnTF7lw5jrTUzPcWLrIzk6J0dEZ+sW9RCCkh6p4vO/xR3nqG98OuBsZVEwyXCEN3FT1DDRFIXgMj9kVEfBHfdvGTRVTgDbfNyrvb6cdnKchVfWwgtt1XRRVDdqiwOaA4wbDJTVUZ/fBUVW1cOEF4VpsiEQiIcDKsGAQg/MfvBq7XO9umxdWV6oatIIhGH6f8+IvufwVgCgYL6qqRCg6Vk/FlkEGtSJFwO8oElUGqW99kizw5vr4QuALFylDMk0GEQGqpgbpfSLsQYVACoGqaszMTDA7N4nV61Gp1CjuFGlWynTqFVTFQ1N0Om3BjudTKNvookJS72GqMDEZZ3puHiH24HsSXTfxPJ1WR7K1VURTLNJxl7FcHEGNo4ciILMsLbcpbG1y8GAQ29puJri81GJhzxiaE6X2ykkm9Dg1vcFYJk673cNRDBbyCZxmC1txmXUE5775Cu4jt/Hq26s8+vittMtlOsUanibRNYWebaEbCbykgaL2MBRBb6lKp9hmenye5Y01OisdpicyKBGbK8tdJkY1ZubSdG2L7dUqi4sRxm/PUKuarBQ2OXAoje8rXL5UZmVlm2g8xnef3WbvgQXMaJdUKsbhvdPc2GwizDiPfvgXuHzuVV585XUmpnLcc88t/OovH+DS5WWeee48N9ZatG0fIgaGbuK6oOsJjGgcKSw818FWNFpWFdu1QYCDxx3HjnD4QJxvffNpXnt7k5feXOVH3nuMH/vIx/jal5/iU79wB1OTNrffuYcXXt1gfcvi//kPX+CRR+7ha195lV/52w8yOTPG5NQ4jUurGIpHt1lHUQSnT72FoploSYMLNyr4hokZM6k3KgPPl2nqOG4P13fwHYeIpuF7NkurN/jRD3+U81cu4PuCZ158mU/+/F/nV//WJ/l7v/l/0bO6OJ7LTrHCMXUO0df3SPCFCwpkR0Y4eujIgO/sj877oWZ9vqhfoUCQXOFJASj09134rouiBKJfhXBpqQxMztL3UTUNORQBMmzteGcn0QekPhD1H194BPKYADPwfO8mMFPVgBzXhB6cY1VBKhrtjo2LxECEZzv4o6AHimuCjsb3Jai7K4xkOAU0jRi6biIUwTs7vP9pIPK9kKhSBJ4TkGG+7JdvwbLEYLQXmBz7L9IgwnqgqQhbt4EGwQ97ToFP8ImiDF5wgS+DN9fExATT07MoUqHd7mF1WjTrVRqNOtXyOiPpCPFklpGUQyoWvEiuC7qqY3sOqytbbG3WSKRyLCzOYOrQqldZK1RJp2L0ulEuXSgwO73A6GiHteUCI5k8p06vse/oYUorq7hntohcKePqCpmRGF67RVKLUaj1UBUbpddDiUWJmTDVbFLYavLmdom733OATrmGYks8z8FIGkgh6PR6xBI6pgDbcXBMgad6bG0s40mdWGSE69e2SafHafeqtN0Mp04X2bt3huJOja0di1xOJ5rWyHiCSMTFNAR33ZliakpQa5kINK5eXuauu4+iqwZPfuU5HDVBJJ3m6RdepLjZwXMc9ItdXnu9yOhInBO3LvLxj32QQsHie997g2K5TdsOuD7PdYLVyJqC6wfc3dz8PPMLcywsLiBtm6ixw9FDKs3mMb701VMYZoKnnjpPpzFCfnSGrz5xhY989B6M6CVGRhL0ejbXr22haRfZWr3CPSf3c+ToYb7y5KtkMmla7TYChUwmQ7tj0ev1GB1VsasOZ89fxHUdovEIttWhWq0yOTnJ0sq14HCE7Y2maygWrKyuML8wz9LyNYqlEqdPn+HhB+7kJz7xIT7zmc+hKFCtlgOQUIJ9Zn7oV5ICVA2OHNkfWia0AGSGKp1hg2r/8YM996FDPgSSIJNrt3LSQ/BgSMzY55Ck3G2T3um07z9Ov/UbDk4b/PwhaQ273FX/e7bjYqg6QkhcJyCquz0ryAoztIE0h1AP1Y/58fzdSNnhCRwEwYmqp/FO7dEPBYgGnI8fuO9dx8XzjQCEQp8JoZa6/+ICA7JMhlL1gJbaLVsl/bS6XbKv3w/74dJF27apVGqsrK6zsXydTq2MJhR63S6zU7PE0ym2Ck1KZZutGBiajuL1kE6bncI2rVaT6ZkZsqMLOG6PMxeuYuoGY7kx8Gc5fa6M51ikMnlK9VVU3SCb28Nrr15hJD/LxmaBg/E8a8+cYoY4jUaL7EQaU1FplJv4XZfc1AQNx8YwdXzPYtztET15Fms8z40LN4g32pi+joKFY3fJjCYolDr0HBfpeSgoqJkEI6NRlESC0+cKrFxf5wMfuIel6yVqhSa+Y3HLbXt47eUzjE/Oc+r0DvN78mRzEXKjs1y8cJ1DB8ZIJWFuOoW10uPWu2dQWODiuWvEUzluu+sQf/6FpylUPEbyE+THE6TSOeKpNLpmYHdtLl9T2NgqE4l67N03y9h4netrW4zkJ0ilRonHRnBtn2QmiaKK8PdT4cmvfoO15RVuu2WUQ4ce5OHHj/HNb53H05JEY2M8//IZbrllPxfOnSExkuHx976fGytPUCh0UNU4r712Cfwq//63n+Lv/6NfJh5P0WjXiURj+J7E8wVzc4tcuXKJdqeFEMGO9VarGS5b1NnZKXDo0AFW1m7gy4Dw7XkddCCZSnHp8iUefvghrl27glA0Xn75DR564Fbe94H7+Oa3vsPGZpFmqxPkb0kPVQRbL7w+kKgeh44sEItraFo/+0cMOJ7+39/ZQg0DRPBeD2iJ4eppQBgPJTLC7vCmf2aGwaQPAO/MwB5+rGGAGgaMvoJbFQqu66AZgQUo0Av1eaBgRbyiGUERErZlQg3D3YbOuwgBFrwg9VFKfuh7zVRVDdfIeoPxY5BtFoJL2FrJPlkUXoL+MQCpwBgXjPn9oReyH+bUf/H6PTMoKGrAxOdyOcbGJrjrrruCF1ZRgk9yRcVQBb7XRRMu1XKZC2cvcePyBdxeETOikkzFwPdQXIvJ3Ah7Fqep1VqcO3ONXkMlmYiSSDhMj0fJ55N0mhrPPfsGqhEjkWyxZy5J73wbxQdDERiaie1Bp9tGNQwwoGk7dKQkaZj4lkc8Ccctn7946wzn9uQ4OpEhCkQNDR8bXQ+2Y3pCoBkGIDHHklRbDRJJlfF8hu3tBm+/eZUHHp4lGm9z+uQN6oUcD95/J2+fPUm92mDlhgoyTrnSYm7uFk6dusCJO/bSs0os7M2zulqn3bJ47EfuZ2O7TqVR41f+9nv56ldPcvLtbfToKK4boVTr0u16mEYcRTXxC3U6nTpWt4aQHmZM0HWWaTWaSH+dWrVNz7XQTYPtrR2azSaxaJxoNMnlSw3+2T96gr/7D36KA4f28/rJZfSIRzwT4/WTJ7F7Ln/6+Wf59Kf3oKomyaSgsFMlEtFoNQU7BYvP/Nevc/DwLaxsPo3jSqLRGNVai4MHj1EsFWm3W2iajqGbmKZLt9ciGk3S7XaIx5PB+0tCt9slmUqyU6owOjFOsVVCSojFknQ6Hc6duYptSdKZGI8+9jB/8sdfwrI6obRE4LkBKHh+kLIofZejR/cgVA/fd0PAunli1ldZ7wLGrtp5dyfZzaFl/apqwCH9JZxT/4wMFiO+Y7z/zqzr/v33r/vOsb8QIoiVDRdgCgSmaQTZ2tJDwUPTtWBSzpAsJzjRYaPJQMgYFExeyK2BlD/kisgbrKENes3+3Qe/b4kYlG1+KOLqf18O0FIMemRlaMlbuB9caIOR4G65pwxaOMNQAwJcKsGbzHfxHZtipUCnsYUuGtSrWzQbRSKGzoPvmSGR2EcmnUDVFZqtOt16g16zxPJSm0arQzKRZGpUY/++EVIJG99uYdUdXnvpGiPZLEeOT5BKtFCsLWwtAnEFaUaJlCS1covUZArpqXi2pO46CNNAtrqowqfrW2R7Fu+Px/nGs2eIHZrlLk3QszpEI5HgjahqdHsuCVPDV4CIoNm10Q0dRdV45PF7eO3ll6nXEizMGYwkD/LWG5eZnjS4995JZqbGOHd6i069yuzB/Zy9eJnR/DQvvnqNW47v4eL5DRb3LFAQHd48eYOJyTF01SCfSfNLn34v3569xDPPLFErljGTSVTVpNPt4PoN9IhOz3KRfoxYREcRHp1mB7tbJp6IEk8KZFdy5MhhSsUi6XSaWrVOtV4jahh0W2n+1b/4Kve95y66nUsIVeLZLqaZpN2uUK35fO5zTzE5OcHm5nlUTdDtVUmnR6hUmly7sUO9LWl1WhhGjHa3F8S1+IJkMk673cQ0dCqVKrF4PKwqgrZd1UIepv/mFQqGabCzs4MQgu3tbfbu3ce5c+cpFqtsblTYsy/PfffezZ999gkikVhgWRDBfXpuMFAJzqIHIpgeeb5H3zrRvwwDQP/gB1xSH1hCctfbHb33q5xhMBlur3ZXBolBmJlkd8I1POIf5qj6tx2ezgUpirtVjO/7qCLIp9ZCR74a2jb6HJjneQhVGdDUIvTRBQT3EKkuJdKXaJqKDEXM7wyB+8su736LBz5SqAhNRdMVHKtLxNARMijDgjgPjb7Ptd+JyXDqoIRLFJ2wbvJdP5SyqwQrUEAofviD+4gw9Q3CaYGqgvTotTvcuHSRavkGmYTN/GyC2QUVy+4wPTmO405QqtUR0iWdSVIpFKi02mRGE2THUnhdm7m5MbaLTaqNBvNzESIGVOs+rYbN0vUCt9yxh4nJGAgHxzJYXe0xPZ6mM5ukvuyR9lyyOpRuFDFyeRxfRfYcUqkYQrbQhI+JBENwZ1ywUWnQfOEt0pkEZlZFSBurraEIBd1T8WwFJeogKiWmc3s4c3mZ0akD9Kwejz12G8ur62QyEcZH09x99x4K21ss7E0TiXS498FDQaWzs8add+Z4+80VasUOb795mvsfuoNLF5bRzTSJ9BjXl7c5eniSa+ev4LgRHnn4FuYW5/jG196g1VEoVttgmDjSRRU6iiFAETieRzIWw5cCw1Dp9SwURXL7rXdQKJSRngNSEI0opKJZFEXD6TqUqhbf+taLeJ7NSHocy+pRrzdJxSKgwPrWJksra+i6iWW5tFo9ItEUqh68jS6ePw+KQzo5wtZmgVQyS6VUxJcqkWgMKSSGaZLN5um2WuiqiutYxGJxEBrC93B9l0a7TTqTpLNdRGBy6eJlHn3sEc6dO43t2qyur7J/X5Y9c1lmZ8aImvHwfeiihPviFaEhfRlwJ0IEAxDNCASCsFvxuO6ADx3YPsTuxCmoGsQASPqA9YPaJiFEkNAhRChKFCiajqJoQ62gGmqSdpMc+wA0XGUNxMQE5y7IrdaRfp+v1fClAMVD1WSYdx0J255wSu73qyLCAMN+pyORMuh8PE/BsQWaLnDcHgbvbtXru9YRQaAL8GWYddJPeRuozocl1P0/fVtH8AIEo05/8OSDTNvdqMv+i9tHbMdx8TxwbZe1lWW+842v8ed/8p8pFy+SSQnAZXO7zGsnizz/VpvXzlgUallU4xDVSpaTb++g6gkmJidotyw2t6v0PJO3z6zTsyQHDizi+lGuXi9S2GpjdSLcdud+cnkLBQ/PiXLpQo14dgTbdJl77DD1jECkDFThE/cFve0iaQR6p0faMAO/jiJwXZ+u45KKR3nA1PhAJMZYOgaeRPU1EDqO6xL1PdrdLiIWp9sBHZuJfJJSqcjy9U3MWJd9e0dxnChLN5okMjF6jkmrLcmkZ1i6UWZhYZpsRhDTHR64f4L73jOGbVV46cWXOHR4jkTK4NyZi9SrkrNn1zh4dA/RuMXn//TrnD+zzB33nGBmdoRMRiMVV0lGTRKxCKPZDOPjY8TjcZKpJIt7Frjn3nv46Mc+xs/93N+kWG7w0qtvEU2MMDE9x/jUHO12F8d2yOZGiCfjtLptfOmzvbVDOp1FCIV4PIGqaFQqNRCCVquNUMA0I1SrVbLZERqNJrGQG7ItGwgUzuvrq0xPzWCaEbrdHhI4dOgA0WgU27EHpGwQjK+hqmaogtYGVbcVZlJHIlFAcPHSFUBimIJDh/YwMZkP2hV1dxLVryD6Pi/TMEPKdNfvBbu0wjs1P8Nq6GFf2nC1M8wDDcCj3+P0T6EfcDbDVdcwt9SPYYHd6kxKGYYP+iGQBnfrOgHVEsgIwg0gnhfwRoNc7aEjPQRqgcldDK4jhAhTGuVgaKXrxg/fazZ4xPDF93w/LMHkTa/VMKIHTyowvwYGWRloE0RYMvZ1GL6DItRwpW/AJTUaTTa3ttnY2KSwvUmvWUNXIB5NUKoFOT9j43sYn5xmLpICVWNn8xorKxdw7TpTU0F649bGDpncKHNTi2xvl7lyrcjRo3twrS6XLi1jmD6Le+MonqTT0CkXSszOR3E8g5Nv1MjlJnHsFoVuh8zCKPrhPI0X18mpAj1ioHd7RIVH2+qgaQqep9GzOyhCEE0kaLc6jMoOqu2jqFHcpouv6choBCl6GLpCBYuO7+JmdKr1BvlcnOtrJco7Naplk1w+/EQysly+WmAsP87yUp1kpsPYxDhry1XSaZ9CocXkVISpSZ2Rx+9ic6fO6ZPniERzLO6ZY6u4w5lzN8Dv8J4H9lAsS15+aYdTp64xOjFNKmkwPj5FxxFo0RgRM4aux+i0urheD8fpsby8ymuvvcHGxgbFaouu7VKqNBBCMDMzQ8SIUi2V8G2XqekpavU6luXQsWza3R6qbtK1bCzHGXyye76DacTptNyBJSCVStNuN1EUHcdxA2e4dGl3moyO5jl16iS6btDptJibn+bVlxWkH7yvLNsKDgoajiPxvGDjayyWoNluoCoqGxubTE5Osba6ytrqZggULoeO7GU0nw4mtjf5x3aPQZ8DYoiTGRDKg6Oyq5juX4ZzgPrix79s0WJfDtA/WTfxO75PP4B/F2z8gbVk+DGHQWn3eYb/r4iBv3NYbNnPQ7rJLQE3gWX/Oe0+B4KhiwDD0MLvC95teP5fCYhC3m03Y6Rf7PS/P6TGHH4RwA/NcWHLpYDwg1W4UgQ74gPGXUcRKr2ejRAKMzPTLC4soKoCUw12SKmahgP4ngSh0Gp1ePPsa5w79Qa+2+OWI4cw9TSNukI+HWX/saCEv3juLI7rMzkxzdlTVxnJCA7uT2JG2oDL9oZPudhh774Z1rZ3KG7Wkb5Co9ZmLCbRjCiukEhTweu6qDEDLyKJx+JgWxgKtBpVfE0QM2OovovT6xGNGODpdKWLZlvE0GnZPg3fIiEEQvfQXdCO7GXsDkHRbaFYSUbHJylsFrl0qcthVWN6apRr15rEYnnqtSboJs2uies5tJodsvkpSpUtqg2Lg4f2s7a+QS6bZXY2T73R5dlnzxPLTHLfww9w+ewZvvXUBT744UeIxq7xzHNX2dopouoJXGcT3TTYuFygWK5jO8EWXF0X6LqK70kMI0IuN4ZmJKg3moNDV69UMFSBKgTdXpdytULb6qKrkcDPpKjUmy0MXcfzJBEzRrvdJBqNBokOrkMikWB7e5u5uTkqFQtdCzauapqC4ziYhkmn0wEUmo0WQvHYs2eOdCpNpVZDCEG30w1PkIdhqkjpYNkWccNE6Qbj+NXVVebnFlheWmN7q0jPsjF0waFDi4xPToAQAxlJ/3C+szLy3AA0h31mDIBi9+D7Q160YZFif0w/3JINT8p8P+ARAxf8LqB4/u4H/W407M1c0DAhvfs1dDnI8PHeAaT9Sk3tV4KKCCfiIfP7A892v9rrPxcfhIeUOr4XCKDfzeVdt2a27SBlUNrZdlAq27YdsOV9Rv0dTxBEqCANKqHBgwoxmEogJbquBQRZSHHruk4mkyaVTBKNRtA1DdvzcYSK7Qs8R7C6ssoXv/A5/ugz/5lzZ88zPXeQ937gx7jtzvdw7NYTxJKS2fkRGk2bp558kUvnVmnVupQL2+RzCvv2pInqLn7PoLSlU9x2mJ6d4sLFChsbGteXN+naDRb2GuRHDbY3myQiUZxuB992wRdIRUVTVWKaQiqq06026LQ9XHTMaDwIHffsYDOIoRFBx/cVSMTo1Rqkei54Nlk9QmlzDTGmkJlIs7xWp9lqcvDIXnaKDcrFNLZlYts22WwMKXv0ei7dnkUqE6dQaPDci2+zsH8BlCTf+95JRkczbG8W6HV8crlJPvSjj1AsbfH8s28wNb0Pwxzl+efe4Ngtk3z4o0fZu5jD6jkUiy3K5QambrBncYFUKoFpmjiOS69r4fuCRqPD1Ss3kJ7HwswUuUyaZCzC3PQEY6OjTE5MsrCwEJb8QRqnZuiUKlU8X5JIprFtJ4ySDfKUdz1QgdK43e4QjUYZn5gkm82FloRgJ3ur2SKdHoFwAhtPRDlwYH/YfgTvS98P4mo9zyY3OgK49HotTDNonyuVcpDNLKFSqQYxwqrCnr3TxKJ6qPcJ7BF99XP/HA6PzuHmxYbyHVnVffAZtnj0b+u6Nx/SYbsG7FY7uwAYXE9Vh6dvu2CkKIHUoH8ENU0bbO9QFTXwhA5bq4auF5DOEqHsguBNZeB/Rw90E/ktZbiqKOCndN34S283fHn3FZGqAA7S7QFeuEwxyOINyDlQ8fDDzOo+0Sz7HBleoKAe5KsAwg+eMISfPv1wcA8h+jJxBZ9gY2S312VlZZUb168ihODosdt4/wc/SiIeRFi4js31S2+iehvsmx3hzNtXuHTuKpmRcW5/8Ah2r0arvsXiwgRC+CxvtnF7MdbWq0zPjrG0UqVn61y6eJFbjo1xx605pNulUYuAUOnaDczFPDtjm6SawVJD15RYusTMRBEdFb/Vo1VrUTMEsUyMRCqKoSi0mhWcSBRpRKhsl0ipIlhiF9VxXRd/tUxpc4b4mIEve3SrFunpPKNjI2hqhKuXCkxOz3LpwjWOHh7HqLW4cGUTXfM4enyaV549yctPv8qjH7iNfFJw/dxF2v4o5y8v46nL3HLXfn7sJx/hu0+9zNtvnkU1Uhw9cZRLy0WOHEyRTR3m8194jXM3epRqEaQQGJ0GilAZy43Sc7rYrsfMzAK9nsXGxgqb2xvoEZ3USIpzZ89RrUfYu28fpVodWzbJjuTQVION9XUUFJr1YPPHsWN3sLr2Zbq9NorQ6XZ6zM3PUivX6fY6ZNJZKpU6hqnS7XbZv38/lUoVKQWqolMt1chksqxvFTAUFV1RuO89d/Ht7/wFQgjanQYQONr7bYOiaFg9m6mpOQqFEo7tBjynAMd2aXYkqYyKqvhIz8d1CXVC/b3xamBvkv340z5Zuws0fU7nnYJCuBm0hhceDiunB1VQCCzBddSgRRIhUAiBj4eiEmp1gq+a6Btm+5OqwDalaUHVFewcVMOJW//iIfFxXR+heAE1ItQw+C3MF+urhaRCf39Z//ntGmeD3KTAFqJg6CYIUFXJu82sftcVkZS7+bu+F4zcbcsafL8/7mNICDUIVRrcCYMfQCIGzL2qaPRdvN/3uMGMDYmkVquRGcnwvg98gA9++EMcPXqY7EgaRXisXT/F68/+GflUjZERjRdeOEmna/Lej/8cH/rEp6m2FFpdi2O37GN7q8zVy3U8e5wLl8tIxUBTDXodm+LWEg8/dAf5sSSKJvFFgkuXikyPT7FRqKMtmsz+1F0sTbqsmxYlPFzdQCoCzRAYMYWRhE7Ec+lVmlgtG+mCr2p4pkm91iKr6aQNnWhUxXe6mG6PqOXg1xLUt9vMzyVZWV7BdjVGx/M0e03MRJyV9R12ii2q1SZz0zHuu3OCzbXLeI7D4++/h8J2gyuXqoxOxZlZGOGVV09z7kqZy8sN/ugzz/K5z77M/sO3khubZXunxbeeeoXnn13h8tUOuXyUn/vUI9xz+xSG0qbVqLK+UmB7o8r2VgFV07BsizNnzwKwb/8+VE1ja2sbGcZYtNotNjY2SWfS7OwU6HQ6TEyMkxvNMz8/h+t6eK5HxDRRVY2FhUVmZmdwXBfDMNE0EyENjhw5zv79+7B6Nq1WOzywu+8Ny7KIxWPhgQjeY4cP7yWeiAexFnaQ3xNEXDg4jksiEUcoClNTkxw/fhQhAgJ3JJvFcTza7W44DQsARdN2R/L9sbqmaQNwG96W8U6RYf8yfN1+FdKXrQxbNX4QoTto44bap4HIcagC6XcWMgQaCFqrQBd0c2gbMFBD9/9P09RBW2YaJoqi43v9YEPxjqpo97nBroo8wIawAvQ8ut1uuJLe/b7X5C+7/BXc97vip/4DDEvQd0PC+xsEgmqn398G4/x+Lyzw3MC94nsSP1RfA4NSM3jhfaQMQpaE8JmaGmdqciL4BQeGHQpba7zw7LfY2rjEscPTeI5L1Jzl0Q9/kns/+An0zAJPfesZIppNOpHgwrkSupYnnojwzDPPkkzqHLtljkJpnVze4H0fupd6eZuJ8QzVhsO15Qa1pkexWmFyMk+50SR+IkP+5+8m/9N3Uk9LDN1A0w06EYmt+5gxlXTUJCqhU2yga1FsdGyhge+SVAWGIvA8Cw0PpMRVNAw9SbtlkR7RyU/EadYreJ5NfiKPCySSEZqNJpculVhZLpJLqzz+6DE63TKNToPx8Vm+8fXTbBR9JvfOct8jh2h0Hda2bVRjlJVV+P3ff4ZqyyGWihJLjrCy6vIHv/8q/7//+BecOnmDH3n8BPfeM8vUeIxMyiASUZCKQ7fXQtd1LMvi3LlzOI7D5Pg40xMTOJaNaRjoikqn0w5VxcEHRz9nJ55IEYvFg6hh2wagWq3y4IP34/s+W1vb+D4oioFQBB/7+AdBBKp6Kf3BGh4hRLBNN2ICPpomiER1cqMp0ulUwFU1avi+TzQapdfr0et1SKfTCAGdbodP/sxfxzQ11tZWyY5kd0W6MggqGyZlDcMIoy129Tz99+nw13eSzTclJQ4d/D6/2gekd+ZN96urYf1dv3rqA4A3RCz3J879SI5gKB1q9oY0ScNT6v7zDaZo3oDb9Twf3xPYtscgWeMHFAfDt+8/j/4HxfDPP7wU8n+IL+/qWuz+EjRdxzAMhBDEorFdlA4vgTTcH3wljB7Ybb/6o0u1X+jh+8E++nfK013XwXVtXNemP/4HiSIF2+sbPPnFL/CVP/ssTqdDuwtLW5J4/i5S47fjq/NcvVHgO9/6c0YyUKq0MBKHmT9wK1vFIhcvXOPx997KXfdNUylvcOzYBHv2m1y+uMxINk+z61GuwMZqg2hMYXbMx24J9GyKqzstCp0mI/ckmXh0joLaxdIEvpAYCR3PFDiaRzIZRXN9rJ6HkBq9dhdVAcfr4XqdQBgnVLpGglU9gjYWo2Z3KZYlJ26bp1beZv/iKOtLq/SaPRZnRzmwL0+x0uE7T6+yXTExTcGRA1kyI1EW9o5S71h85o/f5vq6xj0P3sZDD+8lHhFsFsp08MlN7uXkqW12ii6oDtkJHVdRePtMnS98+Rq/91+eR9NG2DM/yYH9k2RGTFLpKIt7FonHE4HwzvfY2tpGVVUq5TLxeJxMOs3ExAQRMzKImXBdl1arjWX1aDUbmGYwzlU1DVXRaDabPPDg/WQyGVzXRdeDliedifDAQ7cyNpbDsnr0ela4Qz38MJQeyWQcoQQWhUw6gWZIFhZnURSFUinwivUPoOf5ZLOjYfXicez4IY4cO0ytViGdSoOAZrOBotzcGsGwKJHBwX1nNfPO6djwyPwHjer7h7j/WP37Hd4bNvgqbxYlvlOBPajG/EAorCg6oCKEepM1pK8OHwbM/tn1B5WLihAGAm13svbfuQxP0ISiDKqt/s/xbvfew19JRxSurVUD4iuVSgVjunDPdZ9U748SQzEBgWYorHiUIFrS9wSeJ8Pyb1e4OPyJ0b9dMKbcLf9WV1f56le+zJe+8Hl2trc4cGA/R47fwXse/jGO3v0htNQMTcfh2ae/yZN/9ieolspEfi/3PPZxmnaPs+cu0er0ePCxw0yMxlhf2mFyKoJm9NhYdSju9EikkxQKTVQtzfbmFgcPpMnkVTZWt4k7WZyGwFfieEoLZ9KDOyeo6hLdDaZ5ngpaKoI0FCIRk2azg+1K7I6FriiIiI4RM9BNDVXVWbd8rgqVc+vLOGqM69ct4nGTuKmjuC2mR5M0K9tsrl3j9lsXOXBoAl9N8oWvX6DnpOg0W0RNn32H4jzwyAFW1x3+/e88zdunN3j08YOcOJollUpTqnUo1epEElEKpQrr62XW1ipkspOMzSywXbe4utbmpZcvs71Vw3U9FhbmiUVTXLu6hGEYjI2NsbiwSLfXxXN9avUGm5tbJBJJdF1nfm6OarUCBK1MqVzGth103WBycgpFUXGdYCrqug7xmMnRo4eDqlhREKrP7GyedCbKPffehhAQiUQHywWllLiei6brSF+G+9Q0FEWSz+cCstqySCaTdDpdlJB3yWTSAEGaqOLz+GMP0et1gxCwAdHaB4abs3je6esaAEkfpIama8O3CdTSw1VMKLAbApphfgjZr4qGjqUIuwR1OKxM4PkS1/XwfYKv0g8IjHD3vO04AzJ8AJhDhHMAsMEYvP9wMhRnmkYkeIryHVNwuOnfg/8Xu4CthgR5kD6p3cTM/Pcu7xqIBB5Ige+GJauuIn0LRQTagSBOUg0jKTUCpWXQswbaBw3pK8H3CBSdqhb8YgJlqD/YQum6Lr7vhZ9qCp4n2N6q8qUvfoOvf+0bJDJRPvRjH+GTv/QLvOd97yc/ux+hx8Cz2Fq7yp/91z/g6tUzvP9HP8wHP/7zjE0e4OxbLyDc6+zdY3L7vcexLMHy9RVmZnJIkly74nL65DpT03lKO+vMTIxy6exZHn/0KHOTAsdRKdVbXFnZZnI2hSIdvJaCY7eYfHiSHUViRDQiqgFdH6/eRRMaQtdoWxZbmqSMiy4UdM3E60p816XtupxxLdayozz79hqOF6dadHBsg1QiwvkL68xNJUlmBCcvbHD9RocTR7IcXIiwVbZ48tk1ktlFtlY2aJZKPHrfIseP5Om5cb70xDW+/dRFHn7wdhamTaTdYWdni1q9iYdGqWpRqvS4vrRBs9tmZn4a1/PouQo7NZtCxWJzq8JYfpRup0e5UkMo0LN7TExMUao1cKVKud5Ei8RY3dyh3W4TNXVGMhkikQjtdptu18X1JCPZURRFo1wtYkQigT3B63HP3bfSs31s30AokluPH0OVOnfedXt4oHUUoQ1aQ9dzEcIEaZBKJFGFRPou8UQS1xeYusm9d95Jz3LwpUKnZ9HqdPCkRNMluupyx4mjxOMmzXZ1UGkHBzWoJoaFhsPtTf9gB2dCIFQ1yPEhpHWV4PaeJwcbO3wZBOi7viRgmYP1PsPVlRJOtHwv+DATqHiuxHM93FCoqIRVB4oKig6KjlB0pFTwhYcULp7wAjJb2SWVh7sWTdGCFYO+QFM08INkRSllMDySNmZUxTR0wEcRPgI/CPQZmuDdDLy7r43jOEEmme/juS5u2Ib/0IAoeMA++gdS9mDkzi5fNARbAP24A8KNjxIHiUtAZAdIGnw/+Huf3Ov3l8HfBY1Gg43NDe5/4D380i/9Eo8+8hiLC3uJxuIoqo6qKNi9Hq+8/DrPPfc8d9x9Dz//S7/KkVvvZH19hddffoojixqLe6PUej0uXHZ49Y0u+YXjbBQdrl1zuHq1hefp+NJi74EpLl1eZXHvNJFkDFcorK3ZKIrOaE4SMdq4Tod6R1JrutQ9hRueQ6Vl4TV7OLZFJBXB8yx8y6JjCLaSUc4bGhVTx+128H0br+tSEjpXDI0dobO843FppcWl5TrlRoSmneHcjTZdqaPqo6zspPnC01doeRpHj09jYPDM85s891aN+MgCT3x9lUY7zQc+cAu5uEut1OHbT1/lc0+8zsTMNFNTGWIxMwg2s2x0PYLnqbieyvLyDtevbxCPZ9HNKOmRLI1Wh1q9yfLKGqqm0ev1ME2Tzc0NbNsml8sgpYumKti9YCdcLBYnmUzxW//6tzhw4DCNRgcpBYoqOHb8EEIEw45YLIam6qRSCQ4e3IsIlyiM5Uc5sH8Pmgr79y0SjyWDbBuhYuiBHsn3JbVqDSFgbm6aSFRHKAqWZSGE5Lbbj3HnXbeEn/RBS59KpVAUFV3X0FRJfizNzMwUGxsbIe/UHVAGfb/jcGxr/3053K4o6i5A9cnqYT6on94YhAfezBGpmhqO2nfvT9P0kEAOhtm6rqNq2oAkRwyN3vEDXZ10UXwn+Co9NAFqOKkeHuvvVnhyMOYf/v9dJXjwJ6jUGFhT+tKcfuXzzphaKcMpYjjUsm2X4diQ/9HlXQNRv0Lpo91NCgMhworo5lJulwwL/gSrhryBL4awZRsQ4aGGpP+DBUQ35PNZ7rrzNqYmx8M83VDTIRUURaPX7XLh3DlmZ+f4mU9+ihMn7sTvwbPf/DqbG29x9MQUZ69tceosRKL3cPnyBlOLKV54/Sy2jNO1BSvrO+SnYxw4kmVjY5nJ6Tytrk8slWC76HH58iaq0uPg3igqLRTpsbRhc6OgcL3ocl3oLEsNR9eIJUx8r4vrtRExwbYuOG3ZXIrFuaIbtPQI6BpSiVJWDLqJFLV6k61ql8vrVTZbDq+cWsMzc1StFJfXmyhmiqYT53IBvvKdTeL5LHv3JfFkjD/76iWurUN0ZC9/+JlXiMbTPPzQXgytR7OjceZSnVffuI7nqkxNTzEykqbVapPL5el0bOKJNIb5/2ftv4NsSa4zT/Dn7iGuvqleZj6tS6AUZKFQqEJBEwAhKHvYJFtxdm1md3qnZ2dsbHb/aNu11WPWtmNru9Pd0z1ja9Pb093TZIMaJEGCJECIAqqAAgoolHiinn6pM6++Idx9//DwG3HzPTSrzBBlrzLz5s24ER7ux8/5zne+02R7p0euLaPxlEmSsLK6ykG/x+LSEnGthpRO9RBgNBqx2O2w2G2x0GmxvbWJFJbJZEiSTFha7mBMjhROiL3RiHn0sQcQ0mn7BGGEVJI4ClldXSKOFUanPPm+d9Goh1idsdhtEYYRUcFFeeSRR4r6L8F4PEJKeODBswihMdo6QyQtn//Cz/DoYxfodFqFtyOp19tgA8IwAJEhVcaDD50nzVJmBEVfdFqEStVM2OFSpGra/SdpAR0mKvr3VH9XxX9ccqc0ZlUW9gxAd6uDQAoiaZH5hGl/l/7OBno6Rhpd1L/NF5weJk76e/blHG59ywInc41Qiwt111bByqqHOyfFOLiQOQxiAhUSqJC3WPP6NkIzIcmy3DVrk5IsS2eZBuut5iEQzBmoouJYVLwn61P4Fp3nGF12kK0StVy8m2OtLkFw4wrsjHFhm9EQ12u89/3v5eTJU1ijeOO1y/xP/8M/JznYYmfzLj/48S3OPPIJHnjwE3z1y3/Bwd417t66wQeefgeZzfnhazd48oPPsn5qDWM12iqGA83asTPc3tyjN4pAZLz/yZPEckg6TsjzgJd+uMWdpMMPr464Ixf4XhhzPVcM+gY5gEA02AlDrnVaXLbw7f0Bv7Wxw18FNd5UXX4Qt/jL4YQX7mxyY+su9VadiYlJwgYvX9nn8p1dLE2+9eImjc4iy4uL1JqrfPX7PX7/z6/x0DseZmU5oj9R/PYfv8r+SCODFv/dP/0Tjp46x+OPnWN5qUmgQra2J+z3NZNxysLiIouLXRqNOo1WHasM9WaDZrvFOJmQ6pzt3X2Wlo8QRDVu3L5Du9NlaWmJLMscEJumjIYjjh89ShS6HmSNWkAUWX7lV7/A6nqbdifCmAwpFatrRzh67AjtToM811gDcRQSRYp2p06n20QIzUc+/EGUMCipqddClpeX2NvbY2l5kV//W79Ks1UnCEKm0ylSwnvf906c7IRiPJ5y/sIZ3v3ed7B+bIEHH7qICvxcciqDrVYTZIqQKQ89dJEsdde3trZWllvY+ZKOarq+Wkc2U0KsgNVVMiIwZ0wOv+eecK8wgIezb3NaRj5bZTT5dEx/b4vR/hZvvvZjrl96HZMlBNJt1t6zqhrT6jV5LWxXgFt+bq/XKwThZoVbhfh+aUAPA9kutHPOiAPKQ6DgFL2F4200WHRs6CAIGY9HCJuXF2DtzCoifAjnYmgLjoVsxSysc21SXHGrqz+TBeGqgPMKIqOoCPQXWf+ZVIH72aUN06IFynQ64ct/+Edcv3KJSCU0uqd55r0/R2dhgd2DDX77N/8/RKLHMx86xwMPn+DGzSlXr+V8/pf+Hlde+TZry8f48Y9fYWVpid3dhForZ5JJentDnnjn42TpNlMpuX51xJ1N2Nk1yKWI4a6mT8RX+z0Okoyn210utBbYzKa8rKe8XFOMWg2MkNyYKL6kJC/HNfYx3BhbFo4d4/jyKomdsrG5wdJyF2XrvPzabS6efpBLV3a4eGFMq6EYHexxbXuD3/rDPT71TIuFbg3Y5NJNkPIOR5brTHWTf/zf/QFPP/keTh4XXLl+myRJyXWdO3e3qe3v88gjD5JlhiCSbG5toUTM+toaw0Gf3uCAyTRj9+gBSoVMJgmtZpubN25y6tQpBoMhrXab7e1d1laP0Gy2ePzxR3jooYt8+rMf5tz5EwiVcerUMYSwWDSPPfowzUbI+toRsiRlOklYW12j3ohJ84QwFJw8fpR3PvEoQiZonaFkjVo9ZnPzDp/8xIc5f+4EJ0+e5PbNDba2NlhdW+TBB85iTYo2ktu3b/JzX/g0gXJKD+977zt56aWXkVIw6PXRWcby0nIBcsOFC2ccmJ0ZosgxkqVSWG1n87gsgZBzRqckMZZcJrc47/U8qot15hXZov06ogCZSzC4iknNSIPFPwFIa9BZwv72Xfrbm8RhSDIckKaahcVdjhxruus/DJhUHAV/Xkcadmd2YaOTTKGQKxGFETe2zJzfH7B23COlggL/Kozefd57v+NtdXq1hcFxqm7xLMZ1LqZLxxubVRMDxU0qP4SOKW2cp6OkIjcJrgGjJBCSXGsEFiUKuVnhmbE+W+G0YHwXESkUEssPX36Jl174Dum4z1MfeIx3Pv5eWovHmVjJ9156nte/8yXeeaHJ4088xNTkvPbGPgQX+Phnn+G73/0Lzp9Z5LsvvsH5Cxf4zovf5eKZk0wObnP6zAK9Wp29rYT42DKvXt7hOy+nLK6sszu6wlJrga2DPlrBkSce5YWbN7g8TjmBYGOcsBdKtvf6HFlbR6UJR86eo7a4yGu7e1y/cY2oVkNMRlz+0UtkRXbwyPpJegcH7OeWI2sZIl7gz59/nSMrC5w/dQJRXyQK4Jsv3+bkapfTR1f53qXbbA4yMhmwvNDhYNTgT7/+CuvrHVaOdBFmyN5+j92B4/a02gsYrRmMJmzvDziyUKfT6DA52MfmLiN00OsjZEC9IdnfO2Bna5fFxWXWV9dI05TecER3cYlWq81/9V/9A44fX8LqCSJPkCLgxLF1AhXSaDV46v2P0Ywsx9dWuHV7SJ4Z1tZWiAJFnklCoXj/+99LFEkIHMueXGKlpNff5XM/+yEaNcPFC+e5evkauU755DNP06hDYBsMpk5/+SPPvo+wwDAfe+QcwkqkUoyGA0JhOLq6RECNXA85cmSRbqfLdDIiiiKXCleqqKsCUfTqc8W5JeBbDam88bHWkudmbrF6b6ba/92fQ2tblB2Azwp7bLVqjASFnrUsN/nAZOzu3KW/t8V0OKLWXmC5s8zBJGcwSlm2ikC60ishfauiQjvbuAxcGf5p5xQASkbkVqAi3+qooNdYisp6L39bMT6z713MIpVAhQFIl6F8i7pob90Que4dzi1xBsGlB00UIq0rJPQfWoJdfvByMAqExqqguCE3UEHgsgNGW1AU9TClq1d2SygFwqss052dHb773e+wu7PFB59+mgsXz1GLa1irGE9TvvGt7zDae5P3vu8cF0+3uH7rLiJc5uHHP4kM1vne977LuN/nld6Ex594mjdff5nJ2DAcHPCOC13iKGLrzibb2ymNzim+9vxdBskit24esDsxtGWdy7cuMZpqlo9YWkdPoZOUH9zeYHuSkkwtS0tdFpcWefXVV9na3kEpSVZoMZ04fYrBYEAzzxgnGd2FBer1Gleu7BKFkju7+6wsrvH6a1dJ8ohjxx9kcOlltE7p728zHoy4cOEcTzzqzt/vDRhNNMsrqwzu3uXOnX2Wl7qcPnuc4O4WUz3kxInTLC2t8IOXf8z+/gBhLZ1226WYheDI6hLXb9/GmgRrM5aXFrh9ewMrLL1ej1ocsXV3i1AFNOt1Tp46yvr6AjBxhoQQjWB9fY0oinjqqfewvr6EMDlnzpzhjavfYZL0eOzxh1z4rUHn8NT734eSTn/KGielonXOxz72HCeOr2Gs5dFHHubLf/IVVCD4zKc/7vwJIbh06TLPPPsUnXYDy5QgFCwtLRDXYiIb0mjUUUry2GOPOKjASpqNOsePH+XunVssLi6gAqcRJQLXwSJJkhlt4HCnjKpWdDV083O3KvdaxXv8/K0aK38O/7fVLJfwtWGBxOociaG3t8uk3yMZDwHNYNBHFRvz1tYm5x54CC9k7881y0QXnWX99Sil0FkOQrp0v3I8QZfJLtUE3Fos77EM0dxVemwNKgW792GM/6TjbYVmnkkNzL4vUXwxczdn6nHWFrolRdGrEI7gKMquBdaU+kPVnlD+RvPioVXlNE1RUjAej5lOp3zomWeI4wAZhBgr0TLEaEN/eMD508fYDXq0Owkvv7bJ+QvvY3n9QRJT4+72bX7w0lc5cuQITz79HIKc77zwOufPrdLqRtSaLV6/dIuvfeNlPv6pz/IHX/4+L1/JsNGEvf6IRqPDa2/epj/VjEZThtPbxNvbLLS7GCmoLXZZaTdZXV1hZ3eXVrfNdJqgjaZba3Ds2FHAMhqPabVbrB3r0my1uHTpDUajIScfepCr1+6wvz8l0zF3t8bE9R7Liwu8cekNoqhBYkP2BwmNVps4ajAYjZlqxfb+kEazQ2+/x0EvIct2OH5ynVqjwa3bm1y7cZvRyElNrCwss9DpsruzzSiZcmxljYVOBymg26rTO9h3PBXpxONHwz6hsjz8jvO8+z2P8/M/9xnCIEdKWzxfh+PFcY04jvilX/gMwkxBSE6fPcn27u+jAstTT70bgP5wRKfT5ZFHH8JY7RafCslzSaMW8oXPfRphMySwtraMFXDh/DkeecdFhJwigBs33+Szn/sEMrAFjqhpterU6zHTxHD9+lVWVpY4feZk4bE7/syxY2uk0zFxHCPQRTsfidb5DK/xsq9+fh4GfL1xobImqvjRLHNWXcT4tTH/O49BlYZPYjBYnaJMTjIcsn3rFsmkjzA5zUaDve19xzQXgmarCdK6UhVZYkTWGpQKMLY0duDS7UHB7wvDkMww2/yhDEddFGMqJSX+nL4UZl5nyZfIeGb9T80QubjWgHKKc61OhyBw6TprXNXu4Uwa+Li2IC0KVxwnhQKbugEvwEyjy1S+Pyyl0NR8vO70YGq1GsePH0dKi9E52gh8H0eTa668+gr9nS3iyDBeOsp7nvkQRjRJbEyvv8Pv/eb/yMpKh2ef+yiNZovf/4MvsrB2lIcff4xkeIneRPLSj7egtcbLlzd4+fKQO/uGU+fb9G/3GCdDGo2IixcusL29S57ldBcW6PeGrK2t0V1aIM2mHOzvMU2nyCBg7egCjUYTIRS93j63bt3izJnT7OzusrG9i9aaTqfDo48+gs41o0GPha4lilOwCW9e/RGLy8dZXV2gu7RCXIsZDEdcu3WJTrfNyvo6veGQNy5f5czJkyAD+oMR29sTDvoJq+trnDhximvXbnBk+QjLS8uoIOL2rU1u3b7NypEuSoXUgho7m3ssdLsk44xud5F629BsNVhebPH5z/4aH/3Ys0Q1SSAtwmqkCRw9Q3jJCcFHPvIRHnroLIEaYyysHzuKEZYzZ05y9Ng6UkoGvR4f/siztNsNLEO3mxuLFAGPPvIAJ0+sIcQYrGBxoYMFnvvQB1HSAhptcx548CTLy00wztsOVEi9LohjRZLm7Oxs84mPPkujGYN1BkVal/4f9AZEUQw4HSkP0vqN735i9d5oHJb28Iu2ykOqrqFZdq3oiuONQjWV7n+eaVVr15ZdJwl3rl9lf2MDaxLa3QZpMqXZamB0Tp5ntNsNBKaQkS/xHKVcpx1hmDMuUkqMzrDSwSLGigquU1nRogSsKy8WoVnh6VVY4FFUI9f5W2ZXvw09Ijc4eVGbMpmMEaIDRauRytsqX4reZsLrVbvXjPF8BoG1Cp27FKvruhCWrqrwaUM7e3+Vjaq111GhiIcDlBTcuX2br//FV9i8eYPnnn2ax594D3F7icw4cli/v8sf/u6/Y311lc984QtEUZtLl15lZ3uLX/6lv8nLL/wJDz2wyh/+8de48mafztpxvvWDG2z1Ddv7fRaHIy6cu8Arr77CcKBJkwmrR1YAwe5ej/2dPfa395GBIkPTbTdotZoEgWJ/f4/LVy4XGt+WtdV11o6ssrOzQ6vZIAgC1tePsb+3y+bGHc6d6/K5L3yAZr1GnhquXrnOD166SX9vn929Paa549+EEmqNmLVOi8tXrmIyw7Vrt1xIA/QHCf3BNkGtQbvVpF6PESLn7t27bG/vYYyg3WqxurpOnmv294dOIyqICcKcjc0t1o6uc/bsaf6L/+w/ptMKgBQr0mKC+gSDe45SCHr7u3z+cx8nFAZR4B2tVh2tMz7y3NPUayHW5uT5hJ/5mWfRZopAI6TDdZLhiA8/97SriHfUazrtBgvdFu9//7tdc8rAYZMPP3wGa1OUdJtRNd2epQnC5nzsYx9GkBe1VRJhBUdWVlheXkIVlBCjc5QIsIcMiYW5MM0tYAdWu8xw0Z0GOxeaVGvJ3OynSO6IeyRD7lu6ob1u9pRRr8fe9hZ5ntJu1anHkWNVC4sVBiUsaTItz2krhbL4cpHie1z04lQIXL2jlA5wDpQqMFmLmsn3mDlP6nBoZkzJNQIczUIGvNXw7G2EZi5elEoQhIpQhUjh6lqkUDNE38kFUCy0Qiq2RK5nnlOaG3SBFUlcw0UrFLnRzpLP8CY104NxD8jR2pVyZEdPVRciQJiIF178Nt/81ld4x0Nn+ezP/gadzhKIiMxYhFWkkyG/88V/xdmzJ/nQsx9Bypjtgz4/fONNfvE/+Dv88MXv0m7F/PjHN3nosY9zY/Pb3Lw14tZGwsr6UTa297l2ZYOnnjrLB595mp2dLSaTCWlu2NrcZHV1nVqtwebmJoEKWVtYoNvtcPnKJdbXV3nwwQfY39vBZpZ6vcniwhKXL19m3BuysLrIYLDP6z/eRknNk+87x//6f/WLDAd7bNwd0G7X+OSn3s2nPvEMf/Qnz/O1b7zsGkvGddbXl1laWuHy65eYDCdIIVhYaLO4tMzly5fJyYuJI4lqdawM2Ov1WVtZJQprADSbrij15s3bZFbTbtRpdJr0R30whv2tHa6+EfKVP/tLfu7nPl5oMUuEVK6OidTt9EIg0BxZbnL8+AKxUmRaYVyVD616k+c++G4kCQgX4rkFPp51G4WMelPwjgdPImQGMkASIsWYdz72ECdPHsHKKQbHbFYmQwgneZrnGUEQkmuLNaDzlLMnjvHEow8QqhzX4qaOImB5ocXJk8exJkdJi1Sy4NHIOc5QUMFVql5GOk2I49i1WDa66LBa4kcAktL7sEIyW9vi/rVqUOJQ7plZ7CRlZ2OD6XjMkRNrSJ0SSElv/wAZhiwvddjrbZKniXsGgZphOrMsnzEYk88B6EGgyPMibNMWDGTJFG0yhG+JJDwHUM7CyeLyZ9cKrkRGCEmWpkjpml0kFYWOf9/x9lpOF//XuQaTla5jaYaK91QkJUURKllntS2+PseFeFZIglCRa2egqoWBnlzlMxrAXGVzmY407O/v88ILL9Np1/mN//A3WGg3UEK6DpvFA9/b3ed7L36bj3/8k5w4cZQgiMmNpj/p8/GPf4KDzTtcu/pDjqy2+cAHP87rl7aJmstc+cENRtOEYydqHDt+nM3NTV566SWOHT9CEDjNnP39A0bDMePRLc6fP8cTjz9OrjNG4zGvX71Ep7vIfm+Ktdu0mnXCOGD/YMCb127RH/RotmJq0ZSTDx3h6Noy3QXJJz/xPpLBHTZv7tGot4gDy4+//33e8djDPP3MGT7zc0/zz/75F9ncSFCyxptXr9PrjYjiOitHVlhdXWI4HKK1ptlsunqwoM5klLG1uYexhv5gAMaFuds7d+j1ekyTjLje4MjqClIEjEaJo/FjMVbw/Le/y8//wmcwJpuFFz58cV6qmwtnzpxECEWWpw4ARpBlKY8+fJETJ47NSHR+UnsSYUmc8/WGHkPU3Ll7m2ef+QBBIMB3fDFmxuqVQqAkGCMYDRLG4wkIy2c/9zM0GiF5noBw8lra5HS7EY8/fhqYYMk9XxlR4QNV8ctqqCYQRFE0w5DCMMRwr0SsOeT5VL/ej3vnPzdNU4ev6oxxv0dvbwdMzqi3RzOOyIXEtXcP6fVHpNpy7OgxhCwoAbOyFbcGq2L381pIjvsTBIos1cRxDd/lVlgf3dw/De+cAF8p4Xo7CynJc41ShuCecO7+x9tqsOjkXN2AW53MqN5SqJkd8rymOZJXkQ6VUmIKoxCFget7P5OYLHcB7wI7ZnbJXgVmGjPzxkjSaDT5xMc/TBBKtJmihChwcRcKZnlCv7fPhz/8oUJWRLjrjnNOnz7NuDflT770R8Qq591PfZgpdWzUxIZNchMyHPe4/OabnDx5mtZCh3rcYDQ8YGtrp9BUirB2SpqmvP7661gMnU6LeqPO0WPHOHPqHN/8+tcJ7BihA3KdIaXg5Kk26+unOXFilZMnOgQqZ2FhgcWFkI3br9GIa1idk2VDWo0m7foyl9/YoNGBiw+d5Rd+7lmuvXnAn3zpeRQTHnzwFCpqMZkkXL9+Ha01y8vL1Ot1FheW2d3dZ2Njk8lk6kTxW236vT0mkzFpmtDptGkh6C4uYS3cunXbjXeo6C4tkuQ5mRbk2oXdvj3O7BCeES+QSjpqhlIuXLJwsL/Lz37mo9SioGjEIGbazNaW8hLuNV8pbsl1hrUBrXaDo0fXoPCApHBAq6XclIRQKBmys3ObLEs5fmyVT33qOSwOj/SpaMfMPo2UBkuKRbhONUp5Btzs3qpSrzM+kSkla2ZrxE3++ayRBEmJAVUxz2qoU/1+OBxSq9VQImM6GbJx/U3y8RCdTcjGmvZCl4OdPXZ39mgsLNHpNAmiBjKICoynLHEtjaKdrUX/ec7rc1I7ztiqgiLjGdUGg0FINaMbzLPH5WwsBAWuRsFMD+/VaPpJx1tvOW0cqznPUidZkHlX38WJpbd5L+MyzTIacR3XcsgdvjLY84OglOTM83wW11Zd1DkAr7DqfqeKIy9JaV2oaASBDMmtxhqNUpIzZ05gtQHrwHNtwOYSk2u+8bWvorXhEz/7iyyuneDW3S0eeeIRfv8Pv8ri4iLjbMz27g7bu3tFVbFiudshmWYsLDQ5fnyJ5eWloio9p7vQRecO71hcdAW0oZ3wsQ+9lyefegAhBNNpwrGj67xx6QqtZh2dj7lw8SRvXr4MmeXC+S6TScDmzpT2Ukyu+3QXO2gbMU56vPjNFwnCJs89+06Ory3xZ3/+PK+89ia7vYwslxjtFkK/36fZbDIej9nb23Np6VCyvNJFBYrpNGdxcYFBf0ySaFQYsbvbIwwCwkixurZCrVnDCsl4MOHV117l937/j/n8Zz9EeGghenlV107ZGR8jBcYIsAqrNe9+1zvIdTpLTsyz6eeBYuHpHzguzIXzZ1DFa0qW3kNe8HA8PiOE4s2rtzEGfvk/+Hk6C3UCLAaFsdY1EDSGSAqsBiuUUxeV4QwbqRoMKDuuevzG2LKFz8yzEfNZKWstoQowFU2hKhjtX6tm2QDq9TpgsUZz99Z18smItZVFenuaI8tLSJMjgeWlFYjqZEbSH07QhYqBFQZ7qMuqEBIlSypClWGttXGKPaJQurCFQL8xRYRTjXnKtS38/RavBUGIKSSljTFEoeKtHG8rNBMFC1MIgQoCJ5DmMSAfhhVlGJ5DJKVAah++geeIamMLKFuUu58te3p7d3iWahUuJVvGpeXEN8ZgtPvedYw1SBmijSdgOa9NKYm2vgjQxbVShFy7cYPrN67z2Z/7eY6dOkUuDMdPHEPnloXFButHF2l1a/T6A/b3e2ijWVtdZW3pCDdv3ubO7Q1OnTnJ4soSR+s1dne32d7aQAmQ1jLYu8mRI0v8xq//Tc6fb5Hmd7BE1OKQve1rnD15lGw6pNebMtjb4djRBTodQ7MZcP32AQsrCyTpJiePr/DmG33ieodWu8tomJKm8O1vfpNHH3kH/9k/+Dt88ff+mK9/6yWGA1ByCYtjDLfbDSbTMVGkaDW7LCwsstDtcuXyDUajlOMnOrQ7Cb1+j36vj8Ux6VvtBu12mzRNOOgNmI5TsIb/6V/9Wx579CwXL5xwrn2R/s2182xs4eEw26ych/TOdz7iKru99IQ1M4PjJF9KGQzXNseFZlIFbkcWdvYvy7WTQsUzluUs/W6s5Ec/fIUnHn8Hn/zYswgK2Y4Kg9gZOTcP8a3QvdJggXdY63p8VZnVhzNc1a+ySG8LmIno+573h7NiVQPmDk9lCUBYdJ4i8ozrV65St4alxgqBVGRpxs7eAXluqLUWyCyEQUgYRXSXV9yYF9kvpxnvV7DD0EyRWnaZNEA6I+h6uClXs0cBuPtQE/BSsTOLIASy2GyEcBruFgd2GysKFYGfcmimZIQ2OUHoikyFlSAFKDC4QsZZLCkpKp9LdN6FWiVFyj3QwIHauNhViUIzxbqHqKRAF6UkQhaN6lDkmWeqepp6WZsDBWFMOq6GKVqchFK6pnFKua9COOan1vSHA3797/4dms2mc8+1cQsrkHzqUx/md774RyTJiLWVZY6vHQMBcSzp7/c5d/YMw+GYK29eJ7hzY8aDObLU4nOf+iCPPnSUXv8u2rjOF69dvspkvMWtuzdpN5f59Cef5ua1m3QaOWfOr/K1v3qFb3/nMtJYjM740M88yalTIWdPraJkSBA6LKTfG9DurhJGAVk+4fLr19na3ubZp9/Bh559D7/7O1/mRy/fIdMdxhNNf7+PUoLFhSXqtQaT8YSdnT3GkzEGS5KnqFjRWWzSaNWYjKaEUUigXIOA3rDHeDgAG6CUJM1yLl+9ycUHThe0DMgzg6EQYpc+TK+GyBlR7JoB+pIeY/yzdFkrpeabB3rsqFzoRScKAUhBblw4Meu5LiyCkDSxXL3yJn//P/27tBsKtMYSkJus8JqKfvNYtDVI4bJMPkVtrDd4YIqurP53VSjBb5RQhiXWWIKix5cHpu9fHlJmyNx6cMtHF1wfqSS97T1iGdAMQgYHI+r1DgD1Vpf+YMDu3i7tVpuMnBMnj2OEQYoQqS25tWhRhoCmwNI8rmsNDp7w3qixWFxzDGuKDUQW5scKwMxJzTK7P4vFrS8ZBiTplFqtgxQRef5T7vQKDgjMvBuZ50V4VYkXcVkuN/LMQrYgCPHi3T6N6D2cPNcOHBRu16m6+ZaCNi5dcasLv+3s4fldxVYetp8gUknXZ6kKyhW0d78T+ezBE088ji0mQ5ZlBIEq4mzDgw9e4As/9zme//Z3eOVHbzCZaIbDEdNkzN7uLktLq6ytr7GwskCvt0WnGfHR5z7GR577AC9//y/Y27tGVO9y9Y0D/u2/+TrbWxucOLHMZz77DB/++Ht44fmvc/b8Ivu7E/7xf/9lrlzukaUReTrmmQ++g3c+8SCDgz2EXeQvvvIC3fYqzcYYoROS0R7oBgutGlKAtUN6u1OOHjvLZz75FJ/+lOBf/Is/43sv3WIyibEyYKd/gFIBi4uLxDXFNJ/SqLWw1mne9Hqu/1d3aYkocl020kJp0VrHfI/j2GXlFhfQxhAGLrwNVYgnNPqwOQzDgktSqUf0z9eWhaMuJM9mz88/m+rirVZ/lyGYT6eX3kWW5ty6tcW5cyd5/LF3AFmR7WHO4z6Mz3hsSgDKuO0RC1ZI1/tdHJpnMBdigTNGYRjOhV2HDc5h+GJ2FN6XtjlRIDHplP7uFs1agNKafu+ARqeFhKLoeEC7u0AYhwzHE9q1WjFuBlmMka1cr+veSmXdFGupIk0rpaTRqM9TcmZ3O4/3+DValpGooleb34UgjH7KXTwcRbwgKFlDoOSsfYsDf2VhOe/DG7BuV3SFdAEgCjkGSxgqbO45ReUEdjuEKt4/v6N4Q1K2aBEz0KwkaRlMpcbHT3xVMGTBPRAvOFX9XGv9wDsm8QMPnuHCA6f53d/9Y775Vy8xGAwZDkecv3iR3d0edzfvIqVm9cgCv/RzP8/FC2u89vpfcvR4m427lt/7w2+zs73Dgw8c41f+5i9w6vQaewc3+dEr32FrJ+Wb336J5795lWkqWVtfobM45fHHT/JLv/wcN65dwugO//SffZm7d4YM+5d57sMXefqpBzjYH7B56y7HTp5gabnGjetvIrDcunYFpQTvff97+cUvPMMzz7yH3/p3f8rG9hgZ1Gg0lpBBxM7eJs1GnaXFBZJkSp7n5LllNJqgNQwGoyI00cS1OnEMQVAjikLSbMKrP36Nd7/zYYLCW/UCY1XN5Sr+4485wLd43ZVTOMF3bxT8oq3Kqrp5Ml/mUy4K55nFcYPLVy7zq7/+S0hVyAurctf3R9VQVOcVRXtnD0P4zKBh3pACs43NVr7630s5z0y+X5q+ihcpJQuPT2B1yuhgl/7uBjYdE9YaKOX6xbWbdddo8sgyUa1Ov99nMpnS7/eL+xIoBHnl2v11zJVQVdaVH49y/jMLzWzh+WHv/3fumcpZiDwLxQvD9FaOt1l9r9CFd5LnmnrNtfHxlyOcn8q9sBbFawXyLgSuANkV2xlrkUWM7o1LGIauQE+Wgk3uq+ub5B+y1pooimeT0z90a12sWgXlhCyBMz/onrk9TzyTSOGlQLNCpznnoYfO8/WvvciRI6tsbb3G7Y0tjh8/wbGj6wwGOzz66EWWVpf4zvdeJIos3/jSi3z/+9dptyM+/dmn+PhHH2RvZ5ONO5fZ3J7w53/xfW7cGaJtl8Xl0zy03iSORjzz9HvotiWv/fB1Tpw5xz/5p3/AG1cPWFg4xu3tu/z5X73B0kqb82ePMRhF7BzkDKc9FlZOMh3vY3VGXGvx1T//Bticz376Wd7/1AP8//7lH/DdFy8xmRwwGQRENiCqh0ymIw72+3S7i1gjSHROXJf0RwOMNkgpCCPpmklaJ4qvTcIX/93vsbqyzGc/9zGEcCL32pT7pt8sZn2y4J7FWQ1zXCqYuWcLZWg2C+8rDQfd6+U5LE5w/+KFc5w6exSKImynY1RuYIfB8cPJkKwI+936c4bML+JZh9ZKkqWafvfXnabpfeuuqot57vcFzcUhFTk7d28xHe6z1GqiCtXFhaVFQgXDYUgQKtJ0itGuS8nS8tLsM2aFspSdaaveWNU4STfoFQxMoKQjNQrK6gkvkO9BaheXgmfveEzNj22e53Tb3fvYgnuPt5E1cw+yGEq0zkA0sEYWN1w1QF6nuurM2Rn6jnU6RNZqDAKlAh+xOVddFMapAB+ruipOSE3Nblb6ftu2TLEqpTCHBt6Rydw1BkFY7LJOtqBaWuIH2XEiFB6Hl0rw0EMXePzxh/jxj65y+vRxbt65TW+vRy0K6S7UqNVi3rhymW98/YdsbexRr7c5fuoi9XiXn/nk42xvvEYcL/LGpS1+9/e+hSHm6KkLxM0uo8k+dzc2+M///i+QjG8RqYhe2ua//q//HXs9y5G1c+z3eqQmJ7cdXv7xFhcvPsTico3f+YM/5fjpc6wuLzPs7/DQxRMMRlPqnUUmw01ee+X7nDh2kY8+/S4+/rEn+e3f+jrf+tZlJglMpwptc8K4VmROJIESREFAFIQkeeJcd22RWIbjUdG1NSDPAr70pb/gE5/8MLVIYqwu5kjp8fgx9aHWLONU6CVb63/vX5vvEOE7wfheYq6jabXGkdnr1p0MIeH8+dNkOplJboCTbHVUGoMhd58/07gqhNWEC98tpcHymArF/+MoQomAQAWYAkvRmSZQQcFpChxmaozTadepk8goQGGLqeBNZUmFAQeuWkM6HdPf20ZoTSAhDBStVp0sSYibNadKmmRkuWVpaZXt/T67ez1OCYU2IH0kWfHGjDEkaVLUgVVE2YospCiym0bjQZEZo11KAUX1vQfeRUEyssIipKfaqALeCAhsVjS++OuPtw5WB96qeKU4XWA+CmtdSCZkSZiyxcN3iROBkAYvB+LlQoU15cQtJmBuTGXnKovq5slfzH5X7ojz4lOHiwy94RGVv/GpZv8e/3fuwUkEYbEgLFhBGAT8jb/xeb4Y/AG72/tcuHCKS69f5c7dTeJ4kSSFG6/eJJBtjq7V0Tphd/cq/9u///P8+PuXOHVmld//0vf5xnduMrUBxmg2NnZotYbs7W3x7ifOcWQ5ZHOasrmd8W9/55s02yc5s1Dn7t0d9re3WF7o0mws8cKLb/Lkux6jUdecOnOK3/ziX7C8uMZzz3yARx99jp2dq7z0yve5eGGd4XCfV176HibPePcHnuR//1/+Xf7Nv/sKL/zgMlev3CJULTIbs38wxFpDLYoQaKIgQNYsUaRoNOsz+oa1EiVCwrDG3sEBw+GYaKlePIcycXA/hUAvxiWEB4x9SF0aK3+4jGhJ8XDP/l7spdzdfdYNLJlL7xfzUFuLBHKTkuVpMV+cgmg9cuL8zbAOQJZpgjBEFgL/UioQFiMsaZKSZgkiT9HGiahFUUQtirCBxea6EPoLkSooirYpOsd6PFOjTe6MapEJdgZXIJQEqxn29iFPiVWE1oZaTWJ0Tre9wDgZOCa3toyHU5p1mCQZx4+sOyy28FRMYZj9Zu5KtAy2SA5luTPGzsMDYQRY12PQraOSj2SsK78VMPOQkBZbeKPG5ggZOrIzEARuzVv7Uw7NXA/vkpRYi2PKlLpD1L1HdL842NoiC+FfM2Z2mw54n4853c04EfLDcbm1pSRIFW/w3/udcUYYsCVpkkqc7t1/D6JWX6+67H73BkOnW+fX/9YvsLm1w81rG0hpuH7jGnu7BwyHKdeuXWc6PCCf7nL67CK/8fee4+z5k1y/Al/5ymW+/o3rHDn+ICfPxM57E5br115HmCkfe+5hNjbf4Mz5E3zlX/wVwyEc9O8yTTKEUBwt2i9v3d1iPEn5+jde4qMfeZLjxy8ixAts7w65s7HHNA9ZP/EgyUuvkOo6+8MNjnTqyGnId/7sW8TdBR48v8iv/Op/wl/85bf48pdf5JVXN1EKwkZErR4zzXJSrekudLFWM81yptOMMIoJVcBCt4OxTjVTBV5hQRc4wnx5RJXv5cdXiBKo9l7HYY6Y83rL3lnV5+vnxOHnVhIMLZC6MCvPHFfGWGTgOGeiyNK5SEi6hSV8N1PBZJzQbDSK9wmEEQRIlAppBsWclYY0n5BkKf3BmEznNOoNalENJRVCWBQSa8qwzxYgrvPC5w2qEGB1hkmnDPZ2kVqTTKesrCzM7m06ndIfDAE3Ps1GjclkiNY5iwsdvIH1mJiQpVIklH3bquvaJZJcdT1WUKs1Kli1n/vgORfuWRjm9ajdc4lrNaIoct/H8T1r+icdbwusliKYTQ5tjIuZPa9jZojuVztzCFBEzLweYy1KSrTJuTeOroRVtlSVq7aWqd5o6fa7IkkVVHSIZVmcO48vzKdjq1m7WRZFFAqT7lNQynB0fYkjK0s0mjVefPFFev0Bf/rlP0OFhgfPLvC3f+1v8ujjZ7l+6zZ/+dWX+fHL13nhhR9TX+hy5fplpFCEUpCOD2jVDf/x//KXaTctC4vLbPfhh6/eYms74cjqMsePr+AE6CNu37rD3v4+iwstWq0uSSo5dvIceWbIcrh6/TZXb2xx8cIpvvu923zr+dd47kPvolaLiMOMhdNdDnZ2MbsDrnz7G5zu1vnf/Rd/k1tb+3zxd77G668dcNCbMp5OwCqGPeclTdMEGUg6rTahclwWIwwL9UWisFEsZF1sKMzG049tGIYzY+RDr3mgtqRe+O+rsi/VzFaJZZTzovpZzgMo9HSsl+VQGO1rqkxRghAW4ZXj7+S5JopCJ7Y36z7sVQxduOMLsD1GFCnXJbhZhyRNORj06Q0GNOsNmvUmURAhhS0wFofVBEoWHDc7591pq1FCkE4mpP0BNaUwgXLdU6euCUGv1yOMYprtFjvbOwghmYxGNNttR6MQZtY0AObHzlpmSaGZ11qEUxZvlMIZ3mptWajuFkWxkeC0idz4U0rrWoiiCKeFHbui4OinzSNSbmfwNxaFYWUnLGJFHDvz3hSlv53iPw9iSjmj+TvcRs9NTCHKNO1hr2d25uL7eQ0XjzOIub+ZdXOpAKXVVijVB+TP6V/32TtHmnTCWXFN89jjF/iH/4f/kn/9r3+XK5eus7IY8R/+vc/QrPW58voVnn/xNn/5jTdIpopjZ84ynqSsHe/QHwzRyZjFRsjf/rWPs74eM0kk3/vBNn/+te9zdyPFGEmv10cqJ1o/nmriqM76sTXG4x6LK+sIUeNHP7pEKCWtbpvRaMhv/uZv8Z/+g/+ENA+4fKXHpct/xupywC/8/Mc5dXKZlBFLC00OdvfQacp4uM/ZRx7kFz//JI1fPcrv/O7X+Po3fsB0nKGUIEkyIuVSy9PJmLEpsb79/R7/5l/9Nn/37/6NIm3vnss92aVKmOZ+X4Kb1YyTEOKQ9zR/Lq9L5c9ZpqLFDER2GxVgwoKI6J+tRVnlWuRIZwisTrHCfb5UoE0KVqBU2d3VUT8sORornaFNTUYgQ4RwJTgYS001ObLYIMmnDMf7DMYpQkkWmwsI63p8CSHQnnVuDkMJFqktW3duM+n3adgUKZwTENdqYCSD/gHkikF/SLfb5aDXIwgltVpEreailEAFCGMKMuN8xGBsPhtPB5m44ntjiooEK1x4VWC8sghrhfRcIldW4zYAt+6lko5LWAmhkzShVpsPtf99x1s2RFIGZLl26e/UEgjHqixQAQflGe8Zec+mBBMpWEHO9bWEQYgtXGIrS4kP/1DKDEZ1Ejuw+XDo5Cdl9VCBwgoxa7OrdV7ggAW3qAD8jdaoQN2z896PZyKELELFgqpf1MG9692P8tjj7+Lll9/g6qsvsbN9F9O1PP+dm3ztG3forBwjruVsbm0R1xQ3rg1otmqYfMwv/fKHWV2rM+wP+KM/f5Uf/PAG/aEBanQWOrTaEa1WDQssH+mQZ4b9g13G4xE7e30Qiq99/VssLS8S19oMRyNe+sEr/Mt/9ZuEUR0RBIwGY27dnfBP/vnvcGSpy6//2ufIIo1aMNh0Qq4tL/3V8yTphCefrfO/+Y8+z0eefR8/+tGrTEY5nfYSd3e2ubvd580rG2wdjMkMIBwJ9Te/+Id8+jOfYH2tiTF6ZmCqBuRe7Z75fmGHOULl5lA2KyzxpTLd7r0Z57k4QLssEZrJE2GNM6RREDrZmdl8swiT4UuYhBAgSg6Tn4+2YGZL6bNkYIVnLytQIKx1DTTDiPryEZJ0ymg8Yq9/QKPWohbXsVagUC4ykF7T2YVTSND5lNvXLnO01UBllqhRJ8szIqkKxnLGoD9ifW0NrEEi6U8mdI+3qDWbZFaic00gXKjpj1m4i5olgSiqGlyK368tU3SEtX7ZFr935/G4k6UIhir8ImssUvgOr2VS4a0cb73oVTMTxNZ5hoxc3YrEMzZDd93Ct5qrGiMfs3sgsfAwrHN9saXbfbja2U3s+bSjUiUyX03XVy29KXoqGSAvsheigOkoQjepmFH3YZ4kd9hLctdXJdiBsKKIr90ut7W1wfuefAcvv/ynBPUTvPfpi0zFVW7e3KDRbPKJT36Q119/lRe+8yP2d4e8773nee/7LrBz9wY/evk2L79yi6Xloyyv1clyQRjEjEdDbt/dJM9T9g8GTMYpgRI88sgTqLDJn3/teSaTMZPJFJ330NZxtL71re+itWE0HmGMobW4RH8w4Ortff4f/+h/5OL5o/zNX/k4spYyHvdZXFnHjod8+0+fZ2l9A6HqPHR8naOnT3EwGXO016UuW/zhb/85+3uvo1VMbl0xZH805pUfv8b60fe4yXnIa/XPxx9VrKjq1VSNUTXNftgDqtYmek/Cb1i+TASYEQvdCR3fLc0dbpSmrh10oAKUiN37rAXpOG8yOMRLMxaJE9Z3z91hSVpn8zhlYRSFltSCBrVOk8G0z9SMyZOEWNWQqoGxOBkbY7F5UQlgYHvjLvUAksmIPEmxkxxjNWEYI6Wi0WgyTlNq9Zi86KCrQstwmpAZyC2oIMTYbFZeUaUPSKnQuWam7yXBkhdJA4komipKQUHyxSHVCldrYy2+mZi1EBSMHW0oWNvumdZqtfsIqf3k421U3xdxbO4JhM6FU1LNmJX31pXc70KcpTWFRRZF1r+aYqxKfVTddj+o1s5zS6ogZnXQnSekK7INzM5Z8kbK7NthfOLwgqnyRJwHp4oHK3jzzeucPHmSbz3/Jd717kfJc8EHnnyWpz/8M+isGDOVs7X5fv6v/5f/F29evsqHnnmc3a1bSBPyvRffwOQRb169jZVOt8ZaQRREtNoxoInCOkpGhJGg3W3w0g9+SH8wIUmdUV4seEBKGYbDAUmaE0cRza7TGUqmCUYIMiN47fIN/pv/97/kV37585w6dYZbOzdYXzpKPQnIk5S9Ozeoqzam0yTVe6gUQp3w4Iri5Gef4ivf/TG3NgcEMqQeOwa2NRK/6cwlDigZyKVBKkIRWQLbVd7R4Y2gyv2pYnn+Pf6o4kXVlsvVc/vNznveWDEzaL4AVKiykaDDHudxqzLRUXpNAIF0mTaKEN9aS6veQpMxnYw5GGyz0F0kihrkuSEKIqxymItJp2zfucN4MECFAfk0JRcJnW4HUBjtsoitVhusQRTztdNpI8IQISRSFJQXAbroE1iFLaprzI+LlBTGySBlMJN79hnqYpCLDF+FMlFd39Ynedx45zpHqXDGtfrrjrdOaMTtHkZnBcXfZwDKOjIhfQrfBWwOLHOX7N1jx9GwM5fUAX8hPvvmH27VO6l6P6rCU/H/vB5MyT0pPSt/SOnEx6uhXJZlmOJaDhsgv4tXszrVxZFlmjh07X6xghvXbzMaTVG1Bjkx5x98yKU2zQSnciGxNmN5sc3/+f/0D/nSH/wRjVrIdLLLpddusD8QxHGb00vrJHlKludOjsJI9va3iGsh9XqNej0kSSf86JVXmUymTKdTmq0maZ5x6sxZPvbccwyHu3z7+W9y9+4WQrqJeHAwJAw0VhpqcZ1z5x7k1371l3jqyfcyHAx49fWQ0ajPyDaoBRmt1SXE9pDXvvZnnHz4BA3VYe/uJo9cPIpcO8rFdz7C//df/iH9QUKn3eahhy44VrBmNkZVYfgqVnB4s5jhF5XQrdwE5hUO/d94kt48k3eewe2fY1Xg3r+3qqVcYlOaIAxQBZcNyg3PeehiVvZyGB7w88RFWMp5TUYSeKAbQVgPkShG4yEWiMKa2+BRWAP5ZIJIEyIBwmiMzp36opW02x16PdfcMo5dK29pBUYLtnZ2eezCk0V4JwgDBSZDoWbXVh3jqvRtmiZIZQt+lcCYnFznTjlCuOyXkAVoLXymG4R0JesY1wmkMBKz6EDZEGstyVtsOf3Wa82KeDoMQtKpIc1SpKxXFqhPleA94+LKylhTyqKolXJRB6okKyqlZiJo9wOny7i2TPtW8YeqAToMepoiy+endBC4bgZpnpce3aFdvOqNVb2j8nVR3FeAkoqrV6/xq3/rC6wfc/3YA6EQNsdoV9piLSAlt65f4/yDD3P5te9x/OgSX/3mlxmbkHQwZjxJUGGAlZCPE4aDIVHsPntnZxcISbKMXGeAoVaLiesNRvsDfvCDV/jZn/k4n/vsF/ilX/wZrrx5k+FgxNH1NTKtuXnjOlJaTp46w/rRNeIYrMlY6DR4+skPMpkk/OD7P+D69SssNzusd1fJe21uv3mXMNtFiACxuszEWrK0x0efexIZ1Hn6mQ9w4uQS2hYEwmIT9LpR1Wflx15rF0ZVvZ2qx5NlWTEX5vWbqxtMVSNo9owr3pR/ntV20N6Tmc0vCeAahaqgYO2rACGiewyjx6v89UZRRJZls3o6B1EoAuHKmHwzRCmch4tU1CKJEAHD0YBm3VKLWghjwQh27m7S296lG8f0drc4cmSV63fusrbeZDJOsMaQ5bnrTBJEDA565DZgaWlpRn8ROOBZiZIs6sfi8Hpx96wQwlNYFGmaU6/Hszo1WeBgThG6GEMok1Iz81BuFoFybbJt8YzeyvG2il49YQypsC79VKQ1cANvASMq73c1O07RxJHCROG6z1KvGKTxZC8793k+qyClK+Rz35c7pwcl57NbJWdllsr3YKjwAuCFyL72eJC//pm9r6TtS2/JU/ZnO31RvQ05D7/jLF/92p+x0O06PA2DCqxzp7VFCIO2gty4PmfXbl5H2IB/8s//Zza3+qRpxNLKApPxhCwZFn+jaNabNJo1+v0eURQznWYIa4lkQL0Z02jUSLKcLLc06xG/9cXf5oPPPE6jLnn44TMo6UmZhgvn191OXexaWB9iSvLc0Gq2eOoDT3Pu3AO8+qMfcKe/wblzDyOWj2NHQ9JckzaaHD17nvT6HX7jNz6Jtk4uxBTnwpRgfrV8IU3TmRfie4TZQmqjZE1XynNmPDE1ey6FEw2FioNSsmiN7MS7wjByXDffqEFYpApxhG3fPcYv2GLTMTnKTiCfFkqSEUI0sDohlC7VL4VAKgdFaBPOKgy0yUEacpM6zegC+HWGeBbTuPuwgkAqjFbUwyZZnrGxt8v6ekSsIkKr2N7cZDgas1Droq1EhiFZmjHo9ZBKkCQpzWYLJUP6/QPiWsSwPyLNNO12x10jromEUK7fn9GOxmKthYLA6ca13OBd+t1grcOO4jjA1ae75JNFOPa09yhmd2awRQTkTIHFak0QRIAo+h6+Ndvy1nlE2ll3nU4dxT8sdpbAadUqGaBNodTm6Zd46o4DdS3ZzL0Lw6iwogZjJE6Dab7Xt1JuZ/Hnqd6Ut/CzQbFlavewiw6Vgj4qtUKFUfI7V+mBlXhVFY+oqkKCL3h0gPr6+iIf+ehTCJsQiAayENiyVhIEAm0yUAEqVKT5hJvXrvMP/vP/iCQb8T//m99FSk2aTVlc6jquijaEQUSWJezvbxPFEVIZmq2ASNbR2lCv18nyhMmwTyAloRLcvnObu5vbnD+3DjafTRKEQZvceYXSgZJu8kkH7CtVwDaGI6tLrH38Y/R6O3ztK3/CxXNn2Nu5S1hv0F5Y4fXXrnPhwUfRtpCuwLpdX5ee42EBeb8pyAJDMcYQxzF5nlV26wrVovK3blPwILUzIlK4MNAVWxqscMW51oK0uTP8JkWKCIxASI2xGYGKwUry3BYbkyadbKPyMXEgsbZJMh0RKYFNwSncFE0Xgxoy7JAXiRCPo1TnoDY5xhabYyFGj3QYa2ad0RJCUI/qGLvPTn+Pbq1FNIUsm7K0vIxQkBtBbi0rK0uFRIlG5ynddpu9wYB6rYFUkkwPWFpfdF60NWhShIxJM02sXETiVQ2qxeI+QaB1XuBZjj5jrSHLU/cMrEEW8Mu9WkQu6WRn69vdfxSG5JlGBe5zotpPueX0TB4hjMgybxwUFACZELgyDlv1iCqpdesmLMLLieQzD0cb47IR4jDvxC0k//OMpl6p6K0ao2pW5X4peP/7MPS1ZiV5seoBecCtihdVW8G4z70XTP/Ihz8823Fmrr8q8AuKiavgxMl1rl1dpt2q82u/9jeQAv7sy18lTQ15MiHNDFYoBqMxk+kQgFatRTpNsEbTTw6QMqA3HBRjYWg2GkSBY87mWe6wihkzWRTCcYUyZe53xZLINgdmSosJBM3uAs998tN842tfI09STG+K2ply/MRZLpy7gFBg0ZWN497MFzDnmfqf/ThW55eZXfM8qOqfgXvWLkkwC0OsS1NrqwkDi5IpNp8QCI1NBigZoaTDNlOdIOsNch0jRQMrIoQwmHxITVmEztDayZpYkwOxW6A6RWPJtECFmePVGIGSIcIvIWMIZICVmjzPiujALeaDgwMIBPVajSRJiaKQAMnRpVW2h/v0Jvs0jGJ78zYnV5YxaUK9FlOvNwikYnNjg6NHj3Ln9jYnTljSfEI9ajEaZhzs97nw6ENoC7rYWF0k4sbFFsiINiXPp1qUGoQBTgHTy/TgcN2iHdRMumeWBS8rKGY4zIxf5NZymqbUg/kazr/ueFvV90JAbjR5nhMF/uKKbIN1N4MogTBvVf1hKcFJjC2IXYpAhRir0TqbGQT3mYW8SMWYVFm41d2omt4/nEmrNmf075m/r/J1U/GOvBdVGp9qxfZ81TcwE1KvemRe6E0phRYaYzIuXDjF8GAPJTTNWsj/4jf+Nl/43OfY3zvg1u1N/tt//M/Z2+thjCIOOrQbDYTWDPs9Gq2YLIQ0SQCFQNKo12k2nBbN/kGP//af/A/83/9v/5B2Q/pRr1y7gEJ9LwicPvFh7RxfHqCEYnFxhU/+7OcZDfpIoF5roFRUKPNpt7Ec8kCrXm315ypeVx1/P+7WFq2Y7/Nsq2CrLLJcTm7W7fqxzdDTIdpMQCdokRPJjDyzpBrCUGDzEbmM6fUFVi5Qb3aZ6ikmzQlrIZKifY5U5CLCyCYZEWk+df3RMkNvew9jFKtLyyR5gpIBURyDtWTaFXmmeTJb6LVanVq9RlxzuEsUOuaxyN36PbZa42B7CzGdUlOWWMLO/j5CQpZnDIcjRqMpOoeFhSWcZnzEZDJhPE45f/4c02mCjGInqCYcDCCFRVvh8M+CCS6kJIxkUQvHDFy3xnnJtiBB5pl7FlKqwtNhxkkSfkP1gZoteEXWrQe/cUgpybMcGfyUa83cjukIgo6fMSlaUHvad8kdqnpCXp1RWkAqF75ZW+gaFSJN0mkZu5jy3gxKdTJ676M62atgZtVrmZu8FZCzukhmD8SW6Xsfbs3uQZSVyvPAJ4d26wqtoOBc5DpHGBxeJBypUgWC97znUaxOkVIgRcDa6hGWjjQ598BJ1tZX+O//2b/gzSvXgRChR5h0wtmjHd75rgfpTXpceuMa04lrZNfqLnBjc5/RZEqu4bsvvcEXf+eP+Vu/8mkXkmhDGMaAI2R6MTlnD9yuNkefEGqmx2OyjEAJmp1W8R6vhGjAMPMeq2Pvn28VTK56roc3knLsS0/1sGfkNyEPCGudIlWGFRmSnDAbkkz7BKoIOXONlYpa2CS1GifgmCBzyUp3BRt0MUphCbDRMfJkREDqQrpUI+IOqC5ZHiCjFihLKCzLtdhhUHmCJiPRCdPpxGWxpCBLM5qNJu12myK/g7ASUaghKiTSSqy0rsWVsbRrDa5eep1aIEFnxKGi0WqRZo5AHIURWWbotLtsb+8wTFKUhCOrC9y4e5eHT51EBTFprtFWM8nGtOsNKEJKFbqNWFuDOFRt4DPXfmPVOidL82JuOI/ay/sIKynZjcJRCAov1T0rB3torWeJip86sxqjkUFE7oFGbVzq21WeAKqgk3s8p1jo1sfxhbEqNESFEsXPLmVYDcv84c5T7qLVMAmY83Kq4uPuvaKY9KU2MdjCo6oWzJafW82MVReCUq4PexC4+HemDmAnhVvqgHhtvFwEhXyCACkJkE7APwhJ0ilZMWGmwwl5mpElOXmWkug+g34Pm2s+84nH2H33GkeOrbJ18y7vfPxR0sE2q8tdBlPL9s77QCvWlhe5s7nH//G/+dekOsTICJHn/P7v/BGf/sSzrKzUUYHFmgwI57Cb6n16w6oKKQtTYAICgS4kLIJCpnWmv1z2mpmNYTUD5sZfFViZ07mp8rOqCwDm+8NXQ94q78URUDMkAmVTyHukyQCdW6K4hRCWQBryJEWogg4iIwjaBPUWJhAY1UYSkI320PmYIAhpxCHpeIoRIMI6BE2kiollNIMeTJ4iVIi1BhXVsEKh9JThcESjFhPHdZRQJEnKZDglCAsRQAVKCHSeOakN7SIBqRRSgiBATDXKwMHBnvOiGjUmSUIyndDutkhN6lLqxjIZDFlaWkAgUUFErz9gPY4RYYhUklxl5LlmMNghLGq/4ihyGydhySDH2xTXtcTkrh+ZKR9qkYdyZN7qsy43FosXJXTr0RKEskgk+Cz5X3+8rU6vWmcFRcgSBg549ZPIg4iiwnz1NyOFwAjHaxZIAhVSi8sJLQRFd4HyRg/vlv5G3QSeJ0lVSXBV/pEQ8+xbOyNClruu18GpgtXung5n6SRGWwIluHXrOrdu3aTeMiwuHgUT0Go2CYI6uU6YJhOSZMJ0OkFgSKc9jM0ZjXq02jWsMGTpkLXVNfRkyv7ePg9duIhB8ebBHidPHSdZDdi8O+b06QbXVYtk8zoLtYjh5TcYjCZM+zFK1ZiO+gyu32RRaRIdkBhLTcGwN+Cb3/weP/fzHwU7QQonaA5VJb55RUwXTjilQEuxozi2KVa7shltKLJQotg89JwhrxqS8nsv5eF1g+Ync9W7LcPyQ1pS1nfPUOQGpLGIPMVkQ2IJpr6EjLsYPWGabBNKUKpGku8jwxCjYqyqk5oMk+ZEMiVWCcZOseRkU5ftUVEbHTTIZFysUu8xeKqJ453l2pAkE4LA0m12UCrA6VcpVC2a3UOWuXAtFw5bCURQetVoyGHcH7CzsUNbFXrPDYkMFEnPtcUKaxHjNCWZJogcOq02AsVgMEaFNaJ6Y0YnsbklUCGokIUoIkkTx7AfTajX627NVaAb12/QMcSlNWS505/2xsptqA5PrBqVKvThnQjvUYWhy65HYYhQP+X0vSiyVmnmtFz8h5douk+DH8okVM5hjMYJTuUzj8V5erZIz89P4Cpd/zC9H0rlOf97H5dXd1L/WhUDqeISpqj6P8xlsdZjJ/46JdakvPTyCwz7d2l3aix2FAvtAy5fukqwepTxWLOzeZdz50+TpAOWWhHddoPrV25y7vxZdrZ6mKxHp9Pipe+9zjTvEwuB3Nvm0vPXIHEthn7wystEcR0hYPNgl8HNHbrdLjKx1KcTmqJDmGcc7IzYunWHi+fO8JkPvpvf/MaPSHWOUoZms8V3X3iZz3/uYwTKyV5I5AxnrIaTbqzLXc1lDcsNIU1T6vXmfXg11QaJJXfLg9GlcbGz5/WTXPXDYfNhcfnZ9RkDIkSKDGMSjNUEQRMTLzGxAdamWOOqvwlbCKZk1qDzjGkuadQCrJiSjw+QjJEyR0USiyKsLZDSIrMhWFu0oXY4p8NPCiJs7rrX1OoxUhQeAa4Dhh8Xfy9BEBTKoK5OLss0SZIRKOUySjbnYG8HKQTTSUYyzWk2YTKZIrCEUYixlmazxXgwphHWUEGICkJGozHTPOP02bNF8ZKY8fSEEGADanE8uxatc1KTFc/PsbmFKtQrrdNHkoUx9Rlmt/Apz0l1kxCHVjg0Gk0XOeSGXGvCn7YhchmsAClc5XHUCErcpbJDGjtPXvOhknHpMheqSWc5LZCmTniqgFTmMCA/gFVS3E9iTVcXiCzO70PEKk50mNDlPrckvVUNnXut8MK0YTI+YDS8zemzi+xu3uT6pV1uyxrG5mxmByjZQOoBt68O6A/7CJGxvrrMdGuLq7t3GAyGBDJmw8DycpNxf5fFo+uI5SXCMGZnL6GxHFIjZDjKaTQbDIUgXV2gF9cYmoxATxnvHDDOFfUj6yy362xOp7zz/U+wrSK+/I0XUSokCkPCKCwyq06UzrOkqnjQHJ4nfINL3/DQjVUcx8V4luD94fov/8wOl2f4OeCPanaymqL3r/mvh7lhs43IOrKeEq7FNUKSmgBrBcZKhKgRRasIK8n0lCTNsapObg2NegOZ9iEfokRCvVYnz3JybQhURKYFNozQuURiMGJWrVXQS/Ki2WRQ6Gsbh5MUffQ85uKvuUoHkVKBkgTKlx4ZxsMxgc3Y3bpLHCumI4sgIs0cljgYDjh76jSbO7so4ThrYRQxmk6JDGxu77J+9gx5bollWNRXVkqQpGM9uzUhsFaSaxcejqcTrLXUanWkDAhlANqiZAi2UMWghFkElF7SbH2WNX4+khDAeDKmFjcQuATOWzneVqdXQ15kt3Im4wRYKCruS6VDf8zzK4rX3KXP0vlSykJSoPx7Dwi73VXPmNZVr6UKUs+u7dAOL4Qo+no7j8kD4a4ymEoba2fZqxPeXYs/t59I8OprL3PhwlF2Ni9hswErS60C+wAV5khSGjWJzhPa3TZxLBmNxywcW0RrydLyEaKgA0pxcLCBNprbB4a9vQyhIMsEeZ6xsLzIrd0djtY67Oz1yMZ1lmtrWJvT7kbsZneJV9rc2NphOQzoHj1FFsV86mc/xOKRNn/19R8gg4jPfvaTKOWKGAW60KUr+2mVxrgM1Ry1Qc89T19W47vulvSI8tn+pKyZ1hqtHb5WJdOVnKL5Mo1qWF59prPfASZNMWbscK8gQoQtlAUlLEZoLCm5MaTTfeIwBtVGS9c11WZ9ApEgQ4vOwYomgXKF3KgcG6QEYQ2jJYEqGi0IVw6EMNTrcZGtdmGsLOAItwbknBdfnf/Weq5OkRCRilpUY7h/m3TSpx7BSBsEkjwztJohtVrMNJmilOsnv7K8wsHOPt2VVbZ29kBI1o8do95suYJ04XG0olpBZM6A6hQVBGiTOAqDlUS1kIODAxqthmuvbax7T+au1T9YYzyhUc6il8oqdxGDLbFWY83cZjOdTnkrx1s3RGGE1Rlap6RpArLooKG80fH7LXM7rbtcgRW6SPopZ1krRsipxs0za90DNEUYJ/G6xT70cqc3zNoby3mvyYd7JTfFD6JXXGR2vVXQ1qU03fucFq9Ld27cucL6aszm5huYpM9iZ5Gdg2HR98tw7uhx3ry+R2YjFjsrKCYkSYJUR9kaTJkmliwT7O7vEUUxR46cZppPQStkO0KoGt16A507lbt3nXw3zVaTd7abKCkJ4xApDIFU5FqQJhnJdMJ3v/sdkkCys7OLzXMuPvgAv/BLv05uDEePLWF0igHCoNgdFZX7d8mAqi5ONSRyqXQze9/hmjvw0hv++5KAWE3Ze4nUw+C49z5L78HTCyqEuYqXNSvzCATTqXYeaNgA2UaYHOw+ZAdkyRiEIgprmLCDEXUCMqa9TWIJQtULLzFEiMhlppXGkIHOkDJ2BMkiq5lmWTFfQ4RwYLVAEMw88WoGysuSlFyb2SI1FWUHabAmY+f2BpFVTEYjxxI3LiOphGKwnyAZ0Wi3aIUh02lCECkGg31qjRitIK5HZGlO4HibBX5nK+stx5AxGY0Iw5B6vVGMacDy8hHyLHPSOGEIQmKEQqkAWXhBUrgkFLYMw6pr2xgcqD2LPCx5pgmUS9bM0yB/8vGWDVGiDTrNMHlWpKVdozF/TX7w758iL7gsIsAUXQGUrBav+vfPu/TuezO3EzsA2he5emq6B05tpQTDTQI/cK7tUTDbwavEyKr4mpQSbZ1uUiAN/f4Ot26+STLaxZht6vWcuNZle3vKsRNn2N25Qbe7zA9evoVFUO8ssLkxZDzsUWu22TuYsrG9x7Mfeo7TJ89y+/YW3/zWi3zwI0/RbEbEcYA1Cild+FNVKjTaFWGW7nZQEBChVo+oN2I+8vFPsLFxh+DqGxw/dorTp84hCdA2RwiXhnXEU1Xohpfehc9oHQ6d/CFlkfG0h3d4bxxc7V+1U0e17s+PuxvX8rx5ns/kRKvn9Bij21kpynHsHJjuno9Exk0kMUJEGG3BTEin+wRiSqQkgQjQQpCL0DHo85RaFGJlDVRMlo1n95fqaTF3AwxBwcS2ZHmG58a4UplCqdOWap/uuv3G678vPXNfmjSLCoo1oslBZ2zcvEkdxWiak+UJqysdhoMD0iQijlwWLMumdDpNtrbu0mjUMQjGmSGqx1ilaDTapHhj4JjmQlgyrZlOhsRRSBzGREEN7WWPc0soI4IwQJuU3GggQxuLtTmzag7rFzczJnl1jVMxusa4jrZO61szmSY0mmVx8b/veMuGKBCSMIoYJ0MCKem2F4rfzFu86qQGn3iwRXPDcgc0xnFNHDCm8VXWVdJbFRzzk73KXPa/sxU+z2Gcx7+3BGJ9M79yclc5SACZ0QiRsXHrGrevv4rVI+qRpt0OyPOMwTAFJbh16yYnTi2wuz1lZy/j4gNrjJMRQVBDBsu8+8lPIWsL3L69wYsvvsDy6nnanTUWFtZZ7K6AyGYYlMAgZI42qWvlosAvyiotwZMzZ1iMMayvrXF0fZUyxHRiXX48D+/GVc+k6uFUi4QPh0pVDlXp1TB7ntWxhhKYdtSH+Q2mmjjwz9p7vbNJblwS2cmrZnMpfyvCwnsCiQUzJddjN2ZGEoV1TG7QQjOZDmg0l4sOHoWHJJ2Co7EpOk1BGFRQR8g6UHPAr3XZJwcjlHIY82Ppw/hy7mtjEbYMNYMgmGscOQPwc824d8BkMGBhoUugBO1OjWY7xtgQa6fENclo1OPI2jLDwT6BssS1gJ29fZrdVfbGExaOrJAL5ZQXizpC0OQ6pd87oNVsUY9qCFNozuPxP1GU5CgMMZDgrE5OFJe1Yx6mKMHpw05GueaVci2svXBcVGvcYw9+0vHWOdjatWe2uSZPM88Dx7trtvL94aOccLZoa+tSwUEQuNonUeIW/qjGmdUF5cHS6nm9MZlnZZc76OEsTPW9VVCx/B6wmhvX3qDVkNh8xNH1JulkiMkseWboLnYRSrG1m7G9b3nyg59gnFlynXDu4jHCmmB3r0cQxZw4dYYz5y7y7Re+T24FncUVbt3axmhRVjFL1yzASZa6GF2qeXykHGdX2V7en8KnxV1xp0FQaul4ImDViDjsRs8IaIcn12GDXmYZy3/V16rZMG/squcsPbB5hYTDn1mtg/JeRhW4NsYgrAdJM/KkD2kPrRMElkBFaG2RnsZhreu2ISKI2lgZo610m6LJkEIDEm0itK1jrR/zECECpAwRMsTacg6VYbyaezamYCZX5+1cS6IK5BBYuPSjV2iEAdK6MK3VrDOdjBESolpMFIXUa3VqUY00SWm3Ogz7A+q1OpNpwvLaKiIKSIXGKIOVBk3GJBtzMNinvdgiqIVoAalNMSJzIajUoNw/XbRVEl6fWwmsLVtxlR5dyZz2c7K6kZTzzNmBOI6JoqjgUv31x1v2iLI0xeTJjFSFqe6qfiK5Qa4eYg6HcfVE1hh0buZwHTdR57NtfletiptVcYjDBLjq3x4OEapFl1VP4HDWKM9zQqkQMiIKYpYXa+zevcr+nmQ6SWg2FmjUFXkyxdLl9OmnePyJY1gSRsmYce8aN2/eoNNd4Mrl10i05OSpE7znXY/Q64144cUfMp1o/vAPv8wv//JnWFisz8JPdx1ewGC+vKXqKfosX7mo3d+58cowJgPEDCD2SoXV8Zg9H1FNx1e9zPkNoGoMqiH3nJteHIfJktVwc66URMo5BjaUqorVBQy+f51v82QxJiVLhtRFghIaEcTEUQ0zTYrMoEZaV1yKjNBhRC5djVggINcpoXBtFG3YxqoWuY2waAdeF9yx6oZWvQ+PU/pxLw2NmJVBlMY3n42P1jlhEJIlUzZv3aalYFgUmSoVMpmmxGEDncP29h4nT53i4GDCaJjQboeMhxlLq4tMJw77G01GpIkmrgcuc0dArlMynWLGA6QIqEUxEk2WTlEqnhlQJZXTik8dLGKMwRqF0WUHHCnF7HtfJH147rhyDzdGYRjQ7XTRFoKi3OOtHG/ZEMW1CHSA0JpUF/3hjZmFy747QBWXmU3aiqMkhGNUm5kByd0OJn1VfFjs7GWWpkpS1HnusANjXdmIcMIiTlOoLGL1eINSfqHcu7tXQxx/vUEQYGyGBRrtJXqjA+JmRLMGW3cPiGpttnf26LSPcHT9IitLJzCEyCDg7PknmAxPcfWNF0hGuzRixbe//g2WP/8Fut0W3U7Mxz76frDeALtYvgyDKIy1IQyDwjg51byqd1LNOrn7qYYM/tzzYVU1vD1sEEqGc3kuH+b5LOPh7FVpIMWc0Zl1uCgydFUMan4XdV5YGAZ4nWshylR+Kd5VJhikkAhjsVIjhUYFuL70uSa0OdkkceOBQKgQIWJkIJ3ygXXMYkxOLlKX/cUWqgMhuXVz2Ycufp5UDXCudckqB0cClLYYc2ZcLd81SxvfRDTDKuvIoCYnHQ7Yuv4mQue0W23yPGFpaYG97T46N9hGSFwTLK8ssbWzjwxCwqjB5vYBp8+c487GNmGnzZlzF1leOUpuAzKZsbW1TT2us9TqYG2b3CTOIGYZKlBkFpIsIQxD0tT9ThEQ2Ji47lrAW6GI6y3Xsh3rtL2tE3azlVS9tdazdhDGIqzFSEuaTdnbu0tc62CQNN6ifXkbtWY55G4wrWXWs6hcRD45zwzIwz/SAuyqTkZHDrMw0zmR7ntBMSHn4+85z6DQ23Vch8Ie2xI0tNalVqsLoLqQ/PdVL6OamXGjK1leWuXyG2+irEP/g7iBthFpHjAaTugsaoTUrneVtRgDteYyZ8+/k+99+0+5efsN3vu+z7GxsU2n28Jah5k4ALkEMaven7/GqqxqFWO4X5X6Yc+kigv51+6HC1WNFLgso88w+vE57CXNJk7Bsap6SOUYVzGGw9QIP/4lzlLFnKpYn7v2gkpgc6zWKGVBZ+g8IRSCUNQxMsSYkeuDZx3oHAQ1jFHkOiVQsaOwCYmVAUK4cqUsnRLHTmtdSLfQnFchZvyyuYVnjMsuUQk1bVbMPzdtnCSORNscqwxWWpLpmCTJyDKLstAOFJPhACUsm3c3aC+2SXsJ08mIeq3t1gKGpeUlxuMdlJUII1Eotu5sIoIIIxWdlSNYq1wjCOvKrhY6XULhSJD1KCab4X6WWtgqCKFgwyLjjKtoyPKxI1ymOQJJliZI2XJrU1uobD7Vo3Q9yh/yPEdmOaicOL4/XHP4eMsYkU/fmoIsNZ6Mi9fvvbC5C57DNsrvRcVt8wulmrHxO3V1B7aF4fG7ehWrqC4Yv2A9udEvSJ/BObxID8tXWCOx2nDr+mWa9ZAoiDGmxWTaYpo3OHvxNAvLgpu3LpNlE4zJZkC8RdJsrbB+7CGsbTAYZQRBWPS1qhqPakbPzDJ4ftH636lD41S9Xx+mVu+nOl5Vo+vuv8Rnqobdv1b9voqbVQ139e+rmbDS25kPlefwk8p9HMby/HuqeJUDPwVK5ERijEm3QO9ikw1CO0DqKQqHXWrAECBVDSgyoloXYLb76pa3xBKigjpSRa7eq+g265USBMxKlapzslpGNPNghe9/JhDCIAJDJhNylTLMB2wPtkl0QhRFLC8sstTpYpKMu9evkU8n1KKIVrPFaDRhZXkRa12JxMLiAnfu3KUZ1wiR3HzzGt1mm3Q8QYQKlGKaZmTWgBJMJhPW1446QqJQBCrC2pBA1ZEiRooaUsSE1IhsDZkFhLZGJGrEYY1aWKdea9CoNUimKWlSahKVS/mQosJcas3PA08HcXP8p1706uqzChAwdw9FFnVmZUR5bwatWp9iYdbORxcgKbiCOucp2AJk9YV0JRDmD2MNRpeTwZ233N395ClJd2JuN/Y8pOpufxiHsUKyv3uX3sEdGlFClk3JMsPxs+9EhC2k2OLMuVPs9bbJjWvmBwrHZlUoFbO8eh4r3mBjY4cHH36IoBCuQkgn6FX0GYf5avTSaM6HT/5+81zf59rLRT0b90PYV/X31V2+OlbeK6v2G6viSdXr8p/tjWH1OqEUr/eGq5ql9B70Ya+pWrjsPqswyjqHbEQ9yJwxiQCjCznUMULmGBGREyK0BKsRaDIhC410DcYgipYTuQapYlTYKnR6ilboEpA+jM2J43imLFkNa8tn47lTOUJYtMmwAqb5lOk0IQwC2jXXkBKc16KMZbi3TX9vh44IGPYHxI0GQgYc9Pep1xrEtbAoq2kgjGQyGnPs5AmSNKHRatHLEz74vg8RNJr0J2P0KKdZb6KKppDW4DSTgrJO0q9fVYTuQejoItYKlJCOViMAGSFFQFB4fnMY4AwLtrP1PJsflYhH55okSQji5j024Scdb6OvmcIKXRSwQlg0RDRGzUA9H1YdvlgKzMLg61dA2IK/Y3NUoXYXKAm2bJjnrW1V7Ntdi5xbBFK6St+qx3E4K1NyZuzcDl8NUUoPK+dHL3+HUycXCOyI/b5h7cQqN+8e8MQ7n+RPvvQKW+2M6dgQhRGgHNlNWnKvihg0ubu5z4nTj9FptzAmKz7LIKQbO38Nh+kG/vUqduSft28YCPfq+hwOuQ4bEn/f1Z39cLOA0hNyO9rhNHu1hMMtyPnw16duD3uy1UXsPacqo9qfz4el7pwF696CcuAVQkgy23QbXJ4h7JQwUuSigZIROk0ROKItKizCpdDJp1qDkiCUwlqJsDEWjdUB1idBpHZcGpwOtZRyJhHsvNYiG5bnICRZ5jfRnCxLGI5GEEg6zQ4hMdIUWUpcRm1n8yY7G7eRJneespSEQYiQAYHIiWshCMvdu3dZXzvB3v4I4pBxktDpdNg/OODIuRNYJRFBSDIactDbpV5r4ETMSk8uz5MZ9cFXwucCDAXWpQwWickKkrB1Esp5ljuMyBiHgRUbi2E+M+p2ktILds+Moue9xswSJ3/98bY0q6VUM73eMIpmi79q9aw2Tsu5GooJg7DGteylKN8o8AiT+/BDkWWJkw8oPClj/a5byFM4l2rWosSHCto64MpniGYDRclnKdP3ngTpF0SGNhJERG5yenubvPHqS3Q6hv3eBoGAer3Lxo0bLHZO0Nu5ycrSaboLhu1Lr7O/32dpuevcdJO7lsFpxte//k3e+a538swz7wGRFWPhM36m8PbsfV3Xaqrda8L4CebuzYXHJUN6Hu+5H65TZTQffs9hjpFjrFNkV/x4eQ+M2fjqol1xFZMqI8Eyte+zpc4D8qL5EpeBKctzbAH4BkqSZhOU0mAVRoRksoYwGdgclMDaCCEjx4+xFqnaWDPF2hFWuPboLqxoIAmdLo8IodgANAKpGrPn4Dx9DVYWGSBn9F27KVmMg0YJ15wTCVrk5DZjmuekaQZWsNBcdtXvFmxeeBG2EBjLE+68eQ0zmNCJa8SFzlD/oA/W0j2yys7OFgsLgnrcYHd7g0Z7kUF/itSCZJLQXVyg3qjTaNdIRUaSDDl1dA2TGRKbFhsjaJsXrH9ZdORwxsSJubmuIe6ZFIkKKdC5xaAJI0BaZ7S1BiHRVOeHO1RBGTHFOaxxZMYgCqjXW9Sbbdqd7l9rV+BtGiKt8wLQytzisL76/jBQ5HeveQ8I4bSGhXQlGdWeYodj72o/JOeiFzsmhayIKTsqeO0cYIa1eFc6z/O5wZudf7aitMsG2ITNjWts3PoxzXofo1Na9SY7uz0WFltk0wOaTcmVN77HZFpDBZZ2q861K5dYWjrqepE5EAIl4SMfeY5Ou4Xn9fjrccWSZdgxH67MM1erpSjemyl7qpXZJ59pq2bEykdxGJsq793jMYd/785beifV66waME+3uNdD8vdRde2dAfK/dxuqF9UyxT3iwgov3SJypE2BvNB9lsXkT3Boj9NOktLVYsVKEyrhsmB4+diIXAsnjGaK8SiuW1vH8Ddo0E7+xBn7eaKrtbYQ5Hdsc1NsZFYYpskYIRSNulOuFEYQoFyGrQjbpAhQ1nKws8P+xhaxzsjTHKMicq1ZXexy/fp1mu06BsvO7j4L7ZjllWWSDIa9A46srDE1KSkpp89fBBExGk1oNTo0ax104DSzkiQpmxsWiQAZFtnIIrEzY0tXiZpFgkYqiRW2WLC2AF6cQVUVeWQ/Lz04QqFCIGVIp7NMLV4gjNtg35qJeetgtRRI5dQZwyhyDdms9bFX+b7Kbusmt7tg//NhgNkDtVXwWMxn/IHSSzgMcvpFUt3VqyDj/UDROe8IWZSDaK5cfplWMyWf3qbdCBEsc+HiM1y7sc/y+il29rZptSCQEzY3btBoZSTZbW7dehljErTxvdcEzWbNuf3cqyR5+H4Os5nLEKYMvzz5UIjSuzlM4qy+t/RQSiC6GiodNkb+e/8M5rkx80Bl9VkfxosOA+r+uJdPMl906z1oU2QWwRXqSgZgBgiROSMmBFKniHxUVNHnWAxKZOhsjNAak2rQrtzB0Qmc5+xJtNX5UB0jP35VDG5G3LQGicvU5sYwzlKG4zFxVKNZbxLIEGHFjMNkrEvdO/ulsdmUK6+9ysH2DsIIGrUWrVYHIRQ7O9usrq2gTUqjHnPq1DGUCgvvTJLkOZlNSck4ffEMWkUQ1NA5tJuLGBOiVEgcx2XiRTCL52drAy8ZWzaUrEIDfjyCmXNQnqP6++q6qj5PIR2HSok6Ydggimo0mk3eyvG2PCLf7WJmOKwzUCXjyf+vKkXpJtXceeCeCe5CAe+teJaqnA3aDPvQziuaGwhbCrRXsxyHGb/VTBC4cE+bnEAqJ2Q2GqJbsLp6gq0dwXs+8FE0EVq1eOP158HmLC0qzpw9QW+0QBDsUKvV6PVusrnd57HHPwTKoBRI6aR1HeGtlGfw11X1cNy1VOkDJQjtvIj5DI6fDIcVDKuETW9M/GccTt37c4ZheI9BrJ7Dj1uV8Xw/TKuKUVW5N96DOxwuSukzLD6l7xi9np+GsFhyMAdINEoEICWuSNUW4vZgrMKquCjQLMZGKFQQonEkP2M1tvBKA1Xijf5+qnijv+7q72ZGUkKuHRAbRhGNeg1hDCYvuphYnCch3BzwZShWp2STIbu3bxEj6G3tYMidB4VbIkIYppMxzWaLzY1tYhUyEhl3Nnc4d+Ecuc3pDaY0FpdoLC7SHw8dt68Io3OdkyQJQgj6/T5RFNFpNWbZaWudbLFvCyRE2UQiCAXGOAE3KWKkOpT5vs9zLgaK0slwEr71Wp2oYFUrBVon9z3P4eMte0QupCrZyqPx2A0gpXtXHtUwoAKozn5dTvyq2196Nc4q+y4AVbzHsTfDcieenbLcwbyhPJyuri60MhQqFkQOywurBET0R4qVkw+Tqxo6iFhaO8bqsXdw+tzjDEcZWzt9Hnv8aaxd5/Lr22xv7HGwu8mN65dm949wZEVVKdOYB6Dn8Rr/z78nCAKCQN3zvmpY5j07IUp5k+pnHf7bw+GVz2wBc1mt4hHNjErVuBzGk6qenfs6/7nes6pek7t+UfHo/HV7zpQnV2oEEyRTsOmsQUNWqEQaATaKMUGdDIsJJCYQiFhCIJAiKgiy7nkEYWlkvNRM1RtwYyLued1isQImWcokSag36sRh5CRAECgREKjAbZx4bpTvgKrB5mzcvkEyGpGOpoyHI6KwxnjitI1qcUSvd0Cnu0C/P2Jh8QgbG7tsbOwTRgGj8YiDwYCLDz/K4upxMgyjdES9GWJMymQyKJQeFLVajZWVFaQUZHlOlmclU70w/JZqNtoghEZIg5AGY1LyPJ3No8K1usce3OMdF96ithqlIM+n5PkUrSf3/O39jrdsiKwWGAwqEKhaTFBrFMBxhpRuNxLCQnFTriFU8SGi2MlmmIBP72bFwyqL66z3qoRBm7JGyg+ctoZU54VetguuTMUD8JNfCkEgpFe2dUC5ng/vjHGCbXmecePqj+m0QvaHOe2lBzh9+iECLKHVxLLGxfOPce3yNul4QpocMBhkXLj4PqJ4jSeeeJbx0DIeZlgTkSaSNClqwGSZjveHMca1+RV+8nsvwAC5mxDWF8S6DIQD1x3VoYolVReWP3dpCAowsVgQvsDWA/jWlo0M59jr2swmoSh263ITLD0bP9bz7cCZ/b78QRf35rlHRfspUZYWgGsu4OrrJMIGSEICuYSSbQIJociwWUqAJMABqcJGGNHEBnVS61jSUltUljlpECzIGEFEnmZzc8nfg9al8fNbmwocKdCQI6RmMOiBhna9iTTSNQU1YuYFae2aoIkCtE3zHINGYdjbuMOVV1/Dppr9g31yBc1unfWjC0ShYm9vyMrKUcYTQ6uzzLVr11ldP0KaDogiGE/HtBYXWDp+nDxU7I72qTVrDAdDbJbTrEU0ahGtegxWI6yh2awzyYcQWERQOGpWEKnYsdNNihQpSqbofEwymWCMJKo1CaMYrQXWSpAKqxS2kpme2QQ3IVBFZtPiGovGcUS91iBUNWph+y3Zl7de9Iqb5FmeFf/ymUeBdaxTn43yu4jwVEtR1t/4j7WzieCo8H7ieo/ATWZmr1U5NcYYtHGGSshS/rTqWnujY40twuUSPK16BUoptraus7N7if5oCyvrHDt+AWMkRuco4QypUgHHj59iYbFLFBqGgx3CsMZ73/csl67cIW50+fo3vsk/+kf/T373d3+fQX9QfVpzONb8orYzA+1uWuIR/qrBqer++HP5Pm/eyPmfyzH0FeAOF7CHrmMenympBO48rtTByfu6sT5MEK0u6nKHvZe5TXF3nhLg/raa4Sueh4mwViEwBNIJzWXadSbJc1EkN5jhHa7UxyVNjFUEURMpaw5CNTmYDFtIoPoONPcaTI9fuexglmVYNNokWFK0Sen19wgCp1QpEMVCLjOJgDOgwnlOVgmstFgMk/GQW29e42Brm3ajzmQy5pFHHyHNXHV8miacPXuKPHMNFG/cusap08c56O/RWmjSWehghODo6VPUux20KpQrkpR6XKdeq8+6rjj6gVNjlELQbLaYJBPXeFLi+uEWondKSozJmU4TJ62r6s5YZ5CmufOIi2jHFHjR/RhBs3VVTPVca6bJhDRN3Rr/afOILK6ILVNOOCxN08INLTVYrMEh7oU06QxRn00+isyDBFP0QFIuDXy4kLXELMpJ7XbyeamKw19n4YQTp50LebQtK6L9Yuz3+1y+/CNWlgPqtZi9gwZB0MTxT0yxW7pMQqvdJkkCRD4km24ThedQ3UWe/MAzTCcJ737PGCEEi4tdgtA9aIfDRIdCGIHX8vG8q7Llts8o+mucB00P83iq9+/DrNKltrNz+Jq2cvLcG95Vw6ZyPHE/2xIc959dDeX8UT2vV8WcGX7j0/V2luaveqjWhihpsHqAYApmCCpHUgctganzkinqn6RACoOymlwEaC2QJsfqKZAhAlNwX0pDq41B63nSZBkaupDYtavO3KKaTmm1GkDoMrlF5khJN8f83jrzRCXOGGmLTVPeePmHbN+8TYygHgacO32S0XBInuVoDCdPnmRjY4s0dQ0gj62tcOPGdRa6HRCCg9GIpWPrrJw4gazXuLu3TyAky4vL2NwxmE1lE58LvXEM6/6gT6fjOghTPLfpdIK10Gg0QAtAoYvmiXledMwVYqaW4TJn9xoV73QUswQpBZPJiHRqiaIWuX5rPKK37hHZoiIZQa1epxbXColMP7FLYLm66/u/nSkpFr/z+IfOdeHylZk1b3SspTJh5rWGDuMsh3fq6t+U7y+Z196Y9Q76LHa67O/sonPLkbWTDgC1fjfQGJu6NHkQMB6PCZTmYPdNtrffxNoEYzT1ep2VpS6Li01XD1VRNrxXIlWUJDFjCoarxYWmrg+9k/aYVzqE0uurkjqr2EvVdS5T78X9V3EPW+Xv2EPnKktO3PvNfT+zfPbVzIr7WsWWvDSGex7zC2YOixE5hjHWDjC677JjxEhVIzcGbQQqqINUiCBABaFj6pvU1QOaAEQDo2qYIv2PcB7dDEyu7NDOCDObKzODjBNjy3NDo95GiBgpAkcKFM7PN7bM+FWTB2BR0hWaXnv1dXbevM5gY5tWFLG7cZtAGPb2tgHLQrfL9vaWm1NhgBKKWiFglqQQ1btkKuDI2dOIZoOdXh9tLGuLq4jMEsrQsakr5RQzo24sWImSASIIuL15B60MmpxJOkEoRaPVxqLAisJTMlgyhDQkaepcCFFUR9zHsfGRRnUeWGsZDgeMxkPGkyF5/lMGq4PAdan0Gjmj8Yh5olup/1xedWFErK+2d1bVVtr3WGwRps17Od5lr97k/YzRLFSrhGXW2rmJIpUjvalKBspndJRQDA6mxEGHNIF2t4tUAb6TQRA4Up8KFLVGg0ajQRgIFhYC3nj1eXa2ryOlRglLIK0zQsJhO9UFW71eV5DrQkqnQRTMLWZfiS6luodndb9U//262N4DjlMC0NXXD/+tHxfvGTnczVMA/GfOG9Yq2H6YnmGtdYWW+L/3n3Mv4GnsFK2HCDFFCUMgQ6xpkmUGoQxCClLXlxODI9nhCBjYPCMQIZYYLWtoFRchvyMiuiqA8t799VvLnDHUWjMeTTBGEAY1BCGYEGzgPq2of/RXbiohq9baLags580fv8ZrL3yXjgyZ7vexaYbEUKvFBNIZ51GSsLm5Rb1eRyBY7C7ROxgzHmUYE3L77h5Hz51n5eRx9sZDxmnC8sISqijLmOnFK1UgIGLOoLqMbUitXgclORjsM56OXa+zwGksCeG8fUc1SV3xq54wmzA/4XCekP+huhEZ0jSZeZdCvjUT85YNUZbnaKNd33RvDExJJPST3KKclRUKpFtMgQhB4XYp68BP7UFXXPx+mOBXgruOrWutQSlHojtM3DvcS10Il+GToUv5FnkPhCoXoJSSKIpotRokqaLRPs5gPGF3ZxOrHbgrRF5gDAprcjrdLkY0aXWPkGR9ThwVXL/0Hb72lS8xSUZkQoPUWLJi8udobeYmeumFiIK85zIXFPrbzjvSMyB/PnQpJ8ZhrpTP0HmmLOgi/CkKEK1CqXBu8XsjAxIpA3yvc6WCIn0dYK3CGued+Wtz59SzkM+l4p15EIJDi8Hg4hVZTLeS2W4OeWiBhVgIlAFLjVx0MbKGFCmBniJ1jpAJkhRrI3JTJxMBmRWoMCIzmWNuiQZWLpPJLpnBMdmlmYmlVY2kx7T8tY7HY6IwJFbhLNkRCJDWoLBY68T0rbBY6UpJDJLcSKwIyLKc7z3/AttX36QThqSTESpQ5Bo2tntsbh0QiIhJf8j0oM/a8jq9gx7dbpNrN29y9dp1wihExAFht0OwvMR2lnB9b5uwUaMWBLNQyY1/MU/JEdICOdjMhay4ivwsyxhPR/T6BzTqLRQxoaghtEGYHCMVNhRs7W9jlaBWbxafAFhnhMs1DlBIAOOibSskRkustggjaLcXieK46IP31jCit5W+r7r2QaVbahlyVT2h8ueSF1Uwra3b3fxb/U5/GED1Xo5jR5uZmqD3Anya3n+tegPgXG9tnLY2Fe+hunPXmjVEUAO5xPUbQ2r1JaR0HToLaAQpFUKFIGIefewpcrPIcNxhd0+SJILbt2+zvbWNtSEQIYhxNXiRa9pX8XhKjo0/9zwh0HlgovCU3Dj4zFb1fd6bqXqO3lPxOIxP296P91OCy+XPHlPyBtAXrdoK4O7H1z8fP/7VMLmKWVWJkf5vvPRH9VzgOEGZCcmoY1STXIQYm5FnE4c/KNcfzBiFMSEiaCJUA6HqeOKi23KKCnvVwNoQrQXCOkPrNzYpHb+rOmfSNCWOY0cMlE5pQklZamBRqQGUAoPFS6MLDOQZP3rhe7z8je+g+xNkLrh1a4NGs8V0OmVtbZ1ud4H9vX2CIKTV6jCeTFleOcJgNCKOYx56xztYXl9ls7fPyYcvsLi+SpLnhEFEI6whZpylco4brcEorJYoVSPXzjgaaUh1ws7WFmvLaxxdOc7O7m7RydV7dQZDRn/Yo9lqIWWI00/3kY7HeMvs9GFccD4KAmtFQa4MaLZa98y9+x1v2RDlWs/SdyoIyPKMNE1LAyBKkLR6oXb2P1FxacuLNoXb7nekath1GL+oYiXVDJFPH1fj1PthSdWfyxBD8L6nPsD1W3vsHkiuXr1LrovB966rEWADrAkQosmFi09y8vRTvPmm5R2PfIQja2e5u9Fje3NE/yCl15uiZIzRs9Km+4Yth8H2KvmyGnJVcaHDAPE8PmPnQq0Sa7NzBnh+7A3GZEX62dEunNfjMANjnPiXz2yVoXgJAFfDnWo4WqUEVDlcVW7RHFguFagGRrXJbIwRAsWUIADXx92J4ElZQ6om2oTun1azEGt2r8ZitEAUpEatQXjRM+EyWqZgPltrHUkxDImKqoH5jJi6Z9zceIpiyDL0cMCbP/oh3/3zr6KGEwZbuwz2+wgZk6Zu01xYXGR/f58syxiOxkySlGmacdAbgJAcPXkMoyx7kzGPfeB9nH7sAfYHfZr1FisLyzSCeoGFuTXkLsnhirYAnHMj0DIgRzBMBuz39lhZXqEdt6jLGrV6jd7gAE2OFk5edjwdEIQuKyhFWHjAXjmjAhlU5pwQFdyoYpc8AVdKSRSGZOlPuejV4SumkLNQpLpcVMJfjG+gOId3iMKeFixTXKpzLr0u3e7riIrzxsKfw38tuS5lId+8rOj8UQ3h/M9CiJlEKcIS1wQf+cQzvPS9Ds8//00k8L73vYso9lInCmFwWkyBa6+yun6cZz78M3zr2y8gVMQbl67wrW+9SJZN+fgnPsLC4485F94a8iyfZZDcwyqpCPbQLuNfB+YMrzciJeBdJXuWY+U9rsPV8150/zDI7/5G4ItrHYZjZo0ynUSLmmWaqgb98Lmq11e9B1cVPk9+PPyvZFMrsLHD2UwCZuRCXRE6r9Sm5DNhPGcH3GeV1+BUHby6pXU1aZYCB5mXoRXCMk2SufBeKicl4p+H22fLOViysAUmy3jjhy9zcOcug60d5GiEwNJc6DAaTwqlQ81Cu8lkPMZaS6PVprvQZHevR7PVcdkqFbA76qPiOs/+zMeorx9hc9qn0WzSqbcYpkMCoYpIYh7K8B6a1jlCufq7vf4BOp+wsryMIsBmjkXfaTboD8akeULcCDnoDxBSUqvFWCvBqNkmD/NmSEgxNw4ljFShyEi3tgaDAbouiGo/5fS9KxQ0BCrEBhm1er3wREqGc3FpeK9oZlCQlVR+gYt46yXcQ3a7znyBpTGaMIzmsk7VBQTlzlxdyFSuCMruFG6BuEFVxecFYQgyB5Hw9NPv5Mn3Pc50nLtSAKNLHM5olASjE1xxtWbxSJ1PffZjjMYp49EIqQTd9iKBUmidODKjcBowpbE47LV4nMjpNVev1RsPf39zZLKK8fKZripoWhprWXxGPtew0ntLjidUwL/FBqGUnC1k131FFx5v+fmelV0avnkGub9GVwLk7t2H815sqxrGuUxiDlKhjSQUmiCAfJoQBhJk4BQbVFDIyeQEYYS2IOy9ZS0FUaCYAo4XI4Qn1xaFttYpjkZRVGqAF2G8O5crAhWF5K3H8VyZESTDCc9/7a/I+wcMN7bJ+j3WFrsIYRkMDgDFNEnpdJponWOM5cjaOnfvbLC43GHlyDI3bm5y/PRxRGCotyKefPZDNBaX2c+mDCcjji+tkQyn1MIYgXT3b2whw+O1uSTaJKhAkeoJu709ZKBYWVxGCemaDSjQJkUKQ6NeY3t/lyiPybIJS61FJpMpYRAxGffJ0oSoVpt1e3Ur1IIVZaq+RFaqDhGyCHGlDEmz1OkcvYXjLRui3GoCGaKFxVE1BUiBldWsjANJ3Q7o68aEs/ie3CQpyHVgReYAbyHQWYIIJCYPCIqFoJQgy1KqGTW/qGShUe2yS8y+97U3rnHjfD2VB0jFrPxCIZDoXKFoFLwLSavtgW8PBjt+iEvNKid1IiMHEGJY6NRp1HxXEHDhjSHPdfHZZhbTO1yoTIlbLFI5Amael96BMyR5kVb13oc3LN4L8V5iWUs2yyxax2aWHqMxhjAqU81l9hA3waVC5zlB4LJNsqor5ReumDeIVfyn6gX5Y2ZobI6wCkHBgbLazZ1KFs8YpxWU6ayotJ9i0wGBEFgTIYVBihyrW1gbYNUIaSXGNAovZ17kze3OISY3M4LfDO0wFiFCTLFMfH2b8t67dRKvzkg7bxGE62RDjtCGaW/C97/1Ha6//EPqYUg6GtOuNxmPJ6jAsrSyzHAwpKMCxsMeQaRYWFhla2sfoSLGkwQrDZ3VJjvjfY6eOcWjjz9BbWWFsTRs7+yy1l2moSL20hGt7qLzVmc62BIZBFjtAC+hFJlOGU/GREC31XJhqcvikxnXqTZNEwbTCbujPbJ+ztrKESbDMXmmUbWAUEpqsaPiIIwzZMK6MM6Uz3XmIwpLiUe7cY5rEVEcUqtFiIqK57/veOt9zZSTT/WOjAexHP9jdh1AFffBZc/c9ZaC+XgmarGQtNuNHajtFkUoAyx6BvR6Xotnwd6PHVytRs9zjTHzWtBu8duKgSgyD4XWj8aTBiuM4IphsNZ7ZQXRr0Dh0zSdeRjVkLHqwVQ9lbljBgRXjYO/p/mGh/P4UJkCP5xtdH9fJAYqYyUsaKNnnpD3Gr2Rk9KVO/hzzmW/KlQNN5bznmh5OwX2UvE8ggDyNEfJECEcq1ebqm6VA9oD5Uh4AoEUFhnkWC0QMiczU6SKiv7sIJRAmxRBiFQhCFEgA5ZQBeS+hCUMimJth3GaYmyMKdroVLDH8l4kgtApNloxm+9CGEySsndrg+9/6wXuXL1Jp9FkPBqgdUatsUCajsiznE67TZ5p+v0RjVqTJJmwu7XNaDLlsXc9zqkzJ7h07SqDQY+z73iIR97zLmRYQyjFZDKiFsV0W210lrslbym8NWY1bRiLKJ53olI2djdpt1o0Om2MEBiRkmU5g96AZJrMmlqqKERJQRw1WOouEGrHwpRCkWUVxYgqCFSMbZUpbbEu8STUzFNym1lAUGwK9dpPucGiznMUwayVkM7y2U7jnpRfl0W2yVRcuNmDLNL3+JIFXwrizi8DF8Jo7VKR2misMTMNnzkAsbL4fMHmPPZSGpHD2ZwqzuKNk8Omiuo1W+74h43HXMhZwXz8z974VEHaGQbCPAaU5zlBqGa42uGF7s5bdho5zKQ+jMXMHcWErWJQUghkURUuZOlVGesYwn48vAdaPf9PCguri9g9e1tI51Y68+YZUgVYm6OkIsszZFBOUCGE2xhMgpJgjUaIFGtTF4YJTW4sykikMgibOiKsotCMVmCt688uINdliyJjCrlaCi0hU/Xe3Eak81IXy3n3rs5KYJxOUfHeyXjE69//IZe+9zI7N27TqjXp7ewShE7v6KC/x8kTR5mOx+zt7QKCbqfDeDhmsdNExhFHAkdLeu3aVYbTCQ888RgPPPYoQb1GjiLLUga9PkuLi1htmaYJURS6/vTWoq0Dxpw37IpMhbRsHGyRK0ut2URnmtFgxNSMSZOEdrNDq9EmCkJUrNjZ2WFt6QitVpOdrW2OHTk6o5m4KMGvTIrvCi+S+bnmS4b8M/QebpokgCSK5nsV/vuOt44RGRDSqbIZIYk8PiSYPbzZhxZGR4jSc5LujW6C26IVEAVV3pTkqFnmxx4OIfxuX3JV/CKvGqXSSxJzxsEvinswDEEByHp9lvLvqkZIyrIHl/e8DpMBqxSC8uHML1h/3R4DssaFPMZaZoyGyjmrkhrV8/peb4d/V+JKTqPYk06lLJ4VzggJ4126UiFAa40K5Gyx3u+4XwKhig+5CvmSSuC8Ord7q6Aw8IHv+1W9V1CihpQGxARpnJeJlEgVEqsuQoZk2QBlNVIE5HrqmlGaCG/4vMesdfb/Z+3PfmVLsvRO7GfDHnw+83DnG3NkRlZmzQOrmsUiu9Bkk4QoSBCl1gsbkNSAoAc19KIH/QcC9A8IEEQK3QCHZrNIFlkDqyqrsiqZc0ZkZGRMd57OfHx234OZ6cHMtvu5kWRGArkTNyPiXD/n+N5utmytb33ft156ZpH7tPrvWLLqgLfE5+qEwAmHFg4lDdIaRheXfO8b3+Wj771PNZqRKYXC0koU0/mE/Wt7bO1t8/jBA/Z3d7C1YzKZIEVKWdXkvS6tjT6j5RhXFyS9Fl/+pS9z885dRJJ4AbeSjEZDsjSlleYkQrJYLtnsbyBDZgYCobQniSpBpQyXo3OmxYxOq83l5SXaKjCC3a09RM/vPiUltamZLxYs5wsO9/ZJZEInb7FYLMizFiI4aaZpGjqO/nNxISNaX2tN00KJJlOKz7YoSpROG/3b57k+vx+Rc9SVNy9fLuZYU66EqzG9v3Kqx3cOYEGK1WvxSnjCTVrrJ79GZN7rrqpgvBY3StRl+WxqxXGJ3ZJ1zVAMPH6xAytg1r00/TXwSfx01Uj71w0Y609N/3v8DK74/VcB2vjPq52lSOBbdXReZvaKkIV4DCZmFTTzs66WaivAOwkTNH1QWwWO9QDig+q6D9FKdBsDVMSYfEnrAiblT8Vo2+s/wlBCxeAuBMb60Tl+EIANWccKOPcnrO9ARa+E9akQ8dnE9WKdQtgCyQxBCU777xcKZ3q+c6cm2KpCiQQlDYgKa2uEzGgwQK5+HvEzcW71O+NEF4HACb9Z45p11CAtdVUineXi7JSP3vsR7/3lN0mtQjtot1u0soTldM5bb7yGEfDowROuX7vBdHjRrNnpbEpvc4NS1IwvT6lT+MIrr3P37bdp9/r4oyGsRxzLsmR3cxOJf7517Q8cWTnPbQL/+UhJISqenL6gqAtaiWY5nbG9s0FLtdEkSKdw1lI7g1CCqjJcjIfs7e6RqQRbGwa9AS+OjjjYb+EPYhUOFJoSDTyuG11WV8/UrvZ42HtJkjS8QK9q+BmD1TaMpvXWHCVltcQ403y4AKs1taokQ7aOxTalGU6g8P62OCDiQ0CSqLDZtdceysg8jqe3ajZUvPzDi1H6auodSYErxrG/GjvS8NXI9xFihZ8IGRwEhMVYn70Z60vS2thQFsTvi+VXAH6NIYLLMbN5mUMUeUVSeU1Qo+kSUSnvF3PMcmJ5KwQgfJA0VuKcurLpVp/Iqmz0n89n+VgxIF81T/PZw/oKcwE/85apIizIYMbiorGZ1w56UqYMqboAEpxw1C6KKbXvKoZOnDE1Smlq6cBV2HKOFhYpupT1DJUpbzhHi9oqkiRDOXCuxqIQWiIMSBdazMIfKla45uBYPSPb3GssfYW0YDyYDo7aVSAMsl5y8eyU7/3V97n3owekJqVYTNnb2WE2nbDV26O7l3N8eoQTkr3dPS7OzkmA0XhCaWtknrFwJZQ1d956g9e//EU2D/epSTBOkQXP78LWjCYjtE7JkxY4KKxB6RScap6vFLA0FQtbcDkbMptP6PfaHHa2ybcyfw9Ohvllfv0KDEbAycUpWbuFFim2AiUTpICskzFfzui0uo2bAUJhhcLJwjtPGukD9toaAxEgmKsi4jxvk6YZSZo0Wf5Pun6K9r32xke2xgXQrwqMZyH1+h7nP/W7/QA7mk3RZCfWR9eoUo/ZiAidKp/JrAtbP4sV+Yew8tHx6fkKU2l4Q6xKphgI1t0dX8ZpYsc6vicpYzeOEHl9drYqkz6Lp6xO5PXScUXwWxcV+vfv37exNQLVTJPwjnoubP5VEPBcrKvcqvgD11vsAFVVfUbB/7LTYyxZWcssGu5MyKZ8U0HwcgkXp6WAWWEOa/cfanlv0hU8lmKGmYgKTYGTAsiQSYasF6E+qLAuBZuzqC9ppcIHNBKsXSunaxNcHSS4lZGcCFmmdVcdDBwiDF+o/ewzYdFOMj2fcf7wET/65vd4+NFjikXJRq/L7u4OzjnyLMM6y+XFBRZBWVvMxRl1UdBKE1Sesr97yMLW7N884Oard7l2+w4uTamc73QlUmNrg3EWK2E6n7K9semHJTqLqWtaWY61lto6UJLCGU6nl4wmYxyWG/vX6Lc6pNaXv74rGaYD4zuntamprcMKx0Z3E40iCZXHsl4yGAwYjye0cKsqJ2C4fhWsoJOXs/r1vSyEPzQ3N7ZRKiHL276R8Dmuz28DEtT1jgrrBIuiXHsjNqS2Ye0GNbDHANaxmBA5nQvjTfDaNa52vVans0GEjW9CieankV6dYRavq4C0ROur7ep4rZd16yBlvBrsCUk0E2uMyNc2nz/xryr+YcXwfRm7ij97nVi4As1XgLpzqw/c2dV9eVA+ZkSxJJahM3kVkMcFsYO8yk6PGdAVXOcl0PvloBlft24Tux6A1sH49e+JhMj1dr+zviz3mKJau3eQZgZuinQOZI5BoKT04LWrgIpEd6jN1E9SRYJs49DAVZ6VNZba1s0h45yHDl7G7axzWCGRInhkG5icj/jLP/4aR5/eY3h0QifvUFjD5uYAUy2wpvIZorBkrYxlWbG/u8fJ6RntXoe01aYUNXPtuPnq69x49Rbbe7uQpDg0MrgqIAxOWpySzMslxhg6rTbC+JIx0wlWA1icFowWE87nEy4ml6Qq4XBrl63WAFF70SpxnYUg74TFOEMlLGfDc5IslE3OT/YoncUECg6JZrSY0Wv1PVk8rhGzyopX+331/K5k4W7lia11Ak6hdYvPc/0UfkQSoSRKp5S18RmS8SfjepvvyujpeAsinvEB+Aono8cYFNbRyDTWb9DaSKRbgcfxp65vIP/PFQDtsxMP1L4skH05eMFnu1CroLSeHcWZYnaVfeDV8Z8dHrhSoq+/z/X3EjduzBjW/azXn4Mxq4zNf81jINb40klKFzSA7sp9xg7WqjS52un6zGvXvr7+DGIJs34PMctazypfXozrs8ni4UGENUUs2fw/fUXtwFYIFiiZAQmVCRidNTimAXfpoNMMxAJhU5xrYZz037uWbQopSKJNbEAmpZABq1rDj6yXh2AXKFNSTBZ8+N33+PDr36ajNLlQKGHY2uxhTMVkMmJvd5tBf8Dp2RG9zQ711HIxPKfVa7O5v4ds5bg8ob+9yfUbN9i9doALQLAMbXfPv/McHCscw9mYbreLxNMQ6qr2uKr2GdvJyQmzuqS12acaG7Z7m2x0+2jry1AnvPYtlvNCCIzwwPuLo2OklmxubVJTemJrkmAklK5mWcwpsLw4OeHWvmJZV9gq6i3Fahs4ms94fd3Er/n1b0lScK5C6Tz4ef3k66fKiGztrVqFkFgnvBm3s560FNryztkAvsU0vHmnxPa4EOCsQcncp4C1L/M8tXzVBVNKUZsCrf2sJhEwqvigV9lF9DNaZUqeFyObLGs9K1gPBOsbDlj7ftdQ2j2HhgbPiRYfSvoyZF07FSdHXPn0RLBCMTaMQordPI9HNVhRg1mFTqOUoFc/KwY1Z0EGTMlZt3rMIpI2XQDfV9nWj2M+rzPW1/+si1WjsPVljtOqQxgzO0f0lLJm1cRwznmmuTXh90mkUKH8cBH68+Wa8hIDgUYgcaZEJyCFAldjWYBo+VlmACic0B6rc6vujHMOifSukmIFuBu76pr5E19hjSORCkzN2dNnfPL+x3zra9+mqzW9PKe12edyfI41jqpacu36Idiax48ekrUTUIKdwz2M8zNH9u7c5tprd+htb+CEf+9CJmHN4m1VkR5AxpNxa+EYjUfcvXEHEQ4OnWoqZ7mcjhhPJmwMNhh0dnh6dsygM2DQ7kNtQYaOlvA8IClVc+gb4RgvpgznY3r9PsPZyO/hZYlWihpHZQ2T8QQnFfNFyf3Hj+noLi3R9ln1GuSy3q6/2pCJjRHfrbwcnqJVjjEOnf6MMyJrHM4ajCmQyju7pUnaEML85sAHHKJo0JcWFoMSNkgmBE4UCOk9f8AglcAr3h1VFUf8eomjcBZhbQDhBFpqjKtfSgm96956sIl4ll+EJuARPiDFDMZ/L4BotFTGrOw0rLXeTyUA8n5zBYM4EZ3srmItdV2G96AaDosjntYBm9caU0dOC2GR+vIqdnLA42nOVTi8wDF2dpwD4TwoqcPE3QiiW1uHfa2udNNeLgXXS6v1LGg9cMe/e3nSx4qbteIL+SaDRVgfFZ3xgdxZ5y0zmozSYWzZYGnevsK30YVTODaoZMQVDNbNkeQYCyIV1DiUyKgtqCSjtjUSjZCrJoYQInggKV+mrN1fkyF5tStCGJbFhPnJGd/+82/y7rfeQ6G9yFZmlHVJqlMv3+m3mc3GZGlCZ9Ai6+Wkm13agy3y3gavvf0OabeHTCRI7xQhRRqCbY3FgkiIjGdhwErBsixp65w2GdIJSmeZm4Lnpy+QQnPt8DoCOLm4oFiUvLJ7nU6Se3wQ4cmdwmGMo6oqClsxL+eM5mNmyxlGCS6mI9RCotGkUpMj6eYt7/bYGtDK21TGcf/REzrdPm4CvtutguVrjXOSqqxI0/Qz8SHuIyEUWqYIUqwrw+fwk6/PL3oVoLIEU3kwzBpDVXuuhhJ+uGCUW4Tv8JsGv4FW5md+I8kAaiodT3lBmiZNd6jJXoSG5mT1vkjIqyDwy5fn2KgGrDZ1wHeE51JcIa+9hA/FrlzEHF7uOhm7yk7i1NurLfN1JboOeI4PFlrHMm41OlpKrgTFFcYlmuDis8M46Xb1XmPgiPyYuBG1Vs29rJdN61nPOp6yjvGsZ07rXbYGDF5Ty2utQxNgBeQTsgAUV4JgzLTW9XDR9jfywyqRYJEIl6KlBllTLIcI5Xx73ma40G3SOqU2DueiWdxnBb0C56VFLooyHU7UXu4SpDqmLLl49oL3vvYu73/zI9o6RylI0hwnoHI1KOhv9FgsFpAo2ntb7N08YGNnk8HODp3BJiLNccHTyQHOWpTy7onW+s4uImaLkYPj8b7lvEAnCUZarJBM5lNOLs/Y2Nqi3/Lz4xfLJc+ePuXuq6/SzluhK+jLutJUPB+fMRqPqSuDDZIM6yo0kl7WZqPdJU9bZHlGKhVaKGTwE/OfgzfJ3xtssViWZEnGim7saSgCQZpl4Vn+J1pSAYux1ncns3b+41/30vVTqO8B67VVztRU5dIvImO8dSeRp+Jf3wSIaAzfzH1SFEVJlqVh4aw28TqIq7XG1DUCGbIU4VuqimYUdXwYL2MvMbMhELmciFnTCjhdMZ6vnvS+OxZHOl8FZGOQaqSAAYA3xpBlWdMGvzqqRjQYV9zY67O+RGzysWJCx+9VUoKI2dUqA1kPjKuBeivblHUM50pge8kiJD6Pl9nn63jSy9jX+hWJoHVdeZKi85ifnzoSwHK1et7rJeLL3tdCKJxKfDfQeYcDJRLQLV/SO4Wkg3UaIVfjj7xWsEII25T11nrjPRXAci8pMT6x1Q7pHMJZ6mLJ+fEpX/uDv+DxB88pRobWZoJKDL1uTlFUWASbOxuUdYlNJJuHu+y8cpPN63ts7+3TandxQlAai1DOEw/jc4vBPSoKhIcMhPR8KuMElbOMphN2d3YoheHi8pTh5ZDbt26R6ASFwAo4Oj9lsLXpmdqmYrFcMpqOmc3nfrKNrchkwu7GJq1ehxrD46Mn9NM2r+7fRNeioZ8ooZCWZrCEtKCFxAlBK0l58ugRNw87IKPViNdQiojlra0hWB2gsUS3zpImCVLF9v5Pvj5/+95ZqqrAmRotBRVr2AhXI6QLpUycee4rdhmCUvD3WfserTTVFXHnqtWrVYqxNdbWaO03tQw2rrEVHTfUVTyIUIrFnxmnN1ydQuq/f+X905DwwvVyTRxJkEJE9bm+AuC+vJE9OM9nNnacfeV/pj+R1gNx/J1R3Av+/rRK1vAZPvNPuJqVxd+5zhNa72qtf996x+zHddVeHtTox+h4x0L/83xwauxUhX8C1vrF++OC3JVyz+AJrVi0M9hqCqLychSTe7av9tgHSnq+lYlOlKuGQ1PeOuv1Z9Z3lCTKl3RoXG15ev8p73/vB7z3nR/RoQtCMF+UvHbzBqPxJWVpyTsZC1Owe32HneuH3H37bTrbm7gkAamxQZGuE5/9BqOCoKsMYmOd4rVtEiGN5+QJhXG+KWUdSJ3y7OgJSaJ59ZVXyESCqx1GGU5Gl7wYnbOxscH9J48oKj+vzFlLv9dnYzCgk2bkJCRCUQrL88sTElI2OpskaJTye0ILDQbC/K/w2ByVrRFS0+33sVic8rSCYlGRJilJmBe0ThYNq4u1pRZoE36ftNqtnz2hsQ6bPC5yHTQpDVfaRUjVhdNZrzx18Ymdi9FUyMCsDnoyEYEu0wxPjPjMOiHNhPLOGL9BfbniZ6qvQFQXTkZ8CHex/bjqOsXLbwr/Wt/ZkY0LXQBi/JTQ8HtrU3n8IwQIa65mCesdueakZ01zdcXSw62VTuBpAuvSE7/AV0HVo7rrc+D8M6tRWiJYlWEunEpNprXWto8bfz3Ye/KhaegRnkC5wtFW2dWqI2NtcFRYG3ogZRA/Cg9erhz9uKpJdK4pTeOzklJ6UMxaEmmhGqOZUyGoTYWwFUL75x5yGzwLPB4+awdQ+FlS+E6ZtyW2gVWicVXFiyfP+eZffpv3v/tDlGghhKPTy9EJnJ1dkCaOJJH0Nwe0tlrceed1Dl65Tac3wAqNsVEjEO4/PtvgNy4QOLumV5SreXECj7eiJUVRsiyX3Lv/KTtbA7Y2NtEudEWFZFIVPB+es6gryvMzdnsb7Ay22OgPSJRCWEccnKNDAlDUS6q6RtYwaPewtZ8DKJQK4wZFEKF7QxU/DNS7ZBghKIwfFyYQFMslSki0ilY+q72zCkarFr+zDpVo0iT1iYf7WTOrnad918ZRW4cTglT7G/Lq2yCpCGOFbPg6gB/NaBuXPVNbtNJeHmADMMyqA+OcC4C1HxUcldSJ1HjJgg0G9LFL5UskPxkktpMjOzi8DxG4K2unJ7igFBco7RXoWqvm/RMwF88ql2sMZ4jq7Zd5QS+f9n7TaeKARF/iyWZRrmdygaETcKP4gYsQbEMwEtHDm9AVi0Jh0CptglzEuWA9yxHN5l8tJI9jRMaxIA0Eyqt4VZOeN5lOlNw4okTBmkDfEJbKVGide4sV6Q3KwB9oiVZhtNN69xJqSoRLMfUS7AVSGRK5gakrTxuxJa7O0ZFjFrNH4ZpuqnEmHo1+yKqwnhcjFQaHdobL42cc3XvIw/fvUQwrMm1obbQx5Zxee5vDw12Ojx9ycPOAzduH7L52m/bWANXZwGpPurXOkOAPAOcgSbKwNvyAzBWXzoHwLWytJEJ6ZwAlLE4YLmYXLKoFd2/dpqdzVO0zyxfDM06mQ86LGa0k4+fuvMZ2d0CiNMqGrmO9nhlXKOUobMnlYgQSdjcG5FpC5ddXUdUkIiGQronjsbECpKC2lqOTc/b3rlHMK7RV7A+8cds65Pxyub76ZwhJUnvqgdRImX2u+PL5S7NQbzcbjtVm+exr1dri9RR+8Gk3BqqybLRmHotxjSFV3JgR2Iy/2z9s/zvjzO71To4vjfwClVJSm3LVTrbr4tSrqWX0LPKviz9zRbRb3U889WXT0nbus+r81Xtd4xIFasFKkOpfX5Zlk2WayMkSMgS51bOJVywB4303mJX1EhWDWXsPInQKV+87PourvCofrLx/sz9EEu29otdxt5h1Xl14V7Gj5vcIiRMxQ/Pd0PizmrI3HKINlcBapPR2HkrnWHJKM0GxRCUptfWb2C+6mO35wGdq13Rn1nGL8JWgk7JoZ1leXPDRdz/k23/yTappwc6gx2w2RriabqfFslzw4viYncNr9O/cYvDKTfZv30InOpgD+jI/SRKEC0Onxbp/ePjsrT+AjHEB67XYULIY4ZBaM55Pmc5nvPnaa0ghWJYV58enLBZLdDtDJZp2lfDawQ02sjbKQYIMej9wIlqaWISDCsvj0xeUwrEolhzeuI2tDZ7J4UiUWlE6EAiReIzNZlRVxbJe8vGHT1Aq5e71W023+OVrvaP68ppfHcCW5bKg3fpsh+3HXZ87EK23f2tTU5clZVGSpyELEGtvWsQ36//EN2etxRE6T0IE+4lAinOySW/jYqqqiiRZUcQjfhMfRMRlVgZi3s48kubWAWJfskAsf2KQdO4qGdF/LQLnqw/Blywr3MRnMFeZui/jMvFDikr0FcZytaUes4z4zFYAMlcCXwxaL3ew/KEgm9c0bXq1+t3rzyE+y/h139Eq/UEgJFXt55dfJTx6HpgPRhIhfFcogsZNVmc9y9dXqAH/CZSIK7/zpcBG6AgKAbUBpQYsllNaskaIHCcyEEnIbGMzAaRMwr19tkuHA+Os16A5B2XN8NkJP/yP7zE7m9HttLEYOu0WwtW0WhmjxZxut0drd5v+jQO6e9uIJEFFjV2TtYemBrbJ3oEGtI9dQqWSIKoVKBG4d6nmZDRiPJ6Ag3JRMLy4YLEs2NnZ4eDaNZyW3Hv2mL3eBtutLtrSdKtXh5PPSqUEIwQzVzE23rVgs9MnQaKkd74QNgRINIiU8WjByfEZL16cMJ3XvDh7QWVLvvTFt7i2d0CiNLHhEPe0fGl9xz29/rlKEbujeg3f/MnX5yc0hoUcxZgReon1f3zDV+LRCs9qTg4cXjkeAEVHWPBWUFRVY2UqpbzCKI7vYQX0XjVhj45yNhAc10/h5vvsGgBrvI2C38hXf4fXnyVN+u+1ZOolDCjiK1dB2PVSLf5R4UOFKDBdBb34O9c/3FUAdI362v/OVYYSNXIN7vNjPItWwfUqU3r9RGtExGGf+bazDzzr2c8VdwC8zu1lRnlkuMfnH4WXLuicGjzN/yKa0iXeO94BEZnjUHT6NcLMELKNpQ2B2OjwpndCaKwBIf2Y6itUC1zAigKD38LwbMhH797j7PicPPcmbVqn1IsFpqzodDJ2bu1w+wtvofp9Dl+5SdLKSZVnRBsnw6hpgUAhJT7LWHuupq49mTQ8d601lakCBuaZ1KP5lJPxkH6nx+mjx2QqYas/oHet32Bol6MxZVFw98ah5yw6sMLLMeJR6j8Xb2RWSTgeDhmbgo7QHA62kMb7FRnnEBbGF5dUOO7dO8bZlOm05LXX3+TTxx/xha+8Rm/Q4dVbtxieXITJuiuEd30fr++Vq+W7//u6rslz2eC9n+f6/BiRjcQzP6wlS1QwhPcfewSko9p8VQIFzDjiCvjSKoKafgF78luWZQ3guk66e5kF3ZQ8YfF7mCR2wa6Wcesdoso4Eh1tKkJEj2Bq+G8pJEh8sEA07NiqWnXmfAZoG83Q6vRTxNnisWY21mNTkfm9njXFqwF/cVfeG7iGCrCeBX4m+IXgIJXH32TDhaIBntdPJilXfCYf3Hz7PJZy4V2tAhBXhyvKoFfCiSvP1z+DtYXpHCKMFPd+y6r5YGJToZmeGoOmCh1WJ4EcISuMk0iRhHUSN6D/fHWi/dSNK1hYJE7WWBEU6/MF3//mu3z1P3ydbuYdCi0GHaxQe4MeTsKtuzdZ1AuSWjM+P6HVbmOSlKzdBZ15vVo8QEWkrKwFeSTOpx8I4Y3OnKCx1Zgs5jw7P2FWLJEW7ty6xV4YmiidP6hqJRjOxgw6Xc/6drG2CDYs8U9cvwJKKs4mF4hEoYwi8w541LVhNp3w7ve+iakKOhtb3Lj5BpcXM5xwfPjxD/j1v/VL3Hv4CYeHmyhVo5RhWdjQrbSrIsJFV4jVPlz/91VG77DGUNoKrX7GGJESvuZWSYKcG7JUoJXwbxZPVxd4Ow9E6NxYg1Kr3kLggfpMQ0PtanA1SqVY44NLtLN8uZW8ng1FADhiTzac4hFXetlsv3lQ1mJdjXVl0Li5BmyMlAKUahTIET/x/jwyqLf99FApAbvScmkdsp6QNfiuR6QLCMDTBPz7XpV9VwPTKrhGRvPLHJ+X6Qr+xHHUdYFCBfMxG5590tx/PNV8CWfW7FEiWC7XxjJfDeJCrCQR4GUR/rlHeU0sCzXW1cEQywUKWRlsgX2WYGzoZoXOjQuZsUBQlyHLo0QIg3MS47RX6tdluB8PEItw38aUWLxtjD+goqWJQGCwtkIrzZP7j3nvG+9ilzXzypD0OrTyhKKYk+aOzYMd9q/vc3E543JyQX9rwMWTZ2StnKKq6G1tcvcLb9MeDHBCoqVERG6akAjhCadWgnElMjpSOIdwkkoKZlXBo6Pn7O3t82Z/wGw8QUuJDutaoFFa82J2yUU5463DW2SEDnPA/ZSL2J9oDl8rHJeTSxbLBVYqNrdvIJBUpiJTCWfDI165M6CyNY+fFkiRMByekeaa3/qdX+a8GKKUoJflUNaYOtADXEmUavmud9xTsdpZlTzNgaQEUtTgfPPEmp95RiT9KLaqpDYVufYdAsJ0z0g3j5fPAAIzOeIUeMBaSEldRQV80KeF07WqqitlDayXZCEQYfG1hGsyjfXofBVoXj2ILMuwzk/owEU3gJWwsyzLRu8GoPWaKl4Gzx3jM4ooNEUEKcMaJuaca0q5iAnFDClmPT6Yqs9ke80H06jGr97X1VE4q4Xwsp2sz4QskduD8Jov51YlXqQ7xAVlA/AdGw3xfV3Fz66C5z5oxqkhdXB4XAH4K6xLN77jEVP068aF0lh4GoL0wGr8HkcOIkFqHUaXVyi1OopAfKEAAQAASURBVKyk9NhilIr4kn8lx8lUQjUt+eN/8wdcHJ+RaEm33ULgWMxmdHttT8uwcHFyhtSCLFGI+ZLaGqbjCds7O1w8e87x8RFvvvNFbr/2OnW9DM8Q/GSPCiEUxIZOXAtSsHA1T148Z3h+yVuvvs6g7cmCw6qg1e0SaSYOi1Gas8tLBu0OvbyNK2PGChGLi0RiEUq1CsvzyZRSaJSRbG9sYquap/fvs5gOuXt7m8k84fj5lC//wi/yox98yo1rO2zvb6MSw4unz7m5dwDOej2E8ymY5+GF5krMhtaCj1/LKwjG/7skz9sIp/wYreyzYPePuz5/RqRWwlalvMjU4QORf1MxVTesuAMW4wc2hLceNEBrpVCMss0b0rrJbNbb26vWeZxNFUsaE3Cbqxsn/vs6yO6BzqBWd4TS6ipo61vXATeyBC6T9z72IG3Uo/lukD+VK1bq/5iqWyJ50uMmKwKjX7wrce+6nWbMrOKmBRog+OWvxXuMjOJYtkXRr38MYX69JACdK15QXdeNuZtvJPhy02d5ND9/HWtbf8bOmSYDjCPBY3PC32f4HhFpDGtsb2eaTtxVgD6WsQl1XXnBqJNB3OuxrHVCZ8S5irpofk6UJghhUVbx0Y/ucfH8HFlBt9v2B6iDQb9DXVe08gxTlbg6aOaExS0kG1sbCKUw8wUtBNIYPn33XXqdNtvXr+PnvIpAHUkDOO6PY+vA4Di/uGBSL5kVC95+8w0GaYsEKAO3qXF0wL9+uJgxW865tn8bqnrt+dF0GhFeMWCdb81czCacz2bUFVzvDdB1xccfvsdiMqaVSj795Ie0ugMuTucc3ioQLJlOznhxesTdL72FwjHodhDR7UJ6/zH/yyJHTzW2xi9f63sOB856nLDdaZFmny/EfL68CYjDAn34k6Fj4QGg2EUARZze8GN/RAgMaZZeKTfiTTSzpZqW8brNaQBPpWhOiGixGluY8fXrDOfmRq+Q+PyCVWvTYmPZkyRJAG69x7IfO+QBZB+MCOVVPAliVkXzOhfGCYnwofrWuLdLFcJ/mOt403r2EDU661lPxInWn0f8E1v1zrlmiKN//SqIFGUZP4ArFijx3v3BIpu/W2FcK2/s9ZKt+b2hRDWm8vfI6n7Wsz25tiZWnTJ8py4EbP9s6/CcYydEeoBWKJDaUwLWDpz4fr3D42ogg+8UWpQULMYz/uOffZ3EaHp5B5xvZ0ssaaLJs4R2K6HXybHFAruco6xhe3ODxXTKbDJhdHlBJmC33SKpa148ekixnOEtRB06iZlDsM4VgrIqGU0nZJ02SgjuHhwwyHOkcBj8WqhNGYK3PyStcxxdniMTTS/1U11Z45BFMXZsfEghQAnOJyPA0dUJd3a2ef7gY1Jd0G5b5rMLBv1NFnPDYGuXk6MTDnb62KpgZ/8aL84vONzapqW0R74kWCzlsvIJRTjMaETCV/f2OvQBNJ3phvJyhYH0n74+dyASTVdMUlWW5aLwaZpbpfEulDvrAYC1dK4pl4TnYpi6Dq+H2ImxzjQPvqor//2hvJBKoGQk0vmTPWJKPhisZAXx76+0iPG+v16pDzb43Thn/BywsCkgcIfCaRdTTiGjwDI2flansnOuwVHE2mNdN7C31neaolo+ZoT+2djG+3n9WUFcgC//exBShvdCAMats6ER4AHoe/ceMJvOmuzo5eDMGlYlhWwCm//ZvuNnbSh3gGa8jjXIANymSeK7bdKLT70HTeAw4YK9sF1jlvuydh0PEyJ0NYTnJ+EMSscOomkySokPsjZkFPG9+3/xnlmNzKAo+c43vsP4YkxdVWRZEmMHnXaHXrdDt9dGCsdkPCJJNUmq2d7ZYjQdY3FMZxM67RblcokpKnb6G5y9OObRg0/9PYYMLFJSSmM4u7hkOp3T6/WYl0s6Wc5Op48wof0ufMkWmx5K+XtcUnM5GbK/vU2C9yUSIcuUygu2pVSehBtohvOqYlaWFMWcHEcv0Vzb3yJLDYO+o9vrcHQ6pbIpv/ALX2GxGJIlmr2Da+zeuMaiKun1upjQ2StNjZF+LcU1utLKfVZv+HLXzDpLuVhSVxXLRYGtfsbm+c55iwtfamnftqwFIlFeohHKFIF6+Rv9Eg6vsdaTFfNWjlTCY0/WoVQ8WT3giSBgGpGDEmZlSW8tawKfwmcAKz/oeEVRafwT29y1saSBBWtdtFFdvQ7rLUdssLMQeB6MkGHiBr4c9CxumlE0/nfGTDGWOwYlY5anQ3aRIKwJjG6FFMrP55LO4zNyXfHvmd9ltWyyIs9+jizvgEMEXnocw1waS7EwPH70DKUUG5s7ATetwa3KoKutfqiqFYn0ZYGsP3wdPlUP2XEoQ+OseK01Wvtn7Jyhrg1VVQOKLE1Dc0CQpAkiuG+uZ7yxxEMQng9gaqQM5Y5hzdwsZj4BILVQuqBFRCBryb33P+L733iX8fkIrSBva6rCT6LpdNosywV1vURpSafT8h7lUnA2HPoAJSWddtuPztKasnYUizlJnqAtuLrG6MTjWVqzWJbMigVZq0O73WFeLJmMxty9cb3BdOq6JpGJNwNMUnA22GzAyWKCw3HYGUBdYaRsBLJY3w2tjQkJQEntJI9PLyhRdFstDje2UMBwMvE4WrUg6wzY6W5x8+ZdPvn4++TZlOmijep0mUwukQrvY21A1A4tdbD0CfCL88MkrLPIl7DYsMEbTFAIz9cSxlCXFTJLGy/4n3T9FKUZENL+JEnIW95L14TfJKTvKq2XUWEVr+rKUGtqnTRM2HUOij81VzPKIo4RsZGqqpq/X38gjYZnLWLHU1YpdaW0iWOdXwZfY+cr3quv/wN3ppFcxC4aIbOxVzZu/FlFsSRac1hbXwGdG2wH8VKWEPVj/hnElnssuZrXhuysqnzW4ReCwFndtLDvf/qc46MJ52cjXn3lDcrS8vjRU06OTxty5Pqzj88tPqtYrgkRp6D6Z1Hbymc7QRrgDxZ75bnHABpL5iRJyPMEqUBrgU4E1lZYa8I9rEr2K8stlIdxwGYjfZH+YFovMZ3zhvdKCjQaWSl+9N0P+ZPf+xNOH5yQOUVHa8r5hI2NNkni7Utm0xmdbptuLyPLJULU6BRarQRTVXQ7HRKtOTk6Yz6bc358hikMedJiMZlTLJeAx3nG4xHL5ZzNbpdO3qYyNU+fPuXVazfIxQoqiN5OdVWSJYlnsQtJgeDk5JTNfi+QSX2pW5QLPNPeZ4pSCZQyLIoxF+Mzzi5OMLaiZR1uOuJH3/8Gj+/do5w70Nf44YfP2T845OLiBWli2O4l1NWMytWcXZ4x6HbIjNepOevQUpHrhI2NwZVGjx/qyGc+o898dsLjwFVdsyzL5jP+SddPYYzmpf2mqinDyRYBbCIAjGyCzjp+gQ0Cu7Dxq6oizdKw2DyYbd3VNr0HaFcYjjGWJFkBuS/P9IqlzzrJ8eX5YxF7uYJfNCDpKptq7BrE6oNYdb3iXLXV369TDMCRZWlIa/E4ilgNmoslYojs/mcIR20cQq7wK+dWwPe6rUfMgbRWVHVNohOES1Aqx7g5zhqWC0ddLfj5n/9ljo/PmM3G7O7toFU0Rvfz0F/OiuIzigRHBNSmDBmXd4P0IOZKNxfpSR4sr8I08sD4ZeXvtLI98WvFH0grTDAKQ9cPmVXp6prs1a+Pl+UmgMiYz2ouT044ffiUH/7H93n+6RNSlZGrhF4nwdQLympGXTvqKuHg8BqL5ZBWO6UoCtJUsbe3y2g4pNcZMB4Omc1m7Gxvcn5+Tq+3jahhcjEi6WeMhyOSdoeLiwtarY7vFgkAw/HRc165c5NMCrDWExHXKRfWO0PWlcVIyczWlGXB4a073ggwlLVp6r2srKtxwfzv6PgBVTHmbFkjsg6z5Yg7/R79RNDfb/Pg0SUPHh1zMnrKL/7iL+LsEsmMa3s9ylnBycmE4fw5otth/9YNtAnk01D+4a7O6PP+1xGDW13xs4nrJ3LhgnMIOkvCIISffP0UXTOJcSstU9x8/ynwqgEnbRAAvoSHxNZxXEjriw9iRuOZus45yrJs8KCXGcnrgWBdwe/cVUX8ui/0unTi5ajux+GsgFUPkseH7vkrni8hmwDY8IgCpiXXnoE1VwFpX2o6P8bbBdKju5pZ+PHP7oqMwl8WqP00CqmxRnFyOuQ73/kBuzub7B0c8MnH96hrx7Onj3jjzddQKmV4OUZrS10nDAaDJhivg+JXul2sMic/m8z61rypG9AUFyws5BoLXoXgFkHOkB01OBCi6XytL/bVva9LgvyBZ6NlijAoKagq73vUZN9Izk6XPLz/lEcf/YDl8THT0yFpomllGUnqjdqUkiRCkGUpWiXMZlOyPEGQ0Ou2AcvZ6ZC6KrHFBVIqlrM5iVRkOmM2mpK1YOfWNcYXI7bLivF4yObWFgQXByvh4uKSXOuGH+SPHdGsE2MMzlhSpf3XheLJyTGtvEU7z9A1fsCo9Bm1hwH8mlnMZlycn9Pv56StlOXM4JymWAgePH9Bvw37t17nk48veOudPbZ2+rx4/gmJW9Lb2aDbGpCklsm45Ob+IYOs5VnbSlJJD67MigW5ajX7tTk3iRjsOoa5upoKxQVKR1U17gw/6frcpVmYVuJLG2OonQCpV+Dt2pu5mqrFr/s7ErhGuBm/Hl3/1wezKaUamoDPMjKUUsFQLdpRBJJXCDQ6ESTJuug0uOEFOw+tAwXBEcBV1fx83+3yZZENwHHMaBBxpFFocUvlDcBwn7lfIVdgbNyA8f2sl0FCELAwg5Qu3Jd/Hr40Mw1HRQhHbQqsjWzoAqUkdQVf+7Ov80f/+vfY6+f84b/+t/zln/wFr9+9yS986XVePHnI++++h6stJ49ekBrF5mAPnfZwpAHcX602Zw0Sh7M11lT++QjVuKl4MNx4vRQhLCvP/bEYkB6MDSYYSOGxHaUkSnsbFeuCNbByCBn0eyIC+oY4BNMLnyuc8zidd9uUwefHM6mFdlhpeX58yXe+8yO+8bVvMDu/JEWwmE1ot3M2Bn2qsmQ6XVAsLVma4VxNkgoWiym9bsdnLMYwm0ypy5pUpyzLJRbL3v4+KknxpFSfPV+en5MmKYvFnI3Nvu/YaYnFUVRL5ssF+3t7aBEqBOnCZ+epHlJBliuS1HdUS2M4uzxnZ9BHWU+4tdQIvOVLbWqM8YMkZ4s5i6WjdC2eX86QaYt+2qGYG4pas7H7Gosqo7e5zfVbe7x4cZ+tQQstE7777Y8oqjbzUlIbRxKImQsco2rJJ08e8uG9j5kvFle4S6srHvx+Y0up1hoc4bXCm/1LKf3W+XH9/h9zff7SLPzgulyQpCmVLSlrRx4mpMY36d/g2saMJ6CIMhAbuoEShG3eZvTlgc+KLeO/e2zGa7WyLFsTXFp0IjFm6VvjYTxRaCoR7UCsqUKZ5EtBZysv4VBxBHLQRrlVG9oETpPWkqqqEUIHPyTZTGON7Ga/meM003UxK+F3rgiOUnmeS5xy4ONVZKOvvHV88It+1J4blChFVQs++tEj/uqrf8H//h/+fS7PRoyOT/hgtCBTgsFGl51Bn+/+1ddJRxPaiynvv/8DzN/6WzwZDUkSzZe+9Bo69Y2CyBh3Nrw/7V0AvM2Lny/v437I7oRsGhTGrmbQydBWjhIO5+pgqSIbANSYGhU6fZElLJWirlfPzP9TBTa8Ayfw/mYORO0NxaxhOit48viY97//XdquYHdrgx988wMwChLLsDpDy9C6x9Bt95iOn5PnXdI0ZzYdsb+7jRSCbivlcjjE2pruoE+WtxiPpqgkwwlLkiVkrYx+v8dwPkPPJzhhqC3URpDojMlozO7WVjDux5vhK7DSBuvfwGzXAlsbrDBMi4I81Rxs9tHB21oGSCEa96nwfKbTKSWakRHMkwRbTHnj+l1yJ3Bmj7PTM6bjET/3pS8gEonEMh1NGF/O6Pb2eO/9+zxfLOhe26e/v8FFveT5sxPmyzlbmxvsHRwwvZgyGU9Dg6NJh9auIHOxV78WoQMLwWfe8dKL/pPX5x85TWTt+llQBCMxxI+PeFfR9ZD6A+Dbq8ZUiDgyxq38nGEFVMZya50jtGJBF+G1osFRGjKhjE6KPqA1pZzxlqK1MYHvQWNXsf66lW7MNkxr394MZEThyYFeBnTVjF5EspldgfBSeW6RDyZV+HkrR8hVieQaDGxVOvksLo4vMtZiHFTGIXSGkwnf+s57fOMb7/PwyRmIIR/ee4ATNb/+67/KV955i9nze9TDC+7cucu//sf/X373f/sPuJzM+f3f+zN+53d/i+4AXCQbIkEkOFuhtfd3rm1kaldNa9w1p2PU2lUkifaHTSDqGVM3gw4j4Nqk9y5yxXyHDFejdYpzq7lzsYzTjUWuL2Etfhy5MCmPP37O1/79n1NNLtF5AvMWrgCtElqtlLqukMJSVDP293Y5Pz8nz3NarRbL5Zw8zyjrCmMM3W4Xi6Odt/EdC83GYJvReEZRVChpERqOT17AZts7EEoRrFN0wJkS8jwNinevuVq3nlnhoH6tGCm4HI3pt7roIAmKB1GzrlxsCkgODg/Yu3OX9x4+xIoEV1b0O13q0TllsaCllri04sHH79IZXEPYlEePH3P9YB+ZJCw0vPXWqzy4vODjJ4/p5xk3tnZ4rXcd5byw9qKuGxxubUOvupwB3+SlNRDXf6wU1ln7P+n63KVZExBCyeQBtAhSu9BUEz82LtlQojgCyEsgwtmaNNVN6q50IMVhQKz0WPLlgBK4RkoJlBIh7RVhGKNqunvrHak4pTRmK553c3UETeyExfIpdqq8p5DfMH5D2VDG+c6V74z50s2r6+P4IR986tqn1ZHA93LLep1UGGeHrxMzGw6UUlSV5cXxkOFozng45vq1PT799CMePXmAocC6BcIWZMry4tl93vjCHb78m79M+84NplLwD/7eX2evI+iJig2t+aN/+e+4//5jqHLKWcIf/Ju/4s/+4BuMTwukDfasUlCZAkQgHgZej+8m+nTcW2HUWGcwtvLgso7tXy9M9qWmufIM4gG1GlqwIlquzN0CU5yVS4AfgaH49L371Jcjbm50ePXwgMVwgrSKVt5lPqupK0mic0ztmE1nzeauQ/Axxot4hZTMFgvKugqNE8VivuD09IzxaIS1hjT1QH2rlXFwuE+n3aKua6LV8Pn5Bf1+rynpnbNoHct/mgMTwvZUUEnL+eUZ13Z3YY1hv04AlUo1ayDPc5a14WI+p6prbmxucPHsPsPTh5j5CU8f/oi9nRa9bsbl+SW7+zdobRyQb2+T7/bQN3d4vhjhgBubu3z5zmtc29ogdYZU+m7s42fPmoM1Hjoh5Ly0v0WTiFylzijSJCHLUjqdzn8+sITrp/IjUkohnKaMbGT/F2tg1mcvF8oV1wwC1CHl84GmrkuUTJtNHRerlDIEDXml8+UJJTZ0mupQHvmHIoOAE1c3G/kqeO65QM5ahErABR9hsQLA43jnVdcP4gjlaLzmn0UUiIaggveTrutAhw/Wr0J44Nn/qNhZWxmNrYO0L7OmvSd30pR0RVEwm1fMFoZqNOT9d3/A3/7tXyFPfp6y/Ge89/33UWhSpbl17QbdVs6/+xf/hl/+pZ/nzV/+a4iy4t6jpySnI775l9+infdBK/706SNePHnBg0fHfPWPv0q/3eE//N6f8l/+nd/hN377F9DtiiQRq3sN+JsMvC4TArZfHxahZbif4ESAI85/c86D3FL5kzUawjnrSa6xu7aaxmua9SKlt331cgqLKyWfvv8JgyRhp9/B1RX37z9g//ptLoYTqqqi3+ugE+l90euCdruFMRXj8YQ01XR7PZbVEmssnV6X3mDAZDrm4HAfpSWz+YRuN0OrLsPLId28CzjG4yHb8prPXA0MRyO2tmNJ5tcY1vPqLNELfTUrLlECIyomxQInDS0lUKyvh1VVEP+9qmqOj095Pl0glCSxjsNORrKYkPYkaSIRd3cR0jBfLtk9vEEpBNt3Xufe8SPSruCyqknSLvsbG7x57SZZXSJMRaUFS1tz79FDbl6/CQvV0HFkE/0/C1B/llfk+X9xvl9RFJ8rvvwU5vk+DzC2DmVPgnUShCKKXf0AxZi2xfJQIsMQOAN+sQmv9I6dD2NCuz5kMVJGlm/82Ss2tRQCguGSEpE0qLy3bmPmFUqDRmUeJr7WtgHA67pqMhET5n9JIUkTD2ZGhrVz0T0yBhFBXXv5QJSbAGgXumkCcB4fWLGt4yaOGaHfvGLNutU/vxhwfcmXJJKqLj1j2cFyWTCfz+n1e4wuxlTlnNl4yMV8SDvr8tYrb/LFd97k3e++xyDpsJG0ELLFp+9+wJOP7lFXlkVZ4KxAWUvWclR1QSpS/vRf/1sePznmzuEtcp2Q93r8h9//E370yQf8d//X/x3WlWAIzHePj/n5chKBC6OhVxhYU5bK4GKIxZrak+WUCuWYdzbwoUrgXBU8ozzQzRqNwJfrNQI8i9kR1mLFcl4h3SaXl2OyPMfUJVIYuj1Nr58iRE2300EIwXJZYWzN3vYWy3KJcZZBf6tpoORZB60zhsMJUmuyVpvlsuByNCaRKe2sxXA+5vWbb3B47dCPrHYAliQBKXy2paX2OGAYc6SEINIelFJUZkmtJKPxnOt7B2SZ8rPgEo0zHjyP5ag1gmKx4OmD+ww2+zixpKgtW52cTJRs9TucHF/Q293AmRky6SPbKVs39plUgpPnJ4yFZFO2+dLtQz5++ICNQY6wFUo6KlNTScGz4xN2tzfRpExmPqt3a8FntVYdopFuxHI7wgze472uKqT4fHPvfZT4nJdr2LIFtTXMlyXLws8fF1L4IXpNL8UHHO8v7bsNAi+Ec04g/Hwf77trPLispH9NlubIMHwxjtBZkf2C3iuUdzgPiDlbk2pFojRaKrQkPKiVbMMPO7R+Q4kapR1K+0DhAvFBNBmVRSuBFA6tBLiVP3ZdR76U981xxqLCMAAP1Do/eim8NyU8yC8ROGNJlMdRpHI4V2NMiTfSX402QngA2VF7+r8QOKfIsi5lWXJ09JAbtw7ZPdji3sMnLCrFvU/vI6qS3/i1d/jv/2//B1pdhVaGXivh+u42u5ubnkDnJO1E0eu1MK6irmuOnx+ja7izf0AuoJMmLOcTVOJ48OSBL7dq/5y01H6TiUBgxU/K0FKhRBQfiyZoG2ORKLRUSAGJVggXx09B1Fx4E3wPRGsdMiZpIHC6VhkjIVAJSGp2bm5xePMG82nJ0ycvcBbK5RKN4fatazgq2p2cTq+LzlKkVuzsbCKlpdtvk7VyLs4umI4mTIZjqqKiLgzOptQFjIYTEq3RwUNrNLxksN0n66YYDDWORVHT723hjKacWUSdgcmQZAGn9FADwq7KVaWo0VycTTnY2PVYkoyk3arpoOJqnHA8ffyQ29e3mIyOOJ2eYaWl3elQS8mT4QKzcZML0cENdpgojd7b5ZOzId9+8CkPLl+wsb/L7duv4aygcoa816YWjkJIiiTlcjqnWJTsbmziypqqLJsJHBHTWpU9rvmzXkJCID76vIMszVYk4Z9w/RTm+X4hKO07GVFnJJpMYe19rl2rzlEwCBOCYlnQaq0JWYMo0tgqsHtFSMXXPHbdikoeU9bI3YnSEQ9mRp7TVTuQGLFfJkJ63CNYuUb1sVi9dxdAujiN1E809ZmPB7B9F2iFaax+9vqAw/ieIxCN4Erp2LgICF8K1vUqm5NSYKzgo48+otVu8XNf/gL37j3mr/0Xv8H/8P/+//Ho009YTia89eYrfOvP/pS/+ff+Ln/nH/xt/u0//Rd0uzssFjPQGutKtBYeTA3ZaC/PEDIFKTk5OQcpqISgkoJ5PePv/S//DolSmEoEUS+sKP0rYqcJoKrP/sLY64aY6cF9h/MWTUS/JheywNXzuwr8ixCE18prAQ5DZWtIM37hr32Fb/zeV5kfnaNVQlUXaA3dbg/vCSTBeWuK8eSEPM/JswxTL5nNZiyKgkG3zXw2x1hLN8vRqsVssiRv5WRhckh7a0BlLJ1ei71Xr9Hf7uE06DSnXkguj0p+/3/+9zy6d5+tnR3+1n/9u7zxhZvoJJARI0Uk4E8GQVU7siQh1Qppa4SpQXizs7ge6iRhvqxI+22ej4cUnT5FMSHTLRaLgk8vRxTTOUnawThDJS0LM2ZejdCqjcOSa7g8fsz4xUPmRtPeHPDg6JhRNiHPc1Se8Oz5MV96420cGssMY8qrM8lEtPZ5iUXvuLK+42uzNGtKu89zfe5ApOPsLumFpnW18HwSa71V50u/1HcTROiihE5bWEjrJY1n5zospuHgeOZ0gmgSQ89fiQLNCCRHHKeuqwaziS3iql6Z1MeARwStw9cam1SxCphKKUy9Mo73LwbCqYyQDf/GkxqDxst6TRWsSpIViS8Gm6ukxRiUGiU+JRFX8l+PWBM8enSf7e0++/v7zKZjslxSmwVbe9u8+63v8+bBNbL5grZu8+L+E66//hpvfuUdnn98j0wpOu0M4wxbm5uY2nF6ekFZVLTaHZbLJRfDIaiEtN/mfDFm9841/k//7X/Lxm4XJUAo5adT4Dt4WZYCLgh1V37VMajEE3O9LHU2eElF6UwIZHEyreClTo1YrZFmbYkAeAuvdTu8tkerlVPpFq08w2UpSjh0Ijg/u6SqDdPpkro+oSiX9A4GzOZTyuWMjd0tnBAkiWZza8BisaCqllxeXNDvbrBYzDk5OWGwMaDT6TCZTMg2WhTSoVo5wilmZ0v++T/5fY7vn1NNl5il4Wh0yv/4T/4Z/+j//A+5fXfTP4M1LKWua1yScjm6YGtjA2UNCocTEisldYCHawfHl1NOLy4xywmXo0suTIJrd2gXNZQLOh3F9a0bMBuTDvaY6Q4/vP8EJSx397e5ubvN0cNPuba/w2Q+49OZZDybcXh4g8VszvOLM6amxJU16sE9BnmPlIROp73KK8Qq2KxjQj+OhAxgasN8PidJW1esa/6z8eVzvYoVeu9LCUkaujsRxIob/Qq5zz//BjNY8RIieBzAMK08kU6Y8HsC0U768s2GzosQvtQx9uoM9iYwSKjrygPGyk98iJmQUiqcNFe7YnFSRsxmyrJGy3XXQdXoyHz247lP1oEUnjMUT3evT1tZu64D0esM5rLyBmwRvPT4hEHp8BzDPChP4vPvf2d3g26vgxKO588uObx+wONHz/nCF9/mz//9V9nIE+zlMbne48mnn+L6KfNiwXg6Zbe/AUCSSo6Pj0iSjI2NAbNp4ReXsZ6OoQVCK37tt3+F3/n7v0XWcwixxNVpsFZ1obPnLVBXgTxynIIhnPPOnH4Ao/F4DwYpA4XBBMsUSbi/MFmEleC3YauzYmHHQybVGmMkZQVf+8O/4OTxKW5hfZksa7qdlLousC6llXewzjAaTdjb3+P05BRNxbXDXabzOVvbOywXM5ZFwbXDa5RlSavdYzge0esPeGVjiydPnlOWc4TSXE4XJEXFK/0NRpdL/sO/+lM++PoPUKXk2s4Wc2cYzhf0r/fY3h2ArgI2FvlR0rPlEVwOR7x66xbSWYSzVEKztILj0QUXoyHzyZRUJHTyhF47ZXfvVb73dMRkWbDV0WSzS968c53pcMplPaes23z48CmtrM0vvfUKG1lGWtVMFyX2YsJiNma2dOwOtnnr4BCc43g+4uMHD7hx4xb1omQ8vuTyfMQrW680jaaoYxdrB8OPY1bHv0uzlETn1HVNq9P+2QYiIR1YD9Q6/DSCsihC8AmIIhHQWjNGdzSby2JDeq5BahAqtNGDhCK2sx2oqJ4PQS5am9pAtnPOBR2FX8xeApLgDct8mRV5S0ooTO3JelrpALiGUSzOs3ut8c04rTRSOozz3Zyq9nwh4Y1afJliPC4SeRLNiYdoRget2vcEQN6Ld7Ms8/OtQlfFl97KPx9bhMXqsLYCFAL/jPr9XkNrODjcxdQF7VZCcm0HUsfZ+Jxf/8oX2Nvc4v2LUw63d/mk+hStUsracvH4hG6/Rb/foVwazk5P2ds95OT0gmVhKStPVi0qywff/wHb13r88m/9HCiD0DXR8D8GhHWr2QiqxqEKUiiqukSIwD9yURDsJ61KLy700InA82eU8k2DsGaU1hjrDz8XXuhEyKecoSokH3znEz741geISYEWitpotBK0Wjmz6ZS9g0Mm0ymz8YTBoM9kOApYnOTFi3M2tnqMh0NSlaBVwoMHDzG2Im+1yPIWy+UCawucEKCht9FHDLp0uzscPR7x+//TH/DhNz+k5RJaScZiNqMovTTjl371y+RBSCv0ujuFdytApbjKoXXCoq6pCsuTixdcTCZkWcLhzg7Z1jaLiyGuGGOrJZVOKWYT2nmOLYfs9XJ6IsNtZHy6dJw/OuJgc5O3Xr1LpiXOOKajCVIlVKXA1W20WLDRSkmpKZzj6fPnvLp/yP6gBwOHvX7AD39030MwDkTwvvbwx6pD7vCfs9/0K4oJTpKoFK01aZ6xlpf8bAKRUpLKWtIk96ZQOA/CitglcxBkZc1/hxRTSo2THtiMpZkJPrzeOTFE2nCHIYkIkXd9CGF033OhI6Zwwn+4WicYs7JoVQ3WEAMFfvijs6EL5tvoOHsFPJdIjC3De5Kha2NQwns1mzjUTvgPIo7JWZm6h6yLKE8xDRNbCC/f8EMcq+BcqXDBvgOnVhKRWMrEsja2doUjzRTWwd7eDrOp4dW3X+feuz/in//Ve2y0Em6+/TqLaUG9KMlbCa1OiyxrURRzKluCk2z0+xwfvUCIlNlkiqsN/U6HNE2Zn075i3/3lwz6Xd74uTuYpAwTMeKMMrMmPBYhU/TrJGapvlTzYLyL9i1o6rpxlAst/cjCjq6fvtXvqQvBUUB6YF+qoEs0lqf3T/i3//TfYSYV3TQhzzKqqqDd7odBB5rxeMRiMceamvFoTLudo4RAZy2WxYLh5ZjNzZ53BECSpAmZymjlLerKd9eUTrl2fZ/lck7lDJcvTpF5j3//e3/C2bMzdns97h7e4PT0gvHSIBJH1pF85VfeQakaU3n3TiU1Zem7eVIpxosZMk25nM149uQxiU7Z3t3m5vVDlsMh5cU5k+mE+5/e49d+8YsUTvPJ5Yx2u4OrLjk82OXpg+eY/iEfn59Q14a7Oztc3+jA5ALR6zMeLTk7OWV8MWRzY4PjszFmM6XVzrHScno5ZFFVHGzvIM2Sqi5wSjGejNnb2fMBpumIO1ZDI8NuDU6mjkhy9D3uRGYI5Yeuft6R0z8VoTFiLCLUXGmW+VOxaeDHILT2PSEkrQ8KrEqP6QiimNQSWbPr9pnRSGy1wVc6pGhXEUugdWHriintH46xNcaWSBkAUunfsW8dy3Dah8AhbISymlLKWhvsDNyqmxE2pAlkRl+eRpGoaibIwspPOk3T5j0StFV+Cqjv5DnfCAwL1wt3dSpQapURxjTQC08tea4xGBZW8ayEjycLdl+9Q9pKOD17TreX0e9nDDYzpHTkWRuQXF5OSJMWztQk0jLo5rRSiauX5EpTjpd876++y3K4QDrZDDdoyKHNZ+zb1RHzifcfg5EX0AZrk8aRAITy839NGBZvcYEwurIPIZS+QtQIWVLVC5yrKSc13/vatxk/vyQTKVmao3VKnrcoipKyqJhMpkwnYzY3BqSZtyLZ2OxTm4Ik9V7Ted4iy3Im0wlSSdqdHt3+lh/k6ByLxYK6rrm8uGBZVLQ7mwxPhjz8wUd0a8krB3vcur5FmvkuX7uTsLnT4/br12j3NcgCqWLpKlA6wwiFUwlHlxc8Pznm6PlTXrlxjS+8cpudVkJWLzi69yGiXJBphZKS07MzJouS2bLCCB8wu71Nenff5Nun55RW8MXrB4jJJfVszpMHT8AIzp8/Y6vXpt9NOL14yt03blBWJXnaprRw/9F9buxsIV3tA4pUnJ9fIp1aZT4NME2EOv0uX4Md4tp3ztsCVXUVOsNXPc7/c9fnDkQNyBs3Y9SDyTC5I+I9cjVvzN+AC90UuX4fVHXpRZ+enRRsHnzHxWu9/J/YGVvvpqzjQ+t4T/y9KpjEx7n2UCOVxdgSF8iOzvpSTcqUZjS2BDABZ4p+wTHTWVEBPK3HDxFUEoQM87iCW4DXwMUxyKuR0usWsKAaf+hoTRsDowslMNAwmeu69Ho6W1PXwY9aWJJU8M7br6MwOGUY7Ax49dXbHD9/wXQ6YzDo02rnSOXQiWQ2WzC8nDC8HDOZzJhOZ7TaOc5ZOp2WN6srS6rxnPs/+JQP3/0YU0bMKgwRDL5FvhsURixjsK6iwQuhCeAylJvKV6DN80N5HNAK40We0uHnGhhqU+ACH0tIv+YSnSFcyte/+m0+efdTeqpDr9VDpxlFUVEUNVVVY6yj1+uzsTnAOcvW1gYbm33AsL09wLoS5zyzejKeUVeG5aJiPBwzGU0oliWj0cgzxa0lz3M2tnY5P53glhZmNX2VU43HiGpJXZSUVc18seDk4oSDm7s4VXnynQNHiVAFVjiWleLThxe8eH7CV958k1f39qkvhnz63e8zGw6ZjC7o9VoUdcF4MefgcJednR1qJxgXFUamJJu3eDpz/OjJE9ra8XP722ygKMY10mbUZUK5FPTbKbPJGdvbKV/60l2cmPnNJxRPjo+w0nFzewtpK38QSMVkMmdva6fhfxEy1OiNdbWZ4COCL1/8ZyTDwb1YLFjMF5/bj+hzB6LIeFVKoZOENFhtROc5uFqaxOCh9MrAaj1oJIkXn8oolpQRlPZtTq1j52Vd4vHZ7lwMRtH8bBWpV9mMTiRCeHwlikc9tqEgjqdpyklLkuqV8DSIN2UQfPpNUoX/tn4CBCsjMFP70i+OUYocjDidJOq5BBlCZEiRYu26LsdnalKq4MDo711pX+b57EgF/EWRJIJer0O33SaVhv/qb/11XGX54z/4c5xRTCdLTk/PiRa2k/Gc8/NLrHVMJwtqA1ZoZNbCCI1IcnrdDhutNplL+P433uP0xRCt0uDnLdYOgVDehj/Rjzt+ZrH7JyRBPW5CgPbCTj9vwXnT02Yaig3SHYlSwtvMGouzElNrfvj+Q773zR9QTCraus1kNGU8nYfyTtHrDRBIlsuCxWKGVDCdjjk7O2G5nLNYzuh2c2pTMplMWC5rlMzJ0jZ7u/sIYD6fUpQled5iNptRVjXOal48uyBTLZaTBbPhhM1en83eBqZ2zGdeO2mRJO22J21aAVZja0lVCy4uxzx59oLe5iZbm306ueKTH/6Q5XiKsIIXT55xeXrOxemQ4XAKIqPd6dBqt5gXFdNFybI0nF0s+ODpIw73+ryztcni+XPaWUqSKGrr0KnPJlv5gNmkRLqE+XTB+dkl1nkY4+jinIPDfdpKIJ2fcGGcYDqd0+/2A3wRAepY2VzNbnx264iOmXG4QZqm6EST5VmD2f7E+PK5XoUHlB2Wqq4wxlFWseUe6kaBPwFEXJircUNOWIQ1CGM9WGct/n81tSn9fLQwwzwiS0VZomTStISjNWx0Y4xByAZ1dm1rjDPUtqa2xnMqjMEJQW0ciASVZJioE6sLrF1izBIXG6aOsHh8uamkQyvP8pXKD+Rz+FZ2VVs8Q0BTW7BOUltfcgitcEj/OlODBJVoX00LqK2lNIbKOKyTCBIkXrbgg5VtgO6oXva3HDqHOhr6+0z1rS+8SZprulmbzXyLP/vDr7GYl+xsb1NVNXVpef70nKIQTOdLiqKg3crxZ4RBCIMzNZPxFKxiPJwgXY0t5hw9fM5f/tFfcHp0Qlks8eTOCkdBBdQkmDqhXCaUyxwrEioHTmhfjiiBq2u08qN2YgZMYMYr6YmhkjBFlVDGhyaHkUsMlqoQHN8/5z/8sz/m8uEIUcGympJkkkRr8jwlSz1Y3et1aOUpSmqqsqLTbrG7s02iJYeHO3R6LW6/dof+3hZnswnn04LRdMGL50eU5ZLFokCSMpks6PZ6SA2L5ZjFbEKSSLIs9SVOq8Pp+ZhnR2egElCarNfj+vUbBB4qBY5xAY+fnaGV4M7tfdptSTtPmVxOSdI2KMXl8JJcggiZ+P7hDfavXSfLEyazOWfDEa1+m6Kaw2LK3c0tNp1FzOcgM86HzxFqzpOj+xzc2AMluPf4mEfPz1ksLGZhyWXOoqp4OrpkNPOZD67G2AKM4Xw8wmUa2dj9gscAY1fINdiqC3AKBAkIAlyIA8rvyWjt+3mun0JrFpz2lITKg8jWmsCoXntd2Gw+UqxqTEJmYVwoP0N7N+wvPO6RIFUYsxIGIAINZuT/c6XCXycDioAHKb2yT6jrGoTErHVqjLVooRAKlHTeA1goD6iHeebWGLTyTGBTVzhR+QmfQgZYThDnqjlEA5I753Aydts8R0hpL5S0gf5grfXBSkG0G2m6DjLybPxMtSoox5WSa5wj7wTQMNal4MbNXf7u3/tNPvz2h3zra3/O4eEOmeixNeixWM4pjGNe+DbsuFjiUknlSlrtNtaUtLKEpa2oSkM0UTdU9HptLqdL5mdTPvzeh3zl175MnrZ94KUGlXF6NOSr/+6PUUaik5Sk3+UXfu2X6HQSuj0BlJ43Ft5rbeoAXMdJuTZ0SxVO+mNCSd8YiJ/3fFbw6fcf8Oi9J1w+OGUj6aNSh1COxWJOKjVRFJumimI5p91pofOMbrfNdDrCSsvW9ibtbovB1gajRcH1N97iHZfyZ3/0VUbTOdv9LpaSwaDP9HJGohO0Ttjc3mQynbG70yZX4JRmZ+eAeVkzKy3LsmZpDNZUFE7z9OkLbr++SdoTnI9GFAUcHOzRySS1FcynSzp5izxVHJ29YDxMkcJx4/p1jo+PmEznfHFnh3lR8vTonK29A1r715lfXJKplNe2t2mVY6rJGWWnz3S5gKFh/2CbvLdN2ulQ1PDmF7/o5TAqwVaG+XyJzjMePn/Kq4fXaClJbUqk9Ov/5PyCdncDCBl82NFemByz3gheQ1TYO9bpOBaDRYhk1VX7HNdPwSPy2i8pHE57AFKtIeIxGAm8LkrE/lZYTNHZMLZ4fYQNALHxAlpn/YQDjydoQAaOTvgNznedhIzTWb0bgJSy4bVwxcrVb/Y498s6P40UuzIui6ZpLrTvvVjPYmzkJglsYJBHvL2RYjQlGYHQSAjQ0Rp15UoYhZyNylz44ClFFNqu4Wr4gOlL1xWfyf98iJ0LP35HoxPHf/HXf4mLJ8+pRwW5dshMY6oFUgnagwFHw2Na7Zzf/Du/w7e+/jWGwymqKNjf3mUyHtPrbdDv5SyXJYuiQiUahKSddnhx7xnTxRRhNW9/6YtUWCbzGd3+Bv/TP/4XHHT7tJVA1TXD6QX/+n/4PQ5uHfDzv/YFrt3ZQklf/OIcWuKnp2hLHYTBMtH++ckqcIY0USJ0frTgG1/9Jo9++IjR0yHaaAq7QGuJRrC5ucl0OqHTaaOEoyiWnownQSSScbmgMAU3r11DJ5KirrkYT7BKsywrbt25zW//7t/gr/7ozxBSkypBWc1pdRO6vT6T0QRhJccnJ+xu9rCVYTqbczHxXbLHz8/YHGz5aRVpQi1hc3ufLOtyeXFMnrTZ3eyiZB2mmUiW8zn9jS5Q8s6Xv8DOYBOzKDh/cQxGURa+69fv5/QOXuHZbMnTYo7TKa9s7bBRVyynQwbdjNrM6Ha9Pm1za49P7j/ljS/uUZgSKwydjR7TYsFyvmBYGPSgSyYEt3a3PBaIIdE5hZNMJlNuHNwiKQST0N1cFWYvx4PY4FmXgTjiCPE0y5rxVp/n+vyByEqkUNTGT3pV0Zs48oUijYC1dn6D8WifeguLFDpwegR1ZZFaI6UXpK77tdS1PznruiZPUo+XCNCJDzYymgMR2bze8a+u64bPswoWqwdnjJ9mqZTy0xmUTyd9BysKZEOXKOiglJIgFbau8VHfP5Po/iiIXCflg6hUlFXZqNPXJxk0zFQRfbljmz8OF1zZ73obkvWprDEVVt5Yy3rwuyoKOpt9Dm7d4Pt//l1caWhlCWkrJev1+Wt/87d5/k//BQfX9+kNEv77//v/hWJW8//8f/y/MNaSpjlVVTGdTKlqb8KW5xkg/ez1ylJezPnmH/9HfvjNDzgfjWl3uyyXC7Y6Pawp2Tzc4uz8BCUq+k7w4uMnjC/n/I2//TdQ6ZyNjQ7tVooUniNUuQKk1x/WQXBcloZEpwirqZeOp4+P+N7XPuD+B5+yOJviFjXKKbJWgtIKqWC59J20oljQaeUgHEW5YHd3m6zfZTwZ0Wlt0B90qcqCTq+H0xqZpjiZUEtD0laMZhMOtnaQUjCdztBaMJvNuX54C2eg3+oyvhxzfn6BbOfozT571w95drpgNl+ik8SvDSU5PjnicjxgsNVHyxRHcL4MGKawNVnqO2l7uwNEWXF2fsTx0THd/gb9rR1qJTBScOEs98dDRDdHlwW3N9rc+6u/5O23XyXraJ4fv0AIy43rtzg+OkepjLKqSFNFWRu2DzbI5BZnZ0Oup31OXzyh32vRTyTSOSorKCrD6WLKslyykeeUyzlV6ceFCYFvwwsZRhutqpyIwV6NE94Vg6JAqwxjfsaBSEpFWRSBbGcoy4KqqnyWIUXTOYuwU6zIGoMkG4KVEmiVIPDkQucI7XO/iQXRtc8DskmiIHSonIuGYj5QxYkIvvvmeU3RDta6aEMhvJ2pcI1ezgF1vUoz6zBXPSoTmo6gIGQmtrkfz+IOZC8BtalJkjQEDhM4Nr68kc3k06ttTJ+dqUaWEqkDzsU5aytlc+y2rXtrWyswpR9qaEwNymGl4+d/45f56P17SBQyyTi9nGFHS2aLGf/H/+6/4fTkmExJhFuSJYo0U95fKnT2kjRBaYlEYWsf52fzGVqCmZfMlyVmXCKMwxUaWVeMhqfYdpvzo1M6mz0OdgaMxzO2kw7z0ZJ/9U/+Je/8yl1u3b3G/rUdWm2NUA5k6peEk5jaYhAcH41RTlNPDc8fnPDhex/y7N5zXFGRWNBZSqfbpaxLEu2tbotyzu7elpfaOMhSSZYqlosFF8NLNjcHJFKSOuGnNChHaUt2BtsYoVmUc6wyHN64SVFWLOcLkiRhWSzY2dzh8vycVtpiMZ0zni7Juxsw6MDuBq+88wt88+s/ZG9nk9FwyHQ6ZdHSbO0M6A7aJIlBBMcBr6W0OFfTyhWJcDgkk8szRFnR0XDtcI+lFSymY+ZKcjId88nlU5bSkFY1B50EsTznxsEOGxsblMKyLPwhrnULXOG7uMK7nzpZkndTtFQc9G7x8fMRILhz7RqJrUE46tDEOB1f0O220RhkqhqqSdwvFouKSUezr82V/ybs3bo25J0QmH/WGZEQgQNiBYtFgakMjYxEWLDeEuQq/VuskaA80GqMoawq39qWFuEU3iStRMlQHqE9Yo9vB9Zl7RnK0jOuCZmDC2xfhWpKl1gUWlMTJ2RELxusIVG6IQrKQLpK0zSYmfkBduGd4zBhcohpDNyNqVGBdCicV527MPlCKnUlqxEuZjYhkOLxqGg4H3kY1hiciOUrTeCKvt1XtWvgTeT9P30Jo3DUDPZ7/K/+0d/n6N5DPn73Y8TYUExm/PN//E957Z3XSbQCq9jc22IxWbJc1NDxnS4ZtG2LRYGhJtU5i8Kg04zd7Q0uzs5IJSRCcXiwy2KxZB5GJS2XS5CC2YszZpcTEp3i5JKs3WKnnfL0u59w9OED8o022ze2uPPGTfK0RZLk1JWhqgyPHj5hNplxeXzJiwcvmF3MqeY1ZmHQQKudk6aKLBM4qVjM5/Q6HdqZZLObkWcd5os5uIpOJ0dJ2N7sMRyPyfM+RV2BcsxnU/q7e+zs7YGQLIsFymh297d4+sEDellCVRtuXL/NYjgFC5WWDHVF/60DDm/f4eDuXTb2D/jTf/unSGFYLhdkaYZVCtVOPMfNWawp0TLxa9oJTwB2jn63hXSax/efkzhHMRtTlZ4sPF1MObh2wLQs+fjZEa42vLJ/nZPjFxxubXF5/JSdfofLyTmzGnb2rvHs4XPuf/wIkXZYYqiF14AmSiOcQVooEDwdD8lbOf1eG6lqiqryFjPCMR1POLx2gE4k46KkrAo/ehsQzqGCRCuWA6vEo4kQ/h9Okmdt4gAGPidO9LkDUVUtfTbiXCivLHW1Pud9lQ3593uV8NR0faTHdnz5E+bMO1CKRgUfvz/+XBU8hpw1DbC2Lnz1uNTKsMv7v6imi9eonhFE8aqQogl2EdPxmjKf/fkJCtETxj/6mAVFw6915ikBA/Etex9oPJ/Il3ueU+TxKoEI3tte8BknHawsY6OS35ujrXRxKzW+dXUIyt7XqTYWNGzd3Gaw3WHrcIfnn7zg23/1XTZ7W1w+OUEnmiTL+P533uPybMx2b4tEK+qqYDEvabVaJGmC1op2p8/lxQhrKi4uL2m1O4yKEQgYjoa+LFTehL2V52FwoKYsDVoLJqMRxWJBPsup7JJWv8Ppswsuji/49INP2BzskKiU+WzJeDzl+OiEfrvH88fPkEZRzWp67R6ZygFDmqVsbHQ5OX7OfFmzsbHFbDpid6eLtSVlKWnlmla7w2QyRCk4Px+zs7ePlTWLaka71WEw2KAEnJTkWcZoOASX8P3vv081X5Je26cw8PTklFQqSBWiJfjrv/t3ufbKXabzkrqwfPur3+Z7f/kdTFkzrme083ZQAHgLjXJZkiZeWhSnBXtOnGycIY+Pz/nia6/z6OKC2imUVtx483WKdotvffwxlXO88+pdnEkYS02CpN0ZoEXKo+enHN5+HVNJxsOC7UEfIxTbW9thTSSYcolIwCB4dnbGxWzCdreNliI0QnwTbG4ss9mSbqdH6QxWSKT2rGnilFe/3JskozkYWdFr/NcDF86FDtvPOiNK0xQlLeVy6Rm/OgkM4Z/AnAyb3fvOBI2Ws2GqZuQRBbyFVQDznbG4qYN2LIDW1gWFd9jgvtSpA0dHrKFTDmtKz2VyKjw0z6q2xtu+rnthR3vZVd3rqKoyMK5XhM2G2NeUSl6PZoxX4PuWpX8XUvmgGF0WfUmpvaexXlPeOx/gYnD1X5Or7ErEOfQJQkiE9ViZt+/VHlyWApdI0Ir9t2+zcX2POnV89M0fMdA9NvtdjDTs9Nuo0uIWDmEMWZ6QJi3GkymdTkZVFszshDSROOfb1XVVkSSKbrfDfLHAOUuiUirhCWuRcR+Z1+12m+XSW21UZcl0VLCoS8bnY9r9lKP5KXXly21nHZ1OjxePXoARZFlOrgXaJFTO45Gj0Qgp/LMbpDm2Lul02wglUKmi2/FKbyccd+7eBWGYz0cUdUVno0tva0B3o89kWdHpdkFLZvMF49GC9969z9HFBJ0INt+4waMH95jXjt2DTV77wpu89s5byKTDV//023zw7geYScH502Ns7bBGgVBMlwuMcnzpV3+JTicjy3JPRrVh80o/EmvVfPDd5VlZcTaZ8/Y7bzGtlxT9Dl//8FOWxvDa9R1u7m3ywcdP6LXbJLXE1Yqz8ZKyTnl+NGI2ntIf9Oj2cvLOFk+OTrkcXfLaG68jhaS2hqUQ3Ds+8l3L5QJbVVgMxvqS68VwQpK2SXTK+cUFpy+GtOSGryiiY2ykuYXLB6EfD2VHITdCECq8n3h9fj8i62u/qqzCZAuBTpIwNNGC0M27vVIXhuDhQS8/TsW62rcDhXcglE6BqNAqbW6iyaiExTQq+fpK5iJE7MRd9dL1QLeXWSSpwlkBzpu/OxEmrfoEpgku67YikcvjcI39iYzeR27luxKzPM+d8gFTEAl/4b6BxiHSmhXBS8QxQVXDCI8m68bUKB1taq+OI6prn3H4ABQ5HqF753xn0ClBJSxqIPn53/oyVDUffeNH7O9vkuQtWheXzFJBVdYUxRTpFL3uDn36jMdDdCI8WBkyyViK6kQgFXQ6OXme8+LopCll41yzoiiCt3a1AjOFoJW3SesWZTVHzQR2WpGohFbeYrEoUYVjs9WjLArfTEhV+P1+yGO708a56D9dIpWm220hE0vezUF77HJje5cay2Q8wdiK7qDDYGeDtNXCOEl3sIlKExbTOVVhuPfhfX7w/ffpDQbItuDnfusX+a2//9ewViCSFJ20mVxM+bN/84d8/N4nJFZw9vyEalGC8KRLJwMdQzl2D/u8+YXrGDtHCT/VuK5dkOSsnCAchms3rvGN773LF3/uLfJBh4VJ+cGDh4ynM167ecCru1tMLy44PTlmb2sfXTnKRcm8tLz95Z/jBx99yvbeBmIxQqY1ZTnFlnP6vQ2ePnrAwe09jJM8G40YlgXFwiF7OU6AkZolDpG2OJo/Z1YsefbwETutnFs3r3H2YuEhDuexV+t8MyVm79GNInaE/X6IAw5AKxkE5D9jHpHPGMAkmjqklu1WqykZ4rXuVyKIG9qLS53w/26DybpA+BPNeQ5RVZmAi6iQdfisqJmxFIKeTpRXMIcAZ0yceuFhNaVksPyo8X5dMvCY/D1EBMgD5caP2m0GJBI0UdGXOox+CWXiusVHM/CrKT19B00qb3MRLURjmSmkxNQGpRL/+1mjESCaDG2dr0H4fVKpBttal54IIRoQXjiHsH4irtIJtakQbckv/tYvcPL8lOcXR2xubNAZdNFJRjUtUAImszlKSc7Pz0mSlK3NTebzEc5V5FmL8XhOludonTCZTHDOsljM/e8OxvHRdyYGoZgVVVWFVY5FvUAa5S1HakE781iK1qBamrouUKKi1fZcFEdBkqVII0nTDZazBdYkmNJQlwu6/R4OR95KSfOUbruFMTnzxZSqMuR5izQfMC0mVGdDdg/bbPQHtFstllWBQnBxdMaPvvceb7/yKqrbYmRnDHZ7kCwxtgatKWZL/uf/8ffpW8kr21vc//QBh3ubPH72jKou6bS6FMsZ3Y0tdna26G9l6HSJUg5rSww2mN+v29b4w2NrZ5vt/QM293epRMnjk3MuLidcH/R559p15HTEi/uPkULSzlu4ckErTZgtCyoruHn3FS6fP6GlLJPpOamu2N3u0NtqcTGZsDQlZG0en57itGbQ9pmkTDJqBM+GFzx4/pBROef2teu8ee2QnnQMR4XfX7HbTDT7jeLW/8zlQtNGyCvGfz/p+vxgNaH8EZClin6W0s4s0tWAN8lC1IhgF+qcQOD9iCHykARKJiSJJpEigGABsA0RNrKc/cZVzSkSI7C3WK3ws7b8BpfK17Mi8HlEsDHNdIJSgsViSaKrQAz0kgwpw7geoQnIbwC5DU75jldlbJAnGHRIofwMcO/WKFxob0Y/Hamore+YlWUVxK9+BI+xfrCgUJbaLrwKW0qkXE3DiOB2bNf75xZ9mw0GT7T0o4miMNhnf1oGZrKzHvF3oGULp2qSDcUXf/MX+Is//DMyWTObTWjLnCRPMLZmc7PHk8cndLttsqzNcDgiyyDNMsqqRCgolt60LU1TlosaIXxGY+qCRb30G80IslbHj2tSgtlsibMOlXqPcq01OEt/YwA4JuMx4/GILEtpd1oIJyiKkjzvUJuSJFOIomYxGaNk6gO18i6J167vorRjZ2+T8WTEYlHQ6fVJEsvZ+TM877+gqApEO6cUCptk1Mb58USmQmYp1159kxu3X+Ob736DX/ubv+oJqCpFJIKydvzgOz8kr2rMoqY0jrfeegNrwdglrRbs7x0wnFl277zCo7NTXvvCqzgKHNofnNaLSa1vnflMHYGxILQja0lEmnI8nvLk7IKdjU1+7vYt5HLK+elT+p1NitFzNjqS670WxdIyXi65/+kPufbKGwiV0O4esL1lGQ4nCKA0S/KBRGjDyWzGdAkUjtfvXuPR8VM+fPGCyeUZOEkrbTEpltw+2MG4BVbluHBYChew1gASqbWEI/Lj/F5ad0LFM+aV74Zq/TPOiExt/MgfE7AWaoSrULJFcI4O7MuVN1EMYf7/AwkPR1X5k1jGbhoimKoHbZgS2IC9QJx24U/b2ix98AktdIgWsvEBgbXeQsLU3ng8TRKMKdE6QTappQkdqTDxQypviC+8sYFwkoBno8P8cTwJ2gfGkJEoITzfqfLTT2WSBeLiWsve1mghwsAAvA2KC+9bSpw1oYhbfY83FBPhXlRzJiGiK2WQfsg4UimUkoFEFphJIYhJXnnrVSaTCSws6Q3LJ+9+QN7KqI2kKms2N/ucn01YLhdUdU2n12UyHdNueRBWaY2pa4qiDOWGwQmNoQpArKKqDeXUW8RkeYKpa38gVb5zWYURQ5PJFGssZVnR7XYDMdaPtJaVYrkofBkYSKu9bo9up0eSCqwrsPWSTjelqpZMxmOKZUm/0+by8hzhnNfeDbpI7Sjnlla3y87+PqPJFN3t49A46Ui3NhEbPT549ilv/dLbfPmXv0htC5RzfhAngsl4Rq834MnTj9nd26BcTlguan7lF7/MF3/udR6/OOPosuKyXPBf/v3fJO8lWEI3OBxAri6957VzzTrH1CiRcO3WNYbLknc/fUhbS77y6h2SakmiHOPFhLkZkHW64EpaqWTQ6tDf3eTh6ZC0Ldm5vsd3/+o/8uU3dtne2Ob+w+eouebaa7eYk3B0OWJeQzvrMJyMqTGcHB/x1q1bbGxu8e5Hn9BLMjoCkuB2UTsaYXXMgNyPSYSioP1KQNGKLEuIh1aaZp8rvvxUAxZrY7yfDKuBby62kgi5T9MpE2vf6f9LhE2c5xlKy6aD5jOfyJp2/hQWEiGUlwQAsBrIJ6TANib2XgsWg1LMkDzpMUZpP1cr2nV43AJPbtRRs1V4kF9KpFH+PqIlSV1RuxqhpNeuiTDixjgkkrqqfJZiFZnTHhR0Fq0CbuZ8589UFcqnbTjhn4o/KNeoB2vyFT+aZiUUjgTNKMNYPV3PdfL0CP/spJK42gTGtkSnkre+9Dbf/atvcufOq2z2+3z7G9+h3WlRleNm8my3mzEaVswmBXneZTSa0Gn3vHJe+BK2qjxfykqBS/z9zpZL2u2e99/B0ermgKAsKrRMMLUXC/s14Pw0kl4vcNIW5HlCojWtVs504p0jdaLpKI0goayWdHodL9dpZVyMzul0WyStnGVVkWSaXtZnMZ+TZRlZK0Vmkk6i2dzeQicJ/V4XqWBWlczrKdvXbtK/2ee//ut/kyzXQEVV11jrUGENJHnGx08+ZtDf4Dd+89exVvIXf/EtRJJRqoTTRcGjs3P+4T/6B9h8hJMFMgwHqKsqaAKlNxpQEUOp0UpSIEn7A3746SOcSvn5t18lcYYkzalsRW//Jk9eTKjSFjLvMTNL0ClLYyFvMXeOSgquvfEa/e2UdrfHq2/3GdeGSveYVY4np4+ZLits4lhOh7Q6CV968w1284wSGM8mbPX6aCNI0BgrmZYlSZr6NWQizrmSckVIQKxBFfGKXlJJ6kNLWZafK7r8FMZo3plQa0UBTddMx6gYg5GLG2MNUXduFUhEkG2wAnSdixYZPgNA2DWshKamhpqYARF0SoIosfAnqu+4N48stM5j6zTgR5W3Ia3r2o8GUqtSSEpJFUSvIhDgTG0oqoKqqFkWhe+uWUua5VTLCiFhMZ/jcKRkZGkGUiC19qdCorDBJMqb4vvyNXbMZJCsSLmyW4ljheRL6bCDgJf59xWdDz1m5T8f7wNukZ7ZicGzzrNui87mBj+69ylv33mD1uaA8emFx02WJdu7A+rKsiymbGxskaYarSXT2dgLSrUM5E1NkiQUYXRybSr2D3bJsw5KOZLE83yePHmOVjmtxPuAZ3niy+QkodvtUlUVWa5pt/uBVKqoK0eaJhTlnLrWLIoaQU2rlaETuHntBmmWMp1PKMsFlSnI2xlZy0sKer0OWe4Z1ksqXr1zF523Ka1lPBrRzhPG1QzVc6S9it/+3Z9HyArjSnCOVGsvepYOLWDvcIviy2/xyfff51/90Z9x6+6rjKVkmrX5//zLf8VoMeV/89/8r9EDQy0UuARn8UFaKErrp5g4mYWf6y1wEIq50/zo6XNenJ/xzptvUJc1p5MF5bJmNpsyHA95Ni/JWl0ePTpi89oB9z89RrZzfvjkCe2dQ8qiYn5+TkfucTaacjaZsZAZU3fC5bJiUvqBCeViyut3XuH58RFKpp6LVdU4lZJ1u0ys5Xyx5OT8kouTMa/tvtkw+ePaCzuq6eJ6bt7KGiSC1UIIqrJCyoq89TPOiDwQHNTu1iGSz8cPWF3RWdEGOnycje7RGSFCaVb7IOBLJoEO3aYVeBsyHrsKbmGOR2Bo04C/MbvwQGHc4HYN4Ja+O0LUcTmcExhhscJQlQWuckEEK8l1SrfV8gPk8CWV6rS9b3W77TM6ckpjmVdLhrMJFJI00XTzFq0kbbonXgZSobVmuVyGALIihK5PPoWrHkwEqr3SkXogQumsmgGRWkowDqG19x0WgJa89c6X+NOHf4hTirtvvMEnix/iFiX7+/sIIRkOR4zHY4pySn+wzeZWl8WiJEsSprMpLd0iTRPmswXz6Zi9w2063R5ZliFFQmkWIGoOr+9jrOT46AJjHEmSBEDbL9yiLP3wBbxft7+HuunM7O/vc3Z+TJa3SZKMJJVoLXj46B5J2qbTa5FlnvA5Xy4wtqbX7gLQarU4Pjuhv7dDb2uTZVExm0w878tlPH1yn1/+7S/RypUnmhpfFluDt30R4KhQynD71QNuXb/Fydkx3U6PZ5MxW2/c5uCLt/lf/Mpdslwy2E5ZMKUqJTWaylT+c0CyLEpKs8C4MVolzOeL8PkLhouCey9OONzeIlnOKJUlSVM20i6Lywt+4fU3KB99wv7ePsl4TqZyqqUgG3TY2D5kXHouULfTptvaRGu4mJXcffUNPnp2yuX5U0Qm6bc1X3jzNYqLCcXC8Omjp9hyRoFmNC3p71i+/vGHzOcLbhzc4PW33mH+dOLXoonmhWH7rbWnr0z5iHEirt2wp8zP2jxfIHFOIfAs56oCZEKcAeyBWxVqSdkQDZ0zvvTCt4GtcyyWC6zdCPwfr1oWQTqhtQ9SxMjrb3mtU0QoZ3wnztuNxIVkQ4khG16LL2kiDzSQLp0PXTiBdN7M3DgDSlDYmmldMJ3NaGc5vbyFTjMEXrSI9V02qTQYT96S+OCX6QxrJVI4WlmLQTtnWdR+UoKc0m616OUdP7LGVIFLUqNTkE0gFU35IqXERsmMdeCii6S/nzrYa3i/bUG9rILQ0POunABhHQIdgHBH1sr5+V//VZ49fsZmp8VbX36b977zAePJFI3GGUWv18NP3oX+oMv2vmI+mZG3NijLmrJY0B90aXcyNrd6QE2Wap48eYZQjo3NAcPzMw72NpAYnj1+Tq1ScJDqBO0stXW08xRETZr4z6RYTtnZ2cU4KM2C7f1dZuMpSliK5ZzFzJujlYuCjUGP+WyOShIGgy2q5ZLlfEHtYFE52t0dtBpwebkkTRMOdg+YzWecXJ6TdBJ0qxUGNdYo1cIa23ByC1M21r9Z2+Gygl/8nTfZ2dkn6+RUVrAoDKQpZ7Mxnzx4QlFVTOdLFsWcqlyy1dtg0O7S0ilYTZJmWFlgSi9wNp0uLy6e8cW7B7x+/QBV+6nFw5NLTp49YbudkdYzqCqyPGN0MeHDoyMKaXh4/z16m1u8c/c1NJLTZ8958XxMe6PDRQ33fvQBp7OKOknJqXl1d4edXOP2t3j/4X12Dt5GpwmfPHlG7WacPHnBVq9Pr51y0O5RzaZUdRUOPa8RdSLCCNFT62UAxl9SCsp6icAfHvJzCvB/CozIl2NVufAyDVMTG3vxjRGmfsZ3Gf2H/aa3waPZo+1+ZrhrOkAr7MNPYU0S7TOh+PNDUBJCBT5SaJkL5TszSkIww19lQqv61Zd9Hufwv8MDxFb4xrwVlqKqKOsa5yy7m1skSKR1qABSS+UZ3MZ4I7ayca0UvrzCc0T8VE+DlppUpLSu3WCynDOaTjhdnFNvDOi12qRC+gFEgdm5fsJEm9sYcPxseYN1YCt/f2nSCpM+/D157Z0NnTaPwXmjNv+jJAlVJejkOzxbHpHvbCHljK/8+pe5//F9nt97zKDdpywTnEsRQnr7i/aAdjtjMppjTEXeShHC0G5nlMUCpR2gydKEoiypln6K7YtnL5BK8eabdyiKktOjc7JEkGWQ5W2WxTxgKJZOp8Ogu8FisfBDKa1DIeh1ejjn2N3bwg9btGxstT0/TDkGG5tM53OveSwMKs04PLhJ7Ry1NeRp5nkzziG1ZlnPufXKLW/IFg4uW/tBC8aagMtJXKVRacrSGpbOsv/KKywKw+V8xunwkuG0YL4oqeuKTqbZ2+zyyu4W7XaGVgl50kLUgsnFlCcvnrE1aLPR6dPqdlgIxffu3Wd3MOC1gwOy2mBrx3w8wQ4n3N7egERzvqg5nRk6hWGpLUdHz7i1tcmvf/kdnh1demFpu8XBrWt88uiUT56/YEaJzVKsEuSpRs+m3BxskEnBzDl0r81Hjx+xLBaUArS2vHP3FQ62NpHWghGczC8a/lfEgD0kIEIDLYafVUm2vm6V1uD8lFf1s+6a+dPZg5VpmmIWs4BZrKVnIWtp3mLDKVKhy1VB2LRJ4kWmkXHsXx7Y1mvteIl8qSsWMp9gQWCC65/Dkx4VUR7hmta3NcZnc2Kl7o/+QbU01LZiNl/Qytt02m0SoZDWl2TKeasOJ/0UEm/4rgNp0hGtc/19eQP/WGoaU4NTZAJ0u02nnXM2HnIxGTJczLm+uUNXalTgaMRnET25fVbndWrewMx6eYv1MhdrvNwmjlsCaEYj2RUNwN+/4NGDF7z7rY9Qpea7X/8W73zpbe6+fcCNm1t8+Ze/yOTiCFEv2L++zfn5lDzJ6bZ3ODp6QqfTZnNrwKYTzOYzRsMRlpQ0U7TzFsPhJVmWo3TKeDKlKErGkzl5llMVLbRO+cIXv4h0lun0kulsxtb2PnVd0e60vaawmpPn3oqkkwUdmvO+1vNC0+u1kUpgMCih6fY3kGlCO+mDTulvbHLz1k3KoiTBUdYLptMhad7GSMHjo6dUomRzd+ChACEwlZ+hR5DN1K72nWCZsTSSs1nBxWzBi9NzFsu5H1fUzrm+u0O31WKj2yIVklQIbFkgrKZaOEYvzjk9PWEwGPD2Wzdpp4oWOUYoHp4cc3H8nN/4xZ+nJQTUFuUSpucL3rx5m6cPP2GIwu7d4GJqWXz4KYf9lF98+02y5QI7nNKRmuWiRPZ6jKsFH81OGC6mdPIemdRoUaFtxSuHB+RKUVQlzy7H1DrjYj7HmoLaVLxycI3rG120K/xa1hnjyZg82SS6iUZ6deRCrQKPYCXvovlaojOs8dOay3LNeuJnEYhcYFd6nUxNu91uhKaN3mstMPlsxDu0OUA4rzYWQjWvjSVXZA97EmCcO+/rMCFXvkAOh7OVD1IiqGBZmaJ58qI3yI9Zlif8RSmKDC4AfuKskIL5bMy8WLK1sYMSGuUkBJKeEOCEwOCa4AasMipXkaRJsPmQTXvWi/0s0YPaUoOFXEt2BxsoJTkZjnhxfsLh1jYtqaB2zfNY1/NEhnccBFkb7xRQV0t0ooN5v3dsrKq6AbhXjGzPCalKwfe+8x0WlxXHnx6ROsm3v/Vdhsu7OPk2B9ubfOVXf4WP3nsXUzuQgsdPnvDW66/SabUwlW/Tt9st+oM2e/ub1HVJWS5CJuuDe659St5udyjKmixrMZ1MODsd8qMPPkJi6fdbZC0oqinDyynjyYg8z8naGVrAoiqxZkG/3yfLMmpT0e2loCoqU7O9dYhOM04vztlub7MoC26/+poP/NLR22gzn82YFxWJTpAanp485Xx2yZvv3CFtJzjrhxVI5aeo1IBRGbVIWTjB2fCSi9GEo5MzuoMNep2Mm4d9tno5bSXJRYIwUFUFl5dTjo4uqCoYXc4wJbz1hdu88c7rKGVAll7nqBTTouLh06e89cZdWonDGT/lw0rNeFnxyYtT9GCLk+GY+x9/ys72Nq8f7JAvxmy4hCcPHnLnzde5f3LE4PZ1Hp5N+ODxPWaUdHsZ17d6XL9+i3c/+IiyKOjvvMLRbM79J085m5Y4nbLR7XOwv80P33+X3f7AH7TO6yorY6kqRzsJM+aCW2Yk0L4UFX5snKgqQ5q0ITgrfJ7rp2rfK+lp20olZKn2oHWQNAg8JybiOOuSi8YUDUn0KxJEuw9v0+Gsacoq34YObXtnPRmMADpjQt1pgord8/e8ENb7B0XAOnbitJaN46N1YUAiwmMMEva3t8CARuIq5wV/2peAlbUo7VXM601AET48a2gyId/58gEyWtoaa0B7vhHGkEnJTreHVprz6YgX4zNubG6TC4Vx/odfHU3tcNZjKkmi0VJ6I/1UQzDs99MSfCfOy14CU9ut5sNVtWFvd5s5E7jo8nx+QpLAvU8fI0WO/YKknVq+/Ku/yuXJkPsP/oLaGI5eHHPr2i4Wy9nlBUnSDZ9xSaeb0Vd5mPM2piwFQtR0ugkbGx0uLscoZej3c5bLBFs5hDNsbLRRqaWqDN1Oi43NLS6Hlzx6ccLtO7dobQ6QrkYrweZeDyFhsNFDBmqHzDLmpeXg+nVuvXKL6XzCcHLO/u4ezpUYY6iqmbcadv7wKsyCvJ+R93KE9AJoax0qVZQCSiuZLmueHJ1yPh4hlePa7gF3Dt8hlQm5kmAWWApwNWVdMxpVfPSjR9y4doPNjT2OX7zg1deuc/P2AbUp0IkBUaORCKEplObe0SOSPGdzs4txcw89oFnWJZ1re3z46BHTesn5fMncSl691mW3m9GmzeR0xObBHb714T1ae4d8cnzGw8tzyNr0pebV/T6vHO5yOZ6QIXFJi3vHJwwnF1incSTkpeXG1i71cklHZ2x1+lTW723rHOcXI7a2DiiHRUwpfmzAgZiArALUul98xGuzNP9c0eXzZ0QemUFIGaY4jsP8rxzhvDjSWdfMNnfOG0E5AWLNX8cLOyuMqbzwlf8/a//1K1mWpXlivy2OMG12tfTrKjxUiqrMktnViuzmNDk9oHggH/hIPvCZfw5BgJgXAiRADEmAGBKcQXdNV011dXVWZqUK5dqvvte0OGoLPuxj5h5Z1d1ZYBqQkZGRHtfsmtlZZ6+1vu/3gfcVXpRBM+PcpkVRQiFcbRq1wSirFGGw7INr3XlDZcJWS6pQuMKdUSGVDi4MG4D2lbd4Kagqx2pZ0OsNkL6AjSaJ+vXbeiIuN22irU9369OfApQOnGlfGaSOgmBP1jFB0uOFR0cx3pdBLyVE2LQBO40WkZTcjkfcTmfsb+3gq5IIFV5zWL5vhtbhiKzr7Z/dSCGkVDgr8E6hVfzB0Tmc4KwLELrLyyFlZjnYGrBs3pCmEMVtZKI5f/WC2/N3/M73P+fk5ISt3YhOp4dfOtK4waosSRLN2ekxs/kMayqKsmQynNHpNmk2U+JIhUx5W9LuNJHSEUt4/vWLcONKI3Z2+0ynUxbZiq1GF42j0UuZTOeMJ0u2B1tMJnN+/0ffw/uCRpxiFMRJxHwx48HZGUmSUFoYzzP6gy28lsRJwsOdPlIpqtKAk2S5xeYVuh2TmxVxC07PAgNaWY8movRQes1omXF7P2E8mbO3u8N3nz0iVaC9rNmiBrMqefX1NxzuD0Bb3t1OkdE2n37yPc7PXzMYtPjeD54RRQ78gkiH2VMIirTYNGKWW66v7vju956QKocwgsqAFZLb5ZKvr86Z5CM+On7AfqW4mmT00xaUhsV8jvCK69GI3icf85OXL1g5j44FLen5zqNT+k2JdorxrGJYVESNlLvpjFgIjrstnp2ekU0XFLZiuVjRazbpNCNcvgIVUQrBcDXjZNDlfrRk7RsLaGSxWdu/t3G9P8Fv5C9CEOtwsJDeY8rf8tZMSck6HkXrmEjEmwIF65OA+OBEtIalratpjdMQoGr0hXMhpM9ZBzKoqKUSCC83TupIBh2CXKNSna8LUNjkhfiieuaDrU2Y62A3Xxc2g6k3XfNVRlUZev3BRvONCHXHEV679Bq8rQutRetwprOVx1qJlwKtYow1KLH2qOkQEiAJvw+uHqxXtd7pPebDOwfG005a+IHmbjRhvMjoN5OwYq7Z2pKQhOHrwaEpa3W4iBBQi0uDFCDMr2DtPQtzxVp4iWK5XPLV1895WRZ89vgZcbrF5z/8IW9ef81f/pv/HmVj/t2f/xXNNOYf/qM/II4VVZ5j8pLb+ZC0qYlOjmsbCexs72yeYz6f0Ww2scbTbrdpt1vc3t5RlSXHR7XWZbVgMZuSRhE7u7sgDApPsSqRCqI0BqVpdlqcPfuI2eIOk4fPzWnJwYPHpN0OaZpSTia0e13GsyntZoO9rQH3w1t6vQE4RVmAjJosshnSFGwdDtju7mK9RZSSzIeF5910xmgyRSPZ2t3m+GAPYT2xFGDLoK72YQFyc3XB8cEu5WIFkWRysyLttinyd5w9OiFtKGQUsMOSdUuicDaUstLAz7/6ipMHJ7S0RBaWlYuYS81Xr15zf33NXqfD8dEhT86OeXs+xIsF7SQin82YDoc0BjusWjE/f/mC3Fm8Kznodvj09JhukuC9wcqYd3dDiCMwBU0Fpzs7fHp6RENKxibFlY68KEnioE5PpMR6T+E8panQar2AEhuJzdoVsX68R/zwreK01hEaUyGFIU4bv91C9D4qKGAe8ipDqQ5rhV34Uq4xqu+n7R8+pJLhhKMUkY7wfq26DB4u/HvVZvAlyaBQrp3d62E2sEFteOqEDW9qbIivvwAeRMBkiEhhcCxmc4TQdNs9nAmx014Ge4f3IuS/I1mjPGbzCdPpDWksSOOE8WSGd5Ll0nJ4/Ij2IGWZrZBOoJsCmcR1S6mCl6hGza7vLJs7Sa3gFk7QSprkLcvwfoTf6rLT7oAPA2pjy5Bcy1r3VG8S69SENTTN1Z4zqRXWBS638xYv7Abvu73T4Qd//LvcnV/w11/+kn7rgH/9b/6ck70BP/rjP+HycsTrt2/56d98QX+3w8njE15/+TKYSSuQSWBrp2m62UiuZ0FlWQQ4WJIyHo+YTid4L6iqHCk1Dx8esVgsUEoym80xJmeRzek0mzTaDRq9AeX1La/Or1GTlOvhmMPjLSKh8CSssoxIa7yVFFkZxJRZFewshMIvvGY8mpM2mkzmUwpbQUOyd7hD2mtghUHKGEPMOFvy6s0r2s0mxwfHdNMWngJXZqzGcybLJUkjYbB9GJTfRU4SacbDEcW8Cp420UJ4x4NHxzSaMUW5QqHroYMK8gnv0SIkutyN5+QmY+9wB5Mt8DLi9XjGz87P8WXJWWvAd/YOuBvdIPOCra0u1c0teMfdeMgf/uhH/Oz8HV+9foNJGkRC8PGjM852ekSuxDgovODlm3NKD5Hw7KYRH50es9NpknqDdsEmNJ3NGC8WPDnex+Mx1iF0zM3tDe1e//11W6/s1wXn10dEa7fEuj6EZVD4fofZ8Pt553/q8Zt7zZwNDvRasBTIiu9X5HUQTM1fWc8qvv1YC+usMSE9g7CaVjXobB09so4ztrWRdPOr1Kcsay1aRbUsgHqOVAX5vwjwqQ28VmocMJ5OiISm02wEuYgMMxXrgmtfIbi9umI6HtEbbFOUBfPZjGYj5VdfvWTQa7O93SdtROz2B7x+/TW9VR+JIF8VzFYZ+6cnzGYrdnb2aLebAVxGQH+sW7M1i7uqN4jCSgbtlLJMGc3mtJKUllIIYZG1ZcPa+vUKX/vSQElV66FcLWAUyJqvbWyFVAJjbZgWScneQZfBdgv9w2dMfvRD/uv/55/y8bPP+Tf/6r8lnxfkhWXvYJv/4n/1LzF2xrzQkEpG8ynb7RZJI9gvAG5ubvDes73TQ0pPmqabHLJev4ezofU9ONzDO4upVkzHw9DSakGn1aXd6zIZTWi1GsyWJTpqonXCalXyxa++4eT0DwCHFtBOE7JshVYJpqpYLpfoRpsoSdESloslva1thtMJo2wKDcnW1g6NfoqMFJWUWB+xLApeXb6k1Wjw5PiEXqOJty4A+jwML26IveHB9oDcQTFfYJzg4s0LjLXEUZfV3DGa3ZF2uzS2UqIGeFXhlcWJwFaSOEQtNvXKU1h48fYtD89OqKoS4yVfvnrLxXjC3vYWp90t9HBJMTPkyxJrPPd3t/iyQMQxvtvjq9mEX15ekKYNUul5fLjPXqdF4qESEXfLkhdX50yWJVrG7Ldi/uDZYxIhMFmOFeB1yCQcz2aUziOj95ysygsmi5xUOW7mN0RRCuvrS9RwQv/rJ6LN/9ps0pz3FGURMNC13eM3efy9LB4BRyGxhNmFqSriuMF6fedZV8Z6g7Ye6v7az1qbWEU9/F7PNdbQ/PUKWwiFqWcq7xu8D7ZCghr5Edzm2FpNLVQd8RNROstkMUPqBu1Ggths3IIQ0Jqw/l8uZgxvr9gdDMiWQ27uhvT6O1xcDBlsnzK6vUTrBFPmyFaFLyeU8yAy1EIR+Yr58JbSNLi8GJImcx4+OiaKFcbkYSQZ6QBpE+CECbGOzqGQHO0O+Ob6npu7O84O9mr/nEFFUc2mDu+l0gKEDVsfakZ3LeoUcq0gd0gZoQiEAodDYutE1or+Xso//h//iCxz/G/+9/9bbm/uabWa7O13UHGO901EpPj0977Ly3//Ba1mgskqZKIpioK9/T063Q739xcsV47pZEEcR0SRCNnsUqIjTVUVVFWG9hHtRgOlYxqNiEG/x7KU6MjwxZevWRYOJxUYQaoaXL69JJIRUhis9MhYoqXGS4uXUFlLvlqRNltsDbYwecYkW9Lc7rDd22VRLkjbafDfO0uZw839hLI0nOzusd1ogS1R0lFgkF4xvJpw+e6OTx7uUK4mzGYFs1ygowa9dovxbIXxTTJbcPbwAUs75/Bki9Ll4DRKCypbEdX5bQE85sB57ucFxltaacIqy/nrL7+mcoJPT085HnTxq4pv7idcVYatw21en1/jvSIynhzJ8/kcyiVOCQZS8/3TPXRVcv31K/aePGJs4a9fvGLlLErFiLLgyeNDZJEjZMz4bsq/+/FP+Wf/4n8EkWMymwW5Q6+HIGCKKwejyZSzo2PO9k65fzOtB+lBA+g9751Tv/b4dbV1UZQ4HczXDR39RvXlN9+aKY/wCmcESkc1CkKHC1m5epgqEb5GaoigAPZivS8LtcLVpionRL1BC62MsGHGEyldA/kVdm069dXmtBQGY5p1tLP3CuFDRJAQIbVVIhEKLJ6iKEjjmEaSEInQWjoZevfJ/ZTrd1/x2SePyKd3dBopw/GcrFji0Cxyy4Nnj+gOmpw9O2F8d898MqI3aDA46GOLnMvLMe32NkmrwXhyS3d7n8OjY+5vF/ziZy95+tFTmq0EoSucKLFYhFdhQ+fWQXUG4SWnez1evHnFsEjZarSJVIKzHxx5qRULeIQSmyTYNYKkLCuEkpuTo7cWHSXBIKxASY3wCqMsDx7tUFmLUIJWbztQBKhQQgOeh08POdrb5r9LJcMXt3TaHUbjEWlTM1uN8FFGHAdBa6/bodvtUpkVi+UybOtiTRonpKVEmJhqNScgcuHV6wvmC48VKS8uxiCjEAckJUW+4v4q4/WLSx48PsQ7zWhyR5LIgCmJGiQHbVZZznS15MvXL0laKa1+CkmFUxC3NBUWRMxwPmYym7G/tUev1UbgsL7E+gppwo2kKA3LRUant8v9zBGzpNdMuX81Zvugw9I4rm4zTh5JTj89JNIt7CQLp0AHuPWGNnz/HR4ZaSpjELrFN8+/5NHHnzFcVHz94gU60vzO2Sn9hkCrHNuI2D46Yjy+Yedgm9uX70hjxdJl/NWr50RRk9gueLiTcKS7tAqHzSJWecpVpvjFm68pVYy3IHVombfiDnfv7ri8uOfk+IxWtMMXP/mah5895GBvn9Hsnk6qsVYyyh2/ePsaHac82tvFlzlVkeGdBS+QSlFDk79VEuSHftLNtSlDsIFQJGlay3F+i4XI2YDx2pxS6hgcIdczD8JL/QCWz7rYfKAHlyqcCKQMPiFErRsSYnMBhT8QfGfRRhOztj+sc9HWDOf6+MgHeIxafDmbz5Fa0mo2EJ4N6RFT4fKMd8+/4JNPzlguJkhpKG1Ou9cjKtvsHR6Qths4ESKHbCVYpm3mq3vuxzneQRS3+Ox3n3FxcU/pPY8/+ozu1oCryxHGwNbWFv/+r37CZ995ws5OC6lD7+xcOFFqHdX8pPDeJkpxdHjEzd0d6V5KN2kgXA3mr9fw1hi8tBs5giQMtiEgNpSSFFW5UZ4HH1uQNpSmRIj1XKXe5MnASBJCIn2Yt6yZ3Wkv4p//z/6H/Pn/+8/4mz/7Mb1Gi5Zv0ECT5ikqVVzeXLO3u0+RG6rKYlaKZrNNJDXT2xGuMsyWd+RFgYojkkaDyhrupksu76Zk1tFJU/rdHovVDA+UpeXnP/+K3naP+WLK3v4WQpRkq8CqGs3mWOHYOhjQb/Rp9xoU5TygNqTCCUVhHFfX74gaCUdHh7R0gnIWY8sQcClrcqexaFdwuNNlPpqRLaZEzQYZMcOsYjkcIZRg98ERx4+PiHTCv/5X/z3f+/5TSht+p5BzF25yZf3Z2MICmrvZikxr7vMVr1++pNts8PlHT2griaIIOjAv6fSa2DLFmQrVaHG/XJIpRVnlJM7xeL/Dd/a38OOccpmh2tu8+OorrCyRcUQDwf7uDvfDe2RlmdzMePPqli9+9YJ3r0e0Ow2++OWXLO0c2+0E4qVUjCcLvnn5hknlOdndwtuKqnrfUon1dVm77zea6nocs+6F3q/wA/6jyANSJIp/yyci59ZH/3BRiOg9EnZt5UBslE/vJ1mboXVo1ZwNQ2drgzDROoNE17VkHRe03vx8OzdpvXUqiuDgXsfxbIZptVzASlgsl8SxJk4i1mxrECznS6Z39+z1B+z3Em6u70ArFtMxW1s7tNo9vv7Zc04ePUbJYI/wLgztitKgdMJ0XtEf9Ek6W8wKTX/vMWka0Wwn4C1Hhw/AR5hKksQdXr14y2pRcXSyg448QjicKDA+FHYhBd4apHN00iZ3KO7HMxoHLZSvwiyoFn4KWXt/AKSg+iAbzVhTY3wDBsTVcwBfF2ZTJ+KKIC2tPYAOrA0bP1Gn23pHhUcJh24p/uRf/kPavRY/+4ufMFnOqVYx03yGEZa4kTC8nW5a9cWyAr+i3UpZzCakSYRoaBrtmIePH6Fizd7+ATJJOb8e8tOffslXv/iG8UhicCSNFk44nr94y0effcTB6T7D+Q1aOZSOmC8zZragu9Um6nvQGaUs0A2NUArnY6bTnNF0xsHRAVKrQMiyFpzHmIpYpZRFSSw10+ENW52U4XSOFpo00RjnuRjOSHd3IJYI7Tl5esx4OmQxszjpaPYaOFngrQskCudrhTuURU5DNfBC8XZ0x9RbZuevGXRSfvDxMxIsynsq40ILW1RUlaXZikFrvrm7YVTk0Elo2ZJP93s87raobqZstbr8anJL5TxVA6Sr2G4MePrwlC+eP4c85/HRI37xNz9nq7dPHGuU9vQHLVB9fviDH/CXL14QJSmT2ZIvvvyGp88+Jnv9hl67iVIhHl3WqcLYv0vI+L4Y/fqwWghBnuco2QjWK/2blZi/h+lV17lMjjjRmPoFig8ObLWyoJ4VUXN3goo59Jph62VM4Pc4ZxE+aH5AULmQ6mpMVW/NAv5Ubgpg+O8o0iDeK7KFBylUMOqpiMliRqRV8ER5jzElVniwkpfPX/PRo4fMF0vuF3PGC8/ZwzOIVlRC88XzN/zO730fFYcN1XK5ZDab4EUIBnz68cd1AodhnlXM5zPmkyneGdI0otWKSZIEITRV6ZnPckbDBff317x4GbG712MwaHNwshVORWrtqgctLNY7jg4P+OL5K+Ik5aCdBrd//SGXVYGMJabmdkdRgrEO5yXWaypr8DjKVYG1liwvCXMigxMSj0Z4j47CF62RpqEdcx4lBVoojAepVSBySo+IHb/zT3/AJz/4hL/603/Lm189pyoLmmkbowzZco7WmsV8RdJsYsoVq9WcwU6X3qDP40+esH2wR6ffI88zdBQxz5Y8233IZ7/7Hf7P/6f/G1//zddIFVN5wWB3h/vJNX/+F/+ef3b4I5KewHpLp9+jl2xTaUdRZfjYIDUYHAZNmVtu7i7RKuJofwslLUUZ3O7OeFIdI6IU5xXCwWo6xOUrbudjxtOK2bLk0ZNHzJYLXJxg8DTbEWcnO5hsxtXz13jZ5ux0jyhWrEqItcI5gVQRxnpcWRHH4feYlYar0YQyKzjdHfCdxw+JfIH0jsqIWnQbkCPdfpOsjBiXhkUa42KFsiWfHh3Qo6BNh+fnIxa7EnmwyxevX9GMNbtxQsdB6hyr5ZxmmnByuM8Xf/nXfPLJFqPJDovFiouLd/zDf/zHqChhmReYVPLFV1/x5NFjVKTwtmLQbWFMifdJff29LzK/vgHf4KDrf7zmrpvK1xA9R6MR/4e0kP//FCKBVhqhNcJkxGkajJr8XUrq949NFE6dfe5ZKzLDB+CMRdfycSHD4DlK4lpE5Wrldqi21gZKpLXrXLJaYOjqlaHSTBYLVBQRxetEWIHSCucMWV7SbHSYzzNevD7n8UeP+GR3H6Ulr18uqXzFx999RKsdcX1zxfh+SqwlnU5EbjN2to8YjabMFysazZRGK2J3b5dW44RIrcfCtZZEKgQRziqsqaH80oUcdm9YLBeUZRkGeo2UNNE4U+GFJIpStrYHjOcT9juHYRjvwvujdURR5YBguchwbo51UFaOylqqWpEdxRGuzlHzhMJSGcdquUBHmmyWYZzFS8VoOieJY3DQbDRIk5RGHNNvJbTSMF8rXYnckvzx//RP+OH/4Pe4v7zh8vwK7x1RVK/xCxuU984RCc2gPwAhg5k1z1mVGYWtSBJN2krIygKL4n/+v/yX/B9v/ktubyY0tWZ4P6KwlmVWsnAV+8enaC1YzyCVtjQTXVMsNXlRkXvBm7fvODo4ZNBOkb4K87WatKDjCONgVVlSJfHGYLIVETA3gkVh2Dt7Qq5TptkEayxxHHFytEPkKlResdvocTWe0H/UDpo1lVCYnFiKTViAcgFnskTwsxevWWU5j/cO+O7jU7Qvwwm0XtS4eraktKaqchZC8vN3b5l5R2VKnm1t82R/n/n5c7TQzCrB83eXFB1FKSVPuzv8ztEZX3z1BcVqAErSa3fxeD769DFfff2cJG3Rag4YT4b82Z/9O3afnJAby3I44tMHh+xs93l7f0ccaxqRxpf5Rk/neX9RB5fDtyZC4a/ve7W6Mwo5d1o2KIqCRvRbzjUTwmJtSCvQMqbMEqxTaBESHcNw2m3mNUKEmBVZd2droZMnzEaiKMa7YqOzEUIjrEEJBy58warKhsInPiAX1lwkpdQmURUkHslkNCNOY1ppDBi8rbB1hZTeEUcRV7dDXuVvefbJE/aPBhgWeKE5fnCMlhIlPbPFDFMtiWTG4d4hpcl5dz7maP8hpycp1rfRWmBdaDmVMhu3shAWhaAqc6IoKM2VXA+cJe2uQsqobj8TyrJkuZhTFpCkKVEaNCIHgz7Pxy8ZrlZstRIi5VmVOatViS2CnkcJTa/XRitViy/ZSCpCEkjYSDpr60WBQ+z1NwZm7xzGgnGSVVGwLAsKY5nM5wxn97y79UQ6otPusjPo0W0ktBOFVo4HgxOOPjlCKE1ZlgGErzQ4gas84+GUu9sx2SJDjMdEqrZbIIh0RLvVZOkKdg4aJKngH/9Pfo//+r/6M4plVn9fDLf3Q96eX/Po04esqopUKiJh8LbAe4X0cYCnWc8Xb17w9OSUbhrhqhxLuJijOAECr0nIoOlZFDkUFa20x/jmmvss4/Q732OWO37645/xx9/7lMVsxLu7FQ3b5M2XP+PJ8SFaBdJiTInNJzgaeAWVc1TegwPlJZkR/MWXX7LISj45PeXxwQDMisr7AOlTGitqDZxQFFawcvDXr98wXhVoKUikYLvb4eL1O3Z0i2xRcnB6yN3ojnI149nOKVtesFrcY0TGm/Ed3gpiF3N7cUu1zBEiZjJbkiYFx2c7PHh8xJUznD9/zienx5xstRAi5/L+jnYkkc5SVhaFpaw8Hl0TM8IMcy3i+1BVTZ2Ks54jORHQypFOkXKd7PNbLURhRpOoCFd6srxgsZTE/wEvyWaevi5CtTIzKKodzod1tqkCFvSDHJDaSiFr1/l6ELbmDFXr5m+TvOERlEVQ6DYbaa1k/hCSth6yObr9Jr//8fdR2uExQQltHKaSnF/csdXvoURFU3vagy6LxZisyPnoo0eETaQNbGsEssZzOx/A+FVVoXWYhQURZj1UZs3VVvXvEwbCwkOaJDVT2zGZLpkvSqI0JW222ds+4O3lFf2Pn2B8RRLHoYCv47adw1OnnQg25t+yCAPqqsgDwL9OOaF+DwI9T2y8bHEkSVREr6EDDnd/C2MFRVkxmy8ZT2c8f/uWrKo46G9xsr3DdrsbIpWpSBOJ8A651jVFgu39Hv2dPkVREWtJWRQYEwba7XYbqVMK55AiQhaSwc4RMkmwyyVKKgbtLUgEt9cjVllO0oyDMrreoAqZYKxmkZVcXF/x6aOHtLRGWYutzdJxmoai5urvjndUPvj0itzz8vwKsyrZe/CY+Tzn+uaWBwe7NBOotCMWjsntFR+dnVHOZ2ghaEUK7T0mW+ESReEFkVCsigodJVgZ8TfPX5IZwd72Lk+OjhDVAissWscUZYn3gigK2Jo8N9gk4ecXr5nmC2LpOTs4IkYQF4adRpN2mvCL56+YCUlmPYdxmx8+PuLlFy+4uBZ0jw94dT9ERYoyHzPKC54+POX87Yxuw/Dm3WtysaL7dI9XV1corTjc3SJVhryqcBaiJKUyDqkTpIiR2tQzojqBJ5yrP7i6w3fpve9yLXoMJ/cg2/EbR8R/6vH34hHJ9TA5PCOLxZJBf+vbOgJ8bU5lM2kPa833/du6n8yznDgOIW6hSMHavBm2brULP/gcgvhKCbz/Nj41hLkFiFfgVItNHPWHj8rkPH5ySpKG7Z5zHmyD5azg8vyKg709ppM7DrcS8nzBLM9pdXocHR8RpQlQhbuqF2GALR2yTiEJv57HVLaO/hGsM7/WG71vy+BrvG2dmxZifLZASG7u7hmPZuwcHOLvNNNlwaCd1MZbA8K8z3qzFiljBDKwgqOIJA7pG1rr2gKj6tgkVxd5V7e3oeUWzhAHUx7CGkBiraCdxPSTPvu9DjPjeHc35G445e3lkE6nz9OjLXa7Kc1IIaxbh6EE4asIGWiNROM8JM0Gia+9c0KTF4LFwvCn/98/Z35XML8dMV1k5HlBp9kmywsiHbGYLymrksgrrFgHWkq8UNyNZtyPxzx4cIT2OcqBqL15q6ogUSm2pnXKmvigFThraHW6XPprTp8+4/nLtxSl5dnjR/hsTrGa02y1SXSFLz2ugNl9wfbOHsl+i3KVo0SEVZ5SOApT4GXMOKv41ZtXrIyAyvFof4/Yl2EGI78dR+5dSEp2KuH51S3XiwXYgo+OT3l0uM+7F2+pMth5sEPa77B695bxfMHeYI9TneIWtzRTxcu3Ux59tMvq8pK9bp/PHp3SkxJpHF998ZZ8XrLMVnz/9/+In757wWxR0UsTlHAoIWsFPGxt7RKnbZxzPP/qNT3TDTNCwkYwXPTvO57Ntf6tXVqoEVVZIuOENNF/J8Xx73r8PU5E9ZZMhCO+MaZWMYcL8e+aEa2Nr+utT6gp9fbMuYA2LVdoqcMRT/igAxIK5yrWwYlrjUZ4HrW5gNd85zwvaLU79c8QWBOGwP6DCGspJZ1OK7x13oPXLOcF+XKGqRz9Vosym7LVjQHLcDrj8bOnNNqtTTvoWbeHUFWGKA1w//dM7TqVoy6669WnFGtE7XtOdVVVm99hvV6XIny0+3sDFquc27trdNLkZjSh2z5EYFACvFR1jpurxZthkJ8mKcZWm+IfsL4fBjR+e+hfVYZIqaBtkhIto0Cg9B4w74fYtmIvSdg5O2J6sMfzyzve3t7xs1dTWpHiux89pd+I8MKhhajpfrXkQFiEjPE1JsXU4LnRxYT/z//9v2F8NWc+ychXVR0l1MR5QVkZspWhZ7v1kT94tyrjsUIync0ZT6Y8fHiMkmVIXRUglMIiMF7i8iLIRLSmsuG9UpUGC4VxxGmfl28v0bHm0ekjprd3SFdxs7ylu7vN2ZNHvHv5mpZKMT6iO9ji1ZtXpL02X391wbMffoz0OV7GuKjBVy+/Yl5UtOMGjSSiH0uUCEhcKeINr1wIGdz/kebt/ZjryRRRWp4eH/Jwb4uEsK2tkMyd5HI45no8YbvT5p9+7xnzmzuyckXSSRkcelaFJZEpB3vbCEqc1Dgp2dru8c3oDT/8kz/iy9evyFXFzu4WbSWIZXBATGZl0AbKmLy0vHz1ikajg84UUoacvHD9s7FZhUitTWX4YHUfvu+NZhNc+G43fkNm9W+GTyPYLtZZ1742ZW5SSzcv629Xo/Dn6xW8Z0NTjCKNlHqTFhDW/R6t13ld6zW/rTU0H1xQ9ap63eZ1Ou1Qtb0luPvN+8C/OhtN1PRG5z1l4bh4d8ebVzeUxYxE5ww6MavpmGy+5O3FNdsHh0StJqWzWLHOXVM1JdESJ+pb0gIpauY0on5fxLfa4/WdcF0IdK1U9wQ0iXUGZ3Osy4CSZkNydLhNHGvuhyOm88Xm/gNBLyXq51QqzNGMNZvis2Z0S6k2gDSlAlBNSh2My1GM1DoYHiuD9SKYyqIImcY4GRYCrVYTLSoiv6IXG37nyQH/9Hc/ZzDoMSlLfvLNc97cj5mUjmXpcGgQmrIw2NLhrcdWVdiiGsf4dsQXf/VT8pshP3j6lD/+3mfs9lNcVVGWBVEcodOYuJmyv79Lo5HgvMUABs14vuJuPOLs0Sn4AlyBkZBZS+mhsB6lU6wHC1TW47ygKiznX5/zi3/3S+xKcHV+x5NHjxl0UyZ31yRKk8YtomaP3uEA1fT0d9q8u3iNiC2z1S2/evEVl8Nbmr3wnYtVhEPwq5cvGa4yGmnK08N9Trf7tFMFwqAiRVGnWaxvPqVxzCvHq7s7LJ5PDo45G+wgKkNVlqyMId7u82dff8lffvE1UkR8/9Fj3OiWymX88sU7VjjOPjpiNl8FUFySompJR2GhtzXARpKffPVL4iTmex9/hvKediMmUhKEZpoVSB2DULx49RpjPUfHJ0gdAh3WkpiNG2I9ta7lgeKDQoQPJyK3jm0X1Bq3//TjNy5EQqvgczIGJUOsThqnSB+OvcLXqIp16+E80gsUAi08Uga+kEQEdjUeLyS2jkl2GLw39dA1RAw5K5BCo2QULqD6BOaFD+hp4RFaBJyItyghkN4TaYGQDkdoR6hnKU5G5Lni7nYWUj8TT6/fYLmakGUzhPTc3d8z2N9l7+igvsBlCJvTOkQLawVqrQzX4GO8i3BOAVGQ2KOCihkFfm3ODbA06mgjEe7bCOkQusanrAu0cChhiGXJo/02zx4d8c2rF6ysp/C1f02G+Zf1DiRUVU6gOIZ5lNIhEWXD6RZBu2UqQ1UVBDqApzIVQkucMCArvC+oqgLrQvpJYQxZVWFEMN8KXxHZjL6q+P1H+/zD73xMpDQ/f/GO5zczMi/Dl89alIjAJ1Re4rTACIezivvzJTdvlzx79DndRoPlYkyznfBHf/S7bG23aPY0pw92eHR2SNzsInUD7yVFZRnNC5aLJWcnO9hiHLBzpcKbYDR2UmCcCadjKUBGVMZhK8P09oaDTpte2uL86p6t7V3MYsRBS6DNlH5LMVkWRFsnlKrBMivJFxWNNOLh2S6OFf29LVwsOXp8iPEluXN8cXvN29mEVtrks4ePKLMF+0e7FKYCYooqTPKEcOEziWKmSH781QuME/SbTU52O7hiFVTeVlAqjUo006rCSs3x9h4NFLMFzKYVab+P6vdYesHdckqjFQWCJQG9MZvM+dN/+1cM5wuyPOPu7Tu6IkIUDi0VprQ4r7hfTJn5Fc/PX7Kqljx7+hCWGatlVTOMNM6HVljU2Jm16TpoBtfX/3qzFk7+64XUt8j7/5HHb256tZY0TanKYiPtVqo2Xvrav7Ve6a2LF9RrvTqBtCb7u4BSDDMfIWquTqie4QgYEmPDwcLghdvwq4UKuo31bEVrVa/6w3O+Z6XUWywZoGEejzeGi7dv2O0PsNmYdmRZzUuEaJAVGbt723SrLbZ3BvWFG2BoH7Y4G3OfM2iVbMScQlAnu5paX1UHQ/qQTrt+rH93v27pxJrB5FEEacJaNOqdI8aw3W0izx7w/MVLHp2dorTAW1sD5YLaeo2+fX/nEhs5hLMeoVwQ3EmAkDGm6pbJeYlUEaWrrTRqDfAPq+VwX/HhC4lAeIXSEaqq6CrBH3z8mK/Pb3hzec10MeOzh6f0dYQWFc6vMFYhUdjSY0vNn/35j7l5e0f3sw75aIgRnn/xn/9zqlVBpx3T293l6OEZb84vsD0ZIPdKUuQZeVZyuL+P0gYtAvDOu9pIbN5HhUsh8Qakc5TjCZFzNJxnNh1zcLDH22FGVeUIqyiXBYNem8F2zJvRJY3eFkVpmN8OOdne4Wo24W40w0eawkG/18ciKbzmej7n3fkFnU6XT06PaChBRi2gVSLMgXw4SjigMBarPb948ZL5YsHh1jafnp7iqwVeS6SKA+cKeH3+iqP+gEhEDCKNyXMWsxnJVoftRpfcB3RHZhy7/SauKPDGEaeBh673+vTxHB/ssDPoEimLqzKUSYh0SDjOV3MioVHW8P1PP0YDSSNmmSb1lbz2OojNUPpD7Mc6nXiNCFmf+ENHUhIn8W9UX37jE5HW7y/89So9bM7X86FQbL7VL/J+YP0ttjVBR7GmOwY9RYiasa4MRYRQfLw3gK3nJya0RtYH3osP8yD3ayvCTTESktI5vJcM78Zksyl7/SaxNpTZlNV8zIsvXnF7PWJ7exsdx7x5d4n172cq68G6Umoz/NW1pMD5YDAVMqBIwkUe3gdjylpQ/l54aesja9BAqb/1esMwM6ppkwItFZHwpAoG7QZnp8e8O79gVTl83RIorepZ2jqx5P1R2UsRtiISnKDmJbn68wqzrkjFwefnNMbIgAo1BmtcXUzDqRThEZECqamcpXJhzdxQkqYwfP74Ac8ennI3n/LzV29ZOM3SOoysQuJqVaB1RJymnDx9yOGTp/z0+VsWIqa9e8DNZEqz3+X3/uj32T085C9//FO+ePmKT77zBF+/h1pJ9nf7KKBY5VQ25Mw5IajqVnytzSmLEulgORzh53MGSiOzgnazSZkvwGV02i2E12jRYTjKuLq5ZW9vGymCWtpUwVHQ6w1YrnJuJ1OOHh3Q3mlBolmg+OWbC5TUPDnYZ6cRUyxnNJsNrKlqu4wmimKMtRTWkXvBi4trRvM5u4NQvGS+pJmmGOuorMN6wXKxIMZx1t+iWTm2Gin5Ysrt3TVLk2MjjUwS5sucPDNstzto79FKY1Bcj2eYVLJ9uMXjR8fs7/bRyuNsSSOK8UDhLGma0EtiPn/8iJaWCFtSFEviGKQw9TY0UAVC4IX91khiPV5YX/NCvNdUxXH8m27vf/NC5P374rGedxhbEsiowd4RTj4bt9jmse4l65+0Wb+zPkXUJyEhA5t6jYoNJxJFVYZi4p1CyQitI7wXoWUSgT20/gKuh8EeFbYrTjC6G7K8n9CJErLFnCSKqJxAJV2+/7vfZdDrsFoWrApH3Gxs3pX1gG59ca+H4+u/D5u9Na7WBmmBt8h1AMDm79/rL9YDPTaS+NoI7AVKRmHVTJj9VCZstzAlMZZOonlwcsybyxtyEzgyxhjKqqwhaWxuEmVVUVYl1jlKU1FWBoTEGvCuLjyVpphVXL085+UXb3j34gZfRuAirJEUhcUawXJZsJhl2MxDpZBWYMsVpc1YVhmV8JhqxeP9Ln/w7CHT8T0/+eYlMx/hZQNrfZgdUOF0wR/84+9SqIxkp8vb2Zgs1VytZvyX/4//iv/D//X/wheXb/iDf/57/K//d/8LZEpQdwtFrDXSG2KpaDebCARWBPyb+aAQrb9PYImEJanX0OPhGC082WpGt9NgtZwwnUwQKuHmbsJ8bpkNS778+XPwgeR5/u6aLCt48PAx+0eH9HZ7mMiRScmXb84xCB6dnHLY30J4y3Q6oj/oBEqFDSfjqqxq9Atcj6e8vLwl0ZpPHp2iRUkcSSQRraRFlDQYLpfkWcYfPfuEpCwppgvGN9fsbA/43nc/J8tKlIrxDspVTjOOSVTwCioVsViV/Kt//ec0dMx3Hj+l6SXaKoqVwwhJFDWZ547n13fMi4pBr00n1ihnAlkzkShhEd4ivEMhwgjmQ+zPuhiJ8Jf1P/c+ZNhJFdCzHxat/9jjN1/f10NiW3t2INyFnA/wrfXVu8FJ1vqftZp6U4TWpz1PvT4Mg1zrqgBH9eFnKCmCnkFGNRJjbYfwOEKiaeDiyvriDQiMtR+rLA1CxtjScnd1yYPdA3zlmc0WJM02k0VBmvZwVGxvtRmOAyzq0+99jq3bpvVJZe1/o976CBEUzkrJujjJDZRt3dJIGU6QYf25Jt35D7Z9vgab2TBzq9+YwO3+IPlABYV4gKwrIqk4Oj7i5evXnB7t09ABW2tcFdrcOpEXuSZhyrCF9OF1WuPwznN3O+L6Ykg7iUlEEOJ1Om1e/PJrKl/R6fdJ0yarZUaSJIzuh9jSU1WCtCE5e7xLc0tjtcJJha8MiV1x3IiQn33Kv39xzi9eveWHHz2gpSUKixIeo0vStuOf/ed/yGyS8fDsEX/+53/BP/gnf8yf/Gf/AOstcUNhRU7FPKjNiVFSIWseVqQkpQ03A+scslaSr0cGcRLhnKPMSpw1xApGkxGDvV08nqPDA15cjUmimFY7IqsmnD0+YXeww6s3t2TTAq0UJw9O+OW//Wse7GwzHs755esXfPajzylwvHl7x2Resd3pcby7izMlpjL1ZrAirpEsvm6Ti6KilJpX55d4GfP508e0I0mZl+QlxC5Coiic5/m7d+zv7NElIup0uVJ34B1KSoyH5TKjXXlQMJ1M6DUT4kjgBOSF5V/96Z8TRwkfnzzgzS+/4qDX55uXb7jJMkay4oeftnh3d883N1c02x1ajRilwTuDFO9TaDbHGREOEuvO4z1rTGz+ur5hCyFD4EEliaJvh4T+xx6/8YmIIE7HKY0T4e4tdELtxACf4Elq1bCqNzyBHPh+lR2EThIJLmAwpNTYIPlD+hhFjPSqbrsMxoY73bowOGeQWGyVg69wpsB7R2UBqXFCYlwQO0onWc3m7G53WGU552/uaDW7zLKcZmdApC3GLJDSMh7fsrPVJYlUiIxel87NzCmc+tYbMXwoiuu7w3tBVxhuBx5SSBINJyb3reLmBFQuXEibDSEVQlmEtAhl0XHYFhbG4WWMljGR8LRjx6OzY27vRlgXo3VAaGyGg1IGIJz1AfolJN5GmEKSzXOGV/eQG052thm0E/b2uhzs9fD5jI9P9vnkZA9dLmng6UUR1XjIXjtipyN4ctLjcNDj8uWQ0c0SDNi8RAAGhZIJB/0Bnz04Zjoe89MX5yw24ZAxubFEMuLosM3Hn+4SNRf84T/6CKdm+GiGbuZUzChdjsWG1BZTQq0cr2zYnYWWQAY4u7UoDZaKwuQYKqSWpHEbYzRpq83+yTZRGrjlSkiUb7CcL9nb7bBYTRGxIjPQbHdpNlPAQUvQP9sh6XcYz1ZYUgo0o1XO+WhEmmg+fnCApgRpGc9m9Lp9sJ5VXrIsSiqqcOOJu/z8zR1zA0+O9unHGmEMsVKkjRSZSJY2iCxjqTjc2ednXz7ndjbj0eMTNJLZ0nI5WkCsMFVG5R2vzi/Y7jUQviSzkv/Xn/6YqL3N7taApoDFbMFwsmT/6BStInZ2dhmVJW+u7+g2uyzGYzA5jgopIRYKZ8C7BEEMXuBdeM+FYENgDOnI76+LjfcMiUKjpEcKi5S/9UJUtz8uiJpMZXB+DT97j23dDHa959uqZuoTS2jJnDX1qt3incDVbGDrDU6EmUsUa9bzorBJex/rs17p+xolG1bT73UyAoMgA5+zWC2YLCYkbUWj02E+Dy3fVr9DtsoYDiecnjxA64Srq/s6tDAUj/WR39YF0a/B/rWreA2xf+9QDqpwIWSNUginPmvtxlsm67QTXcsfgrbG14UjAO8hxANVtYpayoCBtcYijKERRRwfHPDyzUtm2QonI6wPAjW8wFkf2lgVYyqHNTC6HzO8vaUsCqytmM2nTBdLcie5up9iiXj++oLFfEmxXHH17h2X5+84OTqgN2izd7zDNJ8yXk2x0jOZrhgNVyjZQJJgjaISlqKYcdhv8/njJ0wmS17dTJhbR1EVKOtwNgzSVR14oHQ9VPeh3d0QGKwlVhGRkCFUwAZqQPA4hsDMsrI1SteDDyfzMjfYylFWAkQDIRqYKkaQgLMY6ZgVM3a32xTZikkpKKKUr84v+PLta3aO91iVGfNyhegkvJ3e8aur5xw8O2RmHM/fXJEXK85O9okktfNeMp7OSJsNpAiBD0IqCuuZWcHzyzvuRjP2tvfotVtUtqTy4bXnRYV1gvGq5H58z+PTXZzNcK0m89IiRUK+cixzyzdvLtg/2K/DLXN2drfodFpYmXJ+PWKxKHGVJFUtfvxvf8HVcMbg4UPejScMdvYokXxzfk6pFUm3R9Lto+IOKupQWE0lUzKrKCsTqKsiZO6t1/D+W36zv0M8CJRluRlY//ps+D/0+Hsoq8OpJmCHglZmucjY6bfCbEis2xc2gj5rLTrS77c5New+pJB6nKtQMsQTORd+hq250V6GNkLrJGyo1qt7/z4scf2oqgqE2phjAVxlGN5e00iaTCYrtgdbeO0QUnM/nNPrDhhPpuHuqDRaJego4X4yh3qIvr4gvh2XEoqKqWxtrGUjagx/XlNVDiU1TgSOk6/tKECdC2cRihoXu1aaB8ytEGArV6/yY6Cq/726JVSKsipoROC05/Boj7fnFzx6+IRGGmOrIiSl4jGmLvyANZ40idHdNllWEEUJk/mcxx89otlts3V0QDFf4lxGnuU0Gx28SljlBVfDMWhDf2ebnaNjlG4yHM5YZAWvXl7xk7/+miePHnF0fIhuWpSwSLvkeLuFUKf8zTdfkegzTvsdUhmFlW8tAg2ffy1ELc1mxmVrk68pA7rEUeFFuGEZ51E6DhsxU6HjGGvrlF0nUd6Ses1wNaTX7XJ9/o4Ij3eS3b0drmYzjo63iMuc0WjELF/Qa6bITgtlDb39AbnIsN7T3OrS6XbR/SbRVpMvz6+YLlY8enjEVkcjyhKHpDAWFQX2zlrwmyQNciO4XRa8G47YHvR5enKMKlebdJiyNFg0ZWV5fX3Nw4cP6aYRJjdUqSYbzkjTfbb3Brx494bDJ6dUUqCEZJGv8FIhooRRVvH2+p7FMmMxeccPv/M5ZZ4xHM34ycsXlMJx8eo5Rao5PNpHeMfF9RVCSF5dXLOczhBVSZQ0UaS0yrjO9HPvzerrSrC+JnxQXXvPB9ejr8NBgy2kkfxmgsa/l9fMeldbHMKmqqpCoCA6DJi9CNE14fWsY5/fJ0WuT1WmLMPKXwZEh5YdpHRYMpxwgT6Iw8uAS5V14odzrkaj/m1OkfO+nhc5yrLk8vU7drf7ZKuCJG6TNJo4W1Dklv39HXb2u1y/mXJ8sEeWrcALVqucOArrxrUAcK0GDuyj9YxLbLxk67lPOOmEYXo4UQmUDLRDKcPPK8sS7z1xElOZctOqBXV1hKkCkVKIujW1axX0Oq4lDLqTNMWakkgIes0G4viYNxe3PHxwgkIQyRA86Uwwvoqg3iKNW0iRBFwFks7uABWHU4wtKoZ3N3Q7TbZ6x3zx9VtUollai4raxLFmOLKssinGT1FRDF6zu3PI44efMR7N+Zu/fkW3m/DxZyd4tUJSctxvMdzZ4+cvXtP7wQ9JI4XyhtLa2usmam+SwNZSibUWzRoLOiIrKwQBw2K9RxtPEkXBGG0rqsrgrCf2EmlArzw39+d0egmr8Zg0itgaDBiNllyPFkzyAl/O+N1PnjGZwSdbXWZlTtpKKasCdLANSaXRUqEihZOSeV5yN7qn10k53Rmgq4AAtl4xmS1pd3vBaFyPC7K8wMmEi/tbpDA82t8irgoi6TFlSaPVwHhBWcGry2ta7QadZkpVlkH6lQjyqiQvSrr9PotXzznc7mG1wMVtbud3lCrhxeUti9WCSnqiRNNqJVxevsMpQ2lW3F9dsLWzi440i/mMg+5j9vd3+Ob5KzywN+hz0G/jyoLcuEBfVSmOgIZBBOg+/oMzUN2V/brXDER9EpJ1lNZv+UT0nii4znuvbQuyRp7K96a3tcdKrs1v9XEugLhYD5VgrU2o43/qgzfG2I0aWCA2xU+qcOJy9QYPgtzcu7XsXGFKg8lLsCG/fDGfsTXYZbWaIqylMJ4nzx6jIsvh8QPKbI6zFdPZjEVW8fSzz3He4Grf1nqr5/377VmwUAT6pBDhRCZrRIddw6VrQ6Csh5YfuuGNsUgVMBZKqc0wPkBPBMaFkxtCbp47DLfXfG+IIokpDZGM6bba5D3N69dvOTncRcYSqXwYVntPNp9zezskihS9Xpu01Q1fuMKSyohsteTixRt8nqN3t7m5foFMm8hGzKDfAxxRnNLpNWlXJWYd5W0spnKsVgtW2ZKiLPjql7f85Ke/5D/7L/4RaVPTiCMenxwyLDL++suX/MmnH5GWiyAK9R4vgzN+7Z3zfp32ElrXwnmMgDRJWeUZMoqYLuds97c27/uqLBEqoswrdG6obsZ8/ugRt+MbxvdjdBQxwjBd5syyJTpucrp3xPB+hAO6zYgvvnnJ6dNPgTZVFYbVSiqo54Ct7oBv3l4Sacmzh6doUyGwQZleeRarjJOtQ0pTonxQvVdOMF4sWS7nfPLkEZ1IEvtg01FKY0pDWTmMV9yPR3z29DHKVigdBwqqNPS2d/nVq3NOjw6wSYd39zPuFmOKylA4TZS2uRxOEVSkSvP7v/c9vvzrn6F1wp/843/AV3/zSx49esJf/OQnjO/uePbZY54c7RFpyeGgx91wxlGvw1YjgVixKi22kZCXFXJdbAhb3XqT9GFvVl/za8V1GF04X+fuqXAT/K0WIu81tqyQ4n34oBMh2UNIudkOhe30upUh/FnpwckQ3YxFqQqpoCoJQHeVhwJUBkGaFDLcDZXHSIkm6B4QFZUtEbxHg1gfgOpCKqpC8O7VDfuDFqmOKSuPdBJXLtgbDFisDPe316BKsmWBNBFaKAoHpTEcnh4St8LaPU3TTRsVHnLT+kkpsK6qi/LalhLaRlHH92i9Zi+l9YdTy98JEUOVdWHbJ4MYs6wKhG6E9gNBZWxw2Nf8mvWyMZzMLHlp8Uh86ZHe0ZOS0bJkNl7RONmhqDKEk+SjCZObG3a3t2l329yNx+ikx2RScnczRycztroRR4M+7URzc3/Dw6dHTPMZjW4gXCqvA35XVriyoBnFSOtxpUCpFLTiweMelTUUmWV0v+LLX73hfjzm088fs/Ogy2cPz/jxl6/44uqaz/a7pDosL5x1OERorQVUxtCQSVDDO4H0DmFDu+qFpLSWOIqorCGOYkyRo6Wi9OHrLERMnt1zc33PIlugiFjmglfX13z88R7Z9YJOImk2I+aTEltpFg4i2wUUcTMm0jGJ1uRVWS9BImbCc5vP+M7ZQzoqyAhElIZYAmdpNFPKMkOrsDF1MgKd8vz5F+xt7bDXaSNNhXOOwjqoSnQUY3XKN18/55PHD2kKRyxD4m9WWUonGFPydnnPL7+8RSUx9vqKXJZ4GZF4hZgvULFCe8fDgwP6aYNvbMmzhx/RQOLmBa1Gysc/+ATzMuHs4TGJ9FCWzOdLqtoB4OpRbCttkVeCXOdIbwPZpxYuet6fXjeCxjraQtRbY6nC0sX7EAdmq9/y+n5jdhMuxNR4twGTwbpqwocDrI2XytWmHxHCCT2+xkiG1TSENI01qmLd6pRlGfAWcbyB50shv6WZ0VqDA4nClZZsscJ2W6AFTlTs7PdZTqfBG5YbVBQzvL0j1RGUFd4arJWslivi2YRmv0Ech0Fb6POTzfFy3Uqt/7NRl8O3fWebNI1aYSocsZYIgsQ/0jU8v1ZWrxk1ijCgFS6YUIN3LKiwQvELrn8pEpytMCaQGF9+/UsGvQGdRotXr94RtZoU+Ry3mCPLkmbSJNaKorQkzS0WRcnt6AYvPUeHD7h9+5rtZkwSxWgM2SJjuTIYkdPRCVoKFJ5lliN0aDetM/XROywhjCsD3ldZtvaa7B1/zmw+ZzIf8fbiHTLpcXR0zMu3bzjc3mZLeBJdZ9nZIGVYmAKEZFEWYeDuwndB6hipNLEMKA9nHaaq0CHaF60UxoZ5URKlVNJxM7oHv+J3v/+H/Df/3c/obSUoAb20QSQU1apAecXt7T3tQQ+tUxCaKJaU1mBcQPkaH0zL5+fn7A/69NotnKtlGdZSVBVZYWimaTAvW0PlPcY7Xr5+Tirh9GCPIstRNUo2ihOmsyWpThiPZzgnaKQtCutYGs9wOuVuPGa6WgbnfqqJKoPyJf1Gm6SzyzQ35Lkh1hKdCA562+wMmsTAv/gX/wRtJVEFymmkiLg6vyYRMe1Eo1QodFEjQeUOIzWVDAbn3HpklCJEjhCqFi2/D1nccOL/jvqw3iCHBc56nvpbLkRaa3w9p1kL/dbHtSB2fE9fXL+w9SPPcm6ubmi2O/S3dyiLcmNDgPXgMhQ46p8RWjNBHMWbNFj/wWtZP49SKlRdEzCdAk9RVjQ6TawtiSKNcY7xcsX5zS1nZw/wVYbLS2IV89Xbc1qtBkcHB3S2erx68ZJPP3+G9/YDsaXYvC5T2wjCB/K+AL1vJeskBx8G7yFwthZDCo9Qisr6+s9IULWfB49BggInFKuyQEuNqcMITGnCvEIohDFEUYL0hsVixKOzYxSeRnuL+WrF3eU1x0d7OOvIK89wOKICOlu7/OQXX7J1tMvx6R5JpLCLFfcXN+w+eUCRWVrNbVZLz3Rq2O3GqCgJkclVRZo0MDUkPlLRRtMlamOxrtsNJR2VmZO0YbvVYVtvMxqvuLu9YzGb8vrynvbZAaYo0bXfed36qijCeXAmMLYRNQXUBWyFNeEUWlUVUapJ0pRsOSdNm9iqRGiI2yl+mRO5Fu8uhyxLTVMFeXmvv8XtzZjxdMnZw2c8+fiA2+E7BttdhLZUPsd5qByU1hCnLSazBc5UPD1+GGKIooiyeK9Yb7daSCEpqiXeh31tbi2T2ZTvfPSUyLtgcq4M1gcgXdRqUzjJ68trnn70CZNFxuVwzHyZhfQarVA6phlrmlGMXq4429ni0dkpP/76BaVU5JRUVUG33eZ0t483VfB3OsVqtODf/+Uvub4acT0cMbJLnj75mO20TzNtsLJzZBSjy5LSORZ5gasKlllJVUmaRYr3Cj5wS/yt2WxNDg0iZDbXyOb6VZJ1FPVvrRCFge37046pDNaFAer6RYSUj28XIUEI+ms2G8RxjDVhk6Z1BL7YpJQq/b7ArH/Z6INhV/gyvp9DrYWG3ntsZbk5v0A5RafV4PWbV3z8+TPm04zYx6xKz3Kes3u4R6cVUy1LisoymWccn50xHt6wvbWFijS2Cnwkqd5X/vXpDCBJkg9k7r9mqfA1AK1ONIl0WCcLoKgsRDGVB68kzggqL1ksDNNVxqrIQQuybEVlDEVR1M9R56CtFcPekWhFs9kkQtBJY3QzJpaSry8uaPX7FFXJF198xdOTI4SOaW3tM80Lhpe3nJ6dsn96gPUVVZbx4lc/47vPTml3OhiruL9bImNFq9+m0+8G7aoLNxtjLE6uUzzrz1mKoO2RNXZF1uLKKAnFxYXgx6PtDntbPU4Od7m4GnJ+fcvOoEsaBaNvpASJDXfRWEXkVUEjSqh88CDmeUGqooAtkRJvfYC0x1H4stcqdltVaCkQwrHV3+X6fo5KNFUV4pL63R7DuxEnj8+YzedkK8Pu/i5/8cVzHm49IGopVlmBQqNRlFnJzeUNj46OSQEroCiK8N1UAh1JtNNYY0h0jMORGcHLi7cMtrfoNyOqIqdEEEdhm1lUJUYpRvMFt/M5k1/9Cl0TKIT3aDz9uMXW7h77gy3iypDf3tJVkoGURKWn9CXWexqRYrfboaVDSydNxNvnF/zlf/tvOdzbZ2v3kDz1POju8vJvvmGr0STeaXGTTVlVFbFOuLp6R1NBu5nSanYZj3KcDTNX71xAsHiCNOSDYiOE2ES7fzg4stYS1Sx2/UHN+I89/h4Bi6EtC9uycDStqpKgBq5fyNq5sV6h1yrnZiMljZMgaNQRSkVskEo17RDehyt+eMyLdAy1vsS5cKqA93YLax3XV1dgHUJBrD3HJwcUq4wqK5mZOau85OGjR8SxRdiKsjRI3eDi8h0njw5RyrMsllDUIkXWAkSBc2GjpbWsf/diM5kTQtcKclu/tsClDsW1fv1K4iRYlbCsPLPCcj+dMFwuCZmgitJYsiJHSo9W1BeSQscpqOBubqYtqrxCR4rKFhTWsMgyhuMxPx0PkVrS6+wRF4r93W0Onrb45vVLBu0ewktKJGcPT2m0NaUrwXsm90MenByxtd1lkZVYmVBpz97+Fq1e/dxCoqIYiw1fdBXmOuHvFUVZYH1QNyut8UJhXIVzJca5wAIqCiJl8cay3YjZefaY+XLJ9c0NrUZCv9tBSh/sGzqizDMUklgrTFWzm6TcqOmLqiRRYTEQRzoEJ1ThpOqqkmq14uHBHpcXI95c3XL23U9pxwlmdUWZzWnFAZw/GOxzd/0WVAiDUDrGeIOOE2zhiFTMaDRBes9Ot4MtFoROOZAoVlmBjmMcFo3AeoNXmlVVsciWfPzoFFeVpFqzyEuK4GkiN4Y3l1dcDSeotIGMNEhHL4nY6rTZ3xrQjmKy+ZxurAKQv9HE5yuyLCNpNLGLGWkas91MGbQ7YENWn8sk77654Q/+8J9QqpIf//JXDLb3sVrR6vf4+hff8PmPfoe97T1enL9lWS55dnzCbrdDJCSTRUZlcpq+hXW2Pu3UM2DeJ/eEW+26JXMbk70QgYtljUGr+Ld/IpIquLyFCPgIJSXNRs20dR9qez5UHGz+ZfLVHKUj0iip5x663pR5vHUIH05WtsaarnU8SSzwotoIGtc/O0zqwxdzMp3z+OQUX5WYoiJpJkxGM04P9rkZ3vL48SlJ4pCRxZaeSV5yfXFLFEd0GglptM3l7T1CSx49PUUpNqrpEGwY2tGQXSjJ8yJksaOJdEJZFSgVvHbWVhgHUjfxMmFSWO7mS+Z5zqyomK5KkmabrPRoWaKx9JXi8dEW7VaCFhXtJMKsLHe3U6JOh+3uNveX91xd3PL5Zx8xmkw4PthjOYuIG6e8vR7w+vaSo709boYrnr97iXFzsqUl2dlnu9PiuNmk0ZSs7BK0AGNJ0xi7tJzfFry9uuB3//B7PNl5GGYCtfC0LAvSJKVwHutszbERVA4SHXQ7kQiSiiLLQhRNbTVRQpNXITZqYQ0yjjDWIf2KfqLZPn3A5d0dz99esbW7SzeNsFVgO3lnMbZAEljKcaQpq4Iojmk3+ywWS5SKyE1gDzlb4Dz4MmO/12cxX3K9nPPkd5/im57CZKxyickMWrSZjJYU1Yik1eDd7Q3bB10KE36G9ba+r2rOR/c8PjqEKg9bSymwzmMsRCJGWBnE7FpijGBZOb58/oLj/W1iLAhFXhmIE+5XJdfjIePphJIAb2tKz+lOh71Bj04U4U2F8JaqzIjSiHk2JRaaorJ8+cU3fCcWyG6Lxf0lqUrY3zrEe8GkhNEiZ/jFBbd3d2SxpvAV98spchrTG3RwkeXx7h5tlzEYdJjMGsxzg5aeSClcCS9fvuHxk48RdxYih7P158HaW/FtzRC8pz2sU33CzFYQR3V24W+zEK2piB8mNzoXzKlaReElSgn+bw+zvPdUtS7De1Cy/vAUFEW10bl8aIMAiCIdkKdeb/4/a20QC9YyAueoM+aDh6o32OL1+TsGvQE6iuoWMNhKvBNEccre/h6D3jaz6ZTKlnTbW7x+PWR7vx8ojr7ceMPeG/wkeEFZVjUYPDB+PAVCmFpQp6lcQmkl88xwcX/PsjAQpSilKMuMTqLoxI6tXo92I6aVamKlsJUFDWVWILMMOy/YjjR3dwuG44JeM6X7cIvl9C077QZ2OSefLRG+RSfusdfKOek0mJ+/4fHBHsamZFuOy9sbbscxp3vbHOsO3luklkQqJtINvnrzS3QkePzJEypp8AgiGeGs2xiVbe3hW5MHQptea3icAedIk4Q0jQP1USqM9QiliaXCS4MXoT11XlJaByrCW0t3dwfRbnNzf8/5neL08JBEGmJKvPFY4ZE6qMqLqkRqTZUXeCArA+88qqOPSuuYDUdErV5IJum2iJoJc5ehhUCmII1lOhvz7HvPuJrc0212GN462vsDMmeJRYLE46RlkReUpSGOU0SSYLwnswYnFM5YJqMRe3vbVNaRVRYVae4nY4R3HA62w/BXwFLA+fUV17e3wR6lBLGFH37yCY1I0Y41mAphTZ1TF/RVWmtyY7BKEPe79E+PEL1tZpMlcbdH3EpYes/bywvKsiBbVSxeXROVjq1Gm5tswsOTY9qtBhpJq9ll+PaS7UFMQ2raSUJRQDPpYGXENxfPOTw6oKk0OXajm3PrOfAH1/O6EMna9Lp+CCGJo5iqCoZt9ds2vQZHu8dUZiPfjnQzbMtEXQn9t0Np1+ZXW3+p17jUsqrAW0xVbk4Za7d9EC3q961ZPSdaO3/X27NgHg04jYcPH3J/ecVOf5svv3mB14qG8VSzOc7CfDKn0Wqi4ygUS2VI2zGTWUlZSsoYdJTSaLXwwqJUOBGsnzdchCGtJNANI6w14fVHGqGCCnVlHNcLz9XdXVjR6ojCQU849nptuocd2klALcg6alphwIT2qzKCSLfIlxlXFzccHx0xeveOTrvJ6Sf7vHl1jhA53UTTaHU4n1zyxVeXdHe3+fh7j8kWEx7sdtjpbPGTH/+cBx8fs0gkM2cZLabs7bTQIhRTj+DVywsePnyCjCuMcMFyYGoFfG1RSZLkvbhTwGw2o93uUFVmE+KoVMQiKwMNU8V4ITFOYqykMmB8YAUZB9PpDOs8lfOUVRkKlK1wwDSDNz/7GWeHOzzY38bmKxpRfTo2BVIp8qokmIIDmqWqgrPdmbAwaA96fP3yHb2tbfZOD5CRwpUGiyWTJUYanv3ex8zzJQu5ZDqbsJSS0c0K4yWRiImEwGK5HA3Z29nl/m7IdVWhG00WZcFsscSVhk4zRQ49sYhI0yZGCmbLFbt7e0ipKU3JzWTMzf2IsqrY7ffZ6nXoddrM7u857DSo8owGGqk1hYeiXo40G02yPMOYkijWGA+l0Ewqx9VkRGZKynmBWy2ROA53Bhw9PeJf/+Vr4pWHZbiZSqloq5giW6EQJDpGWQ+VJY0SimJBVgru50NmWcbTs4c0nMZG9r2VrL6O10VofSIKy5kPt8iAX6fE1m6B33prJmWI+ZEiyO6FqNd7a9A9rCvjt2H64d811tQeqrDuDQUsCPUCu0duCtD6sd5YrSFogZMtWfvbtI5YLjKGtzc4U4GQGOs4efiYd2/e0YolT588ZrYoefPqLWefHmNcQZwm4GB3f4eXX51zdTXm6bMnqCRQDKmlCuvnD2rfqi6GgfWstEKqBItmnjuGsyXjZcYkK4KSt5mw1W7RaaS0YpDCI73FuRylBMYLKuPwNblgrZFJVYuXr14jrWY8nvLRkx1GwyUvvnnJ/v4Bq+WQu5sxq3bOycNTeseQ9LoI5RjfzTk73KUZRzw6PaPMHGkFn3/nM95cvsKWhla3gS8zlrOMNG6TRj0ql3Fxecfj7g6NNJxU1h/hWjS4ZqA30jQoxJ1ECUmiU6ROETpsAyf5kuF8ymxZkOUuRBXZgsqUuKrAW0O306KbNNFKoiNJZIONYLeXUpUppSn54ptvOHtwShK+UKgoqm+AFo+oUTBhWG7q07pSAtlI6e7tMzg4xGqLCbJDSmvQzRaT0Yq//vnb4F9LmjSVp9uU3C0z+seHYfie5URxg1E25ex4HwpL4eFuvmIyvONgb5fdbo9eM6XKMhq6yWi25NXbC26nY/b2t3l5e8N8Osdb2N85YLvfoakFMYLZbMbx/j7OG+I0rXVUElMUwbleb2YRgqTRoaosMtYUkeCriwsqW6B8yaDR5KP9I5ppTCIh9RI7XzKfluwlMTZb0mu0iFDkxtLf2mJ4fU+aphjnsNLjlGS0qri6uOBob4CSAmtL8rz41skHId4jn1kvZkK7ttEUiXAQ0ZEOdNUaU/xbLUQfPlmg9TmMrQJeQoQX69dHuLooCRFmy1Jq4igF1hsmj/cV4OovtQjAtXrgHVjMYtNWORt8Uyp4JcLJygfi4ttXL2mlDdrtLrmpyG1Fo9Vke2ebyf0tReVIkwaz2aK2DDiENHgvaLSbbO3s0Wo2aXUVQgd8BqJOm1UBau+Fx7o8CAg9SBkihlck3I0XvL24BKlod7s8PWqx02sTeUvsLcpl1IpLSlMhlQqzDOuIZFy778P2QVPibUmSRjR1TCsVNBJDUUjOL0fsH/UYbA/AdkmSGKcUo/tL+omiJzvMRwsuK8vjhw9AKWyVkE2HpBieHB/y1YtXqMcnIAWNRgutlkwnS0Qs6bQGRDrF2XpDIiBOUipjA9O4LDcxSkILKuPxMmJZVKyygnfXo6BcrlbISIfZAppYJ2ylCf1Wn2Ya00wjYh2kGUIKTBUMuO1WkzLLKSqHEZpyb4+351dk7ZReq0W3mVLkKwBUlFDaYP2x3qHQQTPrBEQxqtvlLlthVjmr+QpbFbQi2O/1ODp+SIuI1WRCu9Xg7uaOg8E+5y9+QbRtIIbSlNwvFhzu7WNKy2KZ8fLyiqwyPHxwxHanQeQM+XxErJNgzo0TDI7B1jZl5RmOhxzs7qGNw5Q5RanQRMHcjYB67hPmkZZOu40vLRJJpKPaIyiZV5bZYsl0esW8LHEqphWlfHxwwlazQVMIqqokUhptHM4aGts9Lqa37Bzv0VMxxzu7vHxjGE/GzFdzbu7v2PrOA9CalS05H17TaTQ52jvAS0HhfWDCO18ro33tK/vQ4/lBXNd6dR9W23XwZfQb2zv+XoUoiJSCNF1Qq59tVVfBME1wwgZ2dX2aCK9XILyk0+yGNa9gsx3yzpJErVDxVc2Xrp38QTsUPgzngjnS++AC9lLgyopsvOBwZ4flwjCZlYwXN7S7bYp8QaspqNoxi2yJc4pmp8vrl+c8+egUJcESeM25KWjpJl4awCG8xjiDlgJsiO0pnSFSDmSEkzG5U0yXJV9evsJay96gx8GgQ7cRI6oVyiwBH7jW62G3D7oLW1niOK4LksF5E1JMnCPRGmMsJycH3F9d02r00cLw6t1LHj/7jNJU2DJnOh5xcHDCqsiYjpecPnxEVSz53nc/YTFZcXUzo9Pf5ld//Uu+/wffxesS7wwPHjzkm5dvOHt8HIbv2jOZDJFpxJNPH2NNRhwrKlMgVFyD1cC4Eo/FGo8QEaVXFAjeXdxxPZ5Q+NCCSRmjogaNWNFtpmy1GvTaLXy1QlCbWW2B8CGIsSzC90ciWa0KVrlBSI1Qgkgpjg8PuL4fMZve8dHZSVBfW0OVl1QuWGa0jskrF6AUWvP25pZ3N3c02i22Bm32t3axwzG7kaJRCG5fn6O9otuJcIlmPBpzcvKAoqyoTB3omaQMh2OOOidcDee8urhCJxGPHp4yaDfQtqKdxJQSKgRGSOauYFUskUKxv73Hx8dHNGJFpDxFWbBYLLm+uWe+XHH64IzMCWIVinLkoSoWxJGiqhyVcxBHDOdznl+cEyUR1hgajQ5ZaWk3Ghy0+kibg/BYD0VV0nARQsL9ckTbtZhd3TAcjrnrd8kVdDotSgwqbTDLiqCWFwanDLs7+4wXM97dLWioBh3VQNiwDbP1jDW04e+7nhqFiAqy6lCPrEMpgTWBn1SW1W+3EK37waoqcS5EG1uXgo8ISas1LJ56sBtURWGuZHPm0ykI6KVb5EWGsS7cYbUO6mhR4KjqlSA1NMxtTKdRVDv0naGyFbGMKcuKXnvAMssYTqf0trY5Od5jeH3Nwf6Afq/FxeU7Go0Oe7s73AzvyFbQEJLKBspdv98CaVA6ru9CwTmvCfoX50oiqcNbpZpklePN9T2zVcFOM+HkYI9mpFC+QnmDiKN6+2c3x1JZF9G1BknUd0ThPVEkWA/Cq6piNpoxup6gEUzHC0onOHv8iCjyZLOK0c2IZx+dcT+esCoztra63F2fs93tsFrB6HZO1NSgDPsnPQa7KYtqSBRHtLXm4dERw/shR4eHlJHlo+89QUUSEa+BWIHS521OpENemfOG0gmMiMmM4O3tiOvJAuctVVHQbjboJpqTgz3a7QitPKYsAmTLzUkbKVVt3zHm/extw2ZyjkajSYBIanw9RxTe82h/m5vRiG/O33BydFID0jyRirHAqnLk1nM9nTAZjYmE5NmTp8SxIhGOxbt7HvZ2uX39iqdPHiH8itl8ynCeoZcNxssZrTffkMYgsOSVZWEsqtHkxe0lt/dDWkmTj85OaSURwliqosTriKrw+EaDt6MRl9c39DtNnh4c0klSrDVUZU7pHZHStNM2rVafzDtux2Mmo7c8PDniIBngrUVZhxUSGTWZTmeM7i+4GU1IY83OoE/aaPLi5WuSRpO0qSjsEmly9Do9xjtEJJHNhFjH7O7t0RMxV+Mlhycn/PzyNTs7A+SbmPFqyer8gpGr0FJTZAXn5+eU2YJmp0MuSlq6ds2vOxzhN9c0rDukYFuSMuQI1n8cU1Uo1UCsQzx/m4UIwsUVInxC9QsmWAe1JcP5cJQLDnxVWzgty+UccKSN5kaVrer+cY0QUErX/Wn4hYyxmzYvYAXClkxLSaQTTOmxXlAax/XdkKMHJzQaAmdKWmnMclaAUBzsHbNc5rgKkqiF9yGJQBGSZPvbTawJGWo6CgkFVWmwBKaMjlOQkpkXTMYzxvdj0qjBpyendBKPEg4pHN5VKBmitz3hNYeh3Xr9/96fY6zFWUcUqcCysUGseX8/xJWKRtIA57kbTzl9/IgoyXE2ZzVdsH+wz/1wToGn8I6HezsIV9BIJG9eX9Jo9jh6eMD5/RVpL6JgjqpbIWNyep2UzDS5vRvRO9jBph5EuGsFsqREK01VD4QrL3FekDnJ27sRN6Mps7wiTtqkyvHp0xP2uh0SFzRaxuZY61GAViFBo8iDXeBDIaoxhjiONzOoqqpIo5hVHqwiZVkSxwnlaka/14RE882bc04OT8BXOGspSsPddEGlNJfjISd7+5zs7BA7hzQV0lp6KsavDM1mj9v7MUmakKYJCzPD91v4oqDZaXEUKSbjOc0Hh7x7+QonImb5ik6nxXeePEUWBp9n4YYYRWTWQpTwzet3XM6mFFXG6W4P7S2myIjiOPgkdcLdcs5oPmW1WIVli/M0kojZfM71+QUfPXpMq9GgqBxv374jKwsqbzk63GOv06SRpLx4+5YkjWk1E9rtBKVBoNBxg7wKmW2FlGRKcHB6xLs3b3jtDMdbO/zs618gOk2uLi+YLhfs6Ajd6bG4uQAvONnd5eODfbSwCKVpxF2uv7qthaJAPZJBwof00BqbFQzLa0Mk7wfUgWDwm8Hz/16FqCzX2x6HsQaPQYjgiwoZ2AIITxzyjoLor9fdqcPlJN5LnAvLq3CiC8miIW4n4D7CnC4UDPw6vtlt7qRVVeCMZ7XKmYxXPPnojGY3BV/iTclymiNswmy64vB4HykcRT5nOLrn8MEAT4VU4e5va3iTJyIoAgweh4oSKgtGRswry9vra6qi4Oxgn34jRfsKIVytHQrsFYtAOFlD0+UG4fHrUPGQMlED3oRGSM1ymVEsCw52jrlYDJktVvR3t5GRZHh7y/HBgH43ResWX375itNnjzCTO+7vx7RjTa/VYWdvG6kbzLOcN+e3fPqDj3FYhIgwRZiNWRz9XpdXb69wUtLqNKjKkqowtNMGpgw9vo80FZqKmKv7MV+/vqAwhmYr4ajb5Oxwj05TE0sH1RItJTpRmEKEuYkLRudIRlhbUplq49tbLyCWy+XmlOh90JMlUYSpRaUIiJsJxnn6rQ76pMMXL17S7baQ1rHVHzDY3ub1xQXH/Q6n2z0iW6KcRQvAOFpJg8Vkycob8rxAlfDw+JhYSn51fU7lHEnapmk1N6MhNrNMcoNzhqbSfHJ6SmRDnLkxUNoKFccsjOHlm5d4FfHk0Rnnb16zvTXACcGqckzvR0wW83CxKmg2U/ZODmhoRawkWmpUHHQ8N+MZN+9uwQWzTzvRPN7boxEpIgV5sWK1WNBotRBYUh3jjcN7RW4EuddMp1Py+YS585zoiKdHR8hEYaZLBkeHLH3F6ekDvlnltLa3eH19DVGMrCq2Oyn9ZsD5Vs5AucJWJmyO4YNi5P6W837zQdWtzPrgUJaWKJIbDtdvrRCFJ1BBfFj/va5X6uHFuPoMty5IsKYTCqnDYHs9+rJseksl1xE6EKJtRW2vWA+Mo/B7ilrV6yucNwzvxjTTBuPRHc4HnjME+0Gr1eTuekTaSCnyBTvbXa6ur9neahBHwXjqCNXfWIPeoD4CwsQ4iy1LnEiYZUten19wtL3F/vF+cF37DKkl1frUJmWImQZszWgSUKdPrJXga6C7D5gEYZFCsJxmnL+5ptPqkugmN3djJosFW3vbbO/2uXl7wUdPPuXq4pzxaI6zM05OD5hMJwz620zubqiE4O3bIWna5PbyhvZWn6TVJErCKaQqPUmcbJjD3llOjk+4ur1hPJwz6LaIkyZubSaWmsIo7pYFb26vmGU5Itac7mxxsjdgkGhS6ShthbUOrTROhtQOGTfCrKXOdItqp34raWDquHJBICq2Wh2qqiJOEpxz5EVOLCV4h5RgnKUwFhwYm3M/nJDEmvl8xenZA3JrePXiBXv9Po+PD2gkKUWeEesUW1VMrsbYwnN9ecPe4zMUDSLpKE1Bu9cgjSNUM+L19TVl4cmc5PrVBQ5JouCTszM6UmBNjhSSOFYYKRktFpxfXuKBZ0+ecXlzT6PR4s3NDfliiasc3U6bXrfL7tYAV1UoARqPUg7nSgQeU0oWq5zr+yGzvKTXaIB3nJ4c0I8ELeGoUFwORzRaLba3d4KBWDcYT8eUZcZwMqewIlxfeRD7fPWzX3C8u8Mf/Oj3eX77JS/P39A53OPli28YTu9o5id45VHO0m42KMolzrdRwoZFChYVBWuR9ALj1/aqcAQKrvu1I2JdjQKPTCiPsRXWBduOF+91h7+VQuS9I4o0VlhWyxK8oygMUsZBxBjOQCBM/VV7D9g2LpygIi0DPK3erkkZUxQZUVTfFQkvujLV5tdDqKBWNiZUVxlWvVVRMej26bRTVByKgTCC+7t7mrHm6PSId++u6UY9nBVsbe0yz6Y13zicVjyCSMdIqTa6Ie8lOm6RGcftcExRFHz65BFt7ZG+wm6kB8GZvBE8hhVCCBJQ7zUu3oe52trEG1AJkqzMkU5x/vaGw91DRrd3LPIQdf3w6QMOj3aoioxEa+7vV1SuR15lHOz1abcb3L4bs/X4AYKS2XjM5D6jPxAsyhJfLPjsB5+yokSrBibyVB6qymJ9uJMa5+gODvn6+dc8fdIljWKEd0SRZFUZvnp7zv18DlKw1Wvz8GCXfpwQ+XpOJwQyUggUtt6yVM4RR2FbWpRlQLOUNQKlDtIsTS3J8A5XGVS0bmEDMlbHClxoCUxZBRrk/YjFbMHB4TEPkgaTLOPn3zwnqwqO+33O9vaQ3pFlS4QUzLMl0kJsYX+rR1mVRHHE+GpIV2myuaeVbjObFhx9fsriZsTb8ZDGzi7LbIHQlsenx6TCEkuNjptU1lF6uJuMeXlxwdZgh8O9A8bTBTf39wg8zkXsDbbY6vWIpCf2lr72zI0J5mbjcVaidJvcW16/O+dmOKHRaPFwu8OjoyOy1YLLty9pPDgmTlMKr7mZr4iSFGsCZveXXz1HUBFF0Gq3OGz3iWPF3d2E6U6PrmryeGcfu8xJGy0effSMSZmRLxfsH29xcnbI4uIVD4+OKYsKFUVUBlSUUjrHfJ4xmU9YG9rXJ55QgAKO2K+v8TpSC+lxWKw3WGeQuonxNvC8f5uFKMRN1ykWhIFyHEUfCJ7W9g42x7n1ps87R1EWeAHNZhMdBWCaswatQ6sl5bcHmGEFKGsVr9qsCr0FbyRbvS0k0G3FdFppyPDKV1RVhZGa+/GcydyyXN7w4PiIVrNBtxNmUHEssYS7fxTI9ggZ4aTEekFuBNc3I5JI8+DsDOEtkbJUVTC0mqrCyPChfNh2hTajPtnh0FrUb/H7oew6ilcKTVV6styRF4KkucXl6JJOv8f+/jbYnOn9LUq0ub68Y5VXdLo9HCk315NgndCeEsXeg6cs/RtoRjw5+4S3Vxd8c3nLzJYslznZKg959DiMMyRJi0glzOcrrLDcffUl3kdoqYmVZLyc4mOFN46nJw846m+RRqHYF2WOtQ7rPZEkUCAjTWXrkMOqQsog0MsLEzarSlD6cAKsnCGKNFoGyF5hLELHqChmaZesylCsnIXKwouXr+l3enR3TphlFu0tCwMqajBIWxztH2EJgHeBIMBUAhBu0O2RFSVEYMqcvX6XplNEKmIxLUhooXyM6rWp5gtylyGU5eHBLtudJtIYlPDkRY6JYi5nS55fXJI0Whgh+dWLF2SrFbv9Pg/2dklwNNsphauQOKqioKwEsSbElkea0grKEr568wbjLDtbA463Bhxs96jKFYNBg54+5G445VJMIe6ROU2WlyzmF2g8252Ew/0D0lgGTIBTFB5WxZJnv/sx7uUtly8uGK8yrq6viPoNds8OmVc53//RD3gxvKIZe472erx8c848dzidsDSWX714Tb+zQ6fdqdfvot6ChxThNSnUry/yuh0TdduynjEWlUVG6jde4f89TK/B/7NGdzgfZP0bGBoE0RPf0jbifHBJg9gop2U99CqrAo8liVOMLYOGBT6Yr7h6bWjq1kkCkihqMK6WfPXlz/n93/+djSlWKkjiGCk0i8WM73zv+9zf3mCswxrHsqiYzCccPdjGCRNwHEqjhMIhKK1guljx+vKKB6cn9NsJESGSxnpX55b5GtRfK8nrN3oturQ1W4daIg9iQxXY6LDqcIHA2okYThcoFbF/vEO7m+J9xcW7CyIRUSxzimzFo8eP+eWXX1PaHcaTCY8+fUwpNUm/z7v7ISM75+52yPV0yGSxIlqmNDspu90mctAkTRvhA9chhcSUQUqhpGJRWL6+vCPznlm+IIoiIh1RuJI3V1dcXN8RR5J2onmwu08iFXEUU5oK7yRlZmkmAXGa2YqkobEOhFLoOizSG08FSJ1SWEfhFctVxcpUzBYTKudYlYZslWOtJV9lRFFMJeF+eov091Qe5mWObmgakSIx8Iuvv+DB8TGDdhJOdE6D9Ugkd9MJi/mUg7NDZqMJT06eML2b8Pbiika7TdSIKZ2ljDSZdBTlgpPtAUdbfWxRopRinhfIRoOryZTL0TjcZK0lW0w53dvn+u05j/Z3iVQQe1amBOrkGinxSm3gb05prkcjLm/uqaxhd6vLs5MjIlNgFhO8CDOatNVmu9Hjb16+ZnF/g7WWbrdJHCse7e3RbyhMuQhbV6GJdMTt3YRFvmLn4Ij9rc/46XzKVy9eUWYZ3ZYlXo74gx/9Pvcuw3jL0c4WMQYlPZWUXNzeMru/5+DklEF3l8XrcWija+P3hyrpYECnRiHXD8Gmq1BaERECH37rW7O10jOce/ymAoZX9r7w/JrdFSkE7Xab1uaXCs50pdeKaYvfbJXeg5cCx1nVLl4dtnRRwMkWxtA/2GV3OUM1UkxtTUjTmJn3vHr5lt3DY4b3V2zvbXPx7pw4iRmNZ+wfDYLjX4S9Xmmr4KzHczOb8u7qlscPT+k0FIoca8Lmy9UZ9qG9MhjjkCLaYHHD69VEkdjMhYK/rPzAJiJrMLzB+zJEPWvBze0tg0GPzz8+oqxK5tMZ/d4hk/sZUjoePjwiSjztXpOtw11mFFwvM/7m370hiSXCl+z0WpycPaSVtCms5mYy5Oh0l8pkOFerwn3QfxlrMErgBUgdoaOESEnGkxkPDnb56PQQV+bMVxlZ5ZnMC0rjGU+WVMUt8+UUmUZsbe/SbbboJg2UD0N6HWkq49BxTLbMUDqmMoG7NJxNGS/nzFZLFvNsI4xNGmlt0wgD63YzYbvXQAqIkoRW3MRYj4k1v3rzEukFB70OO50WRVHy/OU3PDg9Ym+wjbGeWCi8B9tK6GwdYRoR7V6byWTIpMopW4pXN6959L1n5FHF89fvcNbRlJLT/R2sKaisx6FBN7i8HfH2+pI40vTThKPdHdpJDEKRtROaSQDaVbbCWEsSReRFRaRijA2yFqUjnr97w81kRNpo8nj/mP1ui4RAdKxKi0VhVcr1eMqLdzfklaedJsRS0YkVXhg6kUYUJamOibQn1jHOSd7e3oHSJO0mN+MZySfH/PDzhxwOtmn1mry8fI3cbfDmmwtcZTnc2vv/tfdeT5YcWZrfz0VEXJGyMiszS1dBNkbsjO1yzWi2r2vk/80HGklbm53h9HQDDTRQWqQWV0WECz4c94i4iZpewAzLfilvq65E1r0hXBz5ne8w0hZrCn549Rq7u8N/+OYLITz0C2azG4n8ZBpmLQJIyPJ7LJG0DsuWkVhE3gmzaVAJZPpbCqIQhNApGWuSWUrgpr5lyPpNY4zEVLWe5VVA6CPErREIQEwhFmMMTXJxQqpZUenwh9zyVjDkuNgw3hqhKiOkbL7GuRXTaUlRaLY2Jrx89w5TGnb2dnj1+i2jccX23iY+LsX9c0EKGJXl5OyC45Nzvv7yczYqhfI1KvUwtwnpaoztAto90lzeTEj9IyhpthiCwjlPWY46Aaa1ovVemlJai3Mwmo44ejji8ZNDorrEaMPph1MqvYOOBSen73n29SOOr05gQ/Ht2x+Yza54svcZf/vV5+xMK2gWVD5wdTpnWZZ8OPvAUjWYB3fSsye2y8LgXIuJGmNGzF3LTR35f//0A0VR8p++/oJ2sWAUPWWl2TAjARHubeNCwaxumdcr9A0c31zy/P07aUftPdujCQ/2D7izM6VpV5TaMmvg9P17rpeNFJC6Fucd4/GYvc0Jh4d3qVvHeDKhrmvq+YKtzSnbm2PwDW2zwmiDbyO1gVeXx8Rmxt7mHR7u7jAtC5bW8OXnz5gtljQ+UkQlloIxNEXAlIrVcklzes7Z9Rw3HbH/+D7LqUJvT/gwu2TlBQX/Nw+foFYtajzCW8W703POLi9xBKajiqPdLQ63dxlZS9O2HF9dsrm3jbZKyihWnrIsOsveewi2YNF4Xr9+yapZsr+5ybMnj5hqaOdXqNGIoA2hHHOzaHn++i0nVzOsKVC0VFbzH7/5hvPLY16+e8XNnSVHd3bx9UpibtpyUzec1w26NLw5PuHm7Jyd3R2O7u8zLQpa79EbY348fse8rXm4e5eymvLyw1venZyjteKbr7/EhEZqHluXCOgUMTdOjRCVxIUyFbR071HCBp0y3TFEiqIihFSy9VszNGYho1UGNEl/9x68mPKUJCbFKL3jBWfQJgtKcDrSpFBLYCsF8FDiKjjv0K24eAJsNNLLS4mvKkR7UjC6sTmi9YIpUQTw4FsvpOdYNjf2WC5bHj7eIvg9yrEFm1gmEawTZsTJ5Q3HJ2d89dkzpkUkNLVgfETqJZdQXMuiKFPgXCDsIaXIQgxdF9cYYsriGYgGpaXiPXghmRL+6gJrDU094/DogHLUJg5rw3R7i3ru8ESOvnjM+8tTFvUcH1q+/uozJmPFyBp03bK4OsYtVkw29vBtybcv3nC1uOQ//5f/QIyO6KFtHGVZsXIrooq0TtGEyI1X/PN337E13eR3zx5SFYabEl69ecOThw+xRUmzmmOtw2hHNIHpTsWd3Xt8Ho+4uWk4ubjifLHk/dUVl8uW8TvL3t4u17NjLi4uiUBRwmRU8XTvgM3xhK3JhEJ5cdud58PxKQrN5/cP0SriXUNpLYtGLLhgDefnN5yeXLI32earxw8oosIaTWUth3d2aeqa+fUVd7Z3BFCKp5yU6BAZYbh/8AC33fDjyVtUcNw9OqTG8v74gto5nh0dsr+3Q+sjL49PeXNxSb2qGZeWrx48YGNSMC4K1MpjovBr3yxr9va2cY2nsAXWKibjMa1bokwBFMyWS75/+RJlFXtbmzx9cA9ci/ctQWucqZg3nlfHp7x4+47x5h3K8Tb7OzucXx7TKsN3r16zXF5zWTv+5c1bvv/wgakpKKLFqcjVakFrDbjI6eUN25NN7h/do6FmFjwhaIIZ8+r9G4LybO1u8ocXP/H8zWv2Dw5YXF5ilNS7LWvPmzfHTEZbRDRKWZQKKDwxppioVl2s0yMCSALbKcPZeqweo0KkHP3GOKIQfMczk9tJj0ajLpUXB8ZQjhfloiXpYS+FZ9EUzOdz+V3q/KGUklYx3jEqqw6VbGzRpfelDC2ijCI4h4qwvbmZYjIVKiiuL68Y6S0Cc2IsOTv/wOZOAaqhnDjapibGEsEQG6I1vD0+YVU3fPnsKSUeEwQbtFpJF4+YLDNjbA/gHIrnQYFvbiUtxbsg+KiAc62sGEpoU4oCFQIFkYP9CbtbBdE3KDOmVoHp3gbni7doXfD+3SmfP3jE47tPOX3zBw7HmzhzhXYtp2/fsre1yyxovC9QNoKJHD44ZDQdYYzEqSbTCavVipGx+BBobcls2fDP3/6Rg/09nh4cMLGR4GumpcZtb/LHH77n6aNnjMoJPoh7WVjpNadDZKOoKMvA4bNHLLTiT6/ecHx8Tmssr0/PUFpRE3n8+BH3d8aMtCQGLKBDTVFWLNuGt69fcnBwxMZ4Qmwb4fO2BfVqyWQ85Wop2v75hw9UtuSbh8/QzQpTWJrlHG0MtJHP793np+c/MSOyubVJWVWo1qAiXF+eoylprud8fviI75+/Y/uzh1zNr1guG4qqYrS1wYebK16/e8/VsgEKtqdjvnr0kI1CE3xLoQ2q0DRtSxsCwXt2NjaZWiUxJWuoV7UQnVk4v7zhw/szJpXh6eOHTCZTFIqla5k1gcv5kvrDDbOVY9G0BFsyXyww5Yi358do3xJiy4fVAmM1TQBVe5aLmhtTsJgvMYXQk2xvbhDbBhWEcuXH5y9oVS6/0JjRiEXUTOyI9xeXnFyc8OjZIx7tHfL7xZJl3bIMDT+9fMOT+5/hThJtcz7bKXt/O/isU8xYpRhRbjm9mDts6uz8S8avihGFIJD+jIzNLsrPAkNAHHhrN9fXtC5QFBWTre01kJPw+hiMDhhVCDxcHDdBaqvUJSAFeo1R+NYLkZPzGGVwLmAoefvyhPuHY3b3D3nx9g1v37/jv/79/4qxM0ZTzWhcQRRH0kfFh9NLFssVTx8/xIYGHaXrbGaiy4yRguyOXexqSJif6UnyHEGQDh8eYhQBZozBp44fwuHkpWzEeHb3NgQYGQ0ey6q+4dWrF6yWS+7dfcBO3GJ+uuLt4pLGKWrfYpWjWaw4Ojji/P0prjG8OD3mZrHi0ZNHfDg/QSnDajXvOJzk2aXaf+7hX/7wLZ999pRHB7uJSkIJRW3rGI0r7t17wMv3Jxwd3WOa+qhpJYRXJkZKpXEx4tuaeb0irOaMtGdjUrKqHTeLOaOq5PLqEt3MuLe3iy5L2qahtAUXlzecX16xe/cIYwuc9xRlRRsCddsSTMWqjVw7+P7VO1oMjw7vYUwhIQGraX2AAKURBoP79x/y6s1rtvf3aWJElyVu1aKqijevj9kpSozgL7m6mHHW3hCi5d7+Ee8+nLCcXWOrEYdH91hcXfPl4wdMjWJSGJwUC+JiwFYli4sL7t87ohCVRtSplkCVeBTHF+ccn55zdHTI7nRM8I6z8wvOLq5Y1i3eWFbe0TQNTVOzMZmgQ2BrMmXpIlfLGV8eHfBwd4tls6IJkYvrK+7u72OImGrEn9+8wWOYz1dMjWJjuoWJnlKLCrxuHU0jsZrzywuKsqBZ3nDppaCbEFnN5uiouF7V/PT8z9zdu8ukGnOjFunM5yZfau2cdxTJijUZoJO1pLUVD8f1SOzfRBDlO6lBit1a2wWv14RQ+v+YrBgSiZhzDmKUFspG42MkpHIHawpJ5ydwoVaZv0hTFEWykgwxhiTl+6dSiUlRUo5wcnaCrjRf/+4JRRFpXANaC19OivyfnV9xennDl88eMykUqpVD5nzElla4kVNZiXAUVz053KAGTiY/k4RHQhAclS2sxKCSAPLBd25cjNCEgNbye6tH1E3k9fuXtKsFRztbzHzkye4dwtaI3//rT7x5+5bf/aevwK4IaFoPSxe4mTUUuqKp5xzdu8P2tuX0skn8zfL8xhrwoMsRVyvP//2vv+fh48c82N5BL5diYkeFLsdEv8K3jqIYsb13l+fvPvDZ0wcUSGsfHwPlqCIoxY2PvH7xmsubKw7393n6eJ+N8YjGBy4XK/70/DWLy5o/Hde8PrlkZ2ODe3cP8Ddzrq4X3Nnf42bVcHF9RaEiN6sly7YlKsOy9URtuJrPqGuH1QXnV9fMZpfY0qKMQVuL0ZqNqLF1zXgy4c69x7x4d8zh0SE4seLLzQ3U1pJqMkYXJeVolyYorhcLNjZ3mV/fEOolO1s73HvwiJcvXvL0/gHTUhPbhpULRB/RbcADbQgs65rtnU18vSJisEYgLAHLi9cfuKxX7B8+JPiWV28/4IKnaQVEO6trxpMCHSN3Nkc8PnzI9qjAa0URS95fXvHTyYqvHhywVyiuV3DTemJdsFcYTHBUk5LjccHzd8cYXXCwc4d7d3YpYmBaWiZlydK31G0gmIL/45/+O05J4evB1i4XN9dcn16y5AZbVXz/8gWmLNnbv8u0GnET551CjjEBUYf0PomCJURhaw3RkYnUlJaqiMIayvI3RlZnRkTnHG3bSheFQgvdRMh42YStGQCgQoxMNzZYzBddQ0YIED1GlzTNgqIYSQmIih1VLEgtltbgXO4c4lPQ16YAt2SjXGN49+4DG5MJr178iDfw2bMvmM0v0bbFBqHtMNbiUVzfNNzcLPnq88dUSmD1qjBSXW6EG0hMUJ1S8Qqd3Ug8OiHArTE0TWprE6WhIlFiWcTcg0zYBiKggtQZmSjube0gqIqXr96jfGR3s0CPt7m7tc/Ly8DFyQyKmodPDqkuLEXVYozGu4gpLMdvTjm7uOHzp3tMNiscGm1bdu8WeGaMRhW1q1k2QpJ+1dT8P3/8lqdPHnJnYwMVHV4pod1oAx7FooXGw/X8gtOLay6vrlgub/jds2eUyqBsSe3h5eufmDWOvbv7fPb0ESZ4VOOxPtG1jCf849/8Hdd1y7/99JLGec5mNe/PfmBUVgQizz+cUFpDqT2unjGeTChKyYKufGTeCqJ7jGWkFIvFDVehIUZD3baYUkjrR2XJ2BRsbm4ymk65aRzu5JyHhweY6LFFZHNf6GWXZxe8n18RJ2N0WbGYX3JvZ4vDoydopTh++56N0YgCT70SZsegDdoIHix4UT7jwjA2BldD4xRYyyrAj69fcnY9ZzQZ8+b1a0Y6YpWiKDSfP7kPtuTt+SXnxyc83N/j8eGeMDa0S4y2tATOL8+4t7XFllEo77HG4uuWUVUysprgKo7PZ7x8e0zUms2yxNU1rm2ZlAWlEvd3RIvXih8/HOOduOZ//9mXbBcT3MG+WGQo/um77ymsYqQ1b169gN0apSsapQTAmji6bGImzQWvIpE8SvVn3sXEoiFRW5rmN0ZWK6WEPlQpCmsZjSqh8kgpLxVJRPgZa9CbLNdXV5ydnjLZ2GS6fYc2cV8HL9YOCM2HVoq2FZCjdx5b6tTznc5NCkGC3iH6REtiWC0cOo4IIbC1tcFka4MfvvuBv/3Hr0A7XOPQqqB2jvnK8/bdCV989pRCNyjvIJYplSzCQywd1RGChRgpkmuqjREXJwglRlWWaK1omjrhhWRKY0g9z1RE6YhJAqosSsHYaLieL3n57g0Hu3tsFRbdLHnz9oLFScHpaaTZinhfs7M3YdEEzi/nFJsl2kBQimpji2AWnFzecHBnh3evT9mNit17e4JybRtCDLQRlo3jT89fcbS3z4O9XRbLFZcRVh5Wy4ZXb96jtLigptBMNyY8eHDAs8f3IURev/3A/t4BdTvn9PSEybji2cMHlNagvMe3Hq0sC6B2gevlisvFBafnl1xd3aCtRSkoqwIKhVu1HBwesbs5ZWdiGWmhMENZXLDMfOBfv/8R19Y8ObrPwfYWtV8RjCI0UmhprGG5WknSoPVc3txwfH5GG+D08oqmceyOxxxsblJubFBNNnj14xs2Hu/z5uYcXcKzh/vsb0wYjwTguVrN+d0Xn4NfYbRmXFRSjxgDxagktoqL83O2d3ZQuqCY7LBsak5Pr3jz/j2tD0w3pmxNCkabFZvjETtbG2gNtqz44w9/5uLyis8ePeb+9jaFc1hb4nSAoFlGxdVywbN7h1glxPRVWRHnC0bTCa40fP/6DScXM+7s3OVmdsnn94+YlhWvX73m4eFdRrvbtHVDIHCydHz/+j0hRr558pA7I4XxjbjYleX4+D2KwJN797m/t4ura0KraKLEmpb1EoL00NucFmthiEiUqv8opGkqBggeqxV18Eg/if9JxGjSMlnQ1cG3qEQDooio6BPeZu2bhBDY3NjAJtpRrQTQqFQukpOYS+MiUVlQBS4EQpu7CKgEItRdLy1jc88xTaQVCtKqZHYzZ7q9w/bmIc0KNrY02lq0luzbzXzOF8+eoWMrC5182o5hLvGq9O2uFUaXogmVSQ0OC7QRlLa4quKyZU2RG0RKc0UwiGuqlU0RBXh3fEzQis8fP6TwEb9YEZqSZj7mctlQjjf47s8/8eTpY2oPF5dzDh8fSAFrbGgIBGsY724xX9YEXXJ6ecWDLx9IvZxvCSrimgjlBs+Pz1DTPe4eHHFxs+Dd6QXvri5Z1g2TYsTe3h4729uUVYWODRqJIwQnDQ3vP3zA//n//Deq0vD1V1+ytTFFtY561aDLitYYzi6vObu8YbZYslwtUFox3dzg2f27LBZz7t69i/Mt7969wzeO09P3jIt7FJu7TCsLbkVAsYies9NTCgKH21MONiuMXzHRipaAsp7SFjjnmFaGEBXV9i5379xh5QLL1nGzWvHjq1ecFyVvTk6xSnF49y4vVlf4ZoatDE8O7rK/PSEqj9KB84sPfPn0ASYKD7sLnvlqSZFCEAC1D1wva0Y7ltdnV1xc3rCYX+OaJQf7exzc2cGoyMZoxPz6ht3pBAhEU/LnF2+5mS/528+esjOZUESP1YBRtCke+ubtOwoUu5ubLOsbRpVmuZyzuF6gNzd4d3LOn49f8+TwEYf7B/xwc86d6ZhRadn47DFv37zl4vKKBw8f0wLfvvyRycYdTDPjzmRCgceUJXUD7y7OefPhAw8OjnDLBRN7l9JYxsWI81ZI/DWR+XIhxerjfAZy6UdPExtiROefU0KnLIrOk/jNBJFNpF1KKYqyxNQmde9wGC1WzbA0d9jva2tjI3EWS1xFfp+LQAMxelxyi8Skk59DFN+8SPVIOXVIOuTCaV2wszfl9PiGN2/OODrcoWk1q6WkrZ1XeGC+aji7uGR/b49CS7mKSnUoGRWd417C26zwzqFtLtEwfWAOcRcFhiAtjTIzgPe+L1EZCM4QtXQkDfDm7VvGm2OmG1MsCuUjy8WKptZMNjf54cc/8vjZPT7/+h6jjRHffv972tAy3tCEIAW3ttDUpmFzb8LI7vDjTz/w+e8eMtnSNH6OKUrqJkK1wYerhp/eXTDeucPb7/6MX84ptGJve4/9J1tMK7HWmqZFt8JHpA24ppb0rTb86cfvefDoHkopLq6uqEZjtFKczWYcn7/merEiGs12tcXTew/Z3BxjjSJEz+m7d3zz5ef4xKp4bzrmeLngx7cfeHn8htnqmi8f3mNDa4wtmdVzzs7O2drY5NnRXXTwVKMxjZMmBWVhxWLW8mxgmC2WrOqG+WrBfLVk1Tr2tzepxhOMsZyenPLu8oJZWLG5tcvIGI729wjLOUvvuWkWYulbQ6gbVFliEFoXZQ0Eqaa4qWtu6parH5/T+kBRVjSu4dmjB+xtbzDSEXxLqSNmY4wiEJTl+as3zGZLfvfsc6ZFpFKB0hhCiLRRQIN1gPOrax7dO0Q7h7QmdwTEJb68WfLiw1uePXnE0dYdzo7f8+DuHXanI26uLrCF5fBwn1mr+OcfnrP0jnkbUU3Ls71NxlaB9zgTCUXJ9y+ec/foLkd7u5wfn9DWDXjHhrGMLOjopIJiNKZupHqhr66Q065TGCOjsFWgMxxCjFS/dfV9R2yfIeshSFzES8sUATnGtfKOPBrncG0LqSNo7vfufEOIDpOQmz5Kn7TaSVU3IVIVVSd1i0KwN1K4qQhBrJFoGjb3NnB1QR1aLs7mXF/O+OKbPSIrPHB+NWdnZ5tRocFLp9nGhTSRrhOeoeNWkSCc1KGlQOSgQj8Eh9Y9mjSm1GYu58io6qIswRrqZcOyXnJxds32zi6TDYuKXujvMFxcznG+4PLihKMHm9zZLZmtZmxMdjl4cJfd3S2MiXLPECR2NQazVWAwPP3yiTAY2ECZXKyynPL6uuYPr99xfr3ALFZsTQse3bvDg/1dCgV4R4i1gCuNpXU+FfZq0FIb9Ydv/8ThvQPu7O2ilOXd2xP++7/8G3WzZDqZcnDnkEcHUybjUmAO2lI3S+rVisvLC44O7kJo0cicqtjybH+bSVXwh+dvOL+a8d8uvuVoZ5+HTx7x51fvQFk2JtNESie8U23QuGBZLWqm001cNJycXHEzX9DUcwoDuztb7O1sCOWIKXh9fMy8XtDWS+5sTXl4uM+qDbi65v27D+xtblIWG7z9cMZnjx6inJRN6AhN29LEwMq1uFZc4/cXZ0y3tjm8u8dqteT65pK//+ZzRipSKjmogYhTEac01WSD7358waqu+erZI8Y2xQk1oDzEiGsaTFmxqB1RaXY3NomuxRZKuLeMZe6vefnyNQ+Pjvi7B/eZzW44Pn/PP/z93+CbJWNbCGTCt4y3d7h6+YbL2TXjzS1C27J7Z4uqsvhFw/VixZ/fv6GaVBze3WVsSgpbUo6nqHaJJ9AsF2K7W41VRppKFBqdwzF5RN0VVuSAttECbMzNVX9TQUR0GG2oSVXr2giuSAXhwFdSWQ8+GUZ9ZmtUjbipG4wBq8EaTd002EIny0KyMcKdIzU6WknbYRECUrHeulbAVJmuw9Xi6qHR2nPncML21ib//N+/4x//89eUk0iIluVsxuZ4zNhaCqWEUzkKCT46orRJkydCKKZAu1FGIO9aeq4TQUXFzeyayWQijRR9SNlDseBI14nBAREXIyEaFo3n4uyCJ/cfiRCLYtEFD9ZWmPGId2/O+Ye/+xq/bPCtZzQuuZpdMZmWRO0JUWGikGL5dsXGuMAjdBmqiJg24h20uuSqjvzp1XuOb65ZLJccbW/w6GCfg70po9ISvMQ9gla0TaT1kWpc4n2TXNWCloJ/+eN3PPv8K6yNvHn7ntV8SXSRL5485ubmmv3dO1TFiMpKrOxqVeNizWq1YDa74ujegbRuLkqca9FoytEEt3LsVBP+4fMvuJ4tubi44HK24PK7HwHLZDLi/sEhla5ZNNIFVymJ2a1Cwevnb5jN5pRlyfb2Ng/uPaDUkVFhsNpQO8/ctVxczmkax1ePH/H4wT1+evUaG2ruPX3Axdkp35+/RCnN3v6dDjnvQkNlC2LUzGYzLhc3LG9uuLu7z87WDg+fPObm+oLriw988ewJW+NSMorBC9YoRKAiKPjh1XuCC3z99CmVCRCkONhFIY8bF5bgpKnj6bv3bG1sUhmIwbFqPHXdMisi785PeHJ0wJcPjtBNi9YFG9MNdjc2cLM5Ck1RjVDK8Idvv6WZzfniYI+zuiGWmtGoYNG0tM5x1cLLD+/47PFDNosCjeP06ozdmx32pxt4NEFL2ZNC2kmhhN4mRinFiiEnnhRGZyWdGjFqnbwHT/1bU8UahbRLTik9lXzBGAVJHZWQm6mOTjIkxKXQgBSF9CknBgprpCDOivbxwadNkALfKehtCiWbohLAog+BED0xCmG4tVaKT1GMrEJXMJpG7j3Yoo1ntFSENqB1YDyuMCpxHBVWgt0Jou5CS4xawuxaXLKiKPChBaWk93vXAzwymVYiBKNJGKG24xsyqROtskqC0srw4cMJGsWjh/cpjSJ4aHyNNgVFVeJaT7VZ8fSzx2xsjnh7ckZRjLicnXP47IhyOqJuGkJoiBQ0rYe2odJVchkjdhRxlWWlCr57fcpP785ZtZ7pWPO3nz/kcGsTSyCGFW0tIDeXYPuLVvBN7UJqwwIwazzffv9nVFnx4uULVGjY397ii0ePsdoKjcjmBq/evmNVNxzef8Dl1TXnVzcslnNGVvHVZ48xKuCix/sW71rmbU0MkbKoqFcrRlWJmRYc7j3m7fmMd8dnhBgpqzEOx6yuqUPANQ21D5ydX3J9PWN3Z4fHR3fZnE4oCo13tSjKuqXWBdfLmh/fvcVQsLc5pdKatqm5uLjg6cMHFCpwcLBPE3b5t9//Hm2lmeTdu/too5gtFrx9d4IpCgnc7+8RWo8qKq6vLpnfXPI3X30B3hFbR0x4OKLs/0Zpzm9umC8WfPPZE0ZG4VyNspIOj6mIVOMZj0pmTcPF9SUPjw6YjiwFmpULzNvI77//gaq0fPPFE8JyTlSG9ydnbEymhMUKi6UOjpu64dsXr7mezfj7L56ytzXh//rj9xSV5dWLF+iDfUxh+O6nP7O9vcPYWHZHExrXUo2s4Ot8wClFGyGgJRid4rgxSqG3IHJsAi2nhBJJSIUU09VCAGh+oYj5FTgiCVJJ0aqjbhYJKGc/CmjMVfoxgneey6sr7hhDVVTk1kFGR3GvdB/kigz6vAO+aRJNSAYWOuH8QehEs9CabJbEAK2bUY2gaWe0zrFcrhiPx0RqnBduaIOmdU0HQFRa4V0jmsoJ+K9usrsmMIFc3KeUlnotYxMrgPArhSgEYd41GFPgoibokuPjUypruLO7TWmSBakUygv0wEfpDjIaGbzSnJ2eoI1hvpqxfWfKZMPgqNHWCeohRkLwVDaxIWgLUeNtyfmy5oc3zzm5WLKzvUvbLHlyf4/97YIi1CgU89pjjdB1RBStVwLd15qmDeAcobD82/d/wnnHwe4WO9tbbJUFsZEsXBM8GMtV01AXllcfjvn+7AyMobSajVHF0ycPqQqFdi2FVqACWkWqqqRtWoxRTMYlaENVldQpk1o3cyKRD+fX1GHO0f4hylS8Pz3haj7HGsPDo33u7t0hOEdVFhACzlhQGm+ls8i3z1+yv3+HJ3fvsFEW/Pn1O95fCCRkOi4ZF5aoNMevXvJ3f/cNSmsur2b8yx/+wHg6xkfPw4MH7E6mlNoTvON4NmO0scvp+RkPD+8RGo+KiKItpdttiAqs4Wwx5935Mf/w5ZcUynMzu07NCEUAFZWhdYLed1FzuZjj3IqtjYqmWWCrCgrLD69fURYVXz99jI6eZaiJTJgtl9w72AcfmE63cfWSFx+OeXt+w8P9HR7e3aCpI/VqxeNHn+OvTnj9+j3l9jarleeL+/tMCvDNCmvEumralllcwGjMZLKR9r1krB1QVbo727l1UA5Y5+7PUfh6RKiFQPXb44h6GgulpX7MDzqzZhR4DlJn6wEUzrVsbGzgncNoKaoDi3MtdS3FdWKlSK+yul4J8jNGymKCLWzHn5u7rubYTqYmyF0+UI7dOxvMFjNGo2miYhUBQwgYXeA8kt2L8j3vAkaVCA4qwdVT8FlrTdM0KUsnwewqMQrGlCFUQJkaAUqSoEIpy4f3b5mMJxzc2U7mq08WpYEo5SMZFj8ej7herFjOGrQrubiacbC1KVSzxqQQvsxnVY5RQRoWOm+YOcPzN6e8ff+GzY0p//HLx2hd8vL1G/anI8biO9P6SGGrgVUrdC66qNDa4mLLq1dvuFgsePj0kTQQjFKi0vqIKcYsfGC+WnJ6dsH1zSxZRts8vHOHs8srCuX54sljKiLRtRALAXcmt7dZCXqdlPSYL5fYSqOj4fXLN2xOpxzc3SfEwMvXb/i3q+eUZUVwLVVZ8PD+PcbKdbQxVSwJHkbFmJULXF/PeX38gYP9A57eP2KqAlbBwd0D/umPf+KLp09QURoyrpoVBsOkGmOMYXY9Z1KNGFUVs9VC9lOU7rtKQ1mVnJ2ecnD3Lsr7LhArHOQRoxQ+Kpat48O7Y77+7BlFbIm+RUUobEXrPFaX6BRu8EFTO8WHszl3d+5QIkWktVe8PDljvqr5/P4DbNOwagPTckyLwbWOqpA9v1jWnNzMeP7iDTu7d/jd06dsWHh5dsG4rJhWJaO9PdpVwz/96UceP3xMgaZUivlsgR2NcK2jtQ22GiUYTcCYgtavMKZAawGPrp3vxMihtTCtSsw44LynbSOFKWjb37joVWGI0XcWUVUJOpq4jrj82NjZ3SW4Fq3ETdPaEJzGhYjRo4SYhsIm2gwq2sZTFiVGF/g2oIsypfKhaR2mLCiMFJuK4FDp+Zy4cqYkOBE0bdti7YiYqv21lmf2wYPTaFWSObbJnWTT323jMHqCQgnDZNd+WhoFGGWSVaZI4GraVvP2wwl3dw/ZGFdYNNFHFKmDLWB1gfMSo8rUCSpK6cfKQaRi/+A+1hqWbUP0OrEZKFZ1lMOsLRdLx59fvWZ/f4//8h/+F4xvQcOPr17z+YP7FCESW0OgSK5tKlIMkbppUbZEKc3xyTlnF5cQNZ89fobVUDgvFKe6IISSs8sFJ5fnrNqGcTXid08/pypEgDdtoLAtKEfRQllUWDvGKoNzDVZLyYtW0PiGqC3RW1Ss8I1m1bY0q0hl4GBzT9gODkv+8PoF7bJloyj43cOnlEbj3ZKCQiAdzmL1mHqxJKD48PaEo4MD9u9sM/aa1kVapbF6wshUVHZCqcdE13L64YK9/QPaRcvbYxHiv3v0BKziYn7N1ck5C33DvaO7jMcF9fUHHty7L8W2BGyMNK0Tlk9lKI1l0TqeP3/J54+fMHERxUrYFa0meIXVFQRDW9dgNEoV+GA5Pl/yu8+esGXHeLfi/KrmTy8+8M0XT9k1lkILf6lpNbX3lMYyHY0xwbEKgT/99BJL5JuH9xi1nsKMmN/M2ZpMmJQFpm6ZbO1S2gpXN4x3d6gKw2xxRWU0k40poQ6MipLCWJrU1KEsKiLStVj2d7KDYgb4ygjBS0tABWVZUrpkMf3CYrNf7poZ8KtGpDuGxUpuLIdXqnMNqZg0JnZqJTXuOnGaRCLRNTSLmj/863tQIQEI5YDYUndAqbZtiaGlLKR61/tFdw0JkImrJDxAEW0Ck/GYZb1AqxUq2o4Lpa5rhB9Io40IM0mte8ECkevFIuPRmEztEbxou2yi5pqawlqapsX72NXdGZPAit6jtaVpFbOzBW19Ke6TygDJVObRVxGCUgQf0d4QPJyfXaKM5afvFkQd8TGz44mwbIME2lsfefv+lMODI/Sx4vJySd3UrFzL6UUDs2uauk5zqglJkGUoftMIMdkyCOe3UpbFYsXJxTE6BmyieQkRzs6uCWhsYdnZ2ICrwMXJB5q6RmvLYr5IKdvAzbdnFEXVdWrRyqKUdMHSCgFkIpnFopQmk6tVzd16iypWnP3+lMViwaquuVdInVZlLee/f8eoLPG+FQvYQ9s6yqIgELieLxmjUc2Ks9dLzhItbVGWLOol41ng/OoVzXiMApr5nMWlYTa/YTKdULWG9nJJUIHCe3baipPTU16+u2EyrlAKzt+/ZrVYMC5LrLGYlK1arVaoCLOVUOS+u3zDxsRSFFCWBa71CN5Pqtzb0FJVBb51zJY14xoWL694ba7xwXFxfc20sayeL3jrWopSkkHTakQdInZRcv5iTnQt749P8IuWZ/fuU13BytVcjzSzDzWjsuDyxwsqo7i5OmOrqdhqRly9vERvbeGcIS48k6Li7PSc2rSoQrM8WxCfNckal7MRAgTvU+MLoQKKRHKxRN7LrWtpW3AEtkcbv60gkphK6EoZqmpCKiajYxqKJomJvhA0IkX2Mbk8hdH87//1fyMom8ohjCxQjF3WLNegidDNUfpBGlAJklPalRgBTSnBFDW19EgPQeHakA65dAhRKvfz7nt1t+1KutUC1liKUiyEmALNNmk7kM60ETq8UAhG2rikw16UFu/r1CE2B/JEKGttxIJEsBfayHMYYyXG5KUWTaveDycJRGNNQh3nOJp0QgkhYv6+EKyVEp6nNgSalF20A5ClwAxMygjqdD8Rh9rKGmhdSEkKkpwYAj0ZZEh0lMrzqBLOJtXPiVUp2a3s2iotQlYpiPgEeYBI3444ipmGSh1gujpCrQi3yNcVsvY6uQUq74cMYRvg57L3IDaoHCKbnm2I/A/0vdZkSAmSzHWUuscQU2Im863rbn/qpKhCjASfoR4udYpJZwPZT8JVJGDZqGL/rhlMq3qW0wjEmPFrHshkgWmfqMwRFvEarDFiyQdp6Pn1F/+IqCCNRqWC1L6deHeWSEXlX6fSrAjmvggHpcWFj8mSNiYZObmjR3qHrLzTYUUbi0XT1DW/ZPyqEg898BEFR9T/m0LcJHmT/hCRiLZlQ8hkTMcTNEWKsAv9KwiHjEq7WmkJLOe4TQYTdoRkecvkxcsba5rcLpLqRZ5DJjLKxKVva62E/jVttsHbyreiFstOymFls6WFF8yRGpCkpTvFxL0UhWRcodBpkwfJfybrKD8Z3WYKKvNZi/WilYAdURl8KbxPYkulZ4spcBgSgVxCucZUCJyFdloooc3IsxIjhAxGk64bxKTeVD546fBrBOoQIyqIdg6I1MpUMHkteqmQmDfVEHsiR0yrKBCH9FGtNETXxRmJEH0kmvzGWe/F7hAqRVd2FHwm3OsPVsSvPUdQgv4XxsFkocfYZXd7oS2COSqNMlJ77nVM2l8P3i8rUlF4WqnUBQOgQuV9onzyEgxdT3PkwJLwZ0rl66lummKIuJCKlpE51EqSc/KLvBchxHSUtQYtZ3GquknDpD2Cif0eysI3C9KUeBG6HmkEqqICzEBQ5nPY9zg0SgQWXvZ3LoEypcXa37jEwxhD61vJXGXQW954eSStl5zDLnMmge6huxhTxkfSnVIcK40KyQuZYzFkwFSqYssCLj9Xks7CCkyiaU2gKnwnwIzW+OBTLKeXAiZ3GxnwT6NcYgCQbBkpgIhSiUM7pDlJhFFDGTbwnXUSpgov5O4JmiBB0BTgj3K4UbJZVIIjaCX7lIS6jdGnuYmSfYlJqKbnjkkjq4jUtYmqTyaBToZrIq9CJYsCYoqVqSjiFpWEYhccRyyxGOQ5g/ytVUzfMRACPikmpQcuaJpjHQ2ZbzzHFJX2nRDWxqQD4+S5YnIGFLi+tTqZTjhvkogEiLPQ1fkQhbQGMaaDmg99QJMbe+Z5TTVSefl8hNQoE6MEo6WklrJAkMOhE54DIZ8OqUdaootVKLgnlYg0OsWqDBGxKFE9F3RIlmHMUBEFVitULmWKFiIE+rOntLBUlMkaBUXjvVTGJ+tXxYgPsueki87wwEYsbVqnVLIBKJOFppAZEhVK5/1Dep5ARCxrcYqSQNYqUQZ7KH9jzupsjeTWL2JiimVk7JpFfPubdIhlnS2jQNTZxFNJogt74XAknsaBFvz4HVSasEhvVemM5+ks8FzWQVqY0H9Xqe5e/TXT/yeharSY2IIYTd9NZG9Dayqkvm4KpPNrBBdcbzmkPz4taExaSKEEwZr7u6Xbe60JKnbCTmUzWMXU6QSi1rjeRiIb91kwdQpYDQjsBorKqyTcsmALiZs4SPPMfI3UlS4J0WRxanE3VKpOj8rjUpPMPJs5thV8QBupTfTEJK0NMTH8ycuRhHmeA0nLx2QhxiRcupVKQFqlJJYWI2ij+qB83m8xEJTEZ8juT5qPnIju3OHknojd2W+7kJVpDjsMXMLOqolRIL8x9fTDiJWUhYKS/xYhnna36y19cZ/ohalNZU8x70pFTMoiex7KSFwWJTtT2zxDvWBDRYmPEjrBLdOcHNfOUpC9Kwo4FZknoU/MZVn9kLkLyYLvr9PUDbb6ZeyM8KvS904OVSvul9Zi5gsVR0yctUlLDB9UkfATue1IfvyhqSe8MYp1M06mMiTUczICYN0KyzdJC6VVv3WycFFpk0vn2ETSP2iBvObaMbiOIgmdfPqR3eN7S1ANEOTDx5HFaWXzSZVvdjLTmcsuUJAdLvBKeaakqdLOls/LqZXPpX9TWjRciC7Nv0pZRJnLmNwUnQ9cErjZHek6kKQYglgQ0qdKdfs8CZ4soBJ0QvZERPpayTNLV9tc6CPmvk5FwZLQ0KAkFta3qsmCIibBnZ5PZ+tJhAgBYiol6hVSHFg2ClLLm9wMMAt4WSs59jodqN4lg5wpzeJP3lXmRnfCLO2kLB+TVZUfJyKUCrrbS9kzEIXTzQMKpWJvIYlElPVDLE6d9yS9VSwNHwbCJe/xpFkC/b5RiVJRKamOF3kTOqhxt3akeJeySb+sezg5vpXvFePg7EVx19ARvIQ4iMkijJrWOUyFdI79BeNXFL0KdqFbPEjmeEwbrf/sbUGhSHVbeUToVHKkj0Wo22Zc7370h5HuAHWB1Bi7c/tRKIHKVcKQTYKcJRtqtP55BwGc7kli/7msUW8/bYxyIFLMpJMlqe10z/edraleuOb4B9DVtHXvl543xnz/VMujs6ASkaOVTq+Xj022IH7+jp1LkTcvGabfx5OGCYfuB5WunA+O6q6e4l66d6XIAjF2lkS/doMrx+5Yrb2zTIzQTPSZy/TlGFNDg2RNBdW9rzxLr/GzRa7o/1vLROdbdHOcBUO2KdRgHocrrtJ6qfQyMQnh9YMs76ii6t8xW8KogRWSZiL28c4cb5PtE1PNYz8tPzNNemmZFL/q5jsOrpt/l8MmuovF0s+T6rF0A/E8COargTUpbqwxFhNzMbihKgWqYn5h0esviyQh3VdzMWcOXBt9211KUjz7mnGAmB5aHGp9ww2v223+te/nTfBzITMUSh8btw/h2kYfPvnwmaIBiu5PxHZCYKg1hs/aX6d3kPKf/G7rQM+1m3fcv0MgZY5lDLM8PxPynTUoMQmtCxHocf1z/+41ctA3+iRUsoD7+edQ+bBlzbz+meF8rK0j/aYeWqC33+02H3gPnCP9e1z7fW/J5ufNTJnijgwTKzmgP1zr4c+3nwmygkj3ZLjGndj8+PvG9fXtD/X6v3dJn7XPrj9XtkKykLg9uuvFAMkFHf6BdS/l59fIcTS5r0lpsWHGtLPObs178GHNSsrXbpoWVE+H80vGr+r0OjwomTLVdEGtftPBcIOqTnivm37ZNO8/l0fuAyZSN3a/k3lV5NbNf4nIvrvmYCMP//VngXboN2OKJ90ew88PM4jD+2ll1r6ZgZb5+7eFl0paRaycHin+lxZwuJGzUlDJ1ZQ5SlbCv3PPPtguBHNKh85i1CYHYPs10AkoEgidNbj+frFbs489Y7ZISe+6buX9fJ6H77b+rj3ea9grTjJnglUSS+IjzyA/de//MZf8tlDNrl12/24rws4i4uPr1e1RnRIea0Jq3coQQUmXBOqvGbvvDq2l28o8BNclc7LQMLp3v7VSqAFNDfR72LvYOWDZWtTGrM/9wFod7ouI6z5nraWtRQh571OG/zcWRNYIKM9aS1EWeF8IUjqB+dQgLX5rOcjuXLcI3V/DTZBfeiAkFF0WKYacGv6YVP+FI33/55s/PUkn3UO3yQb6tjtwQ83571pYWVsGgfLf1oJiOYkWl7hVwroM3i0HL+NwvtYMy5QEUGbNWhi+br5m/5y9AAwhY5Ny2pr0s+rchHzNSCATowPkxpLx1lKsW379c2c3Iz9T3sg/s5b5uWWl8sOlaw2txizgYsK3rblLt94hK76h0By6IrefP8aI8y1FIQHzNVe9u3a8NeddJLD/HXQ1WGufU7f2ErFrzJD50G8PpbU4u4M51lqDjp1gztan9zkkoDsr19yCb4RUYqRTVlkEVc+xJXtsfd+vzWk3b5IpFeYMlVp6qa7H2/9o/GJBpLWldcIf5Fzb9ehCBVT6GzUIOHcTrz7yAhLYG75QPhTyvd4XldIIIEq6F6UHIoLu+rpzJ5IRpAabJZpkGP1caARCV8cWc/1Y6uoq2dDQPeP/2MzMwV5SHCVv1OSHJ4tAnjVZmGHoi9MxPXYCqT+DgwaXuhPKOsELOszOQHP2CiC7cAESHiq/kwAQh9sgu125lCUJwsE1h0q9s71CasUXQ38Ms2DI2jOo1HBP5iK/Y+/qpM8ournxQZC8IvjEBZH4ju8OtrgeEjSXFHJ6BZWC7DGkxgnyXrKPRHDJ0vexk5w9jIl4PziPKoqfedPZMskKNAu0TCUilxR6Gd/NaZ+qF8xkXs+hK7buPvfWR9pLIQieK89XlOtIIkAESP6+eNBRisp97PYTg/vJFpWyLQm0B4hqYFkO9muU4L0axM/y3pI31CgtGVcfWgpVUujfOH3vXKZtFROsGbpUKUC7tladBZAXvA9HqdufTZfpfputq9hbFt3hufXNYSxgaMbmw9KZoSqDwrp/IIYgvcqVoiiqLk7Th86GeYZ1H/9jbt1tUz8/W3e41wQo3bVjXG9L9DFtu6b91jTz8D6DDaYRwGD+GUkqmKHmRzZPzPY8eb59urdP5RkibkL0g/dR/Xolc/JnclrlT/Xu3m2ruXf9QECgt+d5HWzYzVrsjf4Y+j3QsWTmTKXuW4D3VkTPqDkUhiEEATHS75uqqjqBmpVEb9n3FkG2NOS6phMgSVzIBlasf/eWMs1zm63EoYLNz5u/I2DcbCEnN1Kvu3pqbXmywIwMY3vyOZXmHnIzUd3NtQA4BSsU8IT+XfP/YkbRa6zSlGVB2cp16uVvjKwuigLXSilD8INOqQlEJcCg9dh3pkodHqjOzO7WI/0+qf4Eh/gLo9+oggrtg5DD+w43zMdiAp3GiZHZzQ37e3eT1TB0A9Yf5LYrtua3J7N4ONbiYXJ6fi6A6YX08Jk/5uIMrrz2ufVYQdrEOCLtoAFezpD0VlK+Vr738L4SlBaowHp2rB8hfCxG0s9F97u03BnKEOP6XHTC5yMxv3XB/nGr9PZ6q6RkUEIVc1uA9C5H+Nk89wKk32MRujDEegzvtmJh7XvrIYS8z4f/1SXG0717wfzxGFnesx4X6ITH0MId7vPbc6eNIXp3K06npcqhC09kgLFYnHHt7N5ek16o5TX3AbyPtK3H6mLNFfxL45fXmrWu1xTJxOyRx0nTJaV/eyJ+tnlu+cpDH3k4sbC+MeTVI8qoLn2tiESlO1yQXP72oeoXt3uepM1Go6rr0Jo1S9bww3v2j/7xw+CcE1rYn/17rzXX3z1v5OE/rW+kvpVv/w4ZPr920PmIpRY1Wpfd84sCFkEkFrdKG+32Y+Q57DdeDtgOg5W59xw/m/NbgiF9JKqUyM8Z0ME9++/qtXe4LYiGwhbW73Nb0JCe1Vr1s+8P7/mx+2W64N6azlZVf50cO4mD9ZF4jMTrfrbX0prnuc/Yda37cxPD+nPkFuZ5yHsPBXhA6yIJS91ZxkMBm68nrvG69Zeu2u35MBCgkYHQTU8eo76l1ANo8Rq660Vxr42xlOUoAYH/x+NXEKPJMMZIC6AoxaH5j2jpdZMvzTkfM8fl8xnglQ4SeRHyBhm4VhkGzxDn0Md3bk/+8Bn+faEom8RoTdu0lEWVPp9AjAOJvxagG1x/aMIPF7gXqIpc9Jg3kcr3vjWGlsRw/+b7CJJaE9J89VnL9SFzlwCbg9BpBi5/dGT51b3b+vW6fx8cut5tHh7w0F2lu3OaF4/vXGSt+2YEOSObY4TDrTu0NG8rgduWbrbA+8+E7jkjKUuUfs6HGqR78PB6emCxf2zcFnydhRERdHe4tc+66evdMmV+rniVTjHD9IUcsP65NZ+ENr1A7G6nVFcyowbJAJVq5Ky1XayxexdSY4qUuNBGoZUU2cr3QWEglilbLs9tjBVxOoBFxCjeU5h7Vquaovyta810SYyeGFoKO8I1S9F+NmE2UkAw/rs7Pc9TPtBu7VB0rl53eLOayMjkDKIToWdSmlkWPZvL8t3sW6/FVRgeolwDJqn1cTXBJQ7nTltHKQPJDRY/7iLRXbc/MOtZmbw4/Xt+fD7keyK0smsUBnQqsmFvm/sDIaEEfi+Fl2Ly65gFw/DmQxeZrrKazDdOjuWYpBBCF6f42Htza176mJ0CNEZbgopStY0meFkon/6WNU7CJzVX6NLyIQjNBtlqlqYJOpHgxWTOSdZHnsOYYaanP/4qJs6cnMFM8yl8XqJ0tOrxXnRumUAihHtqAHTt9mISSF4lK4xUWDqwnFLMc2gdxeT69kKxn+uQ3lUsGSsUMan4VuZGhIHSpnfuYgsxdAW4kICQ2UPJ0jCBkCX0L9gjFV1nyWeloBJHmM7fBVA6uY+DJEgQoKkxWeA4ytKDcnjMX5Lna+NXxIhKIAgHsQGrt7DWpPhB8kH5i4okPfzAVx4qje7noSlNLzgGgdEeVdwHqeXvn5veQ82k0kHsA6ckTakEnpBGb/p/PDX/sffpNWRc08prgiAJ2J/FqbJFMHDXYg7+xsGrx4ylWbcOsvUImQEhCQT6tHQ3eYMYm4xca5cnaD2gPLRKb+OEtBpeJwuG/l0iQQLHNgc8A8J7ZKTWLvbYtGzhxu5dE5YrSuZsGAvL9zSmD0RDvgaD6w00tco1bzIvveUplkC/hsnlNPIuPSolL8ZgelS/XhlmEQkQB1axSDpi9hjIsmhobee1E8qOqCSbGWNMZSsIR3w+Yz5bf/VAyg6EX3oXk8pvgk8Z7bShVJor1UWGsvIIIphj7NL4uaha5tB1VDbdtRR473AudvOrjaYcjcBWv1jC/CoakOx6VWVJMKI98++GKNP+8+sH7rbrdHv0GrgHroXoEsRfDTbEenalEzDE7vAN3ZreMpKNEjuplwVD/7mhu9U/17pLMHyHYWCx85vlxukh+s8KUFKyWEPTMVts3g8/LwIr+LCGZs/Cbu29RFp03+njRP073J77bv7wSTvLfKyl52/FxoaWZf733CSzi+WlRxFvJwk1lRRHhmUkOgs5uCkYDlIXleeSLPxyjER1xaJZGN/uITcU9OvrlV2ZPlsWk3AgIlnFJES6rjHpe7mLi/Bh9W5GTPOerQ2fOa/S+8R0Y5V+R8zxpMFeS6GB/KzZ4lJZmMoMdFX+IkCEiSG4lojU1sm1i25PZYvOKEfwHqOTcAp0AOHuRvRCL4OUtRZOMFTmL0praCJKp+cmSHt4BSA92CLQ+khUJTEp5PJnZVsfH78KWa2VpO41Cm0DsJCFIiAR/KHk7cfHMgBDIbV2SNa0fB8LytpEaAlYu04kUw9FOvdK9N66YMwFnTrXQ60/Ux6340G3sxi3A99rlomOSau4gWGR3cz8EoLdGR4Y7z1G225z5O8abdavr9afO/9eDyzEvImHzy03HsocAAALsElEQVRDgKdrgkSnDAmZPykHPdP9BzGotXWKKZ3fWULZ1YhdLEtGcp+1MGKqzG3DAAWd7tVZcDF3gIGoegiEThIjCxSVpIWEKLN1ldDfSTN3GVUlWDWttRDwGdVZLs6FLiicrScVfd+9l4Qp69Y8B/x77ic6yyoSszWBkjrDJIRUJNF2eFlXer53kKp7YkoEZUssV3sPFEeeMnFTxcmKSidF1i0WPiqUzhkxESY64+JS/7WMcxq6xFJDapLVK9zqylhCVJ2ylBifxTtpbRSCcC45H7m6XtA0pbiovuGXjF9X4qFFa4lJTKeltZZWzCFEou5LNIYjT3ieqtsWRobvx0iif7VJ06aMVmfE5A3em+QxCA1Bvm7n0pDvGbs4A8kUzYZpumj33Ri7ZSNrV9HGvQbr3KcoUn+InpZA4MC16d45C7z8c8aKJPGauFTi8L2iBJ0hdu2K1vz9mAP862u1/r7rQh2y4Je2TIQgFlH3tLK5lfp5Cc1wveSZU9ayUyID61ip5C7kGZAC1RjpYjL5fTprKh1qYZbsNsrA1U1rrFVHnyKKUHX7op+/ZKXpLLzSYYvSbTgka8pYwUkVpZX3Te5ZRGiCCXIPo20nDELCZ3V7prtPstezdRoCIYqAUlkZhZ5axOfW7fnfUqec3JwQICon+7XXvsRo0nkpCK08k0/CUnWKR+FV2Z2DzkryyaVOCn3VtMKMkuZJOIc0KFmDHKx2qxaXWDKkHk2up0MS+FE2wHLlqduA0lYs1l9mEP0KPiIdE1mUoY5SDxNV6i2R/G4xTVNNWEdx0M9h9l3zhugPBslsFfPW2GS9xPQ7IhlNHFXogHXaKDH5UzCRGPv4UZBW1mghhhKTMgzuJQE6dJHIq+ieSeg7emtI/k4BaSOZly5jE0m91oxsxCzn0kHSRuNCSMG/SMYiB7XqWREx0l/NO8ngKEFAixZWXdAxks5CDsTn2EbS4mGAKg5A9KRN4gcCI2UZyW5AYhjsYhmCA+4zMTHNT9LuyflQSkucR0GIqcYu1bmFKCRvfbmIkwOoSIcTohYK3068KEV25RzC7CBCV+KrIYil5T2URSlMlMERgqyV0UVHzZHdHzkwQsfROkdwnhBlHzkX8M7h/QqjC1rX9pxXSlyYqigojE0wFY+2ISnHLDAtIUbappEAcgzUtfTbI4o1KZm6kPrdaYLv1ATO95CYEALL1ZzgI6PxlOBhtarRJUSEPK4oEvFXNNR1Q9NIdxBjrTRiQPrNO+9SeUeVgIbgfUthLSE0LBcLjDWda9sle7TGtS0RTdAVMYoHlNt8uYQ2B5lPOSsOrbSE1KI4tdpMaFyNVgptq18kX34VMVpAdoUIgYLGRYyRJn/Stkd1G2EYlM7WSmYFDDH2fC7JtE8hNDnM2RXJj6iSfugQ3GI5Cco/uWGJ8AoFLobU6y6XhaSDhAiLzr0SEySRaJGeN4HEkiAJPhfchm4Di+awne71UaNDQjwPcDpKKXTUOL+iXTVYW4r5rTTogo7GLJC0sEa1QahBlSIGj3cJQzRwz1zwQuqfNqHpatkEVRxDSBzLEVtI7CDHrryvxWxPmzAXEgsSW8zrpmlQKOHKzpk6rWhboXINqf14iBIniFFR2FKaCQTXWWv5IOIDbdsSQu6eqzCpxVAIXqq4IcWIJE7TOiffN4ae8i1ZHcnNK0ub3EqxLL0TS7pt286lzO6p9562dRS2AiU1k1opmkZYR621hOgIPuCCo6gKbvxSSj2QjGaXTk/ulbViVci7CWd6jFIG4QbumTaSEm/q3KQgF+yaLiEiFq/gs4paWm61jcMHYb+sRhWFtbStS1j4DElQSFstyVy1rsE7Lyn06DFWEZz0D2xdpHUBYya0Sfs65yiLSqw/FxGCQYXWJSEEGhfJVrTUkiVwKBptLEZVoh3THlZaU7eOorAJbzZwF//C+FWumTFiOgonruJ6ZqibVCznajL1QNs2OCcw+1y/YqzptETTNN3miAjuwBqb3Ixe4ro24DxUo5Fo2Biw1rBqln3KM0R8AFOUyb2JFGWB0tA0K+nsamTTi3+rOjyJc44YPdbkotEE4/exc7sUJE4V+blt2/6AG03jhFa2sFaul7iTjTZdQ0gVRUs2dSumOpo2tWGOQNu0vW8us520aqReNR2wzVppZhmy1ZddM7L2l5+dT8LAaKwppOMsQphvC91ZG23TIM0uC+Gb8sK+aVCd4M3CpHGO1jtGo1HXhNLHKA0F0VijcC5iC5PiYwoaj1IBFRSEAq0L6pB4hJSSXnOo1CQS4fZWEodQpkoOtMQ+pG+dSkJDsGvGZGiH7JvcZ89aye6EkBosJFe0LGP6nhym1gfKSlqHtz4mK08swMY5jNL4CJpIqSzKGJx36Kgpyoo2Ia2LakTmO9JKGiqgPK0TIedii29boqqEhEwpoo5gDD5EaSWlDIUtUDbiomLRtGTr0hYlShWsGoc1ZRdjCiEQfKQoCmFQSKGFcjTqQgCt96IclaVuWpxTGCtzoJWiKEY477sC2eVyKfs3NuTC4hDSfkyj2xeqB1IWZUmzqjuwbf7cLx2/ghjNkrl0Y4gU1rKswQVF6zzOtaxWy7S55LA475KP6buIfI4FGN0joZVqkuYSu6VpJMCljMXHiF00XQ2RNX2HiLWXdTXEmkjsArySTTHSLkcrvBNfO3dbDSFgioLFvMEH6aMWgmNUlqgYcU40v/HisrRt2y1OWzti2tS+lXvm2h/fRqKVNkYheqxRNC7inMKaUixAVbBsnASZjaENPnUkEQHkxQWnqETDozUxUYyk3pASuzDSHSS7N855bDlOFo8VC04prC2xuUtwCliOxxW5+tqHQIw2BXkNaBGoKEVUiqoaodoG1wbaNmU2k6LxXmgkRtUI55qk6ft1cn4FSqwlrS0qipKwhcU7h2t8YnUY43ygrApUWufCGoyW98jgWa1l/fJcijCLkJVf7PesLco1q6jzmZM16b24bjlYrY2l0JUEyaMIlszNFxD3Rqf6taIqCEHhfM9IECM0bUtVVdhUke6cp6yqhIqHGFL8isyfJF2CY5D1897hnaN1DZubG5SlWCfjBJrVyHuLIo2YwiKWl1juLsdvjcEWmqZxhBixZYFJ7BmS0hfFqpQ0jwSoxiM55+lYee876zK7aVpryjK1+QoRrQui81gr+9AnRf5Lyzvg17pmKW6QQo0YOxL6AdfSeE/dOmIsknaSdsiKgDXi8xursEWR2h2TzGwhug/JWhFLaiQHPHrQoYPZKWuIykisImmEGKEoFCo4fAyMqpKmaTuXMXiPxrCaryhLCymbQojoGMVdKMboGHHeY22ZwI2eSMAUllVdU1UlRerw6pOGUD5SGoMKkdC0FDoZzVqqto1S0kgxBgpbYohoU+J9wGgwGEJsaduWsipoW0+9arC26DIoENAmuZ9W4jk5Xa2MYE5aLxZKURTCj+0RV6kJ0vMrOApDEv4KHdNm90n4IRmdsijESuqEnfyvqRsKbVFRDnmpRWApFVEG2uCZjEc411J0WT7pb9X4GkUD0VOUIwprodBoswUoQhG6Tdt6x3Q8zRFfURauxUdHOapoWy/aPMWNnW+xthKIg018zVphdc9gIIdBAsdiePXxHVGQGu9UUrQpM6dBaWnxpIqSkCxAqytJWRuD8uJCquBFoHq5Vts6bKVRVoKFVkvg1yZecFWYZOVJatygKEvxBrQyjIqS5XJGNRlRVhu0UVOUo84ybdsGqyXw3zT0KXdV4ZxnNB6L++6cnBWlKEdWqFyTYPFRsobOOVrfoI24btL0wGGMxWrJltlk6edEzngsSk7cUAmBtE0jnZqduLoG01lQt+sv/72h4l8C9nwan8an8Wn8/zB+mbj6ND6NT+PT+J84PgmiT+PT+DT+6uOTIPo0Po1P468+PgmiT+PT+DT+6uOTIPo0Po1P468+PgmiT+PT+DT+6uOTIPo0Po1P468+PgmiT+PT+DT+6uOTIPo0Po1P468+/j/gBTQ7HOZwJgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "dav2EpowkA-0" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Программа для самопроверки" + ], + "metadata": { + "id": "DtERKPasN2uk" + } + }, + { + "cell_type": "markdown", + "source": [ + "Берём её [тут](https://github.com/x4nth055/pythoncode-tutorials/blob/master/machine-learning/object-detection/live_yolov8_opencv.py).\n", + "\n", + "РќР° строке 16 нужно будет указать путь Рє вашему чекпоинту модели.\\\n", + "РќР° строке 18, возможно, понадобится поменять ID веб-камеры, СЃ которой будет идти изображение (РІ системе может быть больше 1 устройства видеозахвата если Сѓ вас установлен OBS Studio, например).\n", + "\n", + "Для запуска вам необходимо будет иметь окружение Python СЃ пакетом Ultralytics. Удобнее всего будет создать виртуальное окружение СЃ этим пакетом СЃ помощью [venv](https://docs.python.org/3/library/venv.html) или Conda, С‚.Рє. это позволит после выполнения работы легко удалить окружение Рё освободить занимаемое РёРј место.\n", + "Запускаем:\n", + "```\n", + "python live_yolov8_opencv.py\n", + "```\n", + "РџСЂРё очной демонстрации веб-камеру СЃ РїСЂРѕРІРѕРґРѕРј для демонстрации СЏ предоставлю." + ], + "metadata": { + "id": "yGkios6OxQXY" + } + }, + { + "cell_type": "markdown", + "source": [ + "# 6 Разметка фундаментальными моделями: (2 балла)\n" + ], + "metadata": { + "id": "fMcpoidaQfN9" + } + }, + { + "cell_type": "markdown", + "source": [ + "Р—Р° последние 2 РіРѕРґР° появился СЂСЏРґ визуально-текстовых моделей, способных решать задачи обнаружения объектов, классификации Рё сегментации РІ незнакомых доменах без дообучения (zero-shot). Самыми нашумевшими среди таких являются:\n", + "\n", + "1. CLIP - Классификация\n", + "2. Segment Anything (SAM) - сегментация\n", + "2. Grounding DINO - обнаружение объектов\n", + "4. Florence 2\n", + "5. YOLO-World\n", + "\n", + "Р’СЃРµ эти модели обучены РЅР° датасетах РёР· десятков миллионов пар \"изображение-текст\" Рё содержат, как правило, более сотни миллионов параметров (самая большая версия YOLOv8 содержат РЅРµ более 70 миллионов параметров).\n", + "Благодаря большому объёму разнообразной информации, извлечённой РёР· обучающего датасета, такие модели РјРѕРіСѓС‚ РїРѕ текстовому описанию находить РЅР° изображениях объекты, точных примеров которых РІ обучающей выборке РЅРµ было. Как это Сѓ РЅРёС… получается - РїРѕРіРѕРІРѕСЂРёРј РЅР° РѕРґРЅРѕР№ РёР· следующих лекций. Рто свойство можно использовать для автоматической разметки датасетов, которые можно использовать для обучения меньших (РЅРѕ более точных Рё быстрых) моделей. Рто называется дистилляция, Рё РѕР± этом РјС‹ тоже подробнее РїРѕРіРѕРІРѕСЂРёРј РЅР° РѕРґРЅРѕР№ РёР· будущих лекций.\n", + "\n", + "Сейчас же вам предлагается самостоятельно погуглить Рё найти инструменты для авторазметки датасетов." + ], + "metadata": { + "id": "dvTmW3LUQkru" + } + }, + { + "cell_type": "markdown", + "source": [ + "# Формат сдачи\n", + "## Без защиты\n", + "Без защиты можно получить только оценку 6 Р·Р° задание. Для сдачи работы без защиты нужно будет предоставить следующие артефакты:\n", + " 1. Ссылка РЅР° jupiter notebook РІ РіРёС‚-репозитории, РіРґРµ Р±СѓРґСѓС‚ РІРёРґРЅС‹ ваши изменённые пути Рё результаты работы команд. Рспользуйте репозиторий РёР· предыдущей работы, РЅРѕ разместите артефакты РџР 2 РІ отдельной папке.\n", + " 2. Ссылка РЅР° архив СЃ датасетом Рё обученной моделью РЅР° любом облачном хранилище.\n", + " 3. Видео СЃ демонстрацией работы модели СЃ веб-камерой.\n", + "\n", + "## РЎ защитой\n", + "Если РІС‹ выполняете задания сверх РјРёРЅРёРјСѓРјР° (СЃРІРѕР№ датасет, интеграция СЃ трекером экспериментов, предразметка), то РёС… результаты обсуждаются РЅР° очной защите.\n", + "Для очной защиты необходимо предоставить следующее:\n", + " 1. Ссылка РЅР° jupiter notebook РІ РіРёС‚-репозитории, РіРґРµ Р±СѓРґСѓС‚ РІРёРґРЅС‹ ваши изменённые пути Рё результаты работы команд. Рспользуйте репозиторий РёР· предыдущей работы, РЅРѕ разместите артефакты РџР 2 РІ отдельной папке (РІ LMS).\n", + " 2. Ссылка РЅР° архив СЃ датасетом Рё обученной моделью РЅР° любом облачном хранилище (РІ LMS).\n", + " 3. Демонстрация работы Рё объяснение процесса настройки интеграции СЃ трекером экспериментов.\n", + " 4. Объяснение процесса разметки датасета.\n", + " 5. Объяснение процесса предразметки датасета СЃ помощью фундаментальной модели.\n", + "\n" + ], + "metadata": { + "id": "2yHZikEWN6yV" + } + }, + { + "cell_type": "markdown", + "source": [ + "# Рспользованные источники\n", + "\n", + "1. https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results/\n", + "2. https://github.com/x4nth055/pythoncode-tutorials/tree/master/machine-learning/object-detection\n", + "3. https://www.freecodecamp.org/news/how-to-detect-objects-in-images-using-yolov8/" + ], + "metadata": { + "id": "iMH3UfAPA2Pk" + } + } + ] +} \ No newline at end of file diff --git a/poetry.lock b/poetry.lock index 5e93f41380279e753ffeee5e3ee0b37280936284..a00f16051072e342b04e0de967583ed2b79d200b 100644 --- a/poetry.lock +++ b/poetry.lock @@ -665,6 +665,22 @@ files = [ [package.extras] devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] +[[package]] +name = "filelock" +version = "3.16.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +files = [ + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2)"] + [[package]] name = "fonttools" version = "4.54.1" @@ -747,6 +763,45 @@ files = [ {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, ] +[[package]] +name = "fsspec" +version = "2024.10.0" +description = "File-system specification" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fsspec-2024.10.0-py3-none-any.whl", hash = "sha256:03b9a6785766a4de40368b88906366755e2819e758b83705c88cd7cb5fe81871"}, + {file = "fsspec-2024.10.0.tar.gz", hash = "sha256:eda2d8a4116d4f2429db8550f2457da57279247dd930bb12f821b58391359493"}, +] + +[package.extras] +abfs = ["adlfs"] +adl = ["adlfs"] +arrow = ["pyarrow (>=1)"] +dask = ["dask", "distributed"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] +dropbox = ["dropbox", "dropboxdrivefs", "requests"] +full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] +fuse = ["fusepy"] +gcs = ["gcsfs"] +git = ["pygit2"] +github = ["requests"] +gs = ["gcsfs"] +gui = ["panel"] +hdfs = ["pyarrow (>=1)"] +http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] +libarchive = ["libarchive-c"] +oci = ["ocifs"] +s3 = ["s3fs"] +sftp = ["paramiko"] +smb = ["smbprotocol"] +ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] +tqdm = ["tqdm"] + [[package]] name = "h11" version = "0.14.0" @@ -1562,6 +1617,23 @@ files = [ {file = "mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8"}, ] +[[package]] +name = "mpmath" +version = "1.3.0" +description = "Python library for arbitrary-precision floating-point arithmetic" +optional = false +python-versions = "*" +files = [ + {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, + {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, +] + +[package.extras] +develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] +docs = ["sphinx"] +gmpy = ["gmpy2 (>=2.1.0a4)"] +tests = ["pytest (>=4.6)"] + [[package]] name = "mypy-extensions" version = "1.0.0" @@ -1664,6 +1736,25 @@ files = [ {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, ] +[[package]] +name = "networkx" +version = "3.4.2" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.10" +files = [ + {file = "networkx-3.4.2-py3-none-any.whl", hash = "sha256:df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f"}, + {file = "networkx-3.4.2.tar.gz", hash = "sha256:307c3669428c5362aab27c8a1260aa8f47c4e91d3891f48be0141738d8d053e1"}, +] + +[package.extras] +default = ["matplotlib (>=3.7)", "numpy (>=1.24)", "pandas (>=2.0)", "scipy (>=1.10,!=1.11.0,!