diff --git a/.ipynb_checkpoints/checkLora-checkpoint.py b/.ipynb_checkpoints/checkLora-checkpoint.py index 95c57d771d4168e6bbf7b3d86368ef42faade469..9f4d7936cccac9bed0f24e0ef2a03ba2f8b0fa03 100644 --- a/.ipynb_checkpoints/checkLora-checkpoint.py +++ b/.ipynb_checkpoints/checkLora-checkpoint.py @@ -314,9 +314,12 @@ tokenizer = BertTokenizer.from_pretrained("./micro_no_cross_fine_tuned2") base_model = MultiTaskBert.from_pretrained('bert-base-uncased').to(device) +print("Загружена базовая") model = PeftModel.from_pretrained(base_model, "./micro_no_cross_fine_tuned/lora2", strict=False) +print("Загружена с лора") + # Переводим модель в режим оценки model.eval() diff --git a/checkLora.py b/checkLora.py index 95c57d771d4168e6bbf7b3d86368ef42faade469..9f4d7936cccac9bed0f24e0ef2a03ba2f8b0fa03 100644 --- a/checkLora.py +++ b/checkLora.py @@ -314,9 +314,12 @@ tokenizer = BertTokenizer.from_pretrained("./micro_no_cross_fine_tuned2") base_model = MultiTaskBert.from_pretrained('bert-base-uncased').to(device) +print("Загружена базовая") model = PeftModel.from_pretrained(base_model, "./micro_no_cross_fine_tuned/lora2", strict=False) +print("Загружена с лора") + # Переводим модель в режим оценки model.eval()