An error occurred while loading the file. Please try again.
-
Adam Reese authored6092f01f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import gc
import pandas as pd
import torch
import numpy as np
from sklearn.model_selection import train_test_split
from datasets import Dataset
from transformers import BertTokenizer, BertModel, Trainer, TrainingArguments, EarlyStoppingCallback
from torch import nn
from peft import get_peft_model, LoraConfig, TaskType
import logging
from collections import defaultdict
from sklearn.metrics import classification_report, f1_score
import nltk
from typing import List, Dict, Union
from pathlib import Path
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
# Настройка NLTK один раз в начале
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('wordnet', quiet=True)
nltk.download('omw-1.4', quiet=True)
# Настройка логгирования
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.FileHandler('model_training.log'), logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
class ModelConfig:
"""Упрощенная конфигурация модели"""
def __init__(self):
self.model_name = 'distilbert-base-multilingual-cased' # Более легкая модель
self.max_length = 128 # Уменьшенная длина последовательности
self.batch_size = 8
self.epochs = 5 # Меньше эпох
self.safety_threshold = 0.5
self.test_size = 0.2
self.val_size = 0.1
self.early_stopping_patience = 2
self.learning_rate = 2e-5
self.seed = 42
self.fp16 = True
self.gradient_accumulation_steps = 4 # Уменьшено
self.max_grad_norm = 1.0
self.lora_r = 4 # Уменьшено
self.lora_alpha = 8 # Уменьшено
self.lora_dropout = 0.1
class SafetyModel(nn.Module):
"""Упрощенная модель для экономии памяти"""
def __init__(self, model_name: str):
super().__init__()
self.bert = BertModel.from_pretrained(model_name)
self.safety_head = nn.Linear(self.bert.config.hidden_size, 2)
self.attack_head = nn.Linear(self.bert.config.hidden_size, 4)
def forward(self, input_ids=None, attention_mask=None, labels_safety=None, labels_attack=None, **kwargs):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
pooled = outputs.last_hidden_state[:, 0, :]
return {
'logits_safety': self.safety_head(pooled),
'logits_attack': self.attack_head(pooled)
}
def load_data() -> pd.DataFrame:
"""Загрузка данных без балансировки"""
try:
data = pd.read_csv('all_dataset.csv')
data = data.dropna(subset=['prompt'])
data['prompt'] = data['prompt'].str.strip()
data = data[data['prompt'].str.len() > 0]
return data
except Exception as e:
logger.error(f"Ошибка загрузки данных: {str(e)}")
raise
def tokenize_data(tokenizer, df: pd.DataFrame) -> Dataset:
"""Упрощенная токенизация"""
df = df.copy()
df['labels_safety'] = df['safety'].apply(lambda x: 0 if x == "safe" else 1)
df['labels_attack'] = df['type'].map({'jailbreak':0, 'injection':1, 'evasion':2, 'generic attack':3, 'generic_attack':3}).fillna(-1)
df.loc[df['safety'] == 'safe', 'labels_attack'] = -1
dataset = Dataset.from_pandas(df)
def preprocess(examples):
return tokenizer(
examples['prompt'],
truncation=True,
padding='max_length',
max_length=ModelConfig().max_length,
return_tensors="pt"
)
return dataset.map(preprocess, batched=True, batch_size=1000, remove_columns=dataset.column_names)
def train():
"""Основная функция обучения"""
try:
config = ModelConfig()
set_seed(config.seed)
# Загрузка данных
logger.info("Загрузка данных...")
data = load_data()
# Разделение данных
train_data, test_data = train_test_split(
data, test_size=config.test_size, random_state=config.seed
)
train_data, val_data = train_test_split(
train_data, test_size=config.val_size, random_state=config.seed
)
# Токенизация
logger.info("Токенизация...")
tokenizer = BertTokenizer.from_pretrained(config.model_name)
train_dataset = tokenize_data(tokenizer, train_data)
val_dataset = tokenize_data(tokenizer, val_data)
# Модель
logger.info("Инициализация модели...")
model = SafetyModel(config.model_name)
peft_config = LoraConfig(
task_type=TaskType.FEATURE_EXTRACTION,
r=config.lora_r,
lora_alpha=config.lora_alpha,
lora_dropout=config.lora_dropout,
target_modules=["query", "value"]
)
model = get_peft_model(model, peft_config)
# Обучение
training_args = TrainingArguments(
output_dir='./output',
evaluation_strategy="epoch",
per_device_train_batch_size=config.batch_size,
per_device_eval_batch_size=config.batch_size*2,
num_train_epochs=config.epochs,
fp16=config.fp16,
gradient_accumulation_steps=config.gradient_accumulation_steps,
load_best_model_at_end=True,
metric_for_best_model='eval_loss',
greater_is_better=False
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
callbacks=[EarlyStoppingCallback(early_stopping_patience=config.early_stopping_patience)]
)
logger.info("Старт обучения...")
trainer.train()
# Сохранение
model.save_pretrained('./model')
tokenizer.save_pretrained('./model')
logger.info("Обучение завершено!")
except Exception as e:
logger.error(f"Ошибка: {str(e)}")
if __name__ == "__main__":
train()