From 093db658b37410b796f6ebc5501ac3827df120e1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=D0=9C=D0=B0=D0=B7=D1=83=D1=80=20=D0=93=D1=80=D0=B5=D1=82?= =?UTF-8?q?=D0=B0=20=D0=95=D0=B2=D0=B3=D0=B5=D0=BD=D1=8C=D0=B5=D0=B2=D0=BD?= =?UTF-8?q?=D0=B0?= <gemazur_1@edu.hse.ru> Date: Tue, 25 Mar 2025 18:57:18 +0300 Subject: [PATCH] micro zapusk no cross --- .ipynb_checkpoints/checkLora-checkpoint.py | 20 ++++++++++++++++++-- checkLora.py | 20 ++++++++++++++++++-- 2 files changed, 36 insertions(+), 4 deletions(-) diff --git a/.ipynb_checkpoints/checkLora-checkpoint.py b/.ipynb_checkpoints/checkLora-checkpoint.py index 7751d3e..0498167 100644 --- a/.ipynb_checkpoints/checkLora-checkpoint.py +++ b/.ipynb_checkpoints/checkLora-checkpoint.py @@ -125,8 +125,25 @@ import torch +# from transformers import BertTokenizer, BertModel +# from peft import PeftModel + +# # Определяем устройство +# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +# # Загружаем базовую модель BERT +# base_model = BertModel.from_pretrained("bert-base-uncased").to(device) + +# # Подключаем адаптер LoRA +# model = PeftModel.from_pretrained(base_model, "./micro_no_cross_fine_tuned").to(device) +# model.eval() + +# # Загружаем токенизатор +# tokenizer = BertTokenizer.from_pretrained("./micro_no_cross_fine_tuned") + from peft import PeftModel from transformers import BertTokenizer, BertConfig +from micro_no_cross import MultiTaskBert # Загружаем базовую конфигурацию config = BertConfig.from_pretrained("bert-base-uncased") @@ -142,8 +159,7 @@ tokenizer = BertTokenizer.from_pretrained("./micro_no_cross_fine_tuned") model.to(device) model.eval() -# Загружаем токенизатор -tokenizer = BertTokenizer.from_pretrained("./micro_no_cross_fine_tuned") + def predict(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device) diff --git a/checkLora.py b/checkLora.py index 7751d3e..0498167 100644 --- a/checkLora.py +++ b/checkLora.py @@ -125,8 +125,25 @@ import torch +# from transformers import BertTokenizer, BertModel +# from peft import PeftModel + +# # Определяем устройство +# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +# # Загружаем базовую модель BERT +# base_model = BertModel.from_pretrained("bert-base-uncased").to(device) + +# # Подключаем адаптер LoRA +# model = PeftModel.from_pretrained(base_model, "./micro_no_cross_fine_tuned").to(device) +# model.eval() + +# # Загружаем токенизатор +# tokenizer = BertTokenizer.from_pretrained("./micro_no_cross_fine_tuned") + from peft import PeftModel from transformers import BertTokenizer, BertConfig +from micro_no_cross import MultiTaskBert # Загружаем базовую конфигурацию config = BertConfig.from_pretrained("bert-base-uncased") @@ -142,8 +159,7 @@ tokenizer = BertTokenizer.from_pretrained("./micro_no_cross_fine_tuned") model.to(device) model.eval() -# Загружаем токенизатор -tokenizer = BertTokenizer.from_pretrained("./micro_no_cross_fine_tuned") + def predict(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device) -- GitLab