=1.11.1)"] +developer = ["changelist (==0.5)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] +doc = ["intersphinx-registry", "myst-nb (>=1.1)", "numpydoc (>=1.8.0)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.15)", "sphinx (>=7.3)", "sphinx-gallery (>=0.16)", "texext (>=0.6.7)"] +example = ["cairocffi (>=1.7)", "contextily (>=1.6)", "igraph (>=0.11)", "momepy (>=0.7.2)", "osmnx (>=1.9)", "scikit-learn (>=1.5)", "seaborn (>=0.13)"] +extra = ["lxml (>=4.6)", "pydot (>=3.0.1)", "pygraphviz (>=1.14)", "sympy (>=1.10)"] +test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] + [[package]] name = "notebook" version = "7.2.2" @@ -1766,6 +1857,161 @@ files = [ {file = "numpy-2.1.1.tar.gz", hash = "sha256:d0cf7d55b1051387807405b3898efafa862997b4cba8aa5dbe657be794afeafd"}, ] +[[package]] +name = "nvidia-cublas-cu12" +version = "12.4.5.8" +description = "CUBLAS native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0f8aa1706812e00b9f19dfe0cdb3999b092ccb8ca168c0db5b8ea712456fd9b3"}, + {file = "nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl", hash = "sha256:2fc8da60df463fdefa81e323eef2e36489e1c94335b5358bcb38360adf75ac9b"}, + {file = "nvidia_cublas_cu12-12.4.5.8-py3-none-win_amd64.whl", hash = "sha256:5a796786da89203a0657eda402bcdcec6180254a8ac22d72213abc42069522dc"}, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.4.127" +description = "CUDA profiling tools runtime libs." +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:79279b35cf6f91da114182a5ce1864997fd52294a87a16179ce275773799458a"}, + {file = "nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9dec60f5ac126f7bb551c055072b69d85392b13311fcc1bcda2202d172df30fb"}, + {file = "nvidia_cuda_cupti_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:5688d203301ab051449a2b1cb6690fbe90d2b372f411521c86018b950f3d7922"}, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.4.127" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0eedf14185e04b76aa05b1fea04133e59f465b6f960c0cbf4e37c3cb6b0ea198"}, + {file = "nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a178759ebb095827bd30ef56598ec182b85547f1508941a3d560eb7ea1fbf338"}, + {file = "nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:a961b2f1d5f17b14867c619ceb99ef6fcec12e46612711bcec78eb05068a60ec"}, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.4.127" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:961fe0e2e716a2a1d967aab7caee97512f71767f852f67432d572e36cb3a11f3"}, + {file = "nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:64403288fa2136ee8e467cdc9c9427e0434110899d07c779f25b5c068934faa5"}, + {file = "nvidia_cuda_runtime_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:09c2e35f48359752dfa822c09918211844a3d93c100a715d79b59591130c5e1e"}, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "9.1.0.70" +description = "cuDNN runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f"}, + {file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-win_amd64.whl", hash = "sha256:6278562929433d68365a07a4a1546c237ba2849852c0d4b2262a486e805b977a"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" + +[[package]] +name = "nvidia-cufft-cu12" +version = "11.2.1.3" +description = "CUFFT native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5dad8008fc7f92f5ddfa2101430917ce2ffacd86824914c82e28990ad7f00399"}, + {file = "nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f083fc24912aa410be21fa16d157fed2055dab1cc4b6934a0e03cba69eb242b9"}, + {file = "nvidia_cufft_cu12-11.2.1.3-py3-none-win_amd64.whl", hash = "sha256:d802f4954291101186078ccbe22fc285a902136f974d369540fd4a5333d1440b"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.5.147" +description = "CURAND native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1f173f09e3e3c76ab084aba0de819c49e56614feae5c12f69883f4ae9bb5fad9"}, + {file = "nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a88f583d4e0bb643c49743469964103aa59f7f708d862c3ddb0fc07f851e3b8b"}, + {file = "nvidia_curand_cu12-10.3.5.147-py3-none-win_amd64.whl", hash = "sha256:f307cc191f96efe9e8f05a87096abc20d08845a841889ef78cb06924437f6771"}, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.6.1.9" +description = "CUDA solver native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_aarch64.whl", hash = "sha256:d338f155f174f90724bbde3758b7ac375a70ce8e706d70b018dd3375545fc84e"}, + {file = "nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl", hash = "sha256:19e33fa442bcfd085b3086c4ebf7e8debc07cfe01e11513cc6d332fd918ac260"}, + {file = "nvidia_cusolver_cu12-11.6.1.9-py3-none-win_amd64.whl", hash = "sha256:e77314c9d7b694fcebc84f58989f3aa4fb4cb442f12ca1a9bde50f5e8f6d1b9c"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" +nvidia-cusparse-cu12 = "*" +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.3.1.170" +description = "CUSPARSE native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_aarch64.whl", hash = "sha256:9d32f62896231ebe0480efd8a7f702e143c98cfaa0e8a76df3386c1ba2b54df3"}, + {file = "nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ea4f11a2904e2a8dc4b1833cc1b5181cde564edd0d5cd33e3c168eff2d1863f1"}, + {file = "nvidia_cusparse_cu12-12.3.1.170-py3-none-win_amd64.whl", hash = "sha256:9bc90fb087bc7b4c15641521f31c0371e9a612fc2ba12c338d3ae032e6b6797f"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.21.5" +description = "NVIDIA Collective Communication Library (NCCL) Runtime" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:8579076d30a8c24988834445f8d633c697d42397e92ffc3f63fa26766d25e0a0"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.4.127" +description = "Nvidia JIT LTO Library" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:4abe7fef64914ccfa909bc2ba39739670ecc9e820c83ccc7a6ed414122599b83"}, + {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:06b3b9b25bf3f8af351d664978ca26a16d2c5127dbd53c0497e28d1fb9611d57"}, + {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:fd9020c501d27d135f983c6d3e244b197a7ccad769e34df53a42e276b0e25fa1"}, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.4.127" +description = "NVIDIA Tools Extension" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7959ad635db13edf4fc65c06a6e9f9e55fc2f92596db928d169c0bb031e88ef3"}, + {file = "nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:781e950d9b9f60d8241ccea575b32f5105a5baf4c2351cab5256a24869f12a1a"}, + {file = "nvidia_nvtx_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:641dccaaa1139f3ffb0d3164b4b84f9d253397e38246a4f2f36728b48566d485"}, +] + [[package]] name = "opencv-python" version = "4.10.0.84" @@ -1807,6 +2053,88 @@ files = [ {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, ] +[[package]] +name = "pandas" +version = "2.2.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"}, + {file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"}, + {file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"}, + {file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb"}, + {file = "pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc6b93f9b966093cb0fd62ff1a7e4c09e6d546ad7c1de191767baffc57628f39"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5dbca4c1acd72e8eeef4753eeca07de9b1db4f398669d5994086f788a5d7cc30"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8cd6d7cc958a3910f934ea8dbdf17b2364827bb4dafc38ce6eef6bb3d65ff09c"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99df71520d25fade9db7c1076ac94eb994f4d2673ef2aa2e86ee039b6746d20c"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31d0ced62d4ea3e231a9f228366919a5ea0b07440d9d4dac345376fd8e1477ea"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7eee9e7cea6adf3e3d24e304ac6b8300646e2a5d1cd3a3c2abed9101b0846761"}, + {file = "pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e"}, + {file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"}, +] + +[package.dependencies] +numpy = {version = ">=1.26.0", markers = "python_version >= \"3.12\""} +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.7" + +[package.extras] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] + [[package]] name = "pandocfilters" version = "1.5.1" @@ -2053,6 +2381,17 @@ files = [ [package.extras] tests = ["pytest"] +[[package]] +name = "py-cpuinfo" +version = "9.0.0" +description = "Get CPU info with pure Python" +optional = false +python-versions = "*" +files = [ + {file = "py-cpuinfo-9.0.0.tar.gz", hash = "sha256:3cdbbf3fac90dc6f118bfd64384f309edeadd902d7c8fb17f02ffa1fc3f49690"}, + {file = "py_cpuinfo-9.0.0-py3-none-any.whl", hash = "sha256:859625bc251f64e21f077d099d4162689c762b5d6a4c3c97553d56241c9674d5"}, +] + [[package]] name = "pycparser" version = "2.22" @@ -2117,6 +2456,17 @@ files = [ {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, ] +[[package]] +name = "pytz" +version = "2024.2" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, +] + [[package]] name = "pywin32" version = "307" @@ -2515,6 +2865,92 @@ files = [ {file = "rpds_py-0.20.0.tar.gz", hash = "sha256:d72a210824facfdaf8768cf2d7ca25a042c30320b3020de2fa04640920d4e121"}, ] +[[package]] +name = "scipy" +version = "1.14.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.10" +files = [ + {file = "scipy-1.14.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3"}, + {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d"}, + {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69"}, + {file = "scipy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad"}, + {file = "scipy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8"}, + {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37"}, + {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2"}, + {file = "scipy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2"}, + {file = "scipy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc"}, + {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310"}, + {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066"}, + {file = "scipy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1"}, + {file = "scipy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1729560c906963fc8389f6aac023739ff3983e727b1a4d87696b7bf108316a79"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4079b90df244709e675cdc8b93bfd8a395d59af40b72e339c2287c91860deb8e"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:e0cf28db0f24a38b2a0ca33a85a54852586e43cf6fd876365c86e0657cfe7d73"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0c2f95de3b04e26f5f3ad5bb05e74ba7f68b837133a4492414b3afd79dfe540e"}, + {file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99722ea48b7ea25e8e015e8341ae74624f72e5f21fc2abd45f3a93266de4c5d"}, + {file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e"}, + {file = "scipy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4f5a7c49323533f9103d4dacf4e4f07078f360743dec7f7596949149efeec06"}, + {file = "scipy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:baff393942b550823bfce952bb62270ee17504d02a1801d7fd0719534dfb9c84"}, + {file = "scipy-1.14.1.tar.gz", hash = "sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417"}, +] + +[package.dependencies] +numpy = ">=1.23.5,<2.3" + +[package.extras] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"] +doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0,<=7.3.7)", "sphinx-design (>=0.4.0)"] +test = ["Cython", "array-api-strict (>=2.0)", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "seaborn" +version = "0.13.2" +description = "Statistical data visualization" +optional = false +python-versions = ">=3.8" +files = [ + {file = "seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987"}, + {file = "seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7"}, +] + +[package.dependencies] +matplotlib = ">=3.4,<3.6.1 || >3.6.1" +numpy = ">=1.20,<1.24.0 || >1.24.0" +pandas = ">=1.2" + +[package.extras] +dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"] +docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx (<6.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-issues"] +stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"] + +[[package]] +name = "segment-anything" +version = "1.0" +description = "" +optional = false +python-versions = "*" +files = [ + {file = "segment_anything-1.0-py3-none-any.whl", hash = "sha256:86f67d417a915823c3302098effe9008b688945772517310956bb49de0e7f02e"}, + {file = "segment_anything-1.0.tar.gz", hash = "sha256:ed0c9f6fb07bbef9c6238a7028a13c8272f1ba6b6305ca73e3e064266503736b"}, +] + +[package.extras] +all = ["matplotlib", "onnx", "onnxruntime", "opencv-python", "pycocotools"] +dev = ["black", "flake8", "isort", "mypy"] + [[package]] name = "send2trash" version = "1.8.3" @@ -2603,6 +3039,23 @@ pure-eval = "*" [package.extras] tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] +[[package]] +name = "sympy" +version = "1.13.1" +description = "Computer algebra system (CAS) in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8"}, + {file = "sympy-1.13.1.tar.gz", hash = "sha256:9cebf7e04ff162015ce31c9c6c9144daa34a93bd082f54fd8f12deca4f47515f"}, +] + +[package.dependencies] +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] + [[package]] name = "terminado" version = "0.18.1" @@ -2653,6 +3106,96 @@ files = [ {file = "tokenize_rt-6.0.0.tar.gz", hash = "sha256:b9711bdfc51210211137499b5e355d3de5ec88a85d2025c520cbb921b5194367"}, ] +[[package]] +name = "torch" +version = "2.5.0" +description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "torch-2.5.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:7f179373a047b947dec448243f4e6598a1c960fa3bb978a9a7eecd529fbc363f"}, + {file = "torch-2.5.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:15fbc95e38d330e5b0ef1593b7bc0a19f30e5bdad76895a5cffa1a6a044235e9"}, + {file = "torch-2.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:f499212f1cffea5d587e5f06144630ed9aa9c399bba12ec8905798d833bd1404"}, + {file = "torch-2.5.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:c54db1fade17287aabbeed685d8e8ab3a56fea9dd8d46e71ced2da367f09a49f"}, + {file = "torch-2.5.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:499a68a756d3b30d10f7e0f6214dc3767b130b797265db3b1c02e9094e2a07be"}, + {file = "torch-2.5.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:9f3df8138a1126a851440b7d5a4869bfb7c9cc43563d64fd9d96d0465b581024"}, + {file = "torch-2.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:b81da3bdb58c9de29d0e1361e52f12fcf10a89673f17a11a5c6c7da1cb1a8376"}, + {file = "torch-2.5.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:ba135923295d564355326dc409b6b7f5bd6edc80f764cdaef1fb0a1b23ff2f9c"}, + {file = "torch-2.5.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:2dd40c885a05ef7fe29356cca81be1435a893096ceb984441d6e2c27aff8c6f4"}, + {file = "torch-2.5.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:bc52d603d87fe1da24439c0d5fdbbb14e0ae4874451d53f0120ffb1f6c192727"}, + {file = "torch-2.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:ea718746469246cc63b3353afd75698a288344adb55e29b7f814a5d3c0a7c78d"}, + {file = "torch-2.5.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:6de1fd253e27e7f01f05cd7c37929ae521ca23ca4620cfc7c485299941679112"}, + {file = "torch-2.5.0-cp313-cp313-manylinux1_x86_64.whl", hash = "sha256:83dcf518685db20912b71fc49cbddcc8849438cdb0e9dcc919b02a849e2cd9e8"}, + {file = "torch-2.5.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:65e0a60894435608334d68c8811e55fd8f73e5bf8ee6f9ccedb0064486a7b418"}, + {file = "torch-2.5.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:38c21ff1bd39f076d72ab06e3c88c2ea6874f2e6f235c9450816b6c8e7627094"}, + {file = "torch-2.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:ce4baeba9804da5a346e210b3b70826f5811330c343e4fe1582200359ee77fe5"}, + {file = "torch-2.5.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:03e53f577a96e4d41aca472da8faa40e55df89d2273664af390ce1f570e885bd"}, +] + +[package.dependencies] +filelock = "*" +fsspec = "*" +jinja2 = "*" +networkx = "*" +nvidia-cublas-cu12 = {version = "12.4.5.8", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-cupti-cu12 = {version = "12.4.127", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-nvrtc-cu12 = {version = "12.4.127", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-runtime-cu12 = {version = "12.4.127", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cudnn-cu12 = {version = "9.1.0.70", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cufft-cu12 = {version = "11.2.1.3", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-curand-cu12 = {version = "10.3.5.147", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusolver-cu12 = {version = "11.6.1.9", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusparse-cu12 = {version = "12.3.1.170", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.21.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvjitlink-cu12 = {version = "12.4.127", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvtx-cu12 = {version = "12.4.127", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +setuptools = {version = "*", markers = "python_version >= \"3.12\""} +sympy = {version = "1.13.1", markers = "python_version >= \"3.9\""} +triton = {version = "3.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\""} +typing-extensions = ">=4.8.0" + +[package.extras] +opt-einsum = ["opt-einsum (>=3.3)"] +optree = ["optree (>=0.12.0)"] + +[[package]] +name = "torchvision" +version = "0.20.0" +description = "image and video datasets and models for torch deep learning" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchvision-0.20.0-1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:e084f50ecbdbe7a9cc2fc51ea0367ae35fde46e84a964bf4046cb1c7feb7e3e6"}, + {file = "torchvision-0.20.0-1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:55d7f43ef912ebc4da4bba73a0bbf387d38a6be9cd521679c0f4056f9564b698"}, + {file = "torchvision-0.20.0-1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:f8d0213489acfb138369f2455a6893880c194a8195e381c19f872b277f2654c3"}, + {file = "torchvision-0.20.0-1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8d6cea8ab0bf72ecb71b07cd0fe836eacf5a5fa98f6629d2261212e90977b963"}, + {file = "torchvision-0.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f164d545965186ffd66014e34a966706d12c84198302dd46748cae45984609a4"}, + {file = "torchvision-0.20.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:9c18208575d60b96e7d53a09c453781afea4a81487c9ebc501dfc2bc88daa308"}, + {file = "torchvision-0.20.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:09080359be90314fc4fdd64b11a4d231c1999018f19d58bf7764f5e15f8e9fb3"}, + {file = "torchvision-0.20.0-cp310-cp310-win_amd64.whl", hash = "sha256:a7d46cf096007b7e8df1bddad7375427664a064bc05d9cbff5d506b73c1ab8ca"}, + {file = "torchvision-0.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a15de6266a36bcd10d89f6f3d7ba4e2dd567a7a0add616ebc6e65aea20790e5d"}, + {file = "torchvision-0.20.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:b64d9f83cf201ebda4f6b03533e4918fa0b4223b28b0ee3cbede15b8174c7cbd"}, + {file = "torchvision-0.20.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:d80eb740810804bac4b8e6b6411946ab286a1ee1d731db36af2f885333254802"}, + {file = "torchvision-0.20.0-cp311-cp311-win_amd64.whl", hash = "sha256:1fd045757335d34969d176fc5688b643d201860cb45b48ce8d5d8fb90868f746"}, + {file = "torchvision-0.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ac0edba534fb071b2b03a2fd5cbbf9b7c259896d17a1d0d830b3c5b7dfae0782"}, + {file = "torchvision-0.20.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:c8f3bc399d9c3e4ba05d74ca6dd5e63fed08ad5c5b302a946c8fcaa56216220f"}, + {file = "torchvision-0.20.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:a78c99ebe1a62857b68e97ff9417b92f299f2ee61f009491a114ddad050c493d"}, + {file = "torchvision-0.20.0-cp312-cp312-win_amd64.whl", hash = "sha256:bb0da0950d2034a0412c251a3a9117ff9612157f45177d37ba1b20b472c0864b"}, + {file = "torchvision-0.20.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6a70c81ea5068dd7b1e340ebeabb65364576d8b9819454cfdf812290cf03e45a"}, + {file = "torchvision-0.20.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:95d8c817681a4c2156f66ef83cafc4c5c4b97e4694956d54d7dc554804ee510d"}, + {file = "torchvision-0.20.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:1ab53244701eab897e5c65026ba178c0abbc5bd08629c3d20f737d618e9e5a37"}, + {file = "torchvision-0.20.0-cp39-cp39-win_amd64.whl", hash = "sha256:47d0751aeaa7057ee6a5973d35e7acad3ad7c17b8e57a2c4304d13e001e330ae"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" +torch = "2.5.0" + +[package.extras] +gdown = ["gdown (>=4.7.3)"] +scipy = ["scipy"] + [[package]] name = "tornado" version = "6.4.1" @@ -2673,6 +3216,26 @@ files = [ {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, ] +[[package]] +name = "tqdm" +version = "4.66.5" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + [[package]] name = "traitlets" version = "5.14.3" @@ -2688,6 +3251,28 @@ files = [ docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] +[[package]] +name = "triton" +version = "3.1.0" +description = "A language and compiler for custom Deep Learning operations" +optional = false +python-versions = "*" +files = [ + {file = "triton-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b0dd10a925263abbe9fa37dcde67a5e9b2383fc269fdf59f5657cac38c5d1d8"}, + {file = "triton-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f34f6e7885d1bf0eaaf7ba875a5f0ce6f3c13ba98f9503651c1e6dc6757ed5c"}, + {file = "triton-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8182f42fd8080a7d39d666814fa36c5e30cc00ea7eeeb1a2983dbb4c99a0fdc"}, + {file = "triton-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6dadaca7fc24de34e180271b5cf864c16755702e9f63a16f62df714a8099126a"}, + {file = "triton-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aafa9a20cd0d9fee523cd4504aa7131807a864cd77dcf6efe7e981f18b8c6c11"}, +] + +[package.dependencies] +filelock = "*" + +[package.extras] +build = ["cmake (>=3.20)", "lit"] +tests = ["autopep8", "flake8", "isort", "llnl-hatchet", "numpy", "pytest", "scipy (>=1.7.1)"] +tutorials = ["matplotlib", "pandas", "tabulate"] + [[package]] name = "types-python-dateutil" version = "2.9.0.20241003" @@ -2699,6 +3284,81 @@ files = [ {file = "types_python_dateutil-2.9.0.20241003-py3-none-any.whl", hash = "sha256:250e1d8e80e7bbc3a6c99b907762711d1a1cdd00e978ad39cb5940f6f0a87f3d"}, ] +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.2" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, +] + +[[package]] +name = "ultralytics" +version = "8.3.19" +description = "Ultralytics YOLO рџљЂ for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification." +optional = false +python-versions = ">=3.8" +files = [ + {file = "ultralytics-8.3.19-py3-none-any.whl", hash = "sha256:27a8ee785f187eafd19361f2a99c4f6bcc51e4d95af651ef93c8eacca1a5132c"}, + {file = "ultralytics-8.3.19.tar.gz", hash = "sha256:b8fccf62b6d331f3d33e5e640d333045eddc7cf3f494594580c4c2fb8db14c41"}, +] + +[package.dependencies] +matplotlib = ">=3.3.0" +numpy = ">=1.23.0" +opencv-python = ">=4.6.0" +pandas = ">=1.1.4" +pillow = ">=7.1.2" +psutil = "*" +py-cpuinfo = "*" +pyyaml = ">=5.3.1" +requests = ">=2.23.0" +scipy = ">=1.4.1" +seaborn = ">=0.11.0" +torch = [ + {version = ">=1.8.0,<2.4.0 || >2.4.0", markers = "sys_platform == \"win32\""}, + {version = ">=1.8.0", markers = "sys_platform != \"win32\""}, +] +torchvision = ">=0.9.0" +tqdm = ">=4.64.0" +ultralytics-thop = ">=2.0.0" + +[package.extras] +dev = ["coverage[toml]", "ipython", "mkdocs (>=1.6.0)", "mkdocs-jupyter", "mkdocs-macros-plugin (>=1.0.5)", "mkdocs-material (>=9.5.9)", "mkdocs-redirects", "mkdocs-ultralytics-plugin (>=0.1.8)", "mkdocstrings[python]", "pytest", "pytest-cov"] +export = ["coremltools (>=7.0)", "flatbuffers (>=23.5.26,<100)", "h5py (!=3.11.0)", "keras", "numpy (==1.23.5)", "onnx (>=1.12.0)", "openvino (>=2024.0.0)", "scikit-learn (>=1.3.2)", "tensorflow (>=2.0.0)", "tensorflowjs (>=3.9.0)", "tensorstore (>=0.1.63)"] +extra = ["albumentations (>=1.4.6)", "hub-sdk (>=0.0.12)", "ipython", "pycocotools (>=2.0.7)"] +logging = ["comet", "dvclive (>=2.12.0)", "tensorboard (>=2.13.0)"] +solutions = ["shapely (>=2.0.0)", "streamlit"] + +[[package]] +name = "ultralytics-thop" +version = "2.0.9" +description = "Ultralytics THOP package for fast computation of PyTorch model FLOPs and parameters." +optional = false +python-versions = ">=3.8" +files = [ + {file = "ultralytics_thop-2.0.9-py3-none-any.whl", hash = "sha256:3c3e20ce885dc6f7fa5f1f0d7ac96809c1ce3be662b892dda103d67a61243116"}, + {file = "ultralytics_thop-2.0.9.tar.gz", hash = "sha256:fd53a15c105e789d9243411fbf6efb430e4c2c42d1606d5edcd21805cc9ac78b"}, +] + +[package.dependencies] +numpy = "*" +torch = "*" + [[package]] name = "uri-template" version = "1.3.0" @@ -2797,4 +3457,4 @@ files = [ [metadata] lock-version = "2.0" python-versions = "^3.12" -content-hash = "9eabb8fedb40f51579b642e6236ff44642af7006b9ddf5ba9ed0734fc01621ef" +content-hash = "7e964b8d7de0979b6d4f1db1b2fefc14da79a44751f6b9b82b2f00036a59ce13" diff --git a/pyproject.toml b/pyproject.toml index 7ce8ebb9f045189867cf1728cb59ae9b84174b4e..7975ef363eb6962a8501bad9884f84bfd4d22c37 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -13,6 +13,8 @@ numpy = "^2.1.1" matplotlib = "^3.9.2" black = {extras = ["jupyter"], version = "^24.8.0"} jupyter = "^1.1.1" +ultralytics = "^8.3.19" +segment-anything = "^1.0" [build-system]