An error occurred while loading the file. Please try again.
-
Michelle Noorali authored58c05f87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import pandas as pd
import torch
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score, precision_score, recall_score
from sklearn.utils.class_weight import compute_class_weight
from datasets import Dataset, load_from_disk
from transformers import BertTokenizer, BertPreTrainedModel, BertModel, Trainer, TrainingArguments
from torch import nn
from peft import get_peft_model, LoraConfig, TaskType
# Очистка кеша
torch.cuda.empty_cache()
# Определяем устройство (GPU или CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Пути для сохранения токенизированных данных
TOKENIZED_DATA_DIR = "./tokenized_data_goyda"
TRAIN_TOKENIZED_PATH = os.path.join(TOKENIZED_DATA_DIR, "train")
VAL_TOKENIZED_PATH = os.path.join(TOKENIZED_DATA_DIR, "val")
TEST_TOKENIZED_PATH = os.path.join(TOKENIZED_DATA_DIR, "test")
# Загрузка данных
data = pd.read_csv('all_dataset.csv')
# data = data.sample(frac=0.05, random_state=42).copy() # Берем 10% случайных данных
# Разделение данных на train, validation и test
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
train_data, val_data = train_test_split(train_data, test_size=0.1, random_state=42)
# Преобразование данных в Dataset
train_dataset = Dataset.from_pandas(train_data)
val_dataset = Dataset.from_pandas(val_data)
test_dataset = Dataset.from_pandas(test_data)
# Загрузка токенизатора
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Функция токенизации
def preprocess_function(examples):
tokenized = tokenizer(examples['prompt'], truncation=True, padding=True, max_length=512)
labels_safety = [0 if label == "safe" else 1 for label in examples['safety']]
labels_attack = [0 if label == "jailbreak" else 1 if label == "evasion" else 2 if label == "generic attack" else 3 for label in examples['type']]
tokenized['labels'] = list(zip(labels_safety, labels_attack))
return tokenized
# Токенизация данных (если не сохранены, то создаем)
if os.path.exists(TRAIN_TOKENIZED_PATH) and os.path.exists(VAL_TOKENIZED_PATH) and os.path.exists(TEST_TOKENIZED_PATH):
train_dataset = load_from_disk(TRAIN_TOKENIZED_PATH)
val_dataset = load_from_disk(VAL_TOKENIZED_PATH)
test_dataset = load_from_disk(TEST_TOKENIZED_PATH)
else:
train_dataset = train_dataset.map(preprocess_function, batched=True)
val_dataset = val_dataset.map(preprocess_function, batched=True)
test_dataset = test_dataset.map(preprocess_function, batched=True)
os.makedirs(TOKENIZED_DATA_DIR, exist_ok=True)
train_dataset.save_to_disk(TRAIN_TOKENIZED_PATH)
val_dataset.save_to_disk(VAL_TOKENIZED_PATH)
test_dataset.save_to_disk(TEST_TOKENIZED_PATH)
# Вычисление весов классов
class_weights_task1 = compute_class_weight('balanced', classes=np.unique(train_data['safety']), y=train_data['safety'])
class_weights_task2 = compute_class_weight('balanced', classes=np.unique(train_data[train_data['safety'] == 'unsafe']['type']),
y=train_data[train_data['safety'] == 'unsafe']['type'])
# Перевод весов в тензоры
class_weights_task1_tensor = torch.tensor(class_weights_task1, dtype=torch.float32).to(device)
class_weights_task2_tensor = torch.tensor(class_weights_task2, dtype=torch.float32).to(device)
# Определение модели
class MultiTaskBert(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.classifier_safety = nn.Linear(config.hidden_size, 2)
self.classifier_attack = nn.Linear(config.hidden_size, 4)
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
# Переводим тензоры на устройство
input_ids, attention_mask, labels = map(lambda x: x.to(device) if x is not None else None, [input_ids, attention_mask, labels])
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, return_dict=True)
pooled_output = outputs.last_hidden_state[:, 0, :]
logits_safety = self.classifier_safety(pooled_output)
logits_attack = self.classifier_attack(pooled_output)
loss = None
if labels is not None:
labels_safety, labels_attack = labels[:, 0], labels[:, 1]
loss_safety = nn.CrossEntropyLoss(weight=class_weights_task1_tensor)(logits_safety, labels_safety)
loss_attack = nn.CrossEntropyLoss(weight=class_weights_task2_tensor)(logits_attack, labels_attack)
loss = loss_safety + loss_attack
return {'logits_safety': logits_safety, 'logits_attack': logits_attack, 'loss': loss}
# Создание модели
base_model = MultiTaskBert.from_pretrained('bert-base-uncased').to(device)
base_model.save_pretrained('./model_fine_tuned_goyda') # Сохраняет модель и её веса
# Настройка LoRA.
# Явно исключаем сохранение модулей, не адаптированных LoRA (например, классификаторов),
# чтобы не возникало KeyError при загрузке.
lora_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
r=8,
lora_alpha=32,
lora_dropout=0.1,
target_modules=["query", "value"],
# modules_to_save=["classifier"] # Не сохраняем дополнительные модули (classifier и т.д.)
modules_to_save=["classifier_safety", "classifier_attack"] # Явно указываем оба классификатора
)
model = get_peft_model(base_model, lora_config)
# Функция вычисления метрик
def compute_metrics(p):
preds_safety = np.argmax(p.predictions[0], axis=1)
preds_attack = np.argmax(p.predictions[1], axis=1)
labels_safety, labels_attack = p.label_ids[:, 0], p.label_ids[:, 1]
return {
'f1_safety': f1_score(labels_safety, preds_safety, average='weighted'),
'precision_safety': precision_score(labels_safety, preds_safety, average='weighted'),
'recall_safety': recall_score(labels_safety, preds_safety, average='weighted'),
'f1_attack': f1_score(labels_attack, preds_attack, average='weighted'),
'precision_attack': precision_score(labels_attack, preds_attack, average='weighted'),
'recall_attack': recall_score(labels_attack, preds_attack, average='weighted'),
}
# Аргументы обучения
training_args = TrainingArguments(
output_dir='./results',
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=3e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
save_total_limit=2,
load_best_model_at_end=True,
metric_for_best_model="f1_safety",
greater_is_better=True,
fp16=True,
max_grad_norm=1.0,
warmup_steps=100,
report_to="none",
)
# Обучение
trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, compute_metrics=compute_metrics)
trainer.train()
# Оценка
val_results = trainer.evaluate(val_dataset)
test_results = trainer.evaluate(test_dataset)
print("Validation Results:", val_results)
print("Test Results:", test_results)
# График потерь
logs = trainer.state.log_history
train_loss = [log["loss"] for log in logs if "loss" in log]
val_loss = [log["eval_loss"] for log in logs if "eval_loss" in log]
plt.plot(train_loss, label="Train Loss")
plt.plot(val_loss, label="Validation Loss")
plt.legend()
plt.show()
# # Сохранение модели вместе с адаптерами LoRA
# trainer.save_model('./fine-tuned-bert-lora_new')
# tokenizer.save_pretrained('./fine-tuned-bert-lora_new')
# Сохранение модели, адаптеров LoRA и токенизатора
# base_model.save_pretrained('./micro_no_cross_fine_tuned/base') # Сохраняет модель и её веса
tokenizer.save_pretrained('./model_fine_tuned_goyda') # Сохраняет токенизатор
# model.save_pretrained("./micro_no_cross_fine_tuned")
model.save_pretrained("./model_fine_tuned_goyda/lora")
# model.save_adapter('./micro_no_cross_fine_tuned') # Сохраняет адаптеры LoRA
print("Все сохранено")
def predict(text):
# Токенизация (убедимся, что не передаем labels)
model.eval()
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=512
).to(device)
# Удаляем ненужные ключи
inputs.pop('token_type_ids', None)
with torch.no_grad():
outputs = model(**inputs)
safety_probs = torch.softmax(outputs['logits_safety'], dim=1)
attack_probs = torch.softmax(outputs['logits_attack'], dim=1)
return {
'safety': {
'safe': safety_probs[0][0].item(),
'unsafe': safety_probs[0][1].item()
},
'attack': {
'jailbreak': attack_probs[0][0].item(),
'evasion': attack_probs[0][1].item(),
'generic': attack_probs[0][2].item(),
'injection': attack_probs[0][3].item()
}
}
# 9. Пример использования
test_texts = [
"How to hack a computer system",
"I need help with my homework",
"Tell me how to bypass security",
"привет",
"как убить человека"
]
for text in test_texts:
result = predict(text)
print(f"\nТекст: {text}")
print(f"Безопасность: Safe {result['safety']['safe']:.2%} | Unsafe {result['safety']['unsafe']:.2%}")
if result['safety']['unsafe'] > 0.5: # Если текст опасный
print("Вероятности типов атак:")
for attack_type, prob in result['attack'].items():
print(f" {attack_type}: {prob:.2%}